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ABSTRACT 

For linear and well-defined estimation problems with 
Gaussian noise, the Kalman filter (KF) yields the best result in 
terms of estimation accuracy. However, the KF performance 
degrades and can fail in cases involving large uncertainties 
such as modeling errors in the estimation process. The smooth 
variable structure filter (SVSF) is a model-based estimation 
method built on sliding mode theory with excellent robustness 
to modeling uncertainties. Wavelet theory has attracted interest 
as a powerful tool for signal and image processing, and can be 
used to further improve estimation accuracy. In this paper, a 
new filtering strategy based on stationary wavelet theory and 
the smooth variable structure filter is proposed. This strategy, 
referred to as W-SVSF, is applied on an electrohydrostatic 
actuator (EHA) for the purposes of state estimation. The results 
of the W-SVSF are compared with the standard KF, SVSF, and 
combined W-KF. 

1.0 INTRODUCTION 
The successful control of a mechanical or electrical system 

depends on the knowledge of the system states and parameters. 
Observations of the system are made through the use of sensors 
that provide measurements which contain information on the 
variables of interest. Filters are used to remove unwanted 
components such as noise in an effort to provide an accurate 
estimate of the states [1]. Advanced filtering and estimation 
methods are model-based and as such are sensitive to modeling 
uncertainties. The most popular and well-studied estimation 
method is the Kalman filter (KF), which was introduced in the 
1960s [2,3]. The KF yields a statistically optimal solution for 
linear estimation problems, as defined by (1.1) and (1.2), in the 
presence of Gaussian noise where �����~�(0,��) and �����~�(0,��). A typical model is represented by the 
following equations: 

 	��� = 
	� + ��� + �� (1.1) 

 
��� = �	��� + ���� (1.2) 

The nomenclature is described and explained throughout 
this paper. It is the goal of a filter to remove the effects that the 
system �� and measurement �� noise have on extracting the 
true state values 	� from the measurements		
�. The KF is 
formulated in a predictor-corrector manner. The states are first 
estimated using the system model, termed as a priori estimates, 
meaning ‘prior to’ knowledge of the observations. 

A correction term is then added based on the innovation 
(also called residuals or measurement errors), thus forming the 
updated or a posteriori (meaning ‘subsequent to’ the 
observations) state estimates. For linear and well-defined 
estimation problems with Gaussian white noise, the Kalman 
filter (KF) yields the best result in terms of estimation accuracy. 
However, the KF performance degrades and can fail in cases 
involving large uncertainties such as modeling errors in the 
estimation process. The smooth variable structure filter (SVSF) 
is a relatively new estimation strategy based on sliding mode 
theory, and has been shown to be robust to modeling 
uncertainties. Similarly to a sliding mode controller (SMC), the 
SVSF implements a discontinuous switching gain and a 
smoothing boundary layer �. This results in a strategy which is 
robust to modeling uncertainties and errors. 

Wavelet theory has attracted considerable interest as a 
powerful tool for signal and image processing [4,5]. Wavelets 
can effectively extract information in both the time and 
frequency domains, with an adjustable resolution which makes 
it a powerful tool for the analysis of time-series signals [6]. 
However, the effectiveness of wavelet theory is even more 
valuable when used as a pre-processing tool known as multi-
scale analysis [7,8]. This technique has been applied to a 
number of applications, including: estimation [9,10,11], 
detection [12], classification [12], compression [13], prediction 
and filtering [14], and synthesis [15]. A number of wavelet-
based tools have been proposed: ranging from thresholding 
wavelet coefficients, to tree-based wavelet de-noising methods. 



  

The combination of wavelet theory with other time-series 
filtering and estimation approaches have been explored, such 
as: artificial neural networks [16,17,18], Kalman filtering 
[6,9,19], and an autoregressive model [20]. Hong [9] utilized 
the discrete wavelet transform to decompose the state variables 
of the KF into different components at a desired resolution 
level. The prediction, correction, and update procedures were 
modified accordingly based on the decomposed state variables 
[21]. The algorithm can effectively improve the performance of 
the KF due to the additional filtering effect from the wavelet  
[9]. 

In this paper, a new filtering strategy is proposed by 
combining a stationary wavelet transform with the SVSF. The 
additional smoothing function provided by the wavelet 
effectively reduces the SVSF chattering effect. This improves 
the overall estimation accuracy, which is useful for control 
purposes. The results of applying the KF, SVSF, W-KF, and W-
SVSF on an electrohydrostatic actuator (EHA) are compared 
and discussed. 

