
  

  

Abstract—This paper studies the mathematical modeling of 

an electrohydrostatic actuator (EHA) for the purpose of fault 

detection and diagnosis. A relatively new model-based fault 

detection strategy referred to as the interacting multiple model 

and smooth variable structure filtering method (IMM-SVSF) is 

applied on an experimental apparatus. The results of this 

application are compared with the popular Kalman filter based 

strategy (IMM-KF), and recommendations are made for future 

research. 

I. INTRODUCTION 

STIMATION theory is considered to be a part of signal 

processing and statistics. It involves finding a value of 

some parameter of interest, which affects the output of a 

system, often in the presence of inaccurate or uncertain 

observations. The purpose of estimation, as described by 

Bar-Shalom et al. in [1], can be one of many reasons: 

determination of planet orbit parameters, statistical 

inference, aircraft traffic control system (i.e., tracking), use 

in control plants with uncertainties (i.e., parameter 

identification or state estimation), message retrieval from 

noisy signals (i.e., communication theory), and also signal 

and image processing. The ability to successfully control a 

mechanical or electrical system depends on the knowledge 

of the true states or parameters of interest. For example, 

consider a linear mechanical system, where the dynamics 

such as position, velocity, and acceleration are defined to be 

the states of interest. The state dynamics, or how the system 

operates with time, may be captured by using a state 

representation as follows: 

 ���� � ��� � ��� � �� (1) 

 

Where �� defines the system states, � is the linear system 

matrix, � is the input gain matrix, �� is the corresponding 

input to the system, and �� refers to the system noise 

present in the system. To understand the behaviour of a 

system, elements from the state vector need to be observed 

or measured. Sensors placed in the environment are used to 

measure the states of interest. A relationship exists between 

the measurements and the states, and may be defined as 

follows: 

 ���� � ����� � ���� (2) 
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Where �� defines the measurements, � refers to the linear 

measurement matrix, and �� refers to the measurement noise 

present in the sensors. Unless otherwise stated, it is assumed 

in this paper that the system and measurement noises are 

modeled as Gaussian noise, with zero mean and covariance’s 	� and 
�, respectively as follows: 

 ����
�����	�� (3) ����
�����
�� (4) 

 

Therefore, it is the role of a filter to extract knowledge of 

the true states typically from noisy measurements or 

observations made of the system, and form state estimates ���. The name ‘filter’ is appropriate since it removes 

unwanted noise from the signal. Typically, in solving linear 

estimation problems, the system and measurement dynamics 

are model based and may be described by discrete-time 

equations, such as (1) and (2). The concept of filter applies 

equally well to nonlinear systems and measurements, 

defined respectively by: 

 ���� � ���� ���
 � �� (5) ���� � ������
 � ���� (6) 

 

Where � and � represent the nonlinear system and 

measurement models, respectively. The most popular and 

well-studied estimation method is the Kalman filter (KF), 

which was introduced in the 1960s [2,3]. The KF yields a 

statistically optimal solution for linear estimation problems, 

as defined by (1) and (2), in the presence of Gaussian noise. 

The KF is formulated in a predictor-corrector manner, and is 

implemented recursively. The optimality of the KF comes at 

a price of stability and robustness. The KF assumes that the 

system model is known and linear, the system and 

measurement noises are zero mean Gaussian, and the states 

have initial conditions with known means and variances 

[4,1]. However, the previous assumptions do not always 

hold in real applications. If these assumptions are violated, 

the KF may yield suboptimal results and can become 

unstable [5]. 

In nature, many systems behave according to a number of 

different models (modes, or operating regimes). For 

example, in target tracking, a target may travel straight (i.e., 

uniform motion) or turn (i.e., undergo a coordinated turn) 

[1]. Furthermore, a system may experience different types of 

noises (i.e., white or ‘coloured’) [6]. 
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In these scenarios, it is desirable to implement adaptive 

estimation algorithms, which ‘adapt’ themselves to certain 

types of uncertainties or models in an effort to minimize the 

state estimation error [1]. One type of adaptive estimation 

technique includes the ‘multiple model’ (MM) algorithm [7]; 

which include the following: static MM [8], dynamic MM 

[1], generalized pseudo-Bayesian (GPB) [9,10,11,12], and 

the interacting multiple model (IMM) [1,13,14]. 

