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Abstract-Fault detection strategies are important for ensuring 
the safe and reliable operation of mechanical and electrical 
systems. Recently, a new signal-based fault detection and 
classification strategy has been proposed, which makes use of 
artificial neural networks (NNs) and the smooth variable 
structure filter (SVSF). The strategy, referred to as the NN-
SVSF, has shown promising results with applications to 
benchmark classification problems. New developments of the 
SVSF have resulted in improved performance in terms of state 
and parameter estimation. These developments are used to 
enhance the NN-SVSF in an effort to further advance the signal-
based strategy. This paper studies and compares the results of 
applying other popular strategies on an internal combustion 
engine (ICE), for the purposes of fault detection and 
classification. 

 

INTRODUCTION 

The Kalman filter (KF) is the most popular state estimation 
tool. It provides optimal estimates for known linear systems 
in the presence of Gaussian white noise. In the case of 
nonlinear systems, the extended Kalman filter (EKF) is 
applied by linearizing the system around the latest state 
estimate at each time interval. An EKF-based neural network 
training technique was first introduced by Singhal and Wu in 
1989 [1]. The EKF provides a powerful neural network 
training capability compared to conventional first-order 
gradient algorithms [2]. In literature, the EKF has been 
extensively applied for training of both feed-forward [3] and 
recurrent networks [4,5] in both a global form (GEKF) or in a 
decoupled form (DEKF). Although the EKF demonstrates a 
close performance compared to second-order derivative, 
batch-based methods, it can outperform them by avoiding 
local minima problems [2]. Accordingly, the EKF represents 
an efficient and practical alternative to second-order training 
methods. 

Through the last decade, various enhanced artificial neural 
networks (ANNs) training techniques have been proposed in 
several studies. A new hybrid learning algorithm that 
combines the EKF and particle filter (PF) has been presented 
in [6]. The new training scheme provides faster speed of 
convergence than the stand-alone EKF. An advanced EKF 
training technique has been proposed in [7]. The advanced 
form of Kalman filter-based parameter estimation method 
obtains a more accurate estimate of how a Gaussian 

distribution evolves under a nonlinear transformation. It has 
proven to offer performance advantages over standard EKF 
training. Reference [8] provides suggestions on how to 
initialize the EKF parameters in addition to presenting a new 
decoupling strategy that reduces the update rate of the error 
covariance matrix for faster training. Recently, Wan et al. [9] 
reported the effective use of the unscented Kalman filter 
(UKF) [10] for feed-forward neural networks training. 

The recently proposed smooth variable structure filter 
(SVSF) provides a robust dynamic adaptation, high-rate of 
convergence, and can guarantee estimation stability for 
bounded uncertainties and noise levels [11]. The SVSF has 
been successfully used for parameter and state estimation 
[12,13]. The SVSF has demonstrated some advantages over 
the EKF in target tracking applications with respect to 
computational complexity, robustness, and tracking accuracy 
[14]. This is due to the sensitivity of the EKF to model 
uncertainties when used as a parameter estimator. Therefore, 
a combined variable structure and Kalman filtering approach 
for parameter estimation has been proposed in [15]. A 
comparison between the EKF, SVSF, PF, and UKF on a 
bearing-only target tracking problem was demonstrated in 
[16]. The results demonstrated that the SVSF yielded accurate 
state estimates while maintaining robustness to uncertainties. 

Recently, a new form of the SVSF has been introduced 
which offers a more accurate estimation method [17]. This 
strategy minimizes the SVSF state error covariance with 
respect to the smoothing boundary layer term. The strategy is 
referred to as the SVSF with a time-varying (or variable) 
smoothing boundary layer, or SVSF-VBL. The resulting 
algorithm is combined with the neural network training 
method to create a new signal-based fault detection and 
clasification strategy. 

