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ABSTRACT

For linear and well-defined estimation problems hwit
Gaussian noise, the Kalman filter (KF) yields thestoresult in
terms of estimation accuracy. However, the KF gentmce
degrades and can fail in cases involving large utzsties
such as modeling errors in the estimation proc&ée smooth
variable structure filter (SVSF) is a model-basestireation
method built on sliding mode theory with excelleriustness
to modeling uncertainties. Wavelet theory has atwed interest
as a powerful tool for signal and image processeugd can be
used to further improve estimation accuracy. Irstpaper, a
new filtering strategy based on stationary wavétetory and
the smooth variable structure filter is proposethisTstrategy,
referred to as W-SVSF, is applied on an electrobstaitic
actuator (EHA) for the purposes of state estimatibime results
of the W-SVSF are compared with the standard KEF¥nd
combined W-KF.

1.0 INTRODUCTION

The successful control of a mechanical or eledtsgatem
depends on the knowledge of the system states anagnpters.
Observations of the system are made through thefusensors
that provide measurements which contain informatonthe
variables of interest. Filters are used to remowsvanted
components such as noise in an effort to provideaurate
estimate of the states [1]. Advanced filtering astimation
methods are model-based and as such are seneitimedeling
uncertainties. The most popular and well-studietimadion
method is the Kalman filter (KF), which was intraeual in the
1960s [2,3]. The KF yields a statistically optinsmlution for
linear estimation problems, as defined by (1.1) @nd), in the
presence of Gaussian noise whePéw,)~N(0,Q,) and

P(v,)~N(0,R,). A typical model is represented by the

following equations:
(1.1)
(1.2)

Xp+1 = Axk + Buk + Wi

Zgr1 = CXpyq + Vg

The nomenclature is described and explained throwigh
this paper. It is the goal of a filter to remove #iffects that the
systemw, and measurement, noise have on extracting the
true state valuex, from the measurements,. The KF is
formulated in a predictor-corrector manner. Theestare first
estimated using the system model, termed as a pstimates,
meaning ‘prior to’ knowledge of the observations.

A correction term is then added based on the inmva
(also called residuals or measurement errors), fitvusing the
updated or a posteriori (meaning ‘subsequent toé th
observations) state estimates. For linear and aedihed
estimation problems with Gaussian white noise, Kladman
filter (KF) yields the best result in terms of esdition accuracy.
However, the KF performance degrades and can rfailases
involving large uncertainties such as modeling mrrim the
estimation process. The smooth variable struciitex {SVSF)
is a relatively new estimation strategy based ddingl mode
theory, and has been shown to be robust to modeling
uncertainties. Similarly to a sliding mode conteol(SMC), the
SVSF implements a discontinuous switching gain and
smoothing boundary layep. This results in a strategy which is
robust to modeling uncertainties and errors.

Wavelet theory has attracted considerable inteassta
powerful tool for signal and image processing [4\Whvelets
can effectively extract information in both the é@mand
frequency domains, with an adjustable resolutiomchvimakes
it a powerful tool for the analysis of time-serigiginals [6].
However, the effectiveness of wavelet theory isneweore
valuable when used as a pre-processing tool knavmualti-
scale analysis [7,8]. This technique has been egpio a
number of applications, including: estimation [911],
detection [12], classification [12], compressio][iprediction
and filtering [14], and synthesis [15]. A nhumber wavelet-
based tools have been proposed: ranging from tbidisk
wavelet coefficients, to tree-based wavelet deingimethods.



The combination of wavelet theory with other tineziss
filtering and estimation approaches have been egglosuch
as: artificial neural networks [16,17,18], Kalmaiitefing
[6,9,19], and an autoregressive model [20]. Horiguidlized
the discrete wavelet transform to decompose the staiables
of the KF into different components at a desiredohation
level. The prediction, correction, and update pdoces were
modified accordingly based on the decomposed staiables
[21]. The algorithm can effectively improve the foemance of
the KF due to the additional filtering effect frotme wavelet
[91.