For the MM methods, a Bayesian framework is used (i.e., 

probability based). Essentially, based on some prior 

probabilities of each model being correct (i.e., the system is 

behaving according a finite number of modes), the 

corresponding updated probabilities are calculated [1]. 

Throughout this paper, it will be assumed that all of the 

models are linear with the presence of Gaussian noise; 

however, nonlinear models could be used via linearization 

[1]. Each MM method requires estimation of the states and 

their corresponding probability. The most popular strategy 

that has been implemented in the MM framework remains 

the KF, and is referred to as the IMM-KF [6]. As such, it 

forms the basis for comparison in this paper. 

II. SMOOTH VARIABLE STRUCTURE FILTER 

A revised form of the variable structure filter (VSF), 

referred to as the smooth variable structure filter (SVSF), 

was presented in 2007 [15]. The SVSF strategy is also a 

predictor-corrector estimator based on sliding mode 

concepts, and can be applied on both linear or nonlinear 

systems and measurements. As shown in the following 

figure, and similar to the VSF, it utilizes a switching gain to 

converge the estimates to within a boundary of the true state 

values (i.e., existence subspace) [15]. The SVSF has been 

shown to be stable and robust to modeling uncertainties and 

noise, when given an upper bound on the level of un-

modeled dynamics and noise [15,16]. 

 
Fig. 1. The SVSF estimation concept is shown here. The SVSF results in 

the state estimates converging to within an area of the state trajectory, 

referred to as the existence subspace. Thereafter, it switches back and forth 

across the state trajectory. The existence subspace represents the amount of 

uncertainties present in the estimation process, in terms of modeling errors 

or the presence of noise. Typically this value is not exactly known but an 

upper bound may be selected based on a priori knowledge. 

The origin of the SVSF name comes from the requirement 

that the system is differentiable (or ‘smooth’) [15,17]. 

Furthermore, it is assumed that the system under 

consideration is observable [15]. Consider the following 

process for the SVSF estimation strategy, as applied to a 

nonlinear system with a linear measurement equation. The 

predicted state estimates �����|� are first calculated as 

follows: 

 

�����|� � ������|� , ��	 (7) 

 

Utilizing the predicted state estimates �����|�, the 

corresponding predicted measurements 
̂���|� and 

measurement error vector ��,���|� may be calculated: 

 


̂���|� � 
�����|� (8) 

��,���|� � 
��� � 
̂���|� (9) 

 

Next, the SVSF gain is calculated as follows [15]: 

 

����
���� � ������,���|�� � ����,�|��	 ∘ ��
 �

��,���|�
� � (10) 

 

The SVSF gain is a function of: the a priori and a 

posteriori measurement error vectors ��,���|� and ��,�|�; the 

smoothing boundary layer widths �; the ‘SVSF’ memory or 

convergence rate � with elements 0 � ��� � 1; and the linear 

measurement matrix 
. The SVSF gain is used to refine the 

state estimates as follows: 

 

�����|��� � �����|� � �����	�
 (11) 

 

Next, the updated measurement estimates 
̂���|��� and 

corresponding errors ��,���|��� are calculated: 

 


̂���|��� � 
�����|��� (12) 

��,���|��� � 
��� � 
̂���|��� (13) 

 

The SVSF process may be summarized by (7) through 

(13), and is repeated iteratively. According to [15], the 

estimation process is stable and converges to the existence 

subspace if the following condition is satisfied: 

 

���|����
 � �����|������
 (14) 

 

The proof, as described in [15] and [17], yields the 

derivation of the SVSF gain from (10). 

