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Abstract-Due to their high energy density, durability, low cost, 
and inherent safety, lithium-ion (Li-ion) batteries are quickly 
becoming the most popular energy storage method for electric 
vehicles. Difficulty arises in properly modeling these types of 
batteries due to a large number of parameters and different 
architectures. This paper looks at studying six different Li-ion 
battery models found in literature, and compares their relative 
performance based on a benchmark dataset. Kalman-based 
filtering strategies are also employed to estimate important 
battery parameters such as capacitance, hysteresis, and state of 
charge (SOC). In addition, the relatively new smooth variable 
structure filter (SVSF) is used and compared with these 
Kalman-based strategies. 

INTRODUCTION 

A variety of batteries have been studied in literature, most 
notably lead-acid and lithium-ion (Li-ion) batteries [1, 2, 3, 4, 
5]. Lead-acid batteries are the oldest type of rechargeable 
batteries, and are most commonly found in motor vehicles. 
Lithium-ion batteries are also a form of rechargeable battery, 
which contain lithium in its positive electrode (cathode). 
These batteries are usually found in portable consumer 
electronics (i.e., laptops or notebooks) due to particularly 
high energy-to-weight ratios, slow self-discharge, and a lack 
of memory effect (i.e., where  a battery loses its maximum 
energy capacity over time) [2]. In recent years, Li-ion 
batteries have slowly entered the hybrid electric vehicle 
market, due to the fact that they offer better energy density 
compared to standard batteries [6]. 

Difficulty arises in properly modeling these types of 
batteries due to a large number of parameters and different 
architectures. A significant amount of research has been 
performed on battery management systems, with excellent 
surveys found in [2, 7, 8, 9, 10]. Battery management systems 
estimate important parameters which affect the operating 
condition of the batteries or pack of batteries [7]. These 
parameters typically include the following: battery state of 
charge (SOC), power fade, cpacity fade, and instantaneous 
available power [7]. However, these values are not known 
exactly and they must be estimated from available 
measurements (e.g., voltages). Observations of the system are 
made through the use of sensors which contain information 
on the variables of interest. Filters are ued to remove 
unwanted components such as noise (system or measurement) 
from the observations in an effort to provide accurate 
estimates of the states or parameters [11]. 

 

 
Advanced filtering and estimation methods such as the 

Kalman filter (KF) or smooth variable structure filter (SVSF) 
may be used to estimate these values. Most estimators are 
model-based, and as such are sensitive to modeling 
uncertainties and errors. Therefore, implementing accurate 
system models is extremely important for obtaining correct 
state and parameter estimates. 

The purpose of this paper is to compare the performances 
of some of the most popular Li-ion battery models found in 
literature [7]. A benchmark dataset is used to study the 
effectiveness of these models, in conjunction with 
implementing Kalman-based filters and the smooth variable 
structure filter (SVSF). The following section describes the 
battery models in more detail, and are as presented in [7]. 
Section III provides an overview of the estimation methods. 
The main simulation results are shown in Section IV, 
followed by a brief discussion. Section V concluldes the main 
findings of this paper. 

BATTERY MODELS 

A. Combined Model 
The terminal voltage of the battery may be predicted in a 

number of different ways. One important method of 
predicting the voltage is based on the SOC. A number of 
models have been formulated and are adapted in [7] and [12]. 
The following three are among the most popular combined 
models [7]: 
• Shepherd: 𝑦𝑘 = 𝐸0 − 𝑅𝑖𝑘 − 𝐾𝑖/𝑧𝑘 
• Unnewehr universal model: 𝑦𝑘 = 𝐸0 − 𝑅𝑖𝑘 − 𝐾𝑖𝑧𝑘 
• Nernst: 𝑦𝑘 = 𝐸0 − 𝑅𝑖𝑘 + 𝐾2 ln(𝑧𝑘) + 𝐾3 ln(1 − 𝑧𝑘) 
In these models, 𝑦𝑘  is the cell terminal voltage, 𝑅 is the cell 

internal resistance (different values may be used for 
charge/discharge at different SOC levels), 𝐾𝑖 is the 
polarization resistance, and 𝐾# are constants chosen to make 
the model fit the data [7]. Note that all of these models may 
be collected to make a ‘combined model’ that performs better 
than any of the individual models alone [7]. The combined 
model is defined by the following [7]: 

𝑧𝑘+1 = 𝑧𝑘 − �
𝜂𝑖∆𝑡
𝐶

� 𝑖𝑘 (2.1.1) 

