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Abstract—Estimation of stator winding resistance in 
brushless DC motors is important for fault detection and 
diagnosis. The most popular linear estimation method to date 
remains the Kalman filter (KF), and the extended form (EKF) 
for nonlinear systems and measurements. However, a relatively 
new method referred to as the smooth variable structure filter 
(SVSF) was introduced in an effort to overcome some of the 
instability issues with the KF. Further to this development, a 
new nonlinear estimation strategy was created based on 
combining elements of the EKF with the SVSF. This new 
method, referred to as the EK-SVSF, has been applied to a 
brushless DC motor for estimating the stator winding values. 
The results are compared with the popular EKF. 

I. INTRODUCTION 

Electric motors are an essential part of many production 
and manufacturing lines, with increasing popularity in the 
automotive, aerospace, HVAC, and medical fields. One of the 
most common types of electric motors is referred to as the 
permanent magnet brushless DC motor (PMBLDC). 
Unplanned production downtime caused by motor failures 
greatly affects production costs and operator safety. 

Stator winding faults, namely open phase and 
short-circuited phase, account for nearly 21% of motor 
failures [1, 2]. Therefore, it is important to implement 
effective fault diagnosis techniques in order to detect failures 
at the inception. Winding failure most commonly starts as 
turn-to-turn faults, and develops to the open phase or 
insulation failure. This causes the motor parameters such as 
the winding resistance to vary [2]. Mathematical models of 
electric motors are used to estimate and monitor the 
parameters in order to identify the potential deterioration of 
winding conditions. Model-based estimation methods provide 
a nonintrusive and low-cost way to monitor motor operating 
conditions [3-8]. 

A parametric model was developed to simulate the 
operating conditions in [9], where the variation of spatial 
harmonics in back-EMFs was taken into account. A similar 
approach was also used in [10]. In [11] a sliding-mode 
observer was proposed to estimate the back-EMF of a 
brushless DC motor, and was found insensitive to switching 
noise in the power measurements. The extend Kalman filter 
(EKF) has become one of the favored approaches for the 
estimation of motors, such as rotor position in sensorless 
control [12, 13]. In [14] the faults in the winding resistance 
and the friction coefficient of a brushless DC motor were 
physically simulated and estimated using EKF. The results 
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demonstrated that a 10% winding resistance fault could be 
overcome. However, the study did not consider a signal 
winding phase fault case. 

In [15] a model-reference based method was proposed for 
the parameter estimation of a motor. It was claimed that the 
performance of the proposed approach was comparable to that 
of EKF [16], while being less computationally expensive. The 
EKF was also employed in [17] for the estimation of rotor 
speed and winding resistance of a brushless DC motor. The 
accuracy of the estimated speed could be improved by 
introducing the estimation of winding resistance. The EKF has 
also been implemented for estimating sensorless stepper 
motor drives with long cables; two estimation schemes for a 
motor side and drive side were developed combined [18]. A 
fault diagnosis algorithm was proposed in [19] which 
accounted for the modeling errors caused by process 
uncertainties. The uncertainties were reflected by a 
time-varying stator resistance and inductance. The approach 
utilized a decoupling block formulated in a feedback loop to 
increase the overall robustness. However, the studied assumed 
that the winding resistances of all three phases were equal to 
each other, which is not practical under faulty winding 
conditions. 

Model-based approaches often have issues with 
overlooked modeling uncertainties and nonlinearities that can 
lead to incorrect or unstable estimates [20]. In 2007, a new 
strategy referred to as the smooth variable structure filter 
(SVSF) was introduced in an effort to improve the resistance 
to modeling errors [21]. It was proved that it could guarantee 
stability given some bounded parametric uncertainty [21]. An 
improved version of the SVSF, referred to as the EK-SVSF, 
was proposed in [22]. It achieves better estimation accuracy 
by making use of the EKF while also preserving the 
robustness features of the SVSF. In this study, the EK-SVSF 
was adopted for estimating the winding resistance of a 
brushless DC Motor. The main EKF, SVSF, and EK-SVSF 
equations are summarized in Section’s 2 and 3. The 
experimental setup and results are provided in Section 4. 
Finally, the results are summarized in the conclusions.  