III. FORMULATION OF THE IMM-SVSF 

The interacting multiple model (IMM) strategy makes use 

of a finite number of models, and is associated with filters 

that run in parallel. The output from each filter includes the 

state estimate, the covariance, and the likelihood calculation. 
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The output from the filters is used to calculate mode 

probabilities, which gives an indication of how close the 

filter model is to the true model. The IMM has been shown 

to work significantly better than single model methods, since 

it is able to make use of more information [1]. It also works 

extremely well for standard estimation problems such as 

target tracking, where there are typically two models used to 

capture the target’s trajectory (i.e., uniform motion or 

coordinated turn) [1]. 

The motivation for combining the IMM with the SVSF is 

simple. The SVSF provides an estimation process that is 

sub-optimal albeit stable. Therefore, utilizing a multiple 

model (MM) strategy which increases the overall accuracy 

of the estimation process is beneficial. Furthermore, there 

was a certain amount of research curiosity present in how 

the SVSF would perform compared with the KF in terms of 

model detection probability.  

The first step involves calculating the mixing probabilities 

��|�,�|� (i.e., the probability of the system currently in mode 

�, and switching to mode � at the next step). These are 

calculated using the following two equations [1]: 

 

��|�,�|� �
1
��̅ �����,� (15) 

��̅ �����
�

���
��,� (16) 

 

Recall that ���  refers to the mode transition probabilities, 

and is a designer parameter. Note that ��,� refers to the 

probability of the mode � being correct (with values between 

0 and 1), and differs from the mixing probabilities ��|�,�|�. 

This notation is standard, and is found in [1]. 
 

 
Fig. 2. The IMM-SVSF method is shown here. Essentially, the SVSF 

estimation strategy may be applied on a finite number of models. As an 

example, the above figure shows two models. The IMM-SVSF estimator 

consists of five main steps: calculation of the mixing probabilities, mixing 

stage, mode-matched filtering via the SVSF, mode probability update, and 

state estimate and covariance combination. 

The mixing probabilities ��|�,�|� are used in the mixing 

stage, next. In addition to the mixing probabilities, the 

previous mode-matched states ���,�|� and covariance’s  �,�|� 

are also used to calculate the mixed initial conditions (states 

and covariance) for the filter matched to !� (which consists 

of "� and #�). The mixed initial conditions are found 

respectively as follows [1]: 

 

����,�|� �����,�|���|�,�|�
�

���
 (17) 

���,�|� ����|�,�|�
�

��	

���,�|� � ����,�|� � ����,�|������,�|� � ����,�|��
� (18) 

 

The next step involves mode-matched filtering via the 

SVSF, which involves using (17) and (18) as inputs to the 

SVSF matched to !�. Each SVSF also uses the measurement 


��� and input to the system �� (if any), and calculates the 

corresponding updated state estimates (24) and 

corresponding covariance (25). The state estimates ����,�|� 

(17) and corresponding covariance  ��,�|� (18) for each 

model � are used to predict the state estimate ���,���|� (19) 

and calculate the a priori state error covariance matrix 

 �,���|� (20). 

 

���,���|� � "�����,�|� � #��� (19) 

 �,���|� � "� �|��� "�� � $� (20) 

 

From (19) and (20), the mode-matched innovation 

covariance %�,���|� (21) and mode-matched a priori 

measurement error ��,�,���|� (22) are calculated. 

 

%�,���|� � 
� �,���|�
�� � &��� (21) 

��,�,���|� � 
��� � 
����,���|� (22) 

 

The update stage is defined by the following four 

equations. The mode-matched SVSF gain ��,��� is 

calculated (6.1.9) and used to update the state estimates 

���,���|��� (6.1.10). 

 
��,��� � ��

������	
��,�,���|�
 � 
�
��,�,�|�
�

∘ ���	���
����,�,���|�������	��,�,���|��

��
 

(23) 

���,���|��� � ���,���|� � ��,�����,�,���|� (24) 

 

The corresponding state error covariance matrix  �,���|��� 

is then calculated (25) and the a posteriori measurement 

error ��,�,���|��� may be found (26). 

