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ABSTRACT 

State and parameter estimation techniques are 

important tools which provide accurate estimates of system 

states. This is important for the reliable and safe control of 

mechanical and electrical systems. Most estimation 

techniques are derived in discrete-time, due to the wide use 

of digital computers. However, continuous-time derivations 

do exist, and are particularly useful for studying estimation 

problems with small sampling intervals. The smooth variable 

structure filter (SVSF) is a relatively new estimation strategy 

based on sliding mode theory, and has been shown to be 

robust to modeling uncertainties. In this paper, a formulation 

of the SVSF is presented in continuous-time. The continuous-

time SVSF is applied on an estimation problem, and the 

results are compared with the popular Kalman filter (KF). 

 

THE KALMAN FILTER 

 

A. Discrete-Time Formulation 

The most popular and well-studied estimation method is 

the Kalman filter (KF), which was introduced in the 1960s 

[1,2]. The KF yields a statistically optimal solution for linear 

estimation problems, as defined by (1) and (2), in the 

presence of Gaussian noise where ����
�~�(0,��) and 

�����~�(0,��). A typical model is represented by the 

following discrete-time equations: 

 

	��� = 
	� + ��� +��  (1) 

��� = �	��� + ���� (2) 

 

It is the goal of a filter to remove the effects that the 

system ��  and measurement ���� noise have on extracting 

the true state values 	��� from the measurements ���. The 

KF is formulated in a predictor-corrector manner. The states 

are first estimated using the system model, termed as a priori 

estimates, meaning ‘prior to’ knowledge of the observations. 

A correction term is then added based on the innovation (also 

called measurement errors), thus forming the updated or a 

posteriori (meaning ‘subsequent to’ the observations) state 

estimates. 

The KF has been broadly applied to problems covering 

state and parameter estimation, signal processing, target 

tracking, fault detection and diagnosis, and even financial 

analysis [3,4]. The success of the KF comes from the 

optimality of the Kalman gain in minimizing the trace of the a 

posteriori state error covariance matrix. The trace is taken 

because it represents the state error vector in the estimation 

process [5]. The following five equations form the core of the 

KF algorithm, and are used in an iterative fashion. Equations 

(3) and (4) define the a priori state estimate 	����|�  based on 

knowledge of the system 
 and previous state estimate 	��|�, 

and the corresponding state error covariance matrix ����|�, 

respectively. 

 

	����|� = 
	��|� + ��� (3) 

����|� = ���|��� + ��  (4) 

 

The Kalman gain ���� is defined by (5), and is used to 

update the state estimate 	����|��� as shown in (6). The gain 

makes use of an innovation covariance ����, which is defined 

as the inverse term found in (5). 

 

���� = ����|���������|��� + �����
��

 (5) 

	����|��� = 	����|� + �������� − �	����|�� (6) 

 

The a posteriori state error covariance matrix ����|��� is 

then calculated by (7), and is used iteratively, as per (4). 

 

����|��� = �� − ����������|�  (7) 

 

A number of different methods have extended the 

classical KF to nonlinear systems, with the most popular and 

simplest method being the extended Kalman filter (EKF) [6,7]. 

The EKF is conceptually similar to the KF; however, the 

nonlinear system is linearized according to its Jacobian. This 

linearization process introduces uncertainties that can 

sometimes cause instability [7]. A list of the nomenclature 

used throughout this paper is provided in the Appendix. 

 



B. Continuous-Time Formulation 

A continuous-time Kalman filter (KF) was developed in 

the late 1950s in unpublished work by James Follin, A. G. 

Carlton, James Hanson, and Richard Bucy [6]. Later in 1961, 

Kalman and Bucy published their work [8]. The derivation of 

the continuous-time KF will not be provided here due to 

space constraints, but is readily available in literature [6,9]. 

The continuous-time system and measurement models may 

be defined respectively as follows: 

 

����� � �������� � 	���
��� � ���� (8) 

���� � ������� � ���� (9) 

 

For simplicity, the time component ��� will be left out of 

future equations. Like the standard discrete-time KF, a gain � 

is used to correct the state estimates: 

 

� � �����
 (10) 

 

The state estimate �� is updated as follows: 

 

��� � ��� � 	
 � ��� � ��� (11) 

 

Correspondingly, the state error covariance � is 

calculated forward in time by: 

 

�� � �� � ��� � ������ � � (12) 

 

The above three equations are used to derive estimates 

for the state values (8) given the available measurements (9). 

