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ABSTRACT 

This article discusses the application of a novel model-
based fault detection method. The method is based on the 
interacting multiple model (IMM) strategy, which makes use of 
a finite number of known operating modes. A filter is used in 
conjunction with the IMM in order to estimate the states and 
parameters of the system. The smooth variable structure filter 
(SVSF) is a relatively new estimation strategy, and is based on 
sliding mode concepts which introduces an inherent amount of 
robustness and stability. The combined SVSF-IMM strategy is 
applied on an electrohydrostatic actuator (EHA), which is a 
device used in the aerospace industry. Two different operating 
modes were created, based on varying degrees of friction acting 
on the EHA cylinder. The results of the friction fault detection 
were compared with the popular Kalman filter (KF) based IMM 
strategy. 

NOMENCLATURE � Measurement (output) error vector or values � Number of filters (i.e., models used by the IMM) � Mode probability transition matrix � Input to the system � Measurement noise vector � System noise vector � State vector or values � Artificial measurement vector or values 	 Measurement (system output) vector or values 
 Linear system (process) transition matrix � Input gain matrix � Linear measurement (output) matrix 
 Transfer function (i.e., normal or friction)  

� Filter gain matrix (i.e., KF or SVSF) � State error covariance matrix � System noise covariance matrix � Measurement noise covariance matrix � Innovation (measurement error) covariance matrix � Transpose of some vector or matrix � SVSF ‘convergence’ or memory parameter � Likelihood term � Mode probability vector � SVSF smoothing boundary layer width |�| Absolute value of some parameter � 

^ Estimated vector or values 

Note that the subscripts � + 1|� and � + 1|� + 1 refer to a 
priori (i.e., before the fact) and a posteriori (i.e., after the fact) 
values of some parameter. 

INTRODUCTION 
Fault detection and diagnosis methodologies are important 

for the successful control of mechanical and electrical systems. 
In the presence of a fault, the system behaviour may become 
unpredictable, resulting in a loss of control which can cause 
unwanted downtime as well as damage to the system. A variety 
of fault detection strategies have been introduced overtime in 
literature, and are typically considered as signal-based or 
model-based [1]. Signal-based fault detection methods typically 
use thresholds to extract information from available 
measurements [2,3]. This information is then used to determine 
if a fault is present. Model-based methods, as the name 
suggests, utilize faults that can be modeled, typically through 
system identification. This type of fault detection and diagnosis 
is popular when well-defined models can be created and used 
by model-based strategies. 



  

The earliest developments of fault detection methodologies 
began in the 1970s, where observer-based fault detection 
strategies were proposed for linear systems [4,5,6]. In 1978, a 
first book appeared on model-based methods for fault detection 
and diagnosis, with applications on chemical processes [4,7]. A 
summary of early developments in fault-detection methods 
based on modeling and state estimation may be found in [8]. 
Multiple model (MM) approaches were originally presented in 
[9]. These approaches assumed that the system may be modeled 
or behaves according to one of a finite number of modes [10]. 
Static MM estimators were developed, which assumed that the 
system model does not change over time, and no switching 
occurs between models during the estimation process [10]. The 
overall estimator is considered dynamic, even though the 
individual models stay fixed. Dynamic MM estimators undergo 
switching over time. Based on a mode transition probability, it 
is possible that soft switching occurs, such that the mode 
switches (or jumps) to another model or process [10]. The 
actual interacting multiple model (IMM) algorithm was derived 
and presented in the 1980s [11,12]. The use of IMM for failure 
detection was first demonstrated in 1998 [13]. It is well 
established in literature that this strategy is more effective than 
the static MM estimator [10]. 

Essentially, the IMM makes use of a number of models 
(i.e., for each fault condition), and is associated with filters that 
run in parallel. The output from each filter includes the state 
estimate, the covariance, and the likelihood calculation (which 
is a function of the measurement error and innovation 
covariance). The output from the filters is used to calculate 
fault probabilities, which gives an indication of how close the 
filtered model is to the true fault model. The IMM has been 
shown to work significantly better than single model methods, 
since it is able to make use of more information [10]. It also 
works extremely well for standard estimation problems such as 
target tracking, where there are typically two models used (i.e., 
the planes behaves according to uniform motion or coordinated 
turn models) [10]. 