𝑦𝑘 = 𝐾0 − 𝑅𝑖𝑘 −
𝐾1
𝑧𝑘
− 𝐾2𝑧𝑘 + 𝐾3 ln(𝑧𝑘)

+ 𝐾4 ln(1 − 𝑧𝑘) 
(2.1.2) 

This model has the advantage of being linear in the 
parameters, which makes it easier to implement and estimate. 
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Accordingly, the unknown qunaities in the model may be 
estimated using a system identification procedure [7]. For 
example, given a set of 𝑁 cell input-output parameters 
(𝑦𝑘 , 𝑖𝑘 , 𝑧𝑘), the values may be solved for in a closed form 
using least squares estimation [7]. 

 
B. Simple Model 

As presented in [7], for further insight, one can evaluate the 
parameter values fit to the combined model (presented 
earlier). The model output equation may be divided into two 
additive parts: one depending only on the SOC, and the other 
depending only on the current. Doing so yields: 

𝑓(𝑧𝑘) = 𝐾0 −
𝐾1
𝑧𝑘
− 𝐾2𝑧𝑘 + 𝐾3 ln(𝑧𝑘)

+ 𝐾4 ln(1 − 𝑧𝑘) 
(2.2.1) 

𝑓(𝑖𝑘) = 𝑅𝑖𝑘 (2.2.2) 
As explained in [7], an easier and more accurate 

implementation of the combined model is as follows: 

𝑧𝑘+1 = 𝑧𝑘 − �
𝜂𝑖∆𝑡
𝐶

� 𝑖𝑘 (2.2.3) 

𝑦𝑘 = 𝑂𝐶𝑉(𝑧𝑘) − 𝑅𝑖𝑘  (2.2.4) 
Where 𝑂𝐶𝑉 refers to the open circuit voltage. 
 
C. Zero-State Hysteresis Model 

An important concept that is overlooked by the previous 
two models includes hysteresis. For improved SOC 
estimation, the hysteresis effects of the terminal voltage 
should be considered [7]. As described in [7], a basic model 
of hysteresis simply adds a term to the output equation (2.2.4) 
as follows: 

𝑦𝑘 = 𝑂𝐶𝑉(𝑧𝑘) − 𝑠𝑘𝑀(𝑧𝑘) − 𝑅𝑖𝑘 (2.3.1) 
Where 𝑠𝑘 represents the sign of the current (with memory 

during a rest period). For some sufficiently small and positive 
value 𝜀, one has: 

𝑠𝑘 = �
+1
−1

𝑠𝑘 − 1

𝑖𝑘 > 𝜀
𝑖𝑘 < −𝜀
|𝑖𝑘| ≤ 𝜀

 (2.3.2) 

Also, note that M(zk) is half the difference between the 
charge and discharge values (i.e., some value of hysteresis) 
[7]. Typically, the value for M can be assumed constant. As 
per [7], the zero-state hysteresis model is an improvement 
over the simple model, but only crudely approximates the 
underlying phenomenon. Whereas the level of hysteresis 
slowly changes as the cell is charged or discharged, the model 
estimates hysteresis as immediately flipping between its 
maximum positive and negative values when the sign of 
current changes. 

 
D. One-State Hysteresis Model 

The slow transition may be modeled by adding a 
‘hysteresis state’ to the model. The hysteresis state is not a 
differential equation as a function of time, but in SOC (i.e., 
ampere-hours). Suppose that ℎ(𝑧, 𝑡) is the hysteresis voltage, 
then one has [7]: 

𝑑ℎ(𝑧, 𝑡)
𝑑𝑧

= 𝛾𝑠𝑔𝑛(𝑧̇)[𝑀(𝑧, 𝑧̇) − ℎ(𝑧, 𝑡)] (2.4.1) 

Where M(z, ż) is a function that gives the maximum 
polarization due to hysteresis as a function of SOC and the 
rate-of-change of SOC. The term 𝑀(𝑧, 𝑧̇) − ℎ(𝑧, 𝑡) states that 
the rate-of-change of hysteresis voltage is proportional to the 
distance away from the main hysteresis loop; leading to a 
type of voltage decay in the major loop [7]. The term 𝛾 is 
considered positive and constant; and affects the rate of 
voltage decay [7]. The sign function forces the equation to be 
stable for both charge and discharge [7]. 