II. ESTIMATION STRATEGIES 

A. Extended Kalman Filter 

The extended Kalman filter (EKF) for nonlinear systems 
and measurements is similar to the standard KF; however it 
makes use of linearized system and measurement matrices. 
The state estimate ݔො௞ାଵ|௞  is predicted using the nonlinear 
system model (2.1.1), and the corresponding state error 
covariance matrix ௞ܲାଵ|௞  is calculated as per (2.1.2). The 
measurement error (or innovation) ݁௭,௞ାଵ|௞ is calculated using 
(2.1.3), and the measurement error (innovation) covariance 
matrix ܵ௞ାଵ is calculated by (2.1.4). 
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ො௞ାଵ|௞ݔ  ൌ ݂൫ݔො௞|௞,  ௞൯ (2.1.1)ݑ

 ௞ܲାଵ|௞ ൌ ௞ܣ ௞ܲ|௞ܣ௞
் ൅ ܳ௞ (2.1.2) 

 ݁௭,௞ାଵ|௞ ൌ ௞ାଵݖ െ ݄൫ݔො௞ାଵ|௞൯ (2.1.3) 

 ܵ௞ାଵ ൌ ௞ାଵܥ ௞ܲାଵ|௞ܥ௞ାଵ
் ൅ ܴ௞ାଵ (2.1.4) 

The gain is calculated next as per (2.1.5), making use of 
(2.1.2) and (2.1.4). An updated state estimated is calculated in 
(2.1.6) based on the measurement error (2.1.3) and the gain. 
Finally, the state error covariance matrix is updated in (2.1.7) 
and used in the next time step. 

௞ାଵܭ  ൌ ௞ܲାଵ|௞ܥ௞ାଵ
் ܵ௞ାଵ

ିଵ  (2.1.5) 
ො௞ାଵ|௞ାଵݔ  ൌ ො௞ାଵ|௞ݔ ൅  ௞ାଵ݁௭,௞ାଵ|௞ (2.1.6)ܭ
 ௞ܲାଵ|௞ାଵ ൌ ሺܫ െ ௞ାଵሻܥ௞ାଵܭ ௞ܲାଵ|௞ (2.1.7) 

Equations (2.1.1) through (2.1.7) are the main equations 
for the EKF estimation process. Note that the process is 
performed recursively. Furthermore, for completeness, the 
linearized system and measurement matrices may be 
calculated respectively as follows: 

௞ܣ  ൌ
߲݂
ݔ߲
ฬ
௫ොೖ|ೖ,௨ೖ

 (2.1.8) 

௞ାଵܥ  ൌ
߲݄
ݔ߲
ฬ
௫ොೖశభ|ೖ

 (2.1.9) 

B. Smooth Variable Structure Filter 

As previously discussed, the smooth variable structure 
filter (SVSF) is a relatively new estimation method based on 
sliding mode concepts [21]. Like the KF and EKF, the SVSF 
is formulated in a predictor-correct format. The unique 
switching gain that the SVSF utilizes creates a very robust and 
stable estimation strategy [21]. As illustrated in Fig. 1, a 
switching gain is used to force the estimates to within a region 
of the true state trajectory, referred to as the existence 
subspace. The width of this boundary layer is a function of the 
modeling errors and uncertainties present in the estimation 
process. Properly identifying these levels of uncertainties and 
noise creates a robust and accurate estimation method [21]. 

 
Figure 1.  SVSF estimation concept [23]. 

The SVSF estimation process may be summarized by the 
following set of equations. Similar to the EKF process, the 
state estimates (2.2.1), state error covariance matrix (2.2.2), 
and a priori measurement error (2.2.3) are calculated first in 
the prediction step. 

ො௞ାଵ|௞ݔ  ൌ ݂൫ݔො௞|௞,  ௞൯ (2.2.1)ݑ

 ௞ܲାଵ|௞ ൌ ௞ܣ ௞ܲ|௞ܣ௞
் ൅ ܳ௞ (2.2.2) 

 ݁௭,௞ାଵ|௞ ൌ ௞ାଵݖ െ ݄൫ݔො௞ାଵ|௞൯ (2.2.3) 

The SVSF gain is a function of: the a priori and a posteriori 
measurement errors ݁௭,௞ାଵ|௞  and ݁௭,௞|௞ ; the smoothing 
boundary layer widths ߰; the ‘SVSF’ memory or convergence 
rate ߛ; as well as the linearized measurement matrix ܥ; and is 
defined as per (2.2.4). Similar to the EKF process, the gain is 
used to update the state estimate (2.2.5) and update the state 
error covariance matrix (2.2.6). 