The standard IMM employs the use of the Kalman filter 
(KF), which is a very popular and well-studied estimation 
method. Introduced in the early 1960’s, it yields a statistically 
optimal solution for linear estimation problems in the presence 
of Gaussian noise [14]. In other words, based on the available 
information on the system, it yields the best possible solution in 
terms of estimation error [15]. The KF is formulated in a 
predictor-corrector manner, such that one first predicts the state 
estimates using knowledge of the system model. These 
estimates are termed as a priori, meaning ‘prior to’ knowledge 
of the observations. A correction term is then added based on 
the innovation (also called residuals or measurement errors), 
thus forming the updated or a posteriori (meaning ‘subsequent 
to’ the observations) state estimates [16]. 

The KF assumes that the system model is known and is 
linear, the system and measurement noises are white, and the 
states have initial conditions and are modeled as random 

variables with known means and variances [10,17]. However, 
these assumptions do not always hold in real applications. If 
one of these assumptions is violated, the KF performance 
becomes sub-optimal and could potentially become unstable 
[18]. Moreover, the KF is sensitive to the machines arithmetic 
precision and the complexity of the calculation (in particular, 
the inversion operator). The smooth variable structure filter 
(SVSF) was introduced in an effort to provide a more stable 
filter, while maintaining a relatively good estimate [19,20]. The 
SVSF is a type of sliding mode estimator, where gain switching 
is used to ensure that the estimates converge to within a 
boundary of the true state values (i.e., existence subspace) [21]. 
In its present form, the SVSF is stable and robust to modeling 
uncertainties and noise, given an upper bound on the level of 
un-modeled dynamics or knowledge of the magnitude of noise. 
It has been shown to work very well when the system is not 
well-defined or there are modeling errors. 

In this paper, the SVSF is combined with the IMM strategy 
in an effort to detect friction faults on an experimental 
apparatus. The results of the experiment are compared with the 
popular KF-IMM. The paper is organized as follows. The SVSF 
estimation method is presented next, followed by the SVSF-
IMM strategy. The experimental setup is described, followed by 
the results. The paper concludes with a summary of the main 
findings. 

SMOOTH VARIABLE STRUCTURE FILTER 
A new form of predictor-corrector estimator based on 

sliding mode concepts referred to as the variable structure filter 
(VSF) was introduced in 2003 [19]. Essentially this method 
makes use of the variable structure theory and sliding mode 
concepts. It uses a switching gain to converge the estimates to 
within a boundary of the true state values (i.e., existence 
subspace). In 2007, the smooth variable structure filter (SVSF) 
was derived which makes use of a simpler and less complex 
gain calculation [20]. In its present form, the SVSF has been 
shown to be stable and robust to modeling uncertainties and 
noise, when given an upper bound on the level of un-modeled 
dynamics and noise [19,22]. The basic estimation concept of 
the SVSF is shown in Fig. 1. 

 

FIGURE 1. SVSF ESTIMATION CONCEPT 



  

The SVSF method is model based and may be applied to 
differentiable linear or nonlinear dynamic equations. The 
original form of the SVSF as presented in [20] did not include 
covariance derivations. An augmented form of the SVSF was 
presented in [23], which includes a full derivation for the filter. 
The estimation process is iterative and may be summarized by 
the following set of equations (for linear systems). The 
predicted state estimates �����|�	and state error covariances ����|� 	are first calculated respectively as follows: �����|� � ����|� � �	� (1) ����|� � ���|��� � 
��� (2) 

Utilizing the predicted state estimates �����|�, the 
corresponding predicted measurements �̂���|�	 and 
measurement errors 
�,���|� may be calculated: �̂���|� � ������|� (3) 
�,���|� � ���� � �̂���|� (4) 