The overall state-space equations for the one-state 
hysteresis model are as follows [7]: 

�ℎ𝑘+1𝑧𝑘+1
� = �𝐹(𝑖𝑘) 0

0 1
� �ℎ𝑘𝑧𝑘

�

+ �
0 1 − 𝐹(𝑖𝑘)

−
𝜂𝑖∆𝑡
𝐶

0
� �

𝑖𝑘
𝑀(𝑧, 𝑧̇)� 

(2.4.2) 

𝑦𝑘 = 𝑂𝐶𝑉(𝑧𝑘) − 𝑅𝑖𝑘 + ℎ𝑘 (2.4.3) 
Furthermore, note that 𝐹(𝑖𝑘) = exp(−|𝜂𝑖𝑖(𝑡)𝛾/𝐶𝑛|). 

 
E. Enhanced Self-Correcting Model 

The enhanced self-correction (ESC) battery model 
represents one of the most accurate models that are currently 
being used for battery SOC estimation [7]. This model can 
accurately capture battery dynamics and thus can be 
implemented in a vehicle BMS as it accommodates for 
hysteresis, polarization time constants, and ohmic losses [7].  
The ESC model in the state space form is as follows [7]:  

�
𝑓𝑘+1
ℎ𝑘+1
𝑧𝑘+1

� = �
𝑑𝑖𝑎𝑔(∝) 0 0

0 𝐹(𝑖𝑘) 0
0 0 1

� �
𝑓𝑘
ℎ𝑘
𝑧𝑘
�

+

⎣
⎢
⎢
⎡

1 0
0 �1 − 𝐹(𝑖𝑘)�

−
𝜏𝑖∆t
𝐶𝑛

0 ⎦
⎥
⎥
⎤
�

𝑖𝑘
𝑀(𝑧, 𝑧̇)� 

(2.5.1) 

𝑦𝑘 = 𝑂𝐶𝑉(𝑧𝑘) − 𝑅𝑖𝑘 + ℎ𝑘 + 𝐺𝑓𝑘 (2.5.2) 
Where 𝑧𝑘 is the state of charge, 𝑓𝑘 is the states of the low 

pass filter on 𝑖𝑘 which is used to characterize the polarization 
time constants, ℎ𝑘 is the state representing charging or 
discharging hysteresis effect, 𝑂𝐶𝑉 is the open circuit voltage, 
𝐶𝑛 is the battery nominal capacity, 𝑅 is the battery internal 
resistance, 𝐺 is the output matrix of the low pass filter, and 𝛼 
are the poles of the low pass filter. This model contains two 
inputs as follows: 𝑖𝑘 is the battery input current, and 𝑀(𝑧, 𝑧̇) 
which represents the maximum polarization due to hysteresis. 
The model has one output 𝑦𝑘, which is the terminal voltage. 
However, it is important to note that this model may be 
broken into two models; based on either two states or four 
states. 

ESTIMATION STRATEGIES 

A. Kalman Filter 
In 1960, Rudolph Kalman presented a new approach to 

linear filtering and prediction problems, which would later 
become known as the Kalman filter (KF) [13]. The KF yields 
a statistically optimal solution for linear estimation problems 
in the presence of Gaussian noise. The KF is a model based 
method, derived in the time domain and a discrete-time 



setting. A continuous-time version was developed by Kalman 
and Bucy, and is consequently referred to as the Kalman-
Bucy filter [14]. Like many other filters, the KF is formulated 
in a predictor-corrector manner. The states are first estimated 
using the system model and input, termed as a priori 
estimates, meaning ‘prior to’ knowledge of the observations. 
A correction term is then added based on the innovation (also 
called residuals or measurement errors), thus forming the 
updated or a posteriori (meaning ‘subsequent to’ the 
observations) state estimates. The following five equations 
form the core of the KF algorithm, and are used in an iterative 
fashion. Equations (3.1) and (3.2) define the a priori state 
estimate 𝑥�𝑘+1|𝑘 based on knowledge of the system A and 
previous state estimate 𝑥�𝑘|𝑘, and the corresponding state error 
covariance matrix 𝑃𝑘+1|𝑘, respectively. 

𝑥�𝑘+1|𝑘 = 𝐴𝑥�𝑘|𝑘 + 𝐵𝑢𝑘 (3.1) 
𝑃𝑘+1|𝑘 = 𝐴𝑃𝑘|𝑘𝐴𝑇 + 𝑄𝑘 (3.2) 

The Kalman gain 𝐾𝑘+1 is defined by (3.3), and is used to 
update the state estimate 𝑥�𝑘+1|𝑘+1 as shown in (3.4). The gain 
makes use of an innovation covariance 𝑆𝑘+1, which is defined 
as the inverse term found in (3.3). 