 

௞ାଵܭ
ൌ ା݀݅ܽ݃ܥ ቂቀቚ݁௭ೖశభ|ೖቚ ൅ ߛ ቚ݁௭ೖ|ೖቚቁ

∘ ݐܽݏ ቀ ത߰ିଵ݁௭ೖశభ|ೖቁቃ ݀݅ܽ݃ ቀ݁௭ೖశభ|ೖቁ
ିଵ

 

(2.2.4) 

ො௞ାଵ|௞ାଵݔ  ൌ ො௞ାଵ|௞ݔ ൅  ௞ାଵ݁௭,௞ାଵ|௞ (2.2.5)ܭ

 
௞ܲାଵ|௞ାଵ

ൌ ሺܫ െ ሻܥ௞ାଵܭ ௞ܲାଵ|௞ሺܫ െ ሻ்ܥ௞ାଵܭ

൅ ௞ାଵܭ௞ାଵܴ௞ାଵܭ
்  

(2.2.6) 

The measurement error, used in the next time step, is 
updated as per (2.2.7). 

 ݁௭,௞ାଵ|௞ାଵ ൌ ௞ାଵݖ െ ݄൫ݔො௞ାଵ|௞ାଵ൯ (2.2.7) 

III. THE EK-SVSF ESTIMATION STRATEGY 

Recently, it was proposed to combined elements of the 
EKF and SVSF to improve the overall estimation accuracy 
and robustness [23]. This procedure is based on a time-varying 
smoothing boundary layer (VBL), as opposed to a fixed 
smoothing boundary layer value (used to define the existence 
subspace). Essentially, the VBL may be used as an indicator of 
system changes or fault occurrences. The combined method, 
referred to as the EK-SVSF, makes use of the VBL and the 
fixed or saturated boundary layer width. The EKF gain is 
implemented if the VBL is calculated to exist within (or less 
than) the fixed value. If the VBL goes beyond the limit, the 
SVSF gain is implemented in order to maintain robustness to 
modeling uncertainties and noise. This concept is further 
illustrated in Fig. 2. 

The EKF-SVSF estimation process is summarized by the 
following set of equations. The prediction stage begins as per 
the EKF method. 

ො௞ାଵ|௞ݔ  ൌ ݂൫ݔො௞|௞,  ௞൯ (3.1)ݑ

 ௞ܲାଵ|௞ ൌ ௞ܣ ௞ܲ|௞ܣ௞
் ൅ ܳ௞ (3.2) 

 ݁௭,௞ାଵ|௞ ൌ ௞ାଵݖ െ ݄൫ݔො௞ାଵ|௞൯ (3.3) 

 ܵ௞ାଵ ൌ ௞ାଵܥ ௞ܲାଵ|௞ܥ௞ାଵ
் ൅ ܴ௞ାଵ (3.4) 

At this point, the time-varying smoothing boundary layer 
(VBL) is calculated as follows [23]: 



  

 
Figure 2.  Time-varying smoothing boundary layer concept [23]. 

 ߰௞ାଵ ൌ ൫ܧതିଵܥ௞ାଵ ௞ܲାଵ|௞ܥ௞ାଵ
் ܵ௞ାଵ

ିଵ ൯
ିଵ

 (3.5) 

ܧ  ൌ ቀቚ݁௭ೖశభ|ೖቚ஺௕௦
൅ ߛ ቚ݁௭ೖ|ೖቚ஺௕௦

ቁ (3.6) 

The values of (3.5) are compared with the limits for the 
smoothing boundary layer widths (a designer setting) to 
determine which gain is used (EKF or SVSF). If the values of 
(3.5) are larger than the limits (i.e., ψ୩ାଵ ൐ ψ୪୧୫ ), the 
EK-SVSF gain is defined by [23]: 

 

௞ାଵܭ
ൌ ା݀݅ܽ݃ܥ ቂቀห݁௭,௞ାଵ|௞ห஺௕௦ ൅ ห݁௭,௞|௞ห஺௕௦ቁߛ

∘ ൫ݐܽݏ ത߰ିଵ݁௭,௞ାଵ|௞൯ቃ ݀݅ܽ݃൫݁௭,௞ାଵ|௞൯
ିଵ

 

(3.7) 

Otherwise, the EKF gain may be used (3.8). Note that this 
is a seamless transfer as the gain equation does not change 
drastically. Its amplitude changes smoothly as it crosses the 
boundary layer, ensuring continuity in the estimation process. 