2.0 WAVELET THEORY 

2.1 Introduction 
A discrete wavelet transform (DWT) is similar to a Fourier 

transform. However, the wavelet transform is considered to be 
more flexible and informative [21]. By applying a DWT to a 
time series signal, one may decompose the original signal into 
different scales, similar to a frequency spectrum [23].  
However, unlike a Fourier transform, the DWT has individual 
wavelet functions localized in space. This localization feature 
makes many functions and operators using wavelets ‘sparse’ 
when transformed into the wavelet domain [24]. This 
sparseness, in turn, facilitates the process of signal de-noising. 
The wavelet transform has numerous attractive properties 
which make it a good signal and image processing technique. 
These may be summarized as follows  [25]: 

Locality: Each wavelet is localized simultaneously in time 
and frequency. 

Multi-resolution: Each wavelet is compressed and dilated, 
and is analyzed at a nested set of scales. 

Compression: The wavelet transformations of real-world 
signals tend to be sparse. 

All of these properties enable the wavelet transform to 
efficiently match a wide range of signal characteristics; from 
high-frequency transients and edges, to slowly varying 
harmonics [25]. 

2.2 Stationary Wavelet Transform 
The discrete wavelet transform (DWT) with a thresholding 

approach has attracted considerable interest for signal and 
image de-noising [1]. However, a drawback the classical DWT 
suffers is the time-invariance (a.k.a. pseudo-Gibbs phenomena 
[2]). That means the DWT of a time-shifted version of a signal 
is not the translated version of the DWT of the original one. 

However, this property is desirable if the wavelet transform 
is applied for online estimation in a recursive form. One 
method to suppress such artifacts and restore the translation 
invariance property is the stationary wavelet transform (SWT) 
[2,3,4]. The basic concept of the SWT is to apply a shifted 
DWT without decimation by computing coefficients with up-
sampled high-pass and low-pass filters. This occurs for every 
possible sequence � at each decimation step	�, so that the two 
new sequences each have the same length as the original 
sequence. An inverse stationary wavelet transform (ISTW) is 
then performed by calculating the average of the inverses 
obtained for every �-decimated DWT. The wavelet de-noising 
process includes three main steps: decomposition of time-
domain signal, thresholding, and reconstruction of the original 
data. 

Suppose that ��
� � ����, ����� , . . . , ������� 
 represent a time 

series of real-valued signals at scale � with minimum dyadic 
length � � 2�, where � � 0,1, … � and � is the total 
decomposition level.	���

� 	 and 	���
� 	are vectors of the details 

and approximations of SWT respectively, with ��
� defined as 

the original signal.  This then yields: 

 ���
��� � �����

�  (2.1) 

 	���
��� � �����

�  (2.2) 

As shown in Fig. 1, the operators �� and �� represent 
low-pass and high-pass filters, respectively. These are obtained 
by upsampling the corresponding filters of the previous level. 

 

FIGURE 1. ILLUSTRATION OF A WAVELET TRANSFORM 

Suppose that the wavelet transform operation is defined as 
�, then the transformed matrix is obtained as: ��	��
��,� �
���

� � ����
� , … ,���

	 ,���

	 

. The universal threshold 

�2���	����� is calculated based on offline data [1] and applied 
to ��	��
��,� for suppressing noise-induced spikes that spoil the 
smoothness of reconstructions. As a preliminary example, a two 
level Haar wavelet is chosen to demonstrate the effectiveness of 
this filtering scheme. 

3.0 ESTIMATION THEORY 

3.1 Kalman Filter 
The KF has been broadly applied to problems covering 

state and parameter estimation, signal processing, target 
tracking, fault detection and diagnosis, and even financial 
analysis [4,5]. The success of the KF comes from the optimality 
of the Kalman gain in minimizing the trace of the a posteriori 



  

state error covariance matrix [6,7]. The trace is taken because it 
represents the state error vector in the estimation process [8]. 
The following five equations form the core of the KF 
algorithm, and are used in an iterative fashion. Equations (1.3) 
and (1.4) define the a priori state estimate �����|� based on 
knowledge of the linear system A, the previous state estimate 
���|�, the input matrix  , the input u�, and the corresponding 
state error covariance matrix "���|�, respectively. 