 

 �,���|��� � �' � ��,���
�	 �,���|��' � ��,���
�	�
� ��,���&�����,����  

(25) 

��,�,���|��� � 
��� � 
����,���|��� (26) 
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Based on the mode-matched innovation matrix �������� 

(6.1.7) and the mode-matched a priori measurement error ���������� (6.1.8), a corresponding mode-matched likelihood 

function ������ based on the SVSF estimation method may 

be calculated, as follows [1]: 

 ������ �������	 �̂������� � ������� (27) 

 

Equation (6.1.13) may be solved as follows [1,6]: 

 

������ �
�

����������� ���	
�
�
�
����������� ���������������� 
 (28) 

 

Utilizing the mode-matched likelihood functions ������, 

the mode probability ���� may be updated by [1]: 

 

���� � 
� ����������
�

���

���� (29) 

 

Where the normalizing constant is defined as [1]: 

 

� ������������
�

���

����
�

���

 (30) 

 

The overall IMM-SVSF state estimates ��������� (31) and 

corresponding covariance �������� (32) are then calculated. 

 

��������� �������������������
�

���

 (31) 

�������� � �
����� ������������

���

� ������������
� ���������������������� � ������������ 

(32) 

 

The formulation of the IMM-SVSF may be summarized 

by (15) through (32), where there are �� � � 
�� � � models. 

Note that (31) and (32) are used for output purposes only, 

and are not part of the algorithm recursions [1]. Furthermore, 

note that the IMM-KF strategy is the same process as above 

but (19) through (26) are replaced with the KF prediction 

and update equations. 

IV. EXPERIMENTAL SETUP 

The experimental setup used in this paper involved an 

electrohydrostatic actuator (EHA). An EHA is an emerging 

type of actuator typically used in the aerospace industry. 

EHAs are self-contained units comprised of their own pump, 

hydraulic circuit, and actuating cylinder [15]. The main 

components of an EHA include a variable speed motor, an 

external gear pump, an accumulator, inner circuitry check 

valves, and a cylinder (or actuator). 

The EHA can be divided into two subsystems. The first is 

the inner circuit that includes the accumulator and its 

surrounding check valves. The second is the high pressure 

outer circuit which performs the actuation. The inner circuit 

prevents cavitation which occurs when the inlet pressure 

reaches near vacuum pressures and provides make-up fluid 

for any dynamic leakage [15]. The following figure shows 

the experimental setup of the EHA. 

 

 
Fig. 3. In the above figure, the cylinder on the right (foreground) is referred 

to as Axis A and the cylinder connected to it on the left (foreground) is 

referred to Axis B. An optical linear encoder attached to Axis A is used to 

obtain position measurements (which are differentiated to obtain velocity 

measurements). The gear pump and electric motor are located in the rear 

(middle) of the table. 

 

The electric motor drives the gear pump, which moves the 

hydraulic fluid throughout the circuit. A voltage input 

controls the direction and speed of the pump which affects 

the velocity of the cylinders (or actuators). This setup is a 

closed hydrostatic circuit [18]. More details on the design 

and setup of the EHA may be found in [19,20,21,18]. The 

computer and electrical cabinet are located off-camera to the 

right of the setup. The software used to communicate with 

the EHA setup is MATLAB’s Real-Time Windows Target 

environment. 

The two faults that were introduced to the EHA system 

were increased friction and internal leakage. To incur a 

friction fault, Axis A was used as the driving mechanism 

while Axis B acted as a load. To cause internal leakage, the 

Axis A throttling valve is used (where the Axis A throttle 

blocking valve is open). As the pump rotates, the Axis A 

throttling valve incurs cross-port leakage between both 

chambers of its corresponding cylinder. This action affects 

the output response of the cylinder. 

In order to implement the IMM strategies, three models 

need to be obtained: normal system operation, and the 

presence of friction and leakage faults. 