In this paper, a new filtering strategy is propodey
combining a stationary wavelet transform with théSE. The
additional smoothing function provided by the watel
effectively reduces the SVSF chattering effect.sTimproves
the overall estimation accuracy, which is useful fmntrol
purposes. The results of applying the KF, SVSF, W/-&hd W-
SVSF on an electrohydrostatic actuator (EHA) armgared
and discussed.

2.0 WAVELET THEORY

2.1 Introduction

A discrete wavelet transform (DWT) is similar td-aurier
transform. However, the wavelet transform is comsd to be
more flexible and informative [21]. By applying aAIT to a
time series signal, one may decompose the origigalal into
different scales, similar to a frequency spectru@3]|
However, unlike a Fourier transform, the DWT hadividual
wavelet functions localized in space. This locdlra feature
makes many functions and operators using wavesgarse’

when transformed into the wavelet domain [24]. This

sparseness, in turn, facilitates the process @iasige-noising.
The wavelet transform has numerous attractive pti@se
which make it a good signal and image processingrigue.
These may be summarized as follows [25]:

Locality: Each wavelet is localized simultaneouigiytime
and frequency.

Multi-resolution: Each wavelet is compressed aridteld,
and is analyzed at a nested set of scales.

Compression: The wavelet transformations of realdvo
signals tend to be sparse.

All of these properties enable the wavelet tramafdo
efficiently match a wide range of signal charastigss; from
high-frequency transients and edges, to slowly ingry
harmonics [25].

2.2 Stationary Wavelet Transform

The discrete wavelet transform (DWT) with a thrddngy
approach has attracted considerable interest fgmakiand
image de-noising [1]. However, a drawback the otasdDWT
suffers is the time-invariance (a.k.a. pseudo-Giblsnomena
[2]). That means the DWT of a time-shifted versadra signal
is not the translated version of the DWT of thejimal one.

However, this property is desirable if the wavélahsform
is applied for online estimation in a recursive nfior One
method to suppress such artifacts and restore rémeslation
invariance property is the stationary wavelet tfam (SWT)
[2,3,4]. The basic concept of the SWT is to applghdfted
DWT without decimation by computing coefficientsthviup-
sampled high-pass and low-pass filters. This océursevery
possible sequence at each decimation stg¢pso that the two
new sequences each have the same length as theabrig
sequence. An inverse stationary wavelet transfd8aW/) is
then performed by calculating the average of theerses
obtained for every-decimated DWT. The wavelet de-noising
process includes three main steps: decompositiorinoé-
domain signal, thresholding, and reconstructiorhef original
data.

Suppose thaX} = [x),x) ,, ...,x}_, ] represent a time
series of real-valued signals at scAlewith minimum dyadic
length L =2", where N=0,1,..J and J is the total
decomposition IeveWk"; and W,é“’4 are vectors of the details
and approximations of SWT respectively, witll defined as
the original signal. This then yields:

Wi = FN W (2.1)
Wit = eV W (2.2)

As shown in Fig. 1, the operato’ and GV represent
low-pass and high-pass filters, respectively. Thageobtained
by upsampling the corresponding filters of the pyas level.

FIGURE 1. ILLUSTRATION OF A WAVELET TRANSFORM

Suppose that the wavelet transform operation imeéfas
T, then the transformed matrix is obtained #&;.q)x.x =

TX{ = Wiy, ... W W/ ]".  The universal  threshold

JJ2log(n)é is calculated based on offline data [1] and apbplie
to W(;+1)x1k fOr suppressing noise-induced spikes that speil th
smoothness of reconstructions. As a preliminaryrgta, a two
level Haar wavelet is chosen to demonstrate theedeness of
this filtering scheme.

3.0 ESTIMATION THEORY

3.1 Kalman Filter

The KF has been broadly applied to problems cogerin
state and parameter estimation, signal processiagget
tracking, fault detection and diagnosis, and evarancial
analysis [4,5]. The success of the KF comes froarogbtimality
of the Kalman gain in minimizing the trace of the@asteriori



state error covariance matrix [6,7]. The tracealeh because it
represents the state error vector in the estimgitocess [8].
The following five equations form the core of theFK
algorithm, and are used in an iterative fashiorudEigns (1.3)
and (1.4) define the a priori state estimaig,, based on
knowledge of the linear systeAy the previous state estimate
Zk |k, the input matrixB, the inputuy, and the corresponding

state error covariance matiy.,, ., respectively.
(3.1.1)
(3.1.2)

