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ABSTRACT

This article discusses the application of a novel model-
based fault detection method. The method is based on the
interacting multiple model (IMM) strategy, which makes use of
a finite number of known operating modes. A filter is used in
conjunction with the IMM in order to estimate the states and
parameters of the system. The smooth variable structure filter
(SVSF) is a relatively new estimation strategy, and is based on
dliding mode concepts which introduces an inherent amount of
robustness and stability. The combined SVSF-IMM strategy is
applied on an electrohydrostatic actuator (EHA), which is a
device used in the aerospace industry. Two different operating
modes were created, based on varying degrees of friction acting
on the EHA cylinder. The results of the friction fault detection
were compared with the popular Kalman filter (KF) based IMM
strategy.

NOMENCLATURE
Measurement (output) error vector or values

Number of filters (i.e., models used by the IMM)
Mode probability transition matrix

Input to the system

Measurement noise vector

System noise vector

State vector or values

Artificial measurement vector or values
Measurement (system output) vector or values
Linear system (process) transition matrix

Input gain matrix

Linear measurement (output) matrix

Transfer function (i.e., normal or friction)
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Filter gain matrix (i.e., KF or SVSF)

State error covariance matrix

System noise covariance matrix
Measurement noise covariance matrix
Innovation (measurement error) covariance matrix
Transpose of some vector or matrix

SVSF ‘convergence’ or memory parameter
Likelihood term

Mode probability vector

SVSF smoothing boundary layer width
Absolute value of some parameter
Estimated vector or values

Note that the subscripts+ 1|k andk + 1|k + 1 refer to a
priori (i.e., before the fact) and a posteriore (j.after the fact)
values of some parameter.
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INTRODUCTION

Fault detection and diagnosis methodologies areitapt
for the successful control of mechanical and eleaitisystems.
In the presence of a fault, the system behaviowy become
unpredictable, resulting in a loss of control whicéin cause
unwanted downtime as well as damage to the sy#terariety
of fault detection strategies have been introdumeettime in
literature, and are typically considered as sidized or
model-based [1]. Signal-based fault detection nashgpically
use thresholds to extract information from avagabl
measurements [2,3]. This information is then ugededtermine
if a fault is present. Model-based methods, as nlee
suggests, utilize faults that can be modeled, affyichrough
system identification. This type of fault detectiand diagnosis
is popular when well-defined models can be created used
by model-based strategies.



The earliest developments of fault detection methtagles
began in the 1970s, where observer-based faultctitmte
strategies were proposed for linear systems [4,56]1978, a
first book appeared on model-based methods fot émikction
and diagnosis, with applications on chemical preesg4,7]. A
summary of early developments in fault-detectionthods
based on modeling and state estimation may be fauré].
Multiple model (MM) approaches were originally peesed in
[9]. These approaches assumed that the system enanpbeled
or behaves according to one of a finite number ofl@s [10].
Static MM estimators were developed, which assuthatithe
system model does not change over time, and nacluvwg
occurs between models during the estimation prod€§sThe
overall estimator is considered dynamic, even thoulge
individual models stay fixed. Dynamic MM estimatansdergo
switching over time. Based on a mode transitiorbphility, it
is possible that soft switching occurs, such tHa tode
switches (or jumps) to another model or procesq. [Ibe
actual interacting multiple model (IMM) algorithma derived
and presented in the 1980s [11,12]. The use of HdiMailure
detection was first demonstrated in 1998 [13]. dt well
established in literature that this strategy is eneffective than
the static MM estimator [10].

Essentially, the IMM makes use of a number of medel
(i.e., for each fault condition), and is associateth filters that
run in parallel. The output from each filter inchgdthe state
estimate, the covariance, and the likelihood catéah (which
is a function of the measurement error and innowati
covariance). The output from the filters is usedcticulate
fault probabilities, which gives an indication odva close the
filtered model is to the true fault model. The IMMs been
shown to work significantly better than single mdethods,
since it is able to make use of more informatiof][1t also
works extremely well for standard estimation profidesuch as
target tracking, where there are typically two nedesed (i.e.,
the planes behaves according to uniform motionoordinated
turn models) [10].

The standard IMM employs the use of the Kalmarerfilt
(KF), which is a very popular and well-studied ewttion
method. Introduced in the early 1960’s, it yieldstatistically
optimal solution for linear estimation problemstie presence
of Gaussian noise [14]. In other words, based enatiailable
information on the system, it yields the best gasssolution in
terms of estimation error [15]. The KF is formuthtén a
predictor-corrector manner, such that one firstjats the state
estimates using knowledge of the system model. &hes
estimates are termed as a priori, meaning ‘pribkriowledge
of the observations. A correction term is then adbased on
the innovation (also called residuals or measur¢neerors),
thus forming the updated or a posteriori (meansupsequent
to’ the observations) state estimates [16].

The KF assumes that the system model is known and i
linear, the system and measurement noises are,vemite the
states have initial conditions and are modeled asdam

variables with known means and variances [10,1 0wéVer,

these assumptions do not always hold in real agiics. If

one of these assumptions is violated, the KF perémce
becomes sub-optimal and could potentially becomstalrhe
[18]. Moreover, the KF is sensitive to the machiaeishmetic
precision and the complexity of the calculation garticular,

the inversion operator). The smooth variable stmectfilter

(SVSF) was introduced in an effort to provide a enstable
filter, while maintaining a relatively good estiradtl9,20]. The
SVSF is a type of sliding mode estimator, where gavitching

is used to ensure that the estimates converge tbinwa

boundary of the true state values (i.e., existeutrspace) [21].
In its present form, the SVSF is stable and robushodeling
uncertainties and noise, given an upper bound enebel of
un-modeled dynamics or knowledge of the magnitudeodcse.

It has been shown to work very well when the sysiemot

well-defined or there are modeling errors.

In this paper, the SVSF is combined with the IMVastgy
in an effort to detect friction faults on an expeental
apparatus. The results of the experiment are caadpaith the
popular KF-IMM. The paper is organized as followhe SVSF
estimation method is presented next, followed by 8VSF-
IMM strategy. The experimental setup is descrilfeltlhwed by
the results. The paper concludes with a summarhefmain
findings.

SMOOTH VARIABLE STRUCTURE FILTER
A new form of predictor-corrector estimator based o

sliding mode concepts referred to as the varialewire filter
(VSF) was introduced in 2003 [19]. Essentially thiethod
makes use of the variable structure theory andnglignode
concepts. It uses a switching gain to convergeetiignates to
within a boundary of the true state values (i.istence
subspace). In 2007, the smooth variable struciliez {SVSF)
was derived which makes use of a simpler and lesspkex
gain calculation [20]. In its present form, the $VBas been
shown to be stable and robust to modeling uncdigsirand
noise, when given an upper bound on the level efmodeled
dynamics and noise [19,22]. The basic estimationcept of
the SVSF is shown in Fig. 1.
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FIGURE 1. SVSF ESTIMATION CONCEPT



The SVSF method is model based and may be apmied t
differentiable linear or nonlinear dynamic equasionThe
original form of the SVSF as presented in [20] dat include
covariance derivations. An augmented form of theSBMWvas
presented in [23], which includes a full derivatimn the filter.
The estimation process is iterative and may be sanaed by
the following set of equations (for linear system3he
predicted state estimate,., and state error covariances

P41 are first calculated respectively as follows:

Rk = Ay + By 1)
Pesie = AP AT + Qieiq (2
Utilizing the predicted state estimates,. ., the
corresponding  predicted = measurements;, and
measurement erroes , .1, May be calculated:
ZAk+1|k = ka+1|k (3)
€rk+1lk = Zk+1 — Zk+1lk (4)

The SVSF process differs from the KF in how thengai
formulated. The SVSF gain is a function of: theriag and the
a posteriori measurement erroes . and e,;;; the
smoothing boundary layer widthg; the ‘SVSF’ memory or
convergence ratg; as well as the measurement matfixFor
the derivation of the gaiKy, , refer to [20,23]. The SVSF gain
is defined as a diagonal matrix such that:

K41 = C'diag [( ezk|k|)
-1
o sat (¢_162k+1|k)] diag (ezk+1|k)

Where o signifies Schur (or element-by-element)
multiplication, and wherey~! is a diagonal matrix constructed
from the constant smoothing boundary layer widslish that:

ezk+1|k + 14

(%)
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Note thatm is the number of measurements, and the
saturation function of (5) is defined by:

sat (lp—lezk+1|k)
1, e k+1k/Wi = 1
=€ prk/Vio Ll <egprp/Pi <1
-1, eypnp/Yi <1
This gain is used to calculate the updated stdimates
Zk+1k+1 as well as the updated state error covarianceixmatr

(7)

Prijrst:
(8)
9)

Rir1jk+1 = Xra1pe + Kiv1€zk411k
Pesijesr = (= K1 O Py e (I = Ky O)F
+ Ky 1Ries1Ki 1

Finally, the updated measurement estimate; ., and
measurement errors, .41 are calculated, and are used in
later iterations:

(10)
(11)

Zis1kr1 = CXpqq)st
€zk+1lk+1 = Zk+1 ~ Zk+1]k+1

The existence subspace shown in Figs. 1 and 2semtse
the amount of uncertainties present in the estongtrocess, in
terms of modeling errors or the presence of ndike. width of
the existence spage is a function of the uncertain dynamics
associated with the inaccuracy of the internal rhoéléne filter
as well as the measurement model, and varies with [20].
Typically this value is not exactly known but anpep bound
may be selected based on a priori knowledge. Orittenvithe
existence boundary subspace, the estimated steteforaed
(by the SVSF gain) to switch back and forth alomg true state
trajectory. High-frequency switching caused by 8\SF gain
is referred to as chattering, and in most casamdegsirable for
obtaining accurate estimates [20]. However, thesot$f of
chattering may be minimized by the introduction af
smoothing boundary layap. The selection of the smoothing
boundary layer width reflects the level of uncetti@is in the
filter and the disturbances (i.e., system and nreasent noise,
and un-modeled dynamics).
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FIGURE 2. SMOOTHING BOUNDARY LAYER [20]

The effect of the smoothing boundary layer is shdwn
Fig. 2. When the smoothing boundary layer is defiferger
than the existence subspace boundary, the estimsttad
trajectory is smoothed. However, when the smoothérg is
too small, chattering remains due to the unceitmnbeing
underestimated. The SVSF proof of stability is vedtablished
and is available in [20] and [24].

The SVSF provides an estimation process that is sub
optimal albeit robust and stable. It is hence biei@fto be able
to combine the accurate performances of the KF \lih
stability of the SVSF. A recent development, ascdbed in
[25], provides a methodology for calculating a wahte
smoothing boundary layap. The partial derivative of the a
posteriori covariance (trace) with respect to tmeoathing
boundary layer termp is the basis for obtaining an optimal,
time-varying strategy for the specification gf. In linear
systems, this smoothing boundary layer yields amab gain,
similar to the KF.



Previous forms of the SVSF included a vector forfmpo
which had a single smoothing boundary layer termefach
corresponding measurement error [20]. Essentialiye
boundary layer terms were independent of each athehn that
the measurement errors would not mix when calagathe
corresponding gain, leading to a loss of optimally'near-
optimal’ formulation of the SVSF could be createsing a
vector form ofy, however this would lead to a minimization of
only the diagonal elements of the state error damae matrix
[26]. In an effort to obtain a smoothing boundaaydr equation
that yielded optimal state estimates, a full smmgttbboundary
layer matrix was proposed in [25]. Hence, consither full
matrix form of the smoothing boundary layer:

lpll l/J12 lplm
l/) — 1!’12 1/’22 lpZm (12)
lpml l/JmZ l/)mm

This definition includes terms that relate one sthing
boundary layer to another (i.e., off-diagonal texms solve for
the optimal smoothing boundary layer based on [@@)sider:

d(trace[Pepijes])
E, B

As described in [25], a solution for the smoothing
boundary layer from (13) is defined as follows:

0 (13)

=_ _ -1
Yrq1 = (E 1CPk+1|kCT5kJ31) (14)
WhereE is defined as follows:
E = ( sy TY ezklkD (15)

Note that in (14)F refers to forming a diagonal matrix of
elements consisting df. The KF and SVSF strategies may be
combined using this smoothing boundary layer calooh,
which leads to an accurate and robust estimati@tesfy [25].
Furthermore, the smoothing boundary layer width) (&0
provides another indicator for determining the pree of
faults, as will be demonstrated experimentally rla€onsider
the following sets of figures to help describe toeerall
implementation of the SVSF strategy used in thipepaand
proposed in [25].
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FIGURE 3. BOUNDARY LAYER CONCEPT
FOR WELL-DEFINED CASE [25]

Figure 3 illustrates the case when the constani#ng
boundary layer width used by the SVSF is defineddathan
the optimal smoothing boundary layer (i.e., a coratéve
choice) calculated by (14). The difference betwgmnconstant
and upper layers leads to a loss in optimality tfer SVSF.
Essentially, in this case, the KF gain should bedu® obtain
the best result.
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FIGURE 4. PRESENCE OF FAULT OR
POORLY-DEFINED SYSTEM CASE [25]

Figure 4 illustrates the case when the optimal ghing
boundary layer is calculated to exist beyond thestant
smoothing boundary layer. This typically occurs whikere is
modeling uncertainty (which leads to a loss in mglity) that
exceed the limits of a constant smoothing boundtaygr. The
limits are set by the width of the existence subspwhich was
discussed earlier. In a situation defined by Fig.when
Yopt = Yeon, 10 €nsure a stable estimate, the SVSF gain (5)
should be used to update the state estimates. mbetlsing
boundary layer widths calculated by (14) are satdrat the
constant values. This ensures a stable estimatdefased by
the proof of stability for the SVSF [20,24]. Furthere, to
improve the SVSF results (i.e., without the use(Dbf)), the
averaged smoothing boundary layers (for the wdikhdd
system) can be used to set the constant boundgey Wadths.
Doing so provides a well-tuned existence subsphatields
more accurate estimates.

OVERVIEW OF THE SVSF-IMM STRATEGY
The standard IMM strategy was implemented as per
Section 11.6 of [10]. The overall concept is shawrFig. 5.
Essentially, any estimation strategy (with a cowace
derivation) may be applied on the models of interbs this
case, there are two models. Prior to feeding thliestimates
and covariance’s into the filter models, an intéoac (mixing)
stage takes place, as per the following equatibhe.predicted
mode probability, as defined by (16), is first calculated based
on the mode transition matrix (user defined) and the previous
(or initial) mode probabilities.
1
Hiljge = Epij#ik
T
Cj = ) Dijhi
i=1

(16)

(17)
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FIGURE 5. IMM STRATEGY (ADAPTED FROM [10])

The mode probabilities are used like weights teeine
the corresponding initial estimates (18) and carare (19).

r

20]' — 5(\': .
klk — k|kMiljik
i=1

.
0j i ol ~0j ol ~0j T
Pk = Z Hiljiyie {Plélk + [xllclk - xk(k][xllqk - xkljk] } (19)
i=1

(18)

Using these values and the measurement as infds, t

SVSF calculates the corresponding state estimated a
covariance (for each model), as described by ()5} Based
on the a priori measurement error (4) and the iatiom matrix
(20), a likelihood functiom may be calculated for each model
Jj, as follows:

Ska1jk = CPry1CT + Ryyq (20)
. T .
j j
j 1 =05 (ezk+1|k) ksl
Agy1 = : exp ] (21)
|27TSI£+1|k| k+1|k

These likelihood functiond are used to determine updates
to the mode probability (22) and mixing calculaspnas
follows:

(22)

C: k+1%J

gl
.
_ j o
G = Z A i1G
=1

Hjjerq
(23)

Furthermore,
covariance’s may be combined (for output purposey)ao
determine the IMM estimate of the respective filtiez., KF or
SVSF), as per (24) and (25) [10]:

the two sets of state estimates and

r

o _ o
Xk+1lk+1 = Z Xk+1k+1H k41 (24)
j=1
r
_ i (p o _ e .
Pisijier = Z“kﬂ {Pk+1|k+1 + [xk+1|k+1 xk+1|k+1]
=1 (25)

) T
e s
[xk+1|k+1 xk+1Ik+1] }

The main SVSF-IMM process and equations are defined
by (16) through (25), where there &e= 1, ...,r models.

EXPERIMENTAL SETUP

The experimental setup used in this paper involaed
electrohydrostatic actuator (EHA). An EHA is an egieg type
of actuator typically used in the aerospace ingustnd are
self-contained units comprised of their own pumpdraulic
circuit, and actuating cylinder [22]. The main campnts of an
EHA include a variable speed motor, an externaf geap, an
accumulator, inner circuitry check valves, a dotriol@ double-
acting cylinder, and a bi-directional pressureefethechanism.
The experimental setup used in this paper is showthe
following figure.

FIGURE 6. EHA EXPERIMENTAL SETUP

The EHA can be divided into two subsystems. Th&t f
the inner circuit that includes the accumulator aitsl
surrounding check valves. The second is the highsure outer
circuit which performs the actuation. The innecuit prevents
cavitation which occurs when the inlet pressurechiea near
vacuum pressures and provides make-up fluid fordymamic
leakage [22]. This section is statically charged2@®6 kPa
(40 psi) which is enough pressure to avoid cavitation ibig
also low enough to allow flow from the case draatlbinto the
circuit. The inner circuit during normal operatiegnnegligible
in mathematical modeling. Mathematical modelinghef EHA
has been performed and can be seen in detail Jn [22

A dual version of the EHA was developed that plases
systems in series by rigidly attaching the shaftsboth
cylinders to one another [27]. This system alsduithes two 2-
way, normally closed solenoid valves that act gsalg valves
in the event of a fault. This allows one pump tivelrboth



cylinders if needed. There are also valves usecbtmect the
inlet and outlet lines of both axes to each othhis provides a
steady motion if the actuation of both pumps areegal. The
inclusion of the throttling valves also allows fdault
simulations.

A friction fault is introduced to this system, aisdused to
demonstrate the performance of the SVSF-IMM. Tauiintis
fault, one of the axes will be used as the drivingchanism
while the other will act as a load. A pump is usedirive both
cylinders, while the second axis blocking valvénishe closed
position for all of the scenarios. In this cases tralve that
allows fluid to flow between both chambers of thecand
cylinder is its corresponding throttle valve. Thiglve, along
with its counterpart on the first cylinder, is armally open, 2-
way, bi-directional proportional valve that receivan0 — 10 V
input from the controller. The increased throttliofgthis valve
while the cylinder is in motion increases the bawkssure,
which simulates increased friction in the system.

System identification was performed in an efforetdract
a ‘black box model’ of a dynamic system by fittiagstatistical
model with experimental measurements
knowledge of the system. The prior knowledge of shistem
includes the frequency range of interest, satumatiand
knowledge of the piece-wise linear regions. To t&ean
accurate model, the frequency of interest shoutdude the
frequency range up to the break-frequency, afteichvithe
signal-to-noise ratio drops dramatically and stayffering
valuable information. However, the friction affedtee system
performance mainly at low frequencies, such that itput
frequency of the test was limited 1@ Hz. The saturation of
the system was tested with a ramp input by changdieg
throttling level of the second throttle valve. Thelocity at
which the system starts to saturate gradually dse® as the
throttle valve input is increased. A dead banchefsystem was

observed {.005 m/s), and is hypothesized to be a result of

static friction present in the system. As a reshié operating

amplitude was set t@ V, which drives the system to avoid

saturation and the dead band. In order to obséwdriction
effect on the system performance, a chirp signti ainplitude

2V and maximum frequency0 Hz was sent as an input. The

friction effect was observed by looking at the magte
change at low frequencies, and was found to bel smalpared
with the magnitude of the measurement noise. Thezebnly
two friction models were extracted (i.e., normaldahigh-
friction). Future work will involve the use of ac@elerometer

(as opposed to a potentiometer) to obtain the itgloc

measurement of the axis position, in an effort ioimize the
effects of noise, such that more distinct frictimondels may be
obtained and studied. Measurements were obtainéuplting

30 Hz pseudo-random binary signals (PRBS) with amplitude
2V, filtered with a10 Hz low-pass filter. The system output

was filtered with a zero-phase low-pass filter,hnat band pass
of 10 Hz. Two system transfer functions were created bingt
Box-Jenkins models with experimental data, anddafmed (in
discrete-time, witlT = 0.001 s) as follows:

and designer

50x 107322 —9.5%x 10732+ 4.6 x 1073
z3 —1.952z% + 0.952z
47%x107322-9.0%x 1073z +4.4x 1073
z3 —1.963z2% 4+ 0.963z

Equation (26) describes the normal transfer functio
model, and (27) refers to the model when frictisrpiesent in
the system. These transfer functions were trangfdrimto their
respective state-space representation (i.e., odiskercanonical

form) [28]. For the normal model, the system anth gaatrices
were found respectively as:

(26)

GNormal =

(27)

Friction

1952 1 0
Anormat =|—0952 0 1 (28)
0 0 0
Byormar = [5.0x 1073 —95x 103 4.6 x1073]"  (29)

Similarly, the system and gain matrices for thestifoin
model were found as follows:

1963 1 0
Afriction = [—0.963 0 1] (30)
0 0 0
Brriction = [4.7 x 1073 —9.0x 1073 4.4 x1073]" (31)

The measurement matrix is the same for both casebkis
defined as:

C=[1 0 0] (32)

Note that the states for this system are of kinantgpe:
velocity (m/s), acceleratior{m/s?), and jerk(m/s3). It is not
uncommon to have fewer measurements than statege\éo,
the SVSF gain defined by (5) requires a square uneaent
matrix. In this case, different strategies may beduto extract
the appropriate information and create ‘artificiakasurements
y. A number of methods exist, such as the reduceeroor
Luenberger’s approach, which are presented in f28(8. For
example, in the case of phase variables, it isiplest derive
acceleration from velocity, such that:

1
Yok = T (Zl,k+1 - Zl,k) (33)
Likewise, the third artificial measurement may b&acted:
1
Y3k = 7 (Zz,k+1 - Z2,k) (34)

The accuracy of (33) and (34) depends on the sampli
rate T. Applying (34) and (34) allows a measurement rratri
equivalent to the identity matrix. The estimaticogess would
continue as in the previous section, where a fdhsurement
matrix was available. Note however that the aitific
measurements would be delayed a time step. If yistem
models (28) — (31) are known with complete confaerthen it
is possible to derive an artificial measurement fine
acceleration from the first measurement based emntbdels.
This method has been explored and reported in [25].



EXPERIMENTAL RESULTS

To obtain the experimental results, note that thestant
smoothing boundary layer width was setytp= 5 x 103 for
each boundary(i = 1,2,3), and the SVSF ‘memory’ was
defined asy = 0.1. An exact value of the system noise
covariance matrix) was not available from the experimental
setup. Although some adaptive methods exist fominlstg
estimates of a noise covariance, the values uselisnpaper
were obtained by trial-and-error. It was found thatery small
value for the system noise covariance yielded gesdlts for
both filters, such tha® = 107° x diag([1 1 1]). To obtain
an estimate of the measurement noise covariancexniata
portion of the measurement signal was extractedaaadyzed.
For this experiment, it was determined tRat 6.36 x 1077,

The input to the system (through velocity contrbltioe
motor) consisted of a series of step inp#t3V for the first 2.5
seconds, followed by-2V for another 2.5 seconds, ar@V
for the remainder of time. For the first step, ttemal model
was applied. At the start of the second step, tiotidn fault
was present. The last step involved normal opearatithe
measurements obtained from the sensor yielded @figlying
a zero-phase filter) the following velocity profile

Measurement Profile from the EHA
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FIGURE 7. MEASUREMENT PROFILE FROM THE EHA

Both the popular KF-IMM and new SVSF-IMM strategies
were applied on the experimental setup in an eftodetermine
the presence of faults. The next two figures itatst the mode
probabilities for both the normal and friction mtxdé\ value of
1 indicates that the model is currently being used the
system, whereas a value @findicates that the model is not
present in the system dynamics. For example, e tnode
probability value for the normal model should béor the first
2.5 seconds, followed b§ for 2.5 seconds, and thdnfor the
remainder. As demonstrated by Fig.’s 8 and 9, lsttategies
are able to successfully detect and diagnosis tbeepce of the
friction fault when it is implemented in the systeat 2.5
seconds. However, note that the SVSF-IMM strategghile to
calculate the correct mode probability by a higpercentage.
For example, when the system is operating normidlé/SVSF-
IMM strategy correctly identifies the normal modg about
20% more than the KF-IMM strategy.
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FIGURE 9. FRICTION MODE PROBABILITY RESULTS

The results of the estimation process may be suimatar
by the following table. Both strategies were aldeptovide a
very good estimate of the three system states.rdbemean
squared error (RMSE) was calculated and is listedab. 1.
However, note that the true system values wereamailable
for the EHA. Therefore, designer knowledge was usetteate
artificial ‘noiseless’ states based on the mod2aB) @nd (27),
and when the friction fault was introduced. Thesae’ state
values were used to calculate the RMSE of the estisn For
this case, it was found that the SVSF-IMM providedighly
twice as accurate results when compared with thelNK#
strategy, in terms of estimation error.

TABLE 1. ESTIMATED RMSE RESULTS

Strategy Velocity Acceleration Jerk
(m/s) (m/s*) (m/s®)
KF-IMM 7.53 x 107* 7.71 x 107* 1.12 x 10™*
SVSF-IMM 3.38x 1074 3.67 x 1074 5.91 x 1075




As previously mentioned, the time-varying (or omlm
solution to the) smoothing boundary layer defingdb4) also
yields another indicator of when a fault (or systehange)
occurs. Consider the following figure which illustes the
smoothing boundary layer for the velocity stategratvme. The
spikes present at 2.5 and 5 seconds indicate tieasystem
experienced a change in its dynamics. This carohérmed by
the mode probability calculations (Fig.’s 8 and 9).
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FIGURE 10. INDICATION OF A SYSTEM CHANGE

CONCLUSIONS

This article discussed the application of a noveldel-
based fault detection method. The relatively newSBV
estimation strategy was combined with the IMM methdhe
fault detection strategy was applied on an expertaiesetup,
and the results were compared with the popular MKH It
was determined that the SVSF-IMM method yieldedighér
fault detection probability, and more accuraterestes. Future
work will study the sensitivity of the strategyranor faults.
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