The SVSF process differs from the KF in how the gain is 
formulated. The SVSF gain is a function of: the a priori and the 
a posteriori measurement errors 
�,���|� and 
�,�|�; the 
smoothing boundary layer widths �; the ‘SVSF’ memory or 
convergence rate �; as well as the measurement matrix �. For 
the derivation of the gain ����, refer to [20,23]. The SVSF gain 
is defined as a diagonal matrix such that: ���� � ������� ���
����|�� � � �
��|���∘ ��� ����
����|��� ���� �
����|�

��� 
(5) 

Where ∘ signifies Schur (or element-by-element) 
multiplication, and where ��� is a diagonal matrix constructed 
from the constant smoothing boundary layer widths, such that: 

��� �
� 
  
! 1��

0 00 ⋱ 00 0 	 1�	%&
&&
'
 (6) 

Note that ( is the number of measurements, and the 
saturation function of (5) is defined by: ��� ����
����|�

�
� ) 1, 
��,���|�/�
 , 1
��,���|�/�
 , �1 - 
��,���|�/�
 - 1�1, 
��,���|�/�
 . �1  

(7) 

This gain is used to calculate the updated state estimates �����|��� as well as the updated state error covariance matrix ����|���: �����|��� � �����|� � ����
�,���|� (8) ����|��� � /0 � �����1����|�/0 � �����1�� ����2�������
�  

(9) 

Finally, the updated measurement estimate �̂���|��� and 
measurement errors 
�,���|��� are calculated, and are used in 
later iterations: �̂���|��� � ������|��� (10) 
�,���|��� � ���� � �̂���|��� (11) 

The existence subspace shown in Figs. 1 and 2 represents 
the amount of uncertainties present in the estimation process, in 
terms of modeling errors or the presence of noise. The width of 
the existence space 3 is a function of the uncertain dynamics 
associated with the inaccuracy of the internal model of the filter 
as well as the measurement model, and varies with time [20]. 
Typically this value is not exactly known but an upper bound 
may be selected based on a priori knowledge. Once within the 
existence boundary subspace, the estimated states are forced 
(by the SVSF gain) to switch back and forth along the true state 
trajectory. High-frequency switching caused by the SVSF gain 
is referred to as chattering, and in most cases, is undesirable for 
obtaining accurate estimates [20]. However, the effects of 
chattering may be minimized by the introduction of a 
smoothing boundary layer �. The selection of the smoothing 
boundary layer width reflects the level of uncertainties in the 
filter and the disturbances (i.e., system and measurement noise, 
and un-modeled dynamics). 

 

(A) SMOOTHING �� � �� 
 

(B) CHATTERING �� � �� 
FIGURE 2. SMOOTHING BOUNDARY LAYER [20] 

The effect of the smoothing boundary layer is shown in 
Fig. 2. When the smoothing boundary layer is defined larger 
than the existence subspace boundary, the estimated state 
trajectory is smoothed. However, when the smoothing term is 
too small, chattering remains due to the uncertainties being 
underestimated. The SVSF proof of stability is well established 
and is available in [20] and [24]. 

The SVSF provides an estimation process that is sub-
optimal albeit robust and stable. It is hence beneficial to be able 
to combine the accurate performances of the KF with the 
stability of the SVSF. A recent development, as described in 
[25], provides a methodology for calculating a variable 
smoothing boundary layer �. The partial derivative of the a 
posteriori covariance (trace) with respect to the smoothing 
boundary layer term � is the basis for obtaining an optimal, 
time-varying strategy for the specification of �. In linear 
systems, this smoothing boundary layer yields an optimal gain, 
similar to the KF.  