௞ାଵܭ  ൌ ௞ܲାଵ|௞ܥ௞ାଵ
் ܵ௞ାଵ

ିଵ  (3.8) 

Similar to the SVSF estimation process, the remaining part 
of the procedure includes updating the estimates (3.9) and the 
covariance (3.10). The measurement error, used in the next 
time step, is updated as per (3.11). 

ො௞ାଵ|௞ାଵݔ  ൌ ො௞ାଵ|௞ݔ ൅  ௞ାଵ݁௭,௞ାଵ|௞ (3.9)ܭ

 
௞ܲାଵ|௞ାଵ

ൌ ሺܫ െ ሻܥ௞ାଵܭ ௞ܲାଵ|௞ሺܫ െ ሻ்ܥ௞ାଵܭ

൅ ௞ାଵܭ௞ାଵܴ௞ାଵܭ
்  

(3.10) 

 ݁௭,௞ାଵ|௞ାଵ ൌ ௞ାଵݖ െ ݄൫ݔො௞ାଵ|௞ାଵ൯ (3.11) 

IV. EXPERIMENTAL SETUP AND RESULTS 

A. Experimental Setup 

An experimental brushless DC motor was used to obtain 
the results in this study. During the tests, the speed of the 
motor was fixed to 1,000 RPM without an external load. The 
angular position of the motor was measured using an absolute 
encoder. The phase voltages were obtained by direct line 
voltage measurements, and the corresponding phase currents 
were also obtained. All of the measurements were 
pre-processed with an anti-aliasing filter (500 Hz). 

The motor was modeled as a third-order nonlinear system 
with six state variables related to its phase currents and phase 
resistances, respectively. The state estimates were initialized 
as zero. The sampling frequency of the system was 	f୘ ൌ
32,000	Hz. The discrete-time state equations are defined as 
follows [24-26]. 

ଵ,௞ାଵݔ  ൌ െܴ௔௞ ݐ݀ ⁄௦ܮ ଵ,௞ݔ ൅ ൫݀ݐ ⁄௦ܮ െ  ௞ (4.1)ݑ௔,௞൯ߔ௘ܭ
ଶ,௞ାଵݔ  ൌ െܴ௕

௞ ݐ݀ ⁄௦ܮ ଵ,௞ݔ ൅ ൫݀ݐ ⁄௦ܮ െ  ௞ (4.2)ݑ௕,௞൯ߔ௘ܭ
ଷ,௞ାଵݔ  ൌ െܴ௖௞ ݐ݀ ⁄௦ܮ ଵ,௞ݔ ൅ ൫݀ݐ ⁄௦ܮ െ  ௞ (4.3)ݑ௖,௞൯ߔ௘ܭ
ସ,௞ାଵݔ  ൌ  ସ,௞ (4.4)ݔ
ହ,௞ାଵݔ  ൌ  ହ,௞ (4.5)ݔ
଺,௞ାଵݔ  ൌ  ଺,௞ (4.6)ݔ

Note that the state space vector is defined by x୩ ൌ
ሾIୟ Iୠ Iୡ Rୟ Rୠ Rୡሿ୩

୘ and the input vector is defined 
as u୩ ൌ ሾuୟ uୠ uୡ ω θୣሿ୩

୘ . Furthermore, ߔ௔,௞ ൌ

௘ሻߠሺ݊݅ݏ , ௕,௞ߔ ൌ ݊݅ݏ ቀߠ௘ ൅
ଶ

ଷ
ቁߨ , ௖,௞ߔ ൌ ݊݅ݏ ቀߠ௘ െ

ଶ

ଷ
,ቁߨ  and 

the relation between the electrical angle θୣ and the physical 
angle θ of the rotor is θୣ ൌ 2Pθ, P is the number of pole pairs 
and P ൌ ௘ܭ ,4 ൌ 0.77	ܸ ∙ ௦ܮ and finally ,݀ܽݎ/ݏ ൌ  .ܪ	0.0048
The measurement equation is defined by: 