The Kalman gairK,,,, is defined by (1.5), and is used to
update the state estimatg, x4+, as shown in (1.6). The gain
makes use of an innovation covariar$zg,, which is defined
as the inverse term found in (1.5).

i1 = ARy + Buy

Pysijx = AP AT + Qp

-1
Ki+1 = Pk+1|kCT[CPk+1|kCT + Rk+1] (3.1.3)

Rirjkrr = Xpeprpe + Kier1|Zisr — ka+1|k] (3.1.4)

The a posteriori state error covariance mamiXyi+1 IS
then calculated by (1.7), and is used iterativasyper (1.4).

(3.1.5)

A number of different methods have extended thssital
KF to nonlinear systems, with the most popular amdplest
method being the extended Kalman filter (EKF) [9,1Dhe
EKF is conceptually similar to the KF; however, thenlinear
system is linearized according to its Jacobians Tihearization
process introduces uncertainties that can someticzse
instability [10].

Priijker = U — Kis1 ClPrsr i

3.2 Smooth Variable Structure Filter

The smooth variable structure filter (SVSF) wasspraed
in 2007 [28]. The SVSF strategy is a predictor-ector
estimator based on sliding mode concepts, and eaapplied
on both linear or nonlinear systems and measuremés
shown in Fig. 2, it utilizes a switching gain toneerge the
estimates to within a boundary of the true statlies (i.e.,
existence subspace) [28]. The SVSF has been showret
stable and robust to modeling uncertainties andenoivhen
given an upper bound on the level of unmodeled ahyos and
noise [28,21]. The origin of the SVSF name comesnfithe
requirement that the system is differentiable (smooth’)
[28,29]. Furthermore, it is assumed that the systamder
consideration is observable [28].

Consider the following process for the SVSF estiomat
strategy, as applied to a linear system with a aline
measurement equation. Note that this formulatictuotes state
error covariance equations as presented in [30fchwivas not
originally presented in the standard SVSF form [2Bhe
predicted state estimat&g, ,, are first calculated as follows:

(3.2.1)

1 = AX + Buy,

Existence Subspace

Amplitude

Estimated State Trajectory

°
Initial Estimate

v

Time
FIGURE 2. SVSF ESTIMATION CONCEPT [30]
Similar to the KF, the a priori state error covage matrix
Py1x may be found as follows:
Pesije = APiAT + Qi (3.2.2)

Utilizing the predicted state estimate$;., the
corresponding predicted measuremeits,, and error vector
e, k+1)x May be calculated:

Zp1jie = CRpprpk (3.2.3)
e k+1lk = Zk+1 ~ Zk+1lk (3.2.4)
Next, the SVSF gain is calculated as follows [6]:
Kicta
= cdiag |(leossail g+ Meaniln) (28

o sat (ez':lillk)] [diag (ez,k+1|k)]_1

The SVSF gain is a function of: the a priori angoateriori
measurement error vectoes ., and e, x; the smoothing
boundary layer widthgy; wherei refers to the" width; the
‘SVSF' memory or convergence ratg with elements
0 <y; <1; and the linear measurement matéix However,
for numerical stability, it is important to ensuteat one does
not divide by zero in (3.2.5). This can be accosf@d using a
simple if statement with a very small threshold (i.&.x
10712). The SVSF gain is used to refine the state estisnas
follows:

(3.2.6)

Xs1jk+1 = Xesjke T Kir1€z 0411k

Following this, the a posteriori state error comagde
matrix Py .1 )x+1 IS calculated as follows [6]:

Pesipesr = (I = K1 O Py e (I — Ky O)F

3.2.7)
+ Kir1Ries 1K1



Next, the updated measurement estimaigs ., and
corresponding errors, ., 1,4+ are calculated:

(3.2.8)
(3.2.9)

The SVSF process may be summarized by (3.2.1) ghrou
(3.2.9), and is repeated iteratively. According [&8], the
estimation process is stable and converges to Xisteace
subspace if the following condition is satisfied:

Zk+1|k+1 = ka+1|k+1

€z k+1lk+1 = Zk+1 — Zk+1|k+1

(3.2.10)

|ek|k|AbS > |ek+1|k+1|AbS

Note that|e| 45, is the absolute of the vecterand is equal
to |e|4ps = € - sign(e). The proof, as described in [28] and
[29], vields the derivation of the SVSF gain fro&g). The
SVSF results in the state estimates converging ithirwa
region of the state trajectory, referred to as #hdstence
subspace. Thereatfter, it switches back and fonthsache state
trajectory, as shown earlier in Fig. 2. The exiseesubspace
shown in Fig. 2 represents the amount of uncerésirgresent
in the estimation process, in terms of modelingmrror the
presence of noise. The width of the existence sgads a
function of the uncertain dynamics associated witte
inaccuracy of the internal model of the filter agliwas the
measurement model, and varies with time [28]. Tahjcthis
value is not exactly known but an upper bound magdiected
based on a priori knowledge.

Once within the existence boundary subspace,
estimated states are forced (by the SVSF gainitzis back
and forth along the true state trajectory. As nom@d earlier,
high-frequency switching caused by the SVSF gaireisrred
to as chattering, and in most cases, is undesifablebtaining
accurate estimates [28]. However, the effects aftehing may
be minimized by the introduction of a smoothing bdary
layer y. The selection of the smoothing boundary layerthvid
reflects the level of uncertainties in the filtemda the
disturbances (i.e., system and measurement
unmodeled dynamics). When the smoothing boundaygr l&s
defined larger than the existence subspace boundbey
estimated state trajectory is smoothed. Howevergnwthe
smoothing term is too small, chattering remains tuethe
uncertainties being underestimated.

4.0 PROPOSED W-SVSF ESTIMATION STRATEGY
The W-SVSF estimation strategy proposed in thisepap
may be summarized by the following sets of equatiorhe

state estimates X;.qx, error covariance Py, and
measurement erroes ., 1 are first predicted as follows:
Ris1jk = ARy + Buy (4.1)
Peyie = AP AT + Qy (4.2)
€zk+1lk = Zk+1 — ka+1|k 4.3)

Next, the SVSF gaif(,,  is calculated as follows:

the

noise, a

Kics1
= C*diag [(lez,k+1|k|Ab5 + y|ezrk|k|Abs)

o sat (ez':[;rllk)] [diag (ez,k+1|k)]_1
i

(4.4)

The
Zi+1k+1 @nd state error covarianeg, ;. as follows:

Xe+1jk+1 = Xerape T Kier1€z 0411k (4.5)

Pk+1|k+1 =- Kk+1C)Pk+1|k(I - Kk+1C)T

(4.6)
+ Kir1Ries 1K1

The wavelet vectorsW,,q ), x are then created by
transforming the updated state estimates (4.5)!ksfs:

W(]+1)><L,k = Tfk+1|k+1 (4-7)

A hard-thresholding function defined by (4.8) iserth
applied on (4.7) as shown in (4.9):

(1 iflx| = thr
D) = {0 if|x| < thr (4.8)
W((;+1)><L,k =D(Wy+1yxLk) (4.9)

The original data is reconstructed vyielding thealffin
updated state estimates:

Reripert = T W xrn (4.10)

Finally, the measurement erras, .1+, are also updated:

€zk+1lk+1 = Zk+1 — ka+1|k+1 (4.11)

Note that the W-KF strategy is similar to the abde
SVSF method, except that the gain formulation (4ig)
different, as defined by (3.1.3).

5.0 COMPUTER EXPERIMENT

5.1 Problem Description and Setup

In this section, the proposed estimation stratsggpiplied
for the purposes of state estimation on an elegthalstatic
actuator (EHA). This example uses computer simuatiin
order to allow a detailed investigation of the effe of
parametric uncertainties. The EHA model is basedmactual
prototype built for experimentation [28,34]. Therpose of this
example is to demonstrate that the W-SVSF estimgiiocess
is functional, and that the resulting estimationogass
demonstrates improvements over the KF, W-KF, and&sBkV
Furthermore, the addition of modeling errors wiindonstrate
its robustness. For this computer experiment, itipaiti to the
system is a random signal with amplitude in thegearof
+1 rad/s, superimposed onto a unit step occurrin@.ats, as
shown in Fig. 3.