V. MATHEMATICAL MODELING OF THE EHA 

The EHA may be modeled as a third-order, type 
 linear 

system with state variables related to its position, velocity, 

and acceleration. The input to the system is the rotational 

speed of the pump �	, with typical units of 
����. 
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In this experimental setup, the sample rate of the system is 

( � 1	*+. The significant dynamics of the system may be 

captured by the following third-order transfer function, 

obtained from [22]: 

 

,� � �
�
-! �

./""#$
+% � ./"&'()+) � ./"&'(�+ (33) 

 

./""#$ � "�0*1'
!2�  (34) 

./"&'(� �
#�1'3 � "�)1'

!2�  (35) 

./"&'() �
#�2� �!1'3

!2�  (36) 

 

Note that "� refers to the piston cross-sectional area, #�  

represents the load friction present in the system, 1' is the 

effective bulk modulus (i.e., the ‘stiffness’ in the hydraulic 

circuit), 0! refers to the pump displacement, 3 represents the 

leakage coefficient, ! is the load mass (i.e., weight of the 

cylinders), and 2� is the initial cylinder volume. The three 

main parameters that affect the EHA model are the pump 

displacement 0!, load friction #� , and leakage coefficient 3. 

For the three scenarios (normal, friction, and leakage), these 

parameters need to be determined in order to correctly 

mathematically model the EHA system. The following table 

lists the known EHA parameter values, experimentally 

determined in [21]. 
 

TABLE I 

EHA PARAMETER VALUES 

Parameter Physical Significance EHA Model Values 

�	 Piston Area 1.52 � 10�
	�� 

�� Pump Displacement 6.876 � 10�
	�
/#�� 

$ Load Mass 7.376	&� 

'� Initial Cylinder Volume 2.1789 � 10��	�
 

)� Maximum Stroke 0.14335	� 

+� Effective Bulk Modulus 2.1 � 10�	,� 

 

In an effort to obtain approximate values for the unknown 

EHA parameters (0!, #� , and 3), a sequential step signal 

with amplitude 42.5	2 (changing every 4 seconds) was 

inputted into the system. Note that this corresponds to a 

pump rotation of 4750	RPM. The corresponding (unfiltered) 

system output is shown in the following figure. Recall that 

an encoder measured the position of the Axis A cylinder. 

This value was differentiated to obtain the ‘measured’ 

velocity, which resulted in a noisy signal. Note that for the 

first 12 seconds, the EHA was in normal operation. From 12 

seconds to 20 seconds, the EHA experienced the leakage 

fault. During the final 8 seconds, the friction fault was 

present. 

 
Fig. 4. In the above figure, the unfiltered measured output from the EHA 

system is shown. Note that for the experimental results, the measurements 

were digitally filtered to reduce the effects of the noise. 

 

The differential pressure ∆ � (across the Axis A cylinder) 

was measured during the data collection for each case. 

Furthermore, the measured velocity �+ (for �2.5	V) was 

averaged for each case, once steady-state was reached (i.e., 

the final step value). These values, among those found in the 

previous table, are used to determine the unknown EHA 

parameters. The first step is to calculate the pump 

displacement parameter 0!. This can be accomplished using 

the following formula obtained from [21]: 

 

0! �
$�

-�,-/
 (37) 

 

Essentially (37) defines the pump displacement as a 

function of volumetric flow rate $�  and pump turn rate 

-�,-/
. The volumetric flow rate may be determined from 

its relationship with pressure, and a series of experimental 

trials. This relationship is shown in the following figure, as 

reported in [21]. 

 

 
Fig. 5. The above figure shows the relationship between volumetric flow 

rate and differential pressure [21]. 
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For the normal case, the differential pressure was found to 

be ����	���	 or �����	���. From the above figure, this 

results in an approximate volumetric flow rate of ���� �


�
�	����. These values result in the following pump 

displacement, for the normal case: 

 

�	 �

���	�� ��	
� � ��
�
��� �

������	���� � �	
�� � ��

������ (38) 

 

The pump displacement for the friction and leakage cases 

may be found in a similar fashion. Next, the load friction �
 

will be determined for each scenario. Consider the following 

equation which simplifies the forces present in the EHA 

cylinder: 

 �
 �  �! � �
�"  (39) 

 

Recall the sequential input to the system as presented 

earlier. Notice that the measured velocity reaches a steady-

state value after a short period of time. At this point, there is 

no longer acceleration present, such that the force required 

to overcome friction may be calculated as follows: 