  

Previous forms of the SVSF included a vector form of �, 
which had a single smoothing boundary layer term for each 
corresponding measurement error [20]. Essentially, the 
boundary layer terms were independent of each other such that 
the measurement errors would not mix when calculating the 
corresponding gain, leading to a loss of optimality. A ‘near-
optimal’ formulation of the SVSF could be created using a 
vector form of �, however this would lead to a minimization of 
only the diagonal elements of the state error covariance matrix 
[26]. In an effort to obtain a smoothing boundary layer equation 
that yielded optimal state estimates, a full smoothing boundary 
layer matrix was proposed in [25]. Hence, consider the full 
matrix form of the smoothing boundary layer: 

� � 4��� ��� ⋯ ��	��� ��� ⋯ ��	⋮ ⋮ ⋱ ⋮�	� �	� ⋯ �		

7 (12) 

This definition includes terms that relate one smoothing 
boundary layer to another (i.e., off-diagonal terms). To solve for 
the optimal smoothing boundary layer based on (12), consider: 89�:�;
<����|���=>8� � 0 (13) 

As described in [25], a solution for the smoothing 
boundary layer from (13) is defined as follows: ���� � 9?@�������|���A����� >�� (14) 

Where ? is defined as follows: ? � ��
����|�� � � �
��|��� (15) 

Note that in (14), ?@ refers to forming a diagonal matrix of 
elements consisting of ?. The KF and SVSF strategies may be 
combined using this smoothing boundary layer calculation, 
which leads to an accurate and robust estimation strategy [25]. 
Furthermore, the smoothing boundary layer width (14) also 
provides another indicator for determining the presence of 
faults, as will be demonstrated experimentally later. Consider 
the following sets of figures to help describe the overall 
implementation of the SVSF strategy used in this paper and 
proposed in [25]. 

 

FIGURE 3. BOUNDARY LAYER CONCEPT  
FOR WELL-DEFINED CASE [25] 

Figure 3 illustrates the case when the constant smoothing 
boundary layer width used by the SVSF is defined larger than 
the optimal smoothing boundary layer (i.e., a conservative 
choice) calculated by (14). The difference between the constant 
and upper layers leads to a loss in optimality for the SVSF. 
Essentially, in this case, the KF gain should be used to obtain 
the best result. 

 

FIGURE 4. PRESENCE OF FAULT OR  
POORLY-DEFINED SYSTEM CASE [25] 

Figure 4 illustrates the case when the optimal smoothing 
boundary layer is calculated to exist beyond the constant 
smoothing boundary layer. This typically occurs when there is 
modeling uncertainty (which leads to a loss in optimality) that 
exceed the limits of a constant smoothing boundary layer. The 
limits are set by the width of the existence subspace, which was 
discussed earlier. In a situation defined by Fig. 4 when ��
� , ����, to ensure a stable estimate, the SVSF gain (5) 
should be used to update the state estimates. The smoothing 
boundary layer widths calculated by (14) are saturated at the 
constant values. This ensures a stable estimate, as defined by 
the proof of stability for the SVSF [20,24]. Furthermore, to 
improve the SVSF results (i.e., without the use of (14)), the 
averaged smoothing boundary layers (for the well-defined 
system) can be used to set the constant boundary layer widths. 
Doing so provides a well-tuned existence subspace that yields 
more accurate estimates. 

OVERVIEW OF THE SVSF-IMM STRATEGY 
The standard IMM strategy was implemented as per 

Section 11.6 of [10]. The overall concept is shown in Fig. 5. 
Essentially, any estimation strategy (with a covariance 
derivation) may be applied on the models of interest. In this 
case, there are two models. Prior to feeding the initial estimates 
and covariance’s into the filter models, an interaction (mixing) 
stage takes place, as per the following equations. The predicted 
mode probability μ, as defined by (16), is first calculated based 
on the mode transition matrix C (user defined) and the previous 
(or initial) mode probabilities.  

D
|��|�
� 1;̅� C
�D
�

 (16) 

;�̅ � FC
�D
�

�


��

 (17) 



  

 

FIGURE 5. IMM STRATEGY (ADAPTED FROM [10]) 

The mode probabilities are used like weights to determine 
the corresponding initial estimates (18) and covariance (19). 