SVSF gain is used to refine the state estimates
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FIGURE 3. INPUT SIGNAL

The EHA has been modeled as a third-order linestesy
with state variables related to its position, véigcand
acceleration [28]. Initially, it is assumed tha¢ tlirst two states
have measurements associated with them, and tledegation
is not measured. The sample time of the systeéfn=s0.001 s,
and the discrete-time state space system equatiay e
defined as follows [28]:

1 0.001 0
Xk+1 — 0 1 0.001 Xk
—557.02 —2%.616 0.9418 (5.1)
+ 0 Uy
557.02
The corresponding measurement equation is defiged b
1 00
Zg+1 = [0 1 o] Fr+t (5.2)

The initial state values are set to zero. The syséad
measurement noises (andv) are considered to be Gaussian,
with zero mean and variancegs and R, respectively. The
maximum amplitude of the system and measuremestsdaire
Wyax = 1001 1 1017  and  Vye =[1x1073 1]7,
respectively. The initial state error covariangg,, system
noise covariancé, and measurement noise covariaficare
defined respectively as follows:

Pojo = 10Q (5.3)
1x 1074 0 0
Q= 0 1% 1072 0 (5.4)
0 0 1x 103
1x 1073 0
R= 5.5
[ 0 1x 10—1] (5:5)

In this example, to demonstrate the robustnesiseoSVSF
and W-SVSF, modeling uncertainty is injected intbe t
estimation process @t5 seconds. The system modein (5.1)
is modified at this time, such that:

A 1 0001 0
Arcos =] © 1 0.001
—240 —28 0.9418

(5.6)

For the standard SVSF estimation process, the ‘mgmn
convergence rate was set o= 0.1, and the limits for the
smoothing boundary layer widths were defined #s=
[0.1 10 100]7. These parameters were selected based on
the distribution of the system and measurementesoi§or
example, the limit for the smoothing boundary layedth
was set to 10 times the maximum system noise, or
approximately equal to the measurement noise. fiitialistate
estimates for the filters were defined randomly éoynormal
distribution, around the true initial state valugsand using the
initial state error covariandg),.

5.2 Results and Discussion

The state estimation results are shown in Fighr@ugh 6.
When the system is operating normally and is weflrgbd, all
four filters perform relatively well; with the KFnal W-KF
performing the best. However, a noticeable differeocurs
when modeling uncertainty is injected halfway-ttgbu As
demonstrated in the following figures, the SVSF &w&VSF
strategies are both able to stay within a regiotheftrue state
trajectory. This leads to a robust method. The taaidiof the
wavelet theory to the SVSF reduces the magnitudehef
chattering effect of the SVSF. This improves theerall
estimation accuracy, leading to a smoother costgyial.
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The root mean square error (RMSE) results are shown in
Fig. 7. Note that a set of 200 Monte Carlo simulations were run
and the results were averaged. Furthermore, note that K refers
to the KF, W-K refers to the W-KF, S refers to the SVSF, and
W-S refers to the W-SVSF.
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FIGURE 7. RMSE RESULTS (BOTH CASES)

As demonstrated by the above results, the W-SVSF
improved the overall estimation accuracy of the standard SVSF
by a significant amount (10 — 25%). The W-SVSF estimation
method yielded relatively good estimates under normal
conditions and the best estimates when modeling uncertainty
was present in the system.

6.0 CONCLUSIONS

In this paper, a new filtering strategy was proposed by
combining a stationary wavelet transform with the relatively
new smooth variable structure filter (SVSF). The additional
smoothing function provided by the wavelet effectively reduced
the SVSF chattering effect. This improved the overall
estimation accuracy, which is useful for control purposes. The
results of applying the KF, SVSF, W-KF, and W-SVSF on an
electrohydrostatic actuator (EHA) were compared and
discussed. The addition of the wavelet transform to the SVSF
was found to increase the estimation accuracy by 10 — 25%.
Future work involves studying new forms of wavelet theory,
and implementing these methods on mechanical and electrical
systems for the purposes of fault detection and diagnosis.
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