 �����|� � #���|� $  %� (3.1.1) 

 "���|� � #"�|�#
 $ &� (3.1.2) 

The Kalman gain '���  is defined by (1.5), and is used to 
update the state estimate �����|��� as shown in (1.6). The gain 
makes use of an innovation covariance (���, which is defined 
as the inverse term found in (1.5). 

 '��� � "���|�)
*)"���|�)
 $ +���,�� (3.1.3) 

 �����|��� � �����|� $ '���*-��� . )�����|�, (3.1.4) 

The a posteriori state error covariance matrix "���|��� is 
then calculated by (1.7), and is used iteratively, as per (1.4). 

 "���|��� � �/ . '���)
"���|� (3.1.5) 

A number of different methods have extended the classical 
KF to nonlinear systems, with the most popular and simplest 
method being the extended Kalman filter (EKF) [9,10]. The 
EKF is conceptually similar to the KF; however, the nonlinear 
system is linearized according to its Jacobian. This linearization 
process introduces uncertainties that can sometimes cause 
instability [10]. 

3.2 Smooth Variable Structure Filter 
The smooth variable structure filter (SVSF) was presented 

in 2007 [28]. The SVSF strategy is a predictor-corrector 
estimator based on sliding mode concepts, and can be applied 
on both linear or nonlinear systems and measurements. As 
shown in Fig. 2, it utilizes a switching gain to converge the 
estimates to within a boundary of the true state values (i.e., 
existence subspace) [28]. The SVSF has been shown to be 
stable and robust to modeling uncertainties and noise, when 
given an upper bound on the level of unmodeled dynamics and 
noise [28,21]. The origin of the SVSF name comes from the 
requirement that the system is differentiable (or ‘smooth’) 
[28,29]. Furthermore, it is assumed that the system under 
consideration is observable [28]. 

Consider the following process for the SVSF estimation 
strategy, as applied to a linear system with a linear 
measurement equation. Note that this formulation includes state 
error covariance equations as presented in [30], which was not 
originally presented in the standard SVSF form [28]. The 
predicted state estimates �����|� are first calculated as follows: 

 �����|� � #���|� $  %� (3.2.1) 

 

FIGURE 2. SVSF ESTIMATION CONCEPT [30] 

Similar to the KF, the a priori state error covariance matrix 
"���|� may be found as follows: 

 "���|� � #"�|�#
 $ &� (3.2.2) 

Utilizing the predicted state estimates �����|�, the 
corresponding predicted measurements -̂���|�  and error vector 
1�,���|� may be calculated: 

 -̂���|� � )�����|� (3.2.3) 

 1�,���|� � -��� . -̂���|� (3.2.4) 

Next, the SVSF gain is calculated as follows [6]: 

 

'���

� )�234� 5671�,���|�7��� $ 871�,�|�7���9
∘ ;4< =1�,���|�>�

?@ *234�A1�,���|�B,�� 

(3.2.5) 

The SVSF gain is a function of: the a priori and a posteriori 
measurement error vectors 1�,���|� and 1�,�|�; the smoothing 
boundary layer widths >�  where 3 refers to the 3�� width; the 
‘SVSF’ memory or convergence rate 8 with elements 
0 C 8�� D 1; and the linear measurement matrix ). However, 
for numerical stability, it is important to ensure that one does 
not divide by zero in (3.2.5). This can be accomplished using a 
simple if statement with a very small threshold (i.e., 1 G
10���). The SVSF gain is used to refine the state estimates as 
follows: 

 �����|��� � �����|� $'���1�,���|� (3.2.6) 

Following this, the a posteriori state error covariance 
matrix "���|��� is calculated as follows [6]: 

 
"���|��� � �/ . '���)�"���|��/ . '���)�


$ '���+���'���

  

(3.2.7) 



  

Next, the updated measurement estimates 
̂���|��� and 
corresponding errors ��,���|��� are calculated: 

 
̂���|��� = �	����|��� (3.2.8) 

 ��,���|��� = 
��� − 
̂���|��� (3.2.9) 

The SVSF process may be summarized by (3.2.1) through 
(3.2.9), and is repeated iteratively. According to [28], the 
estimation process is stable and converges to the existence 
subspace if the following condition is satisfied: 