The purpose of this paper is to compare the performances 
of the EKF-based, SVSF-based, and SVSF-VBL-based neural 
network training techniques. These three strategies are 
applied and tested on accelerometer measurements obtained 
from an internal combustion engine setup. The following 
section provides an overview of the estimation methods. The 
SVSF-based neural network training strategy is shown in 
Section III. The main simulation results are shown in Section 
IV, followed by a brief discussion. Section V concluldes the 
main findings of this paper. 
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ESTIMATION STRATEGIES 

A. Kalman Filter (KF) 
In 1960, Rudolph Kalman presented a new approach to 

linear filtering and prediction problems, which would later 
become known as the Kalman filter (KF) [18]. The KF yields 
a statistically optimal solution for linear estimation problems 
in the presence of Gaussian noise. The KF is a model based 
method, derived in the time domain and a discrete-time 
setting. A continuous-time version was developed by Kalman 
and Bucy, and is consequently referred to as the Kalman-
Bucy filter [19]. Like many other filters, the KF is formulated 
in a predictor-corrector manner. The states are first estimated 
using the system model and input, termed as a priori 
estimates, meaning ‘prior to’ knowledge of the observations. 
A correction term is then added based on the innovation (also 
called residuals or measurement errors), thus forming the 
updated or a posteriori (meaning ‘subsequent to’ the 
observations) state estimates. The following five equations 
form the core of the KF algorithm, and are used in an iterative 
fashion. Equations (2.1) and (2.2) define the a priori state 
estimate ݔොାଵ| based on knowledge of the system A and 
previous state estimate ݔො|, and the corresponding state error 
covariance matrix ܲାଵ|, respectively. 

ොାଵ|ݔ ൌ ො|ݔܣ    (2.1)ݑܤ

ܲାଵ| ൌ ܣ ܲ|்ܣ  ܳ (2.2) 
The Kalman gain ܭାଵ is defined by (2.3), and is used to 

update the state estimate ݔොାଵ|ାଵ as shown in (2.4). The gain 
makes use of an innovation covariance ܵାଵ, which is defined 
as the inverse term found in (2.3). 

ାଵܭ ൌ ܲାଵ|்ܥ൫ܥ ܲାଵ|்ܥ  ܴାଵ൯
ିଵ
	 (3.3) 

ොାଵ|ାଵݔ ൌ ොାଵ|ݔ  ାଵݖାଵ൫ܭ െ  ොାଵ|൯ (3.4)ݔܥ
The a posteriori state error covariance matrix ܲାଵ|ାଵ is 

then calculated by (2.5), and is used iteratively, as per (2.2). 
ܲାଵ|ାଵ ൌ ሺܫ െ ሻܥାଵܭ ܲାଵ| (2.5) 

The derivation of the KF is well documented, with details 
available in [18,20,21]. The optimality of the KF comes at a 
price of stability and robustness. The KF assumes that the 
system model is known and linear, the system and 
measurement noises are white, and the states have initial 
conditions with known means and variances [22]. However, 
the previous assumptions do not always hold in real 
applications. If these assumptions are violated, the KF yields 
suboptimal results and can become unstable [23]. 
Furthermore, the KF is sensitive to computer precision and 
the complexity of computations involving matrix inversions 
[24]. For nonlinear systems and measurements, the KF may 
be used to formulate the extended Kalman filter (EKF). In 
this case, the nonlinear system ݂ or measurement ݄ is 
linearized according to its Jacobian. Partial derivatives are 
used to compute linearized system and measurement matrices 
F and H, respectively found as follows [25]: 

ܨ ൌ
߲݂
ݔ߲
ฬ
௫ොೖ|ೖ,௨ೖ

 (2.6) 

ାଵܪ ൌ
߲݄
ݔ߲
ฬ
௫ොೖశభ|ೖ

 (2.7) 

Equations (2.6) and (2.7) essentially linearize the nonlinear 
system or measurement functions around the current state 
estimate [20]. This comes at a loss of optimality, as the KF 
gain is no longer considered to be the best solution to the 
estimation problem [21]. Note that the EKF process is the 
same as the KF process, except that (2.6) and (2.7) replace ܣ 
and ܥ, respectively. 

 
B. Smooth Variable Structure Filter (SVSF) 

The smooth variable structure filter (SVSF) was presented 
in 2007 [11]. The SVSF strategy is also a predictor-corrector 
estimator based on sliding mode concepts, and can be applied 
on both linear or nonlinear systems and measurements. As 
shown in Fig. 1, it utilizes a switching gain to converge the 
estimates to within a boundary of the true state values (i.e., 
existence subspace) [11]. The SVSF has been shown to be 
stable and robust to modeling uncertainties and noise, when 
given an upper bound on the level of un-modeled dynamics 
and noise [11,26]. 