𝐾𝑘+1 = 𝑃𝑘+1|𝑘𝐶𝑇�𝐶𝑃𝑘+1|𝑘𝐶𝑇 + 𝑅𝑘+1�
−1 (3.3) 

𝑥�𝑘+1|𝑘+1 = 𝑥�𝑘+1|𝑘 + 𝐾𝑘+1�𝑧𝑘+1 − 𝐶𝑥�𝑘+1|𝑘� (3.4) 
The a posteriori state error covariance matrix 𝑃𝑘+1|𝑘+1 is 

then calculated by (3.5), and is used iteratively, as per (3.2). 
𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘+1𝐶)𝑃𝑘+1|𝑘 (3.5) 

The derivation of the KF is well documented, with details 
available in [13, 15, 16]. The optimality of the KF comes at a 
price of stability and robustness. The KF assumes that the 
system model is known and linear, the system and 
measurement noises are white, and the states have initial 
conditions with known means and variances [17]. However, 
the previous assumptions do not always hold in real 
applications. If these assumptions are violated, the KF yields 
suboptimal results and can become unstable [18]. 
Furthermore, the KF is sensitive to computer precision and 
the complexity of computations involving matrix inversions 
[19]. For nonlinear systems and measurements, the KF may 
be used to formulate the extended Kalman filter (EKF). In 
this case, the nonlinear system 𝑓 or measurement ℎ is 
linearized according to its Jacobian. Partial derivatives are 
used to compute linearized system and measurement matrices 
F and H, respectively found as follows [20]: 

𝐹𝑘 =
𝜕𝑓
𝜕𝑥
�
𝑥�𝑘|𝑘,𝑢𝑘

 (3.6) 

𝐻𝑘+1 =
𝜕ℎ
𝜕𝑥
�
𝑥�𝑘+1|𝑘

 (3.7) 

Equations (3.6) and (3.7) essentially linearize the nonlinear 
system or measurement functions around the current state 
estimate [15]. This comes at a loss of optimality, as the KF 
gain is no longer considered to be the best solution to the 
estimation problem [16]. Note that the EKF process is the 
same as the KF process, except that (3.6) and (3.7) replace 𝐴 
and 𝐶, respectively. 

B. Smooth Variable Structure Filter 
The smooth variable structure filter (SVSF) was presented 

in 2007 [21]. The SVSF strategy is also a predictor-corrector 
estimator based on sliding mode concepts, and can be applied 
on both linear or nonlinear systems and measurements. As 
shown in Fig. 1, it utilizes a switching gain to converge the 
estimates to within a boundary of the true state values (i.e., 
existence subspace) [21]. The SVSF has been shown to be 
stable and robust to modeling uncertainties and noise, when 
given an upper bound on the level of un-modeled dynamics 
and noise [21, 22]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 1. The above figure shows the SVSF estimation strategy [23]. Starting 
from some initial value, the state estimate is forced by a switching gain to 
within a region referred to as the existence subspace. 

 
The origin of the SVSF name comes from the requirement 

that the system is differentiable (or ‘smooth’) [21, 24]. 
Furthermore, it is assumed that the system under 
consideration is observable [21]. Consider the following 
process for the SVSF estimation strategy, as applied to a 
nonlinear system with a linear measurement equation. The 
predicted state estimates x�k+1|k are first calculated as follows: 

𝑥�𝑘+1|𝑘 = 𝑓�𝑥�𝑘|𝑘,𝑢𝑘� (3.8) 
Utilizing the predicted state estimates 𝑥�𝑘+1|𝑘, the 

corresponding predicted measurements 𝑧̂𝑘+1|𝑘 and 
measurement errors 𝑒𝑧,𝑘+1|𝑘 may be calculated: 

𝑧̂𝑘+1|𝑘 = 𝐶𝑥�𝑘+1|𝑘 (3.9) 
𝑒𝑧,𝑘+1|𝑘 = 𝑧𝑘+1 − 𝑧̂𝑘+1|𝑘 (3.10) 

Next, the SVSF gain is calculated as follows [21]: 

𝐾𝑘+1𝑆𝑉𝑆𝐹 = 𝐶+��𝑒𝑧,𝑘+1|𝑘� + 𝛾�𝑒𝑧,𝑘|𝑘�� ∘ 𝑠𝑎𝑡 �
𝑒𝑧,𝑘+1|𝑘

𝜓
� (3.11) 