 ���|����� > �����|������� (3.2.10) 

Note that |�|��� is the absolute of the vector �, and is equal 
to |�|��� = � ⋅ �������. The proof, as described in [28] and 
[29], yields the derivation of the SVSF gain from (2.8). The 
SVSF results in the state estimates converging to within a 
region of the state trajectory, referred to as the existence 
subspace. Thereafter, it switches back and forth across the state 
trajectory, as shown earlier in Fig. 2. The existence subspace 
shown in Fig. 2 represents the amount of uncertainties present 
in the estimation process, in terms of modeling errors or the 
presence of noise. The width of the existence space � is a 
function of the uncertain dynamics associated with the 
inaccuracy of the internal model of the filter as well as the 
measurement model, and varies with time [28]. Typically this 
value is not exactly known but an upper bound may be selected 
based on a priori knowledge. 

Once within the existence boundary subspace, the 
estimated states are forced (by the SVSF gain) to switch back 
and forth along the true state trajectory. As mentioned earlier, 
high-frequency switching caused by the SVSF gain is referred 
to as chattering, and in most cases, is undesirable for obtaining 
accurate estimates [28]. However, the effects of chattering may 
be minimized by the introduction of a smoothing boundary 
layer �. The selection of the smoothing boundary layer width 
reflects the level of uncertainties in the filter and the 
disturbances (i.e., system and measurement noise, and 
unmodeled dynamics). When the smoothing boundary layer is 
defined larger than the existence subspace boundary, the 
estimated state trajectory is smoothed. However, when the 
smoothing term is too small, chattering remains due to the 
uncertainties being underestimated. 

4.0 PROPOSED W-SVSF ESTIMATION STRATEGY 
The W-SVSF estimation strategy proposed in this paper 

may be summarized by the following sets of equations. The 
state estimates 	����|�, error covariance ����|�, and 
measurement errors ��,���|� are first predicted as follows: 

 	����|� = 
	��|� + ��� (4.1) 

 ����|� = 
��|�
� + �� (4.2) 

 ��,���|� = 
��� − �	����|� (4.3) 

Next, the SVSF gain ���� is calculated as follows: 

 

����

= ������ �����,���|����� +  ���,�|�����!
∘ ��" #��,���|��	

$% &����'��,���|�()
� 

(4.4) 

The SVSF gain is used to refine the state estimates 	����|��� and state error covariance ����|��� as follows: 

 	����|��� = 	����|� + ������,���|� (4.5) 

 
����|��� = �* − ����������|��* − �������

+ ������������
�  

(4.6) 

The wavelet vectors +����
×�,� are then created by 
transforming the updated state estimates (4.5) as follows: 

 +����
×�,� = ,	����|��� (4.7) 

A hard-thresholding function defined by (4.8) is then 
applied on (4.7) as shown in (4.9): 

 -(	) = .1				�/|	| ≥ "ℎ0
0				�/|	| < "ℎ0 (4.8) 

 +����
×�,�
� = -(+����
×�,�) (4.9) 

The original data is reconstructed yielding the final 
updated state estimates: 

 	����|��� = ,
�+����
×�,�
�  (4.10) 

Finally, the measurement errors ��,���|��� are also updated: 

 ��,���|��� = 
��� − �	����|��� (4.11) 

Note that the W-KF strategy is similar to the above W-
SVSF method, except that the gain formulation (4.4) is 
different, as defined by (3.1.3). 

5.0 COMPUTER EXPERIMENT 

5.1 Problem Description and Setup 
In this section, the proposed estimation strategy is applied 

for the purposes of state estimation on an electrohydrostatic 
actuator (EHA). This example uses computer simulations in 
order to allow a detailed investigation of the effects of 
parametric uncertainties. The EHA model is based on an actual 
prototype built for experimentation [28,34]. The purpose of this 
example is to demonstrate that the W-SVSF estimation process 
is functional, and that the resulting estimation process 
demonstrates improvements over the KF, W-KF, and SVSF. 
Furthermore, the addition of modeling errors will demonstrate 
its robustness. For this computer experiment, the input to the 
system is a random signal with amplitude in the range of 
±1	0��/�, superimposed onto a unit step occurring at 0.5	�, as 
shown in Fig. 3. 