௞ାଵݖ  ൌ  ௞ାଵ|௞ (4.7)ݔܥ

Note that for systems that have fewer measurements than 
states, a reduced order or Luenberger’s approach is taken to 
formulate a full measurement matrix, as presented [21, 23, 
27]. Essentially, ‘artificial measurements’ are created and 
used throughout the estimation process [23]. Similarly, in this 
case for the SVSF procedure, the artificial measurements of 
phase resistances are calculated using available measurements 
of voltage and current: 

ெேݎ  ൌ
ெேݑ െ ܮ

݀݅ெே
ݐ݀ െ 2߱ெே݁ܭ

݅ெே
 (4.8) 

Note that the subscript MN denotes the mean value of the 
variable in every half cycle, and Kୣଶ  is a voltage constant 
which is set to 0.4877	ܸ ∙ The signal r୑୒ .݀ܽݎ/ݏ  was sent 
through a low-pass filter to create the artificial measurement. 
The modified measurement vector becomes: 

 
௞ାଵݖ

ൌ ሾ݅௔ ݅௕ ݅௖ ெே,௔ݎ ெே,௕ݎ ெே,௖ሿ௞ାଵݎ
்  

(4.9) 

Furthermore, note that with (4.9), the measurement matrix 
in (4.7) becomes an identity. The system and measurement 
noise covariance was defined as a diagonal matrix, with the 
first three elements set to 1 ൈ 10ିହ and the last three elements 
set to 0.5 ൈ 10ି଻. The measurement matrix was also defined 
as a diagonal matrix, with the first three elements set to 
1 ൈ 10ିଷ and the last three elements set to 0.2. The initial 
state error covariance matrix was defined to be 100 times the 
system noise covariance. Furthermore, for the estimation 
process, the ‘memory’ or convergence rate was set to ߛ ൌ 0.2. 
The limit set for the VBL was defined to be ߰௟௜௠ ൌ
ሾ2 2 2 300 300 300ሿ். 

 



  

B. Nonlinear Estimation Results 

Three different cases were studied. The first case was 
considered a normal condition, where no fault occurred in the 
motor. The second case included a faulty resistance in one of 
the phases of the motor. In the third case, a modeling error was 
injected in to the estimator half-way through the process, in 
order to test and compare the robustness of the EKF and 
EK-SVSF estimation methods. Figure’s 3 and 4 show the 
resistance estimates for the EKF and EK-SVSF methods, 
respectively. Both methods were able to successfully obtain 
the correct values. However, note that the EK-SVSF 
converged faster toward the true state trajectory. This 
difference appears in the RMSE results for the normal case. 

 
Figure 3.  EKF estimation results (normal case). 

 
Figure 4.  EK-SVSF estimation results (normal case). 

The root mean square error (RMSE) results are 
summarized in the following table. 

TABLE I.  RMSE ESTIMATION RESULTS – NORMAL CASE 

Filter ࢉࡾ ࢈ࡾ ࢇࡾ 
EKF 6.21 ൈ 10ିଶ 3.83 ൈ 10ିଶ 3.43 ൈ 10ିଶ 

EK-SVSF 5.46 ൈ 10ିଶ 1.70 ൈ 10ିଶ 1.16 ൈ 10ିଶ 

 

To simulate the winding resistance fault condition, an 
external resistor was added to the stator winding of the motor, 
doubling its resistance Rୡ halfway in the estimation process. 
The estimation results are shown in the following two figures. 

 
Figure 5.  EKF estimation results (winding resistance fault). 

 
Figure 6.  EK-SVSF estimation results (winding resistance fault). 

As shown in Fig.’s 5 and 6, the EKF and EK-SVSF 
provides satisfactory results. The change in the resistance Rୡ 
from 0.5 Ohm to 1 Ohm was successfully captured, and the 
estimation of the other two phases are not affected by this 
disturbance. The reason that both methods yielded relatively 
the same results is that in the absence of modeling error, the 
SVSF gain is practically the same as that of the EKF. The 
resistance Rୡ  was successfully tracked, and the estimation 
stabilized afterwards. The RMSE results are shown in the 
following table. 