The SVSF gain is a function of: the a priori and a posteriori 
measurement errors 𝑒𝑧,𝑘+1|𝑘 and 𝑒𝑧,𝑘|𝑘; the smoothing 
boundary layer widths 𝜓; the ‘SVSF’ memory or 
convergence rate 𝛾 with elements 0 < 𝛾𝑖𝑖 ≤ 1; and the linear 
measurement matrix 𝐶. The SVSF gain is used to refine the 
state estimates as follows: 

𝑥�𝑘+1|𝑘+1 = 𝑥�𝑘+1|𝑘 + 𝐾𝑘+1𝑆𝑉𝑆𝐹 (3.12) 
Next, the updated measurement estimates 𝑧̂𝑘+1|𝑘+1 and 

corresponding errors 𝑒𝑧,𝑘+1|𝑘+1 are calculated: 



𝑧̂𝑘+1|𝑘+1 = 𝐶𝑥�𝑘+1|𝑘+1 (3.13) 
𝑒𝑧,𝑘+1|𝑘+1 = 𝑧𝑘+1 − 𝑧̂𝑘+1|𝑘+1 (3.14) 

The SVSF process may be summarized by (3.8) through 
(3.14), and is repeated iteratively. According to [21], the 
estimation process is stable and convergent if the following 
condition is satisfied: 

�𝑒𝑘|𝑘� > �𝑒𝑘+1|𝑘+1� (3.15) 
The proof, as described in [21] and [24], yields the 

derivation of the SVSF gain from (3.15). The SVSF results in 
the state estimates converging to the state trajectory. 
Thereafter, it switches back and forth across the state 
trajectory within a region referred to as the existence 
subspace. The existence subspace represents the amount of 
uncertainties present in the estimation process, in terms of 
modeling errors or the presence of noise. The width of the 
existence space 𝛽 is a function of the uncertain dynamics 
associated with the inaccuracy of the internal model of the 
filter as well as the measurement model, and varies with time 
[21]. Typically this value is not exactly known but an upper 
bound may be selected based on a priori knowledge. 

PSEUDO-INVERSE INSTABILITY 

Numerous authors have experienced abrupt and unexpected 
instabilities  with the pseudoinverse  [25, 26]. A sudden 
growth of the Jacobian matrix elements when  calculating the 
pseudoinverse during the SVSF gain calculation occurs at 
each epoch, as in (3.13). Consequently, the network’s outputs 
and thus the mean squared error between the targets and 
outputs increase significantly. A stabilizing adjustment is 
performed to avoid this problem. 

The problem has been extensively analyzed in [25], and 
occurs due  to the  presence of singularities. Singularities 
occur when the Jacobian matrix loses rank. Small singular 
values of  𝐶 might arise in the vicinity of these singularities. 
Consequently, larger values ensue when obtaining the 
pseudoinverse of the Jacobian 𝐶+ thus creating larger error 
values which leads to instability. According to [27], it is 
rather difficult to detect these singularities. A traditional 
method of solving this instability problem is to replace the 
pseudoinverse 𝐻+ with the following equation: 

𝐶𝑑+ = 𝐶𝑇(𝐶𝐶𝑇 + 𝜌2𝐼)−1 (3.16) 
Where, ρ is called the damping parameter. The effect of the 

added damping is that it mitigates the effect of small singular 
values when computing the inverse. Its disadvantage is that a 
small error is introduced when calculating the inverse [28]. 

BENCHMARK SIMULATION PROBLEM 

In order to compare the abilities of the proposed models to 
capture the dynamics of a cell, data was gathered from the 
AVL CRUISE software platform. This software is a vehicle 
and powertrain simulation tool. The cell used in this study has 
a nominal capacity of 3.2 𝐴ℎ and a nominal voltage of 3.5 𝑉. 
The test involved an urban dynamometer driving schedule 
(UDDS) cycle used in AVL CRUISE. The vehicle velocity 
profile for the UDDS cycle is shown in Fig. 2. The 
corresponding battery pack current profile is shown in Fig. 3. 

For each model, the SOC as a function of time was captured, 
as well as the terminal voltage. A relatively large operating 
range was selected for the battery tests (20% to 80% of the 
SOC). 