  

 

FIGURE 3. INPUT SIGNAL 

The EHA has been modeled as a third-order linear system 
with state variables related to its position, velocity, and 
acceleration [28]. Initially, it is assumed that the first two states 
have measurements associated with them, and the acceleration 
is not measured. The sample time of the system is , = 0.001	�, 
and the discrete-time state space system equation may be 
defined as follows [28]: 

 

	��� = 1 1 0.001 0

0 1 0.001

−557.02 −28.616 0.9418

2 	�
+ 1 0

0

557.02

2 �� 

(5.1) 

The corresponding measurement equation is defined by: 

 
��� = 31 0 0

0 1 0
4 	��� (5.2) 

The initial state values are set to zero. The system and 
measurement noises (� and �) are considered to be Gaussian, 
with zero mean and variances � and �, respectively. The 
maximum amplitude of the system and measurement noises are +��� = 50.01 1 106� and 7��� = 51 × 10
� 16�, 
respectively. The initial state error covariance ��|�, system 
noise covariance �, and measurement noise covariance � are 
defined respectively as follows: 

 ��|� = 10� (5.3) 

 � = 11 × 10
� 0 0

0 1 × 10
� 0

0 0 1 × 10�
2 (5.4) 

 � = 31 × 10
� 0

0 1 × 10
�
4 (5.5) 

In this example, to demonstrate the robustness of the SVSF 
and W-SVSF, modeling uncertainty is injected into the 
estimation process at 0.5 seconds. The system model 
8 in (5.1) 
is modified at this time, such that: 

 
8���.� = 1 1 0.001 0

0 1 0.001

−240 −28 0.9418

2 (5.6) 

For the standard SVSF estimation process, the ‘memory’ or 
convergence rate was set to  = 0.1, and the limits for the 
smoothing boundary layer widths were defined as � =50.1 10 1006�. These parameters were selected based on 
the distribution of the system and measurement noises. For 
example, the limit for the smoothing boundary layer width � 
was set to 10 times the maximum system noise, or 
approximately equal to the measurement noise. The initial state 
estimates for the filters were defined randomly by a normal 
distribution, around the true initial state values 	� and using the 
initial state error covariance ��|�. 

5.2 Results and Discussion 
The state estimation results are shown in Figs. 4 through 6. 

When the system is operating normally and is well-defined, all 
four filters perform relatively well; with the KF and W-KF 
performing the best. However, a noticeable different occurs 
when modeling uncertainty is injected halfway-through. As 
demonstrated in the following figures, the SVSF and W-SVSF 
strategies are both able to stay within a region of the true state 
trajectory. This leads to a robust method. The addition of the 
wavelet theory to the SVSF reduces the magnitude of the 
chattering effect of the SVSF. This improves the overall 
estimation accuracy, leading to a smoother control signal. 

 

FIGURE 4. RESULTS FOR POSITION ESTIMATES 

 

FIGURE 5. RESULTS FOR VELOCITY ESTIMATES 



  

 

FIGURE 6. RESULTS FOR ACCELERATION ESTIMATES 

The root mean square error (RMSE) results are shown in 
Fig. 7. Note that a set of 200 Monte Carlo simulations were run 
and the results were averaged. Furthermore, note that K refers 
to the KF, W-K refers to the W-KF, S refers to the SVSF, and 
W-S refers to the W-SVSF. 

 

FIGURE 7. RMSE RESULTS (BOTH CASES) 

As demonstrated by the above results, the W-SVSF 
improved the overall estimation accuracy of the standard SVSF 
by a significant amount (10 െ 25%). The W-SVSF estimation 
method yielded relatively good estimates under normal 
conditions and the best estimates when modeling uncertainty 
was present in the system. 

6.0 CONCLUSIONS 
In this paper, a new filtering strategy was proposed by 

combining a stationary wavelet transform with the relatively 
new smooth variable structure filter (SVSF). The additional 
smoothing function provided by the wavelet effectively reduced 
the SVSF chattering effect. This improved the overall 
estimation accuracy, which is useful for control purposes. The 
results of applying the KF, SVSF, W-KF, and W-SVSF on an 
electrohydrostatic actuator (EHA) were compared and 
discussed. The addition of the wavelet transform to the SVSF 
was found to increase the estimation accuracy by 10 െ 25%. 
Future work involves studying new forms of wavelet theory, 
and implementing these methods on mechanical and electrical 
systems for the purposes of fault detection and diagnosis. 
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