The principle is to minimize the effects of noise present in the 

system and measurements. 

 

THE SMOOTH VARIABLE STRUCTURE FILTER 

 

A. Discrete-Time Formulation 

In 2007, the smooth variable structure filter (SVSF) was 

introduced based on variable structure theory and sliding 

mode concepts [10]. It implements a switching gain to 

converge the estimates to within a boundary of the true 

states (i.e., existence subspace). In its present form, the SVSF 

has been shown to be stable and robust to modeling 

uncertainties and noise [11,12]. The basic estimation concept 

of the SVSF is shown in Fig. 1. The SVSF method is model 

based and may be applied to differentiable linear or nonlinear 

dynamic equations. The original form of the SVSF as 

presented in [10] and did not include covariance derivations. 

An augmented form of the SVSF was presented in [13], which 

includes a full derivation for the filter. The purpose to provide 

a covariance derivation was to increase the number of 

applications for the SVSF (i.e., creating interacting multiple 

model forms). However, in this paper, the standard SVSF 

(with no covariance) will be expanded into continuous-time. 

The estimation process is iterative and may be summarized 

by the following sets of equations. 

 
Fig. 1. The SVSF estimation concept [10]. 

 

The predicted state estimates �����|� 	and state error 

covariances ����|� 	are first calculated respectively as follows: 

 

�����|� � ����|� � �
� (13) 

����|� � ��|�� � ��  (14) 

 

Utilizing the predicted state estimates �����|�, the 

corresponding predicted measurements �̂���|�	 and 

measurement errors ��,���|� may be calculated: 

 

�̂���|� � �����|�  (15) 

��,���|� � ���� � �̂���|� (16) 

 

The SVSF gain is a function of: the a priori and a 

posteriori measurement errors ��,���|� and ��,�|�; the 

smoothing boundary layer widths �; the ‘SVSF’ memory or 

convergence rate �; as well as the linear measurement matrix 

. For the derivation of the SVSF gain ����, refer to [10,13]. 

The SVSF gain is defined as a diagonal matrix such that: 

 

���� � ������ �	
�����|�
 �  
���|�
�
∘ ��� 	���������|��� ���� 	�����|��

��

 

(17) 

 

This gain is used to calculate the updated state estimates 

�����|��� as well as the updated state error covariance matrix 

����|���: 

 

�����|��� � �����|� � ������,���|�  (18) 

����|��� � �� � ���������|��� � ������
� ������������

�
 

(19) 

 

Finally, the updated measurement estimate �̂���|��� and 

measurement errors ��,���|��� are calculated, and are used in 

later iterations: 

 

�̂���|��� � �����|��� (20) 

��,���|��� � ���� � �̂���|��� (21) 

 

The estimation process is stable and convergent if the 

following lemma is satisfied: 



|��| > |����| (22) 

 

The proof, as defined in [10], is such that if one defines 

���� as a random but bounded amplitude such that ���� ≤

�, then |��| > |����| applies to the phase where |��| > � 

that is defined by the reachability phase. Let a Lyapunov 

function be defined such that ���� = ����� . Hence, the 

estimation process is stable if �∆���� = ����� − ���� < 0. 

Furthermore, note that this stability condition is satisfied by 

(22) [10,14]. 

 

B. Continuous-Time Formulation 

The discrete-time SVSF gain was derived based on the 

assumption for stability, defined by (22). Likewise, one can 

derive a continuous-time form of the SVSF by starting with 

the following lemma for stability: 

 

��� < 0 (23) 

 

The sliding surface � and its derivative are defined 

respectively by: 

 

� = lim
�→�

�����|���  (24) 

�� = lim
�→�

�����|��� − ���|�
�  (25) 

 

Hence, based on (24) and (24), the discrete-time a 

posteriori measurement error will be used in a continuous-

time form to derive the new gain. From (20), the discrete-

time a posteriori measurement error may be defined by: 

 

�����|���
= ��� − ��	����|� + ����� (26) 

 

Expanding (26) and simplifying yields: 

 

�����|���
= �����|� − ����� (27) 

 