TABLE II.  RMSE ESTIMATION RESULTS – WINDING RESISTANCE 

Filter ࢉࡾ ࢈ࡾ ࢇࡾ 
EKF 4.53 ൈ 10ିଶ 2.50 ൈ 10ିଶ	 3.31 ൈ 10ିଵ

EK-SVSF 4.38 ൈ 10ିଶ 1.94 ൈ 10ିଶ	 3.30 ൈ 10ିଵ

 

The last case is used to compare the robustness of the 
filters under the presence of modeling uncertainties. As per 
[21], consider the introduction of a modeling error or 
uncertainty at 1.7 seconds into the test. The modeling 
uncertainty was introduced by decreasing the value of ܭ௘ in 
the model by 10%. The altered parameter was then changed 
back to the correct value at 3.3 seconds. The model used by the 
filters was changed; however, the actual conditions of the 
motor remained the same. The corresponding resistance 
estimates for this case are shown in the following figures. 

 
Figure 7.  EKF estimation results (modeling error case). 

 
Figure 8.  EK-SVSF estimation results (modeling error case). 



  

The abrupt jump at 1.7 seconds is shown together with a 
sudden drop at 3.3 seconds. The estimation error of the EKF 
due to the modeling uncertainties is more than five times 
larger than the true value. However, the EK-SVSF estimation 
strategy was able to accurately estimate the resistance 	ܴ௖ 
during the presence of the fault and modeling error. All of the 
three states chattered among the true state trajectory when the 
modeling error was injected. The SVSF merit lies in its ability 
to minimize the influence of modeling errors while preserving 
stability. Furthermore, the changing width of the time-varying 
smoothing boundary layer (VBL) may be used to indicate the 
presence of un-modeled uncertainties or system faults, as 
shown in Fig. 9. 

 
Figure 9.  VBL results for ܫ௔,௕,௖ and ܴ௔,௕,௖ (modeling error case). 

Although the estimates of the EK-SVSF method are not 
completely immune from the injected modeling error, the 
EK-SVSF results are significantly better than the EKF, as 
shown in the following table. 

TABLE III.  RMSE ESTIMATION RESULTS – MODELING ERROR 

Filter ࢉࡾ ࢈ࡾ ࢇࡾ 
EKF 1.28	 1.25	 1.25

EK-SVSF 5.60 ൈ 10ିଶ	 1.78 ൈ 10ିଶ	 1.48 ൈ 10ିଶ

V. CONCLUSIONS 

The purpose of this paper was to study and compare the 
results of the EKF and EK-SVSF for the purposes of 
nonlinear estimation and fault detection. A brushless DC 
motor was used as the experimental apparatus. Experimental 
results demonstrated that both the EKF and EK-SVSF were 
able to provide accurate estimates under normal operating 
conditions. However, in the presence of modeling errors, the 
EKF completely deviated from the true state trajectories, 
while the EK-SVSF yielded accurate state estimates with a 
small magnitude of chattering. Moreover, the VBL width of 
the SVSF strategy was demonstrated to be a secondary 
indicator for system changes and modeling uncertainties. 

APPENDIX 

The following is a list of the main nomenclature used 
throughout the paper. 

TABLE IV.  LIST OF IMPORTANT NOMENCLATURE AND PARAMETERS 

Parameter Definition 
݂ Nonlinear system function 

݄ Nonlinear measurement function 

 State vector or values ݔ

 Measurement (system output) vector or values ݖ

 System noise vector ݓ

 Measurement noise vector ݒ

 Linear system transition matrix ܣ

 Linear input gain matrix ܤ

 Linear measurement (output) matrix ܥ

 SVSF error vector (or matrix) ܧ

 Filter gain matrix ܭ

ܲ State error covariance matrix 

ܳ System noise covariance matrix 

ܴ Measurement noise covariance matrix 

ܵ Innovation (measurement error) covariance matrix 

݁௭ Measurement (output) error vector 

 SVSF ‘memory’ or convergence rate ߛ

߰ SVSF smoothing boundary layer 

݀݅ܽ݃ሾܽሿ ݎ݋ തܽ Diagonal of some vector or matrix ܽ 

 ሺሻ Saturation functionݐܽݏ

|ܽ| Absolute value of ܽ 

ܶ Transpose of a vector (if superscript) or sample rate 

൅ Pseudoinverse of some non-square matrix 

∘ 
Denotes a Schur product (element-by-element 

multiplication) 

~ Denotes error or difference 

^ Estimated vector or values 
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