 

 
 

Fig. 1. The above figure shows the SVSF estimation strategy [17]. Starting 

from some initial value, the state estimate is forced by a switching gain to 

within a region referred to as the existence subspace. 

 
The origin of the SVSF name comes from the requirement 

that the system is differentiable (or ‘smooth’) [11,27]. 
Furthermore, it is assumed that the system under 
consideration is observable [11]. Consider the following 
process for the SVSF estimation strategy, as applied to a 
nonlinear system with a linear measurement equation. The 
predicted state estimates ݔොାଵ| are first calculated as follows: 

ොାଵ|ݔ ൌ መ݂൫ݔො|,  ൯ (2.8)ݑ
Utilizing the predicted state estimates ݔොାଵ|, the 

corresponding predicted measurements ̂ݖାଵ| and 
measurement errors ݁௭,ାଵ| may be calculated: 

ାଵ|ݖ̂ ൌ  ොାଵ| (2.9)ݔܥ
݁௭,ାଵ| ൌ ାଵݖ െ  ାଵ| (2.10)ݖ̂



Next, the SVSF gain is calculated as follows [11]: 

ାଵܭ
ௌௌி ൌ ା൫ห݁௭,ାଵ|หܥ  ห݁௭,|ห൯ߛ ∘ ݐܽݏ ൬

݁௭,ାଵ|
߰

൰ (2.11) 

The SVSF gain is a function of: the a priori and a posteriori 
measurement errors ݁௭,ାଵ| and ݁௭,|; the smoothing 
boundary layer widths ߰; the ‘SVSF’ memory or 
convergence rate ߛ with elements 0 ൏ ߛ  1; and the linear 
measurement matrix ܥ. The SVSF gain is used to refine the 
state estimates as follows: 

ොାଵ|ାଵݔ ൌ ොାଵ|ݔ  ାଵܭ
ௌௌி (2.12) 

Next, the updated measurement estimates ̂ݖାଵ|ାଵ and 
corresponding errors ݁௭,ାଵ|ାଵ are calculated: 

ାଵ|ାଵݖ̂ ൌ  ොାଵ|ାଵ (2.13)ݔܥ
݁௭,ାଵ|ାଵ ൌ ାଵݖ െ  ାଵ|ାଵ (2.14)ݖ̂

The SVSF process may be summarized by (2.8) through 
(3.14), and is repeated iteratively. According to [11], the 
estimation process is stable and convergent if the following 
condition is satisfied: 

ห݁|ห  ห݁ାଵ|ାଵห (2.15) 
The proof, as described in [11] and [27], yields the 

derivation of the SVSF gain from (2.15). The SVSF results in 
the state estimates converging to the state trajectory. 
Thereafter, it switches back and forth across the state 
trajectory within a region referred to as the existence 
subspace. The existence subspace represents the amount of 
uncertainties present in the estimation process, in terms of 
modeling errors or the presence of noise. The width of the 
existence space ߚ is a function of the uncertain dynamics 
associated with the inaccuracy of the internal model of the 
filter as well as the measurement model, and varies with time 
[11]. Typically this value is not exactly known but an upper 
bound may be selected based on a priori knowledge. 
 
C. Smooth Variable Structure Filter with a Time-Varying 

Smoothing Boundary Layer (SVSF-VBL) 
The partial derivative of the a posteriori covariance (trace) 

with respect to the smoothing boundary layer term ߰ is the 
basis for obtaining a strategy for the specification of ߰. The 
approach taken is similar to determining an optimal gain for 
the KF. Previous forms of the SVSF included a vector form 
of ߰, which had a single smoothing boundary layer term for 
each corresponding measurement error. Essentially, the 
boundary layer terms were independent of each other such 
that the measurement errors would only directly be used for 
calculating its corresponding gain. The coupling effects are 
not explicitly considered thus preventing an optimal 
derivation. A ‘near-optimal’ formulation of the SVSF could 
be created using a vector form of ߰, however this would lead 
to a minimization of only the diagonal elements of the state 
error covariance matrix. In an effort to obtain a smoothing 
boundary layer equation that yields optimal state estimates for 
linear systems (like the KF), a full smoothing boundary layer 
matrix was proposed in [17]. Hence, consider the full matrix 
form of the smoothing boundary layer: 