���|��� � F ���|�
 D
|��|�

�


��

 (18) 

��|��� � FD
|��|�
G��|�
 � ����|�
 � ���|��� �����|�
 � ���|��� ��H�


��

 (19) 

Using these values and the measurement as inputs, the 
SVSF calculates the corresponding state estimates and 
covariance (for each model), as described by (1) – (15). Based 
on the a priori measurement error (4) and the innovation matrix 
(20), a likelihood function I may be calculated for each model J, as follows: A���|� � �����|��� � 2��� (20) 

I���

� � 1
K�2MA

���|�

� � 
�C N�0.5 �
����|�� �� 
����|�

�

A
���|�

�
Q (21) 

These likelihood functions I are used to determine updates 
to the mode probability (22) and mixing calculations, as 
follows: 

D����
� 1;� I���

� ;�̅ (22) 

;� � FI���

� ;�̅�

���

 (23) 

Furthermore, the two sets of state estimates and 
covariance’s may be combined (for output purposes only) to 
determine the IMM estimate of the respective filter (i.e., KF or 
SVSF), as per (24) and (25) [10]: 

�����|��� � F�����|���� D����

�

���

 (24) 

����|��� � 	
���� �����|���� � 
�����|���� � �����|����
�

���

∙ 

∙ 
�����|���� � �����|����
�� 

(25) 

The main SVSF-IMM process and equations are defined 
by (16) through (25), where there are i, j � 1, … , r  models. 

EXPERIMENTAL SETUP 
The experimental setup used in this paper involved an 

electrohydrostatic actuator (EHA). An EHA is an emerging type 
of actuator typically used in the aerospace industry, and are 
self-contained units comprised of their own pump, hydraulic 
circuit, and actuating cylinder [22]. The main components of an 
EHA include a variable speed motor, an external gear pump, an 
accumulator, inner circuitry check valves, a double-rod double-
acting cylinder, and a bi-directional pressure relief mechanism. 
The experimental setup used in this paper is shown in the 
following figure. 

 

FIGURE 6. EHA EXPERIMENTAL SETUP 

The EHA can be divided into two subsystems. The first is 
the inner circuit that includes the accumulator and its 
surrounding check valves. The second is the high pressure outer 
circuit which performs the actuation. The inner circuit prevents 
cavitation which occurs when the inlet pressure reaches near 
vacuum pressures and provides make-up fluid for any dynamic 
leakage [22]. This section is statically charged to 276	X�� 
(40	C��) which is enough pressure to avoid cavitation but it is 
also low enough to allow flow from the case drain back into the 
circuit. The inner circuit during normal operation is negligible 
in mathematical modeling. Mathematical modeling of the EHA 
has been performed and can be seen in detail in [22]. 

A dual version of the EHA was developed that places two 
systems in series by rigidly attaching the shafts of both 
cylinders to one another [27]. This system also includes two 2-
way, normally closed solenoid valves that act as bypass valves 
in the event of a fault. This allows one pump to drive both 



  

cylinders if needed. There are also valves used to connect the 
inlet and outlet lines of both axes to each other. This provides a 
steady motion if the actuation of both pumps are not equal. The 
inclusion of the throttling valves also allows for fault 
simulations. 

A friction fault is introduced to this system, and is used to 
demonstrate the performance of the SVSF-IMM. To incur this 
fault, one of the axes will be used as the driving mechanism 
while the other will act as a load. A pump is used to drive both 
cylinders, while the second axis blocking valve is in the closed 
position for all of the scenarios. In this case, the valve that 
allows fluid to flow between both chambers of the second 
cylinder is its corresponding throttle valve. This valve, along 
with its counterpart on the first cylinder, is a normally open, 2-
way, bi-directional proportional valve that receives an 0 − 10	� 
input from the controller. The increased throttling of this valve 
while the cylinder is in motion increases the back pressure, 
which simulates increased friction in the system. 