 �
 � ����
 � �
�"� (40) 

 

Rearranging and simplifying yields: 

 

�
 �
����
�"�  (41) 

 

For the normal case, the averaged steady-state velocity 

was found to be ��� �!	���. Substituting the remaining 

values into (41) yields the following load friction value for 

the normal case: 

 

�� �
��
�	
 � ���	�����	�� � ��
�	���

�	����	��� � �
����	���� (42) 

 

Finally, the leakage coefficient # may be solved. In order 

to find an approximate leakage coefficient, consider 

multiplying the EHA transfer function (33) by � (the Laplace 

variable), and then solving for # when $ " �. This allows 

the steady-state value of the velocity �"� to be used, as 

follows: 

 �"�%� �
&'����$$� � &'�����$� � &'�����$ (43) 

 

Then, allowing $ " � in (43) yields: 

 &'����&'�����(��� � �"� �
 ���
�)
�
*��
# � �
�  (44) 

 

Rearranging (44) for the leakage coefficient yields the 

following: 

# �  ���
�)
�
*��
�"� #
�
��
  (45) 

 

Substitution of the known values, as well as (37) and (42), 

yields: 

 

 �
�	��������	�� � ��
�	�����	
�� � ��

���������
����	�������	����	����

�
��	�� � ��
�	����

�
����	����  
(46) 

 

An approximation for the leakage coefficient for the 

normal case is then found as: 

 # �  �!�� � 
�
��	+,�$ (47) 

 

The above procedures may be repeated for the friction and 

leakage faults. Finally, based on the aforementioned 

mathematical modeling, three different transfer functions 

may be created. The normal model, leakage model, and 

friction model are respectively defined as follows: 

 

-
��������� �
�� ��$� � ��!�
$ � �
�� ��

 (48) 

-
��������� � �� ��$� � �� ��$ � �� �
��
 (49) 

-
��� ��!"��� �
��
��$� �  �� ��$ � �������

 (50) 

 

Note that the EHA system has become a second-order 

system, where the input is voltage (.), and the output is the 

cylinder (Axis A) velocity (,�$). 
VI. EXPERIMENTAL RESULTS 

The results of applying the IMM-SVSF and IMM-KF are 

provided in this section. Before applying the methods for the 

purposes of fault detection and diagnosis, the continuous-

time transfer functions of (48) through (50) are converted to 

discrete-time, with / � ����
	$. The discrete-time transfer 

functions are then converted to state space representation. 

The corresponding system and input gain matrices for the 

normal EHA operation are found as follows: 

 

������� � 0 ��! �� 


#��� � �
1 (51) 

������� � 0��!�� �� 

1 � 
�
# (52) 

 

The system and input gain matrices for the leakage fault 

model are determined to be: 

 

�������� � 0 ��!
 � 


#���
�� �
1 (53) 

�������� � 0����! ��!�
1 � 
�
# (54) 
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Finally, the system and input gain matrices for the friction 

fault model may be found as follows: 

 

� ��!"��� � 0 ��!��� 


#
����� � 
�
�� �
1 (55) 

� ��!"��� � 0
�
������ 
1 � 
�
# (56) 

 

According to the previous state space models, there are 

two states. Note that for the purposes of fault detection and 

diagnosis, the states (whether they are kinematic or not) 

have no bearing on the results, since one is mainly interested 

in the mode probability. Only the first state that corresponds 

to the velocity of the EHA cylinder (Axis A) is measured 

such that the measurement matrix (used by all three models) 

is defined as follows: 

 � � 2
 �3 (57) 

 

For this experimental setup, the system and measurement 

noise covariance’s were defined respectively as follows: 

 

	 � 0� � 
�
$ �

� 
 � 
�
%
1 (58) 


 � 
��� � 
�
& (59) 

 

The initial state estimates and state error covariance were 

respectively set to: 

 ����� � 2�� �3' (60) 

���� � 0 � �

�  �
1 (61) 

 

For the SVSF estimation process, the ‘memory’ or 

convergence rate was set to 4 � ��
, and the smoothing 

boundary layer widths were defined as 5 � 2�� � �3'. 