߰ ൌ ൦

߰ଵଵ ߰ଵଶ ⋯ ߰ଵ
߰ଵଶ ߰ଶଶ ⋯ ߰ଶ
⋮ ⋮ ⋱ ⋮

߰ଵ ߰ଶ ⋯ ߰

൪ (2.16) 

Note that the off-diagonal terms of (2.16) are zero for the 
standard SVSF, whereas this is not the case for the algorithm 
presented in [17]. This definition includes terms that relate 
one smoothing boundary layer to another (i.e., off-diagonal 
terms). To solve for a time-varying smoothing boundary layer 
(VBL) based on (2.16), consider: 

߲൫݁ܿܽݎݐሾ ܲାଵ|ାଵሿ൯

߲߰
ൌ 0 (2.17) 

The complete proof and derivation for the SVSF-VBL is 
provided in [17]. For the purposes of this paper, only the 
algorithm will be summarized here. Consider the prediction 
stage for a linear system and measurement (as an example), 
where the state estimates and covariance are first calculated 
as per (2.18) and (2.19), respectively. The following 12 
equations summarize the SVSF-VBL strategy. 

ොାଵ|ݔ ൌ ො|ݔመܣ    (2.18)ݑܤ

ܲାଵ| ൌ መܣ ܲ|ܣመ்  ܳ (2.19) 
The a priori measurement estimate (2.20) and errors (2.21) 

are then calculated. 
ାଵ|ݖ̂ ൌ  ොାଵ| (2.20)ݔܥ

݁௭,ାଵ| ൌ ାଵݖ െ  ାଵ| (2.21)ݖ̂
The update stage is then defined by the following sets of 

equations. The innovation covariance (2.22) and combined 
error vector (2.23) are calculated, and then used in (2.24) to 
determine the smoothing boundary layer matrix. Note that a 
‘divide by zero’ check should be performed on (2.23) to 
avoid inversion of zero in (2.24). This can be accomplished 
using a simple if statement with a very small threshold (i.e., 
1 ൈ 10ିଵଶ). 

ܵାଵ ൌ ܥ ܲାଵ|்ܥ  ܴାଵ (2.22) 
ାଵܣ ൌ ห݁௭,ାଵ|ห௦   ห݁௭,|ห௦ (2.23)ߛ
߰ାଵ ൌ ൫̅ܣାଵ

ିଵ ܥ ܲାଵ|்ܵܥାଵ
ିଵ ൯

ିଵ
 (2.24) 

The SVSF gain is then calculated (2.25), and then used to 
update the state estimates (2.26). 

ାଵܭ ൌ ାଵ߰ାଵܣଵ̅ିܥ
ିଵ  (2.25) 

ොାଵ|ାଵݔ ൌ ොାଵ|ݔ   ାଵ݁௭,ାଵ| (2.26)ܭ
Finally, the a posteriori state error covariance (2.27), 

updated measurement estimate (2.28), and a posteriori errors 
(2.29) are calculated. 

ܲାଵ|ାଵ ൌ ሺܫ െ ሻܥାଵܭ ܲାଵ|ሺܫ െ ሻ்ܥାଵܭ

 ାଵܭାଵܴାଵܭ
்  

(2.28) 

ାଵ|ାଵݖ̂ ൌ  ොାଵ|ାଵ (2.29)ݔܥ
݁௭,ାଵ|ାଵ ൌ ାଵݖ െ  ାଵ|ାଵ (2.30)ݖ̂

The SVSF-VBL estimation strategy is summarized by 
(2.18) through (2.30). 
 

SVSF-BASED NEURAL NETWORK TRAINING 

The SVSF can be applied for training nonlinear feed-
forward neural networks by estimating network weights. In 
the same fashion as the Kalman filter, the SVSF has been 
adapted to train feed-forward neural networks by visualizing 



the network as a filtering problem where	ܩ ,ܨ, and ܥ are the 
system, input, and output matrices, respectively follows: 

ෝାଵ|ݓ ൌ ෝ|ݓܨ    (3.1)ݑܩ
ݕ ൌ ,|ݓሺܥ  ሻ (3.2)ݑ

The global SVSF training algorithm is iterative and is 
summarized by the following steps, assuming training data 
set {ݔ,  :{ݖ