System identification was performed in an effort to extract 
a ‘black box model’ of a dynamic system by fitting a statistical 
model with experimental measurements and designer 
knowledge of the system. The prior knowledge of the system 
includes the frequency range of interest, saturation, and 
knowledge of the piece-wise linear regions. To create an 
accurate model, the frequency of interest should include the 
frequency range up to the break-frequency, after which the 
signal-to-noise ratio drops dramatically and stops offering 
valuable information. However, the friction affects the system 
performance mainly at low frequencies, such that the input 
frequency of the test was limited to 10	�	. The saturation of 
the system was tested with a ramp input by changing the 
throttling level of the second throttle valve. The velocity at 
which the system starts to saturate gradually decreases as the 
throttle valve input is increased. A dead band of the system was 
observed (0.005	�/�), and is hypothesized to be a result of 
static friction present in the system. As a result, the operating 
amplitude was set to 2	�, which drives the system to avoid 
saturation and the dead band. In order to observe the friction 
effect on the system performance, a chirp signal with amplitude 
2	� and maximum frequency 10	�	 was sent as an input. The 
friction effect was observed by looking at the magnitude 
change at low frequencies, and was found to be small compared 
with the magnitude of the measurement noise. Therefore, only 
two friction models were extracted (i.e., normal and high-
friction). Future work will involve the use of an accelerometer 
(as opposed to a potentiometer) to obtain the velocity 
measurement of the axis position, in an effort to minimize the 
effects of noise, such that more distinct friction models may be 
obtained and studied. Measurements were obtained by inputting 
30	�	 pseudo-random binary signals (PRBS) with amplitude 
2	�, filtered with a 10	�	 low-pass filter. The system output 
was filtered with a zero-phase low-pass filter, with a band pass 
of 10	�	. Two system transfer functions were created by fitting 
Box-Jenkins models with experimental data, and are defined (in 
discrete-time, with � = 0.001	�) as follows: 


������ =
5.0 × 10��		 − 9.5 × 10��	 + 4.6 × 10��

	� − 1.952		 + 0.952	  (26) 



���
��� =
4.7 × 10��		 − 9.0 × 10��	 + 4.4 × 10��

	� − 1.963		 + 0.963	  (27) 

Equation (26) describes the normal transfer function 
model, and (27) refers to the model when friction is present in 
the system. These transfer functions were transformed into their 
respective state-space representation (i.e., observable canonical 
form) [28]. For the normal model, the system and gain matrices 
were found respectively as: 


������ =  1.952 1 0

−0.952 0 1

0 0 0

! (28) 

������� = "5.0 × 10�� −9.5 × 10�� 4.6 × 10��#� (29) 

Similarly, the system and gain matrices for the friction 
model were found as follows: 



���
��� =  1.963 1 0

−0.963 0 1

0 0 0

! (30) 

�
���
��� = "4.7 × 10�� −9.0 × 10�� 4.4 × 10��#� (31) 

The measurement matrix is the same for both cases, and is 
defined as: 

� = "1 0 0# (32) 

Note that the states for this system are of kinematic type: 
velocity (m/s), acceleration (m/s	), and jerk (m/s�). It is not 
uncommon to have fewer measurements than states. However, 
the SVSF gain defined by (5) requires a square measurement 
matrix. In this case, different strategies may be used to extract 
the appropriate information and create ‘artificial’ measurements 
y. A number of methods exist, such as the reduced order or 
Luenberger’s approach, which are presented in [20,29,30]. For 
example, in the case of phase variables, it is possible to derive 
acceleration from velocity, such that: 

�	,� =
1� $	�,��� − 	�,�% (33) 

Likewise, the third artificial measurement may be extracted: 

��,� =
1� $		,��� − 		,�% (34) 

The accuracy of (33) and (34) depends on the sampling 
rate T. Applying (34) and (34) allows a measurement matrix 
equivalent to the identity matrix. The estimation process would 
continue as in the previous section, where a full measurement 
matrix was available. Note however that the artificial 
measurements would be delayed a time step. If the system 
models (28) – (31) are known with complete confidence, then it 
is possible to derive an artificial measurement for the 
acceleration from the first measurement based on the models. 
This method has been explored and reported in [25]. 



  

EXPERIMENTAL RESULTS 
To obtain the experimental results, note that the constant 

smoothing boundary layer width was set to �
 � 5 Z 10� for 
each boundary /� � 1,2,31, and the SVSF ‘memory’ was 
defined as � � 0.1. An exact value of the system noise 
covariance matrix 
 was not available from the experimental 
setup. Although some adaptive methods exist for obtaining 
estimates of a noise covariance, the values used in this paper 
were obtained by trial-and-error. It was found that a very small 
value for the system noise covariance yielded good results for 
both filters, such that 
 � 10�� Z ����/<1 1 1=1. To obtain 
an estimate of the measurement noise covariance matrix 2, a 
portion of the measurement signal was extracted and analyzed. 
For this experiment, it was determined that 2 � 6.36 Z 10��. 

The input to the system (through velocity control of the 
motor) consisted of a series of step inputs: �2\ for the first 2.5 
seconds, followed by �2\ for another 2.5 seconds, and �2\ 
for the remainder of time. For the first step, the normal model 
was applied. At the start of the second step, the friction fault 
was present. The last step involved normal operation. The 
measurements obtained from the sensor yielded (after applying 
a zero-phase filter) the following velocity profile. 

 

FIGURE 7. MEASUREMENT PROFILE FROM THE EHA 

Both the popular KF-IMM and new SVSF-IMM strategies 
were applied on the experimental setup in an effort to determine 
the presence of faults. The next two figures illustrate the mode 
probabilities for both the normal and friction models. A value of 1 indicates that the model is currently being used by the 
system, whereas a value of 0 indicates that the model is not 
present in the system dynamics. For example, the true mode 
probability value for the normal model should be 1 for the first 
2.5 seconds, followed by 0 for 2.5 seconds, and then 1 for the 
remainder. As demonstrated by Fig.’s 8 and 9, both strategies 
are able to successfully detect and diagnosis the presence of the 
friction fault when it is implemented in the system at 2.5 
seconds. However, note that the SVSF-IMM strategy is able to 
calculate the correct mode probability by a higher percentage. 
For example, when the system is operating normally, the SVSF-
IMM strategy correctly identifies the normal mode by about 
20% more than the KF-IMM strategy. 

 

FIGURE 8. NORMAL MODE PROBABILITY RESULTS 

 

FIGURE 9. FRICTION MODE PROBABILITY RESULTS 

The results of the estimation process may be summarized 
by the following table. Both strategies were able to provide a 
very good estimate of the three system states. The root mean 
squared error (RMSE) was calculated and is listed in Tab. 1. 
However, note that the true system values were not available 
for the EHA. Therefore, designer knowledge was used to create 
artificial ‘noiseless’ states based on the models (26) and (27), 
and when the friction fault was introduced. These ‘true’ state 
values were used to calculate the RMSE of the estimates. For 
this case, it was found that the SVSF-IMM provided roughly 
twice as accurate results when compared with the KF-IMM 
strategy, in terms of estimation error. 

TABLE 1. ESTIMATED RMSE RESULTS 

Strategy 
Velocity /(/�1 Acceleration /(/��1 Jerk /(/��1 

KF-IMM 7.53 Z 10�� 7.71 Z 10�� 1.12 Z 10�� 

SVSF-IMM 3.38 Z 10�� 3.67 Z 10�� 5.91 Z 10�� 

 



  

As previously mentioned, the time-varying (or optimal 
solution to the) smoothing boundary layer defined by (14) also 
yields another indicator of when a fault (or system change) 
occurs. Consider the following figure which illustrates the 
smoothing boundary layer for the velocity state, over time. The 
spikes present at 2.5 and 5 seconds indicate that the system 
experienced a change in its dynamics. This can be confirmed by 
the mode probability calculations (Fig.’s 8 and 9). 

 

FIGURE 10. INDICATION OF A SYSTEM CHANGE 

CONCLUSIONS 
This article discussed the application of a novel model-

based fault detection method. The relatively new SVSF 
estimation strategy was combined with the IMM method. The 
fault detection strategy was applied on an experimental setup, 
and the results were compared with the popular KF-IMM. It 
was determined that the SVSF-IMM method yielded a higher 
fault detection probability, and more accurate estimates. Future 
work will study the sensitivity of the strategy to minor faults. 
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