The mathematical relations that define the previous models 
have now been presented, but the constants numeric values to 
compare the models are necessary. The cell columbic 
efficiency factor was set to 𝜂𝑖 = 1 for discharging and 
charging. The number of ampere-hours that can be drawn 
from the cell was set to approximately 3.2 𝐴ℎ. The SVSF 
smoothing boundary layer was set to a constant 𝜓 = 100 for 
the states and 𝜓 = 1 × 10−2 for the parameters, and the 
SVSF convergence or ‘memory’ was defined as 𝛾 = 0.1. 
Note that these values were tuned by trial-and-error in an 
effort to reduce the estimation error. 

 
Fig. 2. Velocity profile for the UDDS cycle simulation. This set of data was 
used to test the models and compare the estimation methods. 
 

 
Fig. 3. Current profile for the UDDS cycle simulation. This set of data was 
used to test the models and compare the estimation methods. 
 

The following series of figures were included for 
completeness, and include estimates for the SOC and voltage 
for each  model. Following these figures, a summary of the 
root mean square error (RMSE) is provided. 



  
Fig. 4. Combined model results for the SOC. The actual SOC, and the 
estimated SOC (EKF and SVSF) are shown. 

Fig. 5. Combined model results for the terminal voltage. The actual terminal 
voltage, and the estimated terminal voltage (EKF and SVSF) are shown. 

  
Fig. 6. Simple model results for the SOC. The actual SOC, and the estimated 
SOC (EKF and SVSF) are shown. 

Fig. 7. Simple model results for the terminal voltage. The actual terminal 
voltage, and the estimated terminal voltage (EKF and SVSF) are shown. 

  
Fig. 8. Zero-state hysteresis model results for the SOC. The actual SOC, and 
the estimated SOC (EKF and SVSF) are shown. 

Fig. 9. Zero-state hysteresis model results for the terminal voltage. The actual 
terminal voltage, and the estimated terminal voltage (EKF and SVSF) are 
shown. 



  
Fig. 10. One-state hysteresis model results for the SOC. The actual SOC, and 
the estimated SOC (EKF and SVSF) are shown. 

Fig. 11. One-state hysteresis model results for the terminal voltage. The 
actual terminal voltage, and the estimated terminal voltage (EKF and SVSF) 
are shown. 

  
Fig. 12. Enhanced self-correcting model (two states) results for the SOC. The 
actual SOC, and the estimated SOC (EKF and SVSF) are shown. 

Fig. 13. Enhanced self-correcting model (two states) results for the SOC. The 
actual SOC, and the estimated SOC (EKF and SVSF) are shown. 

  
Fig. 14. Enhanced self-correcting model (four states) results for the SOC. The 
actual SOC, and the estimated SOC (EKF and SVSF) are shown. 

Fig. 15. Enhanced self-correcting model (four states) results for the SOC. The 
actual SOC, and the estimated SOC (EKF and SVSF) are shown. 

 
 
 



The EKF requires values for the system and measurement 
noise covariance matrices, 𝑄 and 𝑅 respectively. Although 
the papers [2, 7, 8] utilized the EKF, the authors omitted 
values for 𝑄 and 𝑅 which makes reproducing results very 
difficult. In this paper, the measurement noise covariance was 
defined as 𝑅 = 0.01. The system noise covariance matrix 
varied depending on which model was used. However, for the 
combined model, 𝑄 was defined as a diagonal matrix. For 
each state a value of 𝑄 = 1 × 10−6 was assigned, and for 
each parameter 𝑄 = 5 × 10−2 was implemented. 
 

The following figure illustrates the RMSE results for the 
EKF and SVSF, as applied on the six different models. Note 
that the SVSF provides an improvement of 30% to 80% in 
terms of estimation accuracy. This is most likely due to the 
robust switching ability inherent in the SVSF gain. Note also 
that the SVSF was easier to tune when compared with the 
EKF. The EKF required a significant amount of tuning in 
terms of the 𝑄 and 𝑅 elements, whereas the SVSF required 
only the SVSF boundary layer term to be tuned. 
 

 
Fig. 16. Root mean square error (RMSE) results for the two filtering 
strategies applied on the six different models.  
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CONCLUSIONS 

The purpose of this paper was to compare the performances 
of some of the most popular Li-ion battery models found in 
literature. A benchmark dataset was used to study the 
effectiveness of these models. The extended Kalman filter 
(EKF) was applied for battery parameter estimation, and the 
results were compared with the smooth variable structure 
filter (SVSF). Overall, the SVSF provided better estimates in 
terms of estimation accuracy. Furthermore, the SVSF was 
easier to tune compared with the EKF. Although all of the 
models worked fairly well, the enhanced self-correcting 
model provided the most accurate battery model. 
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