Step 1: Network weights initialization. 
A-priori state estimates (network weights) ݓෝ| are 

randomly initialized ranging from -1, 1. 
Step 2: Calculation of the predicted (a-posteriori) weight 

estimates ݓෝାଵ| from (3.1). 
For neural networks training, the system matrix ܨ is an 

identity matrix and the system input ݑ is set to zero. 
Consequently, when the algorithm is initialized, the a-
posteriori weight matrix is the same as the a-priori one and 
thus (3.1) is rewritten as follows: 

ෝାଵ|ݓ ൌ  ෝ| (3.3)ݓ
Step 3: Jacobian Matrix calculation (Linearization) of the 

measurement matrix ܥ. 
The Jacobian matrix is calculated here. After applying the 

algorithm, ܥ|௭ௗ is obtained. 
Step 4: Network’s actual output (measurements) ̂ݖାଵ| 

calculation. 
 By multiplying the linearized Jacobian measurement 

matrix ܥ|௭ௗ with the a-priori network weights 	ݓෝାଵ| 
one has the following: 

ାଵ|ݖ̂ ൌ  ෝାଵ| (3.4)ݓ|௭ௗܥ
 Step 5: measurement error ݁௭ೖశభ|ೖ calculation. 

  Using the output ̂ݖାଵ|  and the corresponding target 
(from the neural network training data set) ݖ, measurement 
errors ݁௭ೖశభ|ೖ may be calculated as follows: 

݁௭ೖశభ|ೖ ൌ ݖ െ  ାଵ| (3.5)ݖ̂
Step 6: SVSF gain calculation. 
   The SVSF gain is a function of the a-priori and the a-

posteriori measurement errors ݁௭ೖశభ|ೖ and ݁௭ೖ|ೖ, the 

smoothing boundary layer widths ߰, the ‘SVSF’ memory or 
convergence rate ߛ, as well as the linear measurement matrix 
 ାଵ, referܭ |௭ௗ. For the derivation of the SVSF gainܥ
to [11,28]. The SVSF gain is defined as a diagonal matrix 
such that: 

ାଵܭ ൌ |௭ௗܥ
ା݀݅ܽ݃ ቀቚ݁௭ೖశభ|ೖቚ  ߛ ቚ݁௭ೖ|ೖቚቁ

∘ ݐܽݏ ൬
݁௭ೖశభ|ೖ
߰

൰൨ ݀݅ܽ݃ ቀ݁௭ೖశభ|ೖቁ
ିଵ

 
(3.6) 

Step 7: Calculation of the updated state estimates ݓෝାଵ|ାଵ. 
ෝାଵ|ାଵݓ ൌ ෝାଵ|ݓ   ାଵ݁௭ೖశభ|ೖ (3.7)ܭ

Step 8: Calculation of a-posteriori output estimate ̂ݖାଵ|ାଵ 
and measurement errors ݁௭ೖశభ|ೖశభ  to be used in later 

iterations: 
ାଵ|ାଵݖ̂ ൌ  ෝାଵ|ାଵ (3.8)ݓ|௭ௗܥ
݁௭ೖశభ|ೖశభ ൌ ାଵݖ െ  ାଵ|ାଵ (3.9)ݖ̂

Steps 3 to 8 are iteratively repeated while shuffling 
(randomly shifting) the training data set each epoch. 

Training proceeds until one of the stopping conditions 
occurs. Note that the SVSF-based NN steps may also be 
applied on the standard EKF and SVSF-VBL equations, but 
have been omitted due to page constraints. 

 

EXPERIMENTAL SETUP AND RESULTS 

The experimental setup as shown in Fig. 2 involves a four 
stroke, 5.0 L, eight cylinder engine. The test is performed at 
FORD’s Powertrain Engineering Research and Development 
Centre (PERDC). Vibration data has been recorded over four 
seconds using a charge-type piezoelectric accelerometer. The 
accelerometer has been attached to the engine lug in a 
premeditated position in order to detect faults of interest. 
Vibration data has been acquired using a PROSIG 5600 data 
acquisition system with built-in 16-bit analog-to-digital 
convertor card set at a sampling frequency of 32,768 Hz. 

 

 
Fig. 2. The above figure shows the experimental setup in a semi-anechoic 

chamber. This setup was used to generate the data used in this paper. 