These parameters were tuned based on minimizing the state 

estimation error. Furthermore, note that the initial mode 

probability ���� for both the IMM-KF and IMM-SVSF 

strategies was set to: 

 ���� � 2��!� ���� ����3 (61) 

 

It was assumed with a !�$ probability that the EHA 

experienced normal operation at the start (and a �$ 

probability for each fault). The mode transition matrix �() 

was defined by: 

 

��� � 6��!� ���� ����

���� ��!� ����

���� ���� ��!�

7 (62) 

 

This matrix is a designer parameter. It states, for example, 

that there is a !�$ probability that the EHA will stay in 

mode 
 (normal operation) if it was in mode 
 at the current 

time step (i.e., ��� � ��!�). It also states that there is a �$ 

probability that the EHA will move to a different mode. 

For the experimental setup, it was assumed that the EHA 

went under three different mode transitions. For the first 12 

seconds, it was operating normally. A leakage fault was then 

introduced for 8 seconds, followed by a friction fault which 

also lasted another 8 seconds. Both the IMM-KF and IMM-

SVSF strategies were implemented. In the following three 

figures, a value of ‘
’ refers to a mode probability of 
��$, 

and a value of ‘0’ refers to a mode probability of �$. 

 
Fig. 6. The above figure shows the normal mode probability for both the 

IMM-KF and IMM-SVSF methods. 

 
Fig. 7. The above figure shows the leakage mode probability for both the 

IMM-KF and IMM-SVSF methods. 

 
Fig. 8. The above figure shows the friction mode probability for both the 

IMM-KF and IMM-SVSF methods. 
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The following tables summarize the averaged mode 

probability results for this experiment. 

 
TABLE II 

IMM-KF AVERAGED MODE PROBABILITY RESULTS 

 
Normal 

Detected 
Leak Detected 

Friction 

Detected 

Normal Present !"	#$	� 
	
�	� �
	��	� 

Leak Present �	��	� %!	!%	� ��	��	� 

Friction Present �	��	� �	
�	� &'	!!	� 

 
TABLE III 

IMM-SVSF AVERAGED MODE PROBABILITY RESULTS 

 
Normal 

Detected 
Leak Detected 

Friction 

Detected 

Normal Present "'	()	� 
	�
	� 
	
�	� 

Leak Present �	

	� "*	%(	� �
	��	� 

Friction Present �	
�	� �	��	� "(	*)	� 

 

Although both strategies worked relatively well, the 

IMM-KF method had significant difficulty detecting the 

presence of the friction fault. For example, when the normal 

mode was present, the IMM-KF correctly identified it with 

�����$; however, it also detected a friction fault with 

���
�$. This yields a difference of roughly �$, which 

reduces the amount of confidence in correctly identifying the 

current mode being experienced by the EHA. 

The IMM-SVSF strategy was able to correctly detect and 

diagnosis all three modes with over ��$ probability. The 

IMM-SVSF method outperformed the IMM-KF by ���
�$ 

and 
�� 
$ for the first and second mode, respectively. 

However, it is interesting to note that the IMM-KF yielded a 

slightly higher friction detection probability than the IMM-

SVSF strategy. It is important to remind the reader that the 

aforementioned scenarios were specific to a certain linear 

region in the EHA (at  ��	.), such that the developed 

mathematical models could be implemented. The actual 

experimental setup is nonlinear (unmodeled hydraulic 

dynamics, static friction, and so on) [18]. Developing 

nonlinear models to fit the entire EHA operating range and 

then applying the IMM strategies is beyond the scope of this 

paper. 

VII. CONCLUSION 

This paper studied the fault detection and diagnosis of an 

actual EHA built for experimentation. The fault detection 

case made use of three models: normal system, friction fault, 

and leakage fault. The models were obtained through 

mathematically modeling the system. The IMM-SVSF 

strategy generally outperformed the IMM-KF in terms of 

estimation accuracy and mode probability determination. 

Furthermore, the ‘false detection’ probability was found to 

be lower for the IMM-SVSF strategy. 
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