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Abstract–Recently, a new type of interacting multiple model 
(IMM) method was introduced based on the relatively new 
smooth variable structure filter (SVSF), and is referred to as the 
IMM-SVSF. The SVSF is a type of sliding mode estimator that is 
formulated in a predictor-corrector fashion. This strategy keeps 
the estimated state bounded within a region of the true state 
trajectory, thus creating a stable and robust estimation process. 
The IMM method may be utilized for fault detection and 
diagnosis, and is classified as a model-based method. In this 
paper, for the purposes of fault detection, the IMM-SVSF is 
applied through simulation on a simple battery system which is 
modeled from a hybrid electric vehicle. 

 

I. INTRODUCTION 

Modern control theory relies on reliable state estimates in 
order to provide accurate and safe control of mechanical and 
electrical systems. Estimation theory is therefore an important 
tool for providing accurate state and parameter estimates. The 
most popular estimation method to date remains the Kalman 
filter (KF) which was introduced and applied on a number of 
systems in the 1960s [1,2]. It yields a statistically optimal 
solution for linear estimation problems in the presence of 
Gaussian noise [1]. In other words, based on the available 
information on the system, it yields the best possible solution 
in terms of estimation error [3]. The KF assumes that the 
system model is known and is linear, the system and 
measurement noises are white, and the states have initial 
conditions and are modeled as random variables with known 
means and variances [4,5]. However, these assumptions do 
not always hold in real applications. If one of these 
assumptions is violated, the KF performance becomes sub-
optimal and could potentially become unstable [6]. 

As presented in [7], the ability to detect and diagnose faults 
is essential for the safe and reliable control of mechanical and 
electrical systems. In the presence of a fault, the system 
behaviour may become unpredictable, resulting in a loss of 
control which can cause unwanted downtime as well as 
damage to the system. There are two main types of methods 
to detect and diagnose faults: signal-based and model-based 
[8]. Signal-based fault detection methods typically use 
thresholds to extract information from available 
measurements [9,10]. This information is then used to 
determine if a fault is present. Model-based methods, as the 
name suggests, makes use of faults which can be modeled, 
typically through system identification. This type of fault 
detection and diagnosis is popular when well-defined models 
can be created and utilized. 

The interacting multiple model (IMM) strategy makes use 
of a finite number of models, and is associated with filters 
that run in parallel. The output from each filter includes the 
state estimate, the covariance, and the likelihood calculation 
(which is a function of the measurement error and innovation 
covariance). The output from the filters is used to calculate 
mode probabilities, which gives an indication of how close 
the filter model is to the true model. The IMM method has 
been successfully applied on mechanical and electrical 
systems for fault detection and diagnosis [4,11]. Typically, 
the IMM implements the KF strategy for determining the 
state estimates. However, this paper studies the results of 
using the smooth variable structure filter (SVSF) instead of 
the KF, as applied on a hybrid electric vehicle (HEV) battery 
system. 
 

II. FILTERING STRATEGIES 

A. Kalman Filter 
In 1960, Rudolph Kalman presented a new approach to 

linear filtering and prediction problems, which would later 
become known as the Kalman filter (KF) [1]. This method 
was successfully applied by NASA for their lunar and Apollo 
missions, and quickly became the ‘workhorse’ of estimation 
[5,12]. The KF yields a statistically optimal solution for linear 
estimation problems in the presence of Gaussian noise. The 
KF is a model based method, derived in the time domain and 
a discrete-time setting. A continuous-time version was 
developed by Kalman and Bucy, and is consequently referred 
to as the Kalman-Bucy filter [2].  

Like many other filters, the KF is formulated in a predictor-
corrector manner. The states are first estimated using the 
system model and input, termed as a priori estimates, 
meaning ‘prior to’ knowledge of the observations. A 
correction term is then added based on the innovation (also 
called residuals or measurement errors), thus forming the 
updated or a posteriori (meaning ‘subsequent to’ the 
observations) state estimates. 

The KF has been broadly applied to problems covering 
state and parameter estimation, signal processing, target 
tracking, fault detection and diagnosis, and even financial 
analysis [13,14]. The success of the KF comes from the 
optimality of the Kalman gain in minimizing the trace of the a 
posteriori state error covariance matrix [1]. The trace is taken 
because it represents the state error vector in the estimation 
process [6]. 
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The SVSF was adapted to include a covariance function, 
and is presented in [21]. The modified SVSF prediction stage 
(for linear systems) is as follows. The state estimates ����,�|� 
(17) and corresponding covariance ���,�|� (18) for each 
model � are used to predict the state estimate ���,���|� (19) and 
calculate the a priori state error covariance matrix ��,���|� 
(20). 

 
���,���|� = ������,�|� + ���� (19) 

��,���|� = ����|��� ��� + �� (20) 

 
From (19) and (20), the mode-matched innovation 

covariance 	�,���|� (21) and mode-matched a priori 
measurement error 
�,�,���|� (22) are calculated. 

 
	�,���|� = ����,���|���� + ���� (21) 

�,�,���|� = 
��� − �����,���|� (22) 

 
The update stage is defined by the following four 

equations. The mode-matched SVSF gain ��,��� is calculated 
(23) and used to update the state estimates ���,���|��� (24). 
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�,�,���|��������
�,�,���|���� (23) 

���,���|��� = ���,���|� + ��,���
�,�,���|� (24) 
 
The corresponding state error covariance matrix ��,���|��� 

is then calculated (25) and the a posteriori measurement error 

�,�,���|��� may be found (26). 
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(25) 


�,�,���|��� = 
��� − �����,���|��� (26) 
 
Based on the mode-matched innovation matrix 	�,���|� (21) 

and the mode-matched a priori measurement error 
�,�,���|� 
(22), a corresponding mode-matched likelihood function 
��,��� based on the SVSF estimation method may be 
calculated, as follows [4]: 

 
��,��� = ��
���; 
̂�,���|� , 	�,���� (27) 

 
Equation (27) may be solved as follows [4]: 
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Utilizing the mode-matched likelihood functions ��,���, the 

mode probability ��,� may be updated by [4]: 
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1

� ��,�������
	

�
�

��,� (29) 

 

Where the normalizing constant is defined as [4]: 
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 (30) 

 
Finally, the overall IMM-SVSF state estimates �����|��� 

(31) and corresponding covariance ����|��� (32) are 
calculated. 

 

�����|��� = ���,������,���|���
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 (31) 

����|��� = ���,��� ���,���|����

�	�

+ ����,���|���
− �����|��������,���|��� − �����|������ 

(32) 

 
The formulation of the IMM-SVSF may be summarized by 

(15) through (32), where there are �, � = 1,… , � models. Note 
that (31) and (32) are used for output purposes only, and are 
not part of the algorithm recursions [4]. Furthermore, note 
that the IMM-KF strategy is the same process as above but 
(19) through (26) are replaced with the KF prediction and 
update equations. 

 

IV. HEV BATTERY MODEL 

A variety of batteries have been studied in literature, most 
notably lead-acid and lithium-ion batteries [22,23,24,25,26]. 
Lead-acid batteries are the oldest type of rechargeable 
batteries, and are most commonly found in motor vehicles. 
Lithium-ion batteries are also a form of rechargeable battery, 
which contain lithium in its positive electrode (cathode). 
These batteries are usually found in portable consumer 
electronics (i.e., laptops or notebooks) due to particularly 
high energy-to-weight ratios, slow self-discharge, and a lack 
of memory effect (i.e., where  a battery loses its maximum 
energy capacity over time) [23]. In recent years, lithium-ion 
batteries have slowly entered the hybrid electric vehicle 
market, due to the fact that they offer better energy density 
compared to standard batteries [27]. 

The operation of batteries may be studied by using the 
Advanced Vehicle Simulator (ADVISOR), which was written 
in MATLAB and Simulink by the US Department of Energy 
and the National Renewable Energy Laboratory [28,29,30]. 
ADVISOR is used for the analysis of performance and fuel 
economy of three vehicle types: conventional, electric, and 
hybrid vehicles [28]. In 2001, the resistance-capacitance (RC) 
battery model was first implemented in ADVISOR [31]. The 
electrical model consists of three resistors (R�, R�, and R
) 
and two capacitors (C� and C�). The first capacitor (C�) 
represents the capability of the battery to chemically store a 
charge, and the second capacitor (C�) represents the surface 
effects of a cell [30]. The resistances and capacitances vary 
with changing SOC and temperature (T) [30]. 
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VI. CONCLUSIONS 

This short paper provided an overview of a combined 
interacting multiple model (IMM) method with the relatively 
new smooth variable structure filter (SVSF). A very simple 
battery model used in a HEV system was implemented and 
studied. Two artificial faults were generated and used in a 
simulation. The results demonstrated that the new model-
based strategy referred to as the IMM-SVSF works more 
effectively than the popular IMM-KF. Future work will 
involve studying a more difficult problem, including varying 
degrees of faults. 
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