 
After data acquisition, the time domain data has been 

converted offline to the crank angle domain using the cam 
identification (CID) sensor signal. The CID sensor is used to 
detect camshaft angle position. It is a non-contact sensor 
mounted on the engine and generates sinusoidal pulses at 
specific angles of 	90° െ 120° െ 60° െ 120° െ 60° െ 180° െ
90° per engine cycle. The first sinusoidal pulse zero-crossing 
indicates that the first cylinder is 10° away from the top-
dead-center (TDC). After transformation to the crank angle 
domain, data resampling is performed so that each engine 
cycle has the same number of points. 

Two faults have been induced in the engine. They involve 
missing bearing fault (MB) and piston chirp (PC) fault. PC 
faults occur due to dislocation of the engine’s piston ring 
which leads to excessive wear and high engine noise. MB 
faults occur due to assembly problem throughout the 
manufacturing process. MB faults cause severe vibration 
spike as shown in Fig. 3.  Vibration signals recorded from 
these two fault cases as well as the baseline fault-free engine 
case are used as a training data set for neural networks 
training. A piston chirp signal reading is provided in Fig. 4. 

 



 
Fig. 3. The above figure shows the accelerometer readings for the missing 

bear fault case. 

 

 
Fig. 4. The above figure shows the accelerometer readings for the piston 

chirp fault case. 

 
In this paper, fully connected feed-forward multilayer 

perceptron with a number of input neurons representing 
sampled vibration data input in the crank angle domain, two 
hidden layers with four neurons each, and three output units 
is used. Trained network should be able to classify engines to 
either one of the two induced faults or to a baseline (fault-
free) case as follows: (1, 0, 0: Baseline engine), (0, 1, 0: 
Piston Chirp fault detected), (0, 0, 1: Missing Bearing fault 
detected). The test has been conducted through several runs, 
30 engine cycles from each case stated before (i.e.: Baseline, 
MB, and PC) resulting in 90 training sets. Trained neural 
networks have been tested using 10 engine cycles from each 
case resulting in 30 testing set.  

As mentioned earlier, networks were trained using the 
EKF, SVSF, and SVSF-VBL algorithms. Figure 5 shows the 
root mean square error (RMSE) results for 30 epochs. Notice 
that the SVSF-VBL method converged faster than the 
standard SVSF. However, after about 4 െ 5 epochs both 
methods yield the same RMSE.  

 
Fig. 5. The above figure illustrates the RMSE value at each epoch for the 

EKF, SVSF, and the SVSF-VBL. Note how after about epoch 20, all three 

filters provide roughly the same estimation result in terms of accuracy. 

 
Note that for fault detection and classification, the RMSE 

values are not as valuable as the actual classification 
percentages. Trained networks have been tested using 30 data 
sets. Training and testing results are summarized into 
confusion matrices as shown below. 
 

 
Fig. 6. Explanation of the ‘confusion’ matrix (appropriately named).  

 
The following three fiures are the corresponding confusion 

matrices for the EKF, SVSF, and SVSF-VBL estimation 
strategies. 
 

 
Fig. 7. The above illustration represents the training and confusion matrices 

for the EKF estimation strategy. 



 
Fig. 8. The above illustration represents the training and confusion matrices 

for the SVSF estimation strategy. 

 

 
Fig. 9. The above illustration represents the training and confusion matrices 

for the SVSF-VBL estimation strategy. 

 
Training and testing results are summarized in the 

following table. The SVSF-VBL achieved the highest testing 
(generalization) percentage (least mean squared error) in both 
training and testing, followed by the EKF, and the standard 
SVSF. 

TABLE I 
OVERALL TRAINING AND TESTING CLASSIFICATION RESULTS 

Training Technique Training (%) Testing (%) 

SVSF-VBL 100 96.7 

EKF 100 90.0 

SVSF 100 86.7 

 
Interestingly, the SVSF-VBL method only misclassified 

one fault, compared with the standard SVSF which 
misclassified four faults. The improvement is most likely due 
to the introduction of the time-varying boundary layer. 
 

CONCLUSIONS 

The purpose of this paper was to introduce a new form of 
the SVSF with a time-varying boundary layer as a method for 
training neural networks. The EKF, SVSF, and SVSF-VBL 
strategies were applied for fault detection and classification 
on an internal combustion engine. As demonstrated in the 
results, the SVSF-VBL yielded the highest testing 
classification percentage, with only one misclassified fault. 
Future work will look at expanding this method and applying 
it to a number of other fault conditions. 
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