Likewise, the previous time-step’s a posteriori 

measurement error (to be used later in (25)) may be defined 

as follows: 

 

���|� = ���|��� − ��� (28) 

 

From (24), and (27), one has: 

 

� = lim
�→�

�����|��� = ��� −�	����|� −����� (29) 

 

Substituting (13) into (29) yields: 

 

� = ��� − ��
	��|� + ���� −����� (30) 

 

For small sample times, one can transfer the following 

matrices into continuous-time, as follows: 

 


 ≈ � +  � (31) 

� ≈ !� (32) 

� = " (33) 

 

Hence, based on (31) – (33), the surface (30) becomes: 

 

� = ��� − "��� +  ��	��|� + !���� − "���� (34) 

 

Solving, based on � → 0, yields: 

 

� =  − "�	� + �� (35) 

 

Next, the stability term �� will be considered, based on a 

similar approach to solving (35): 

 

�� = 1

� #�����|�
− ���|���

$ −�
� ����� − ��

� (36) 

 

Expanding (36) yields: 

 

�� =
1

�
����� − ��� −

1

�
��	
 + ������|� − �����|�����

−
1

�
����	�� − ����

��−
�
�
	���� − ��

� 
(37) 

 

Finally, simplifying (37) yields: 

 

�� = � − "�	�� + �� � (38) 

 

Now, consider (23) based on (35) and (38). If s > 0, then 

s� < 0 such that: 

 

�� = "���� − "	��� + % (39) 

 

Where % is some arbitrary positive constant. Similarly, if 

s < 0, then s� > 0 such that: 

 

�� = "���� − "	��� − % (40) 

 

In general, the gain � may be formulated as follows: 

 

�� = "���� − "	��� + %	�'()� − "�	� + ��� (41) 

 

Next, the state estimate equation (update) needs to be 

calculated. Consider the following SVSF state update: 

 

	����|��� = 
	��|� + ��� + ���� (42) 

 

Utilizing (31) – (33), (42) becomes: 

 

	����|��� − 	��|� =  �	��|� + !��� + ���� (43) 

 

Finally, solving for the state update yields the following 

differential equation: 

 

	�� =  	� + !� + � (44) 



Equations (41) and (44) form the backbone of the 

continuous-time SVSF estimation method. 

 

SIMULATION PROBLEM 

The continuous-time KF and SVSF strategies were applied 

on a simple second order spring-mass-damper system for 

demonstration purposes. The simulation was performed in 

Matlab’s Simulink environment. In state-space, the system 

and measurement can be modeled as follows: 

 

�� � � 0 1
�0.5	 �0.2$ � � � 00.1$ 
 � � (45) 

� � �1 0
0 1$ � � � (46) 

 

The system and measurement noise that was added 

equals roughly 15% of the real system values. This is a 

considerable amount of noise. A constant force of 1 N was 

applied to the mass, resulting in a second-order system 

response (overshoot, etc.). The following figure shows the 

simulation results (estimation error over number of samples). 

The KF estimate was more sensitive to noise when compared 

with the estimate provided by the SVSF, as demonstrated by 

the ‘spiked’ estimates. The SVSF yielded a smoother result, 

which is beneficial for the purposes of control. 

 

 
Fig. 2. Estimation results showing the state error over time. 

 

CONCLUSIONS 

In this paper, a continuous-time form of the smooth 

variable structure filter (SVSF) was derived. The KF and SVSF 

were applied on a simple simulation problem. In general, it 

was found that the continuous-time SVSF yielded comparable 

results to the KF. In the case studied, the SVSF was able to 

out-perform the KF in terms of estimation accuracy. Future 

work will involve studying the effects of the positive arbitrary 

constant that was derived in the continuous-time SVSF gain. 

 

APPENDIX 

The following is a table of important nomenclature used 

throughout this paper. 

Parameter Definition 

� State vector or values 

� Measurement (system output) vector or values 

� Input to the system 

� System noise vector 

� Measurement noise vector 

�, � Linear system transition matrix 

	, 
 Input gain matrix 

�,� Linear measurement (output) matrix 

 Filter gain matrix (i.e., KF or SVSF) 

� State error covariance matrix 

� System noise covariance matrix 

� Measurement noise covariance matrix 

� Measurement (output) error vector 

�������	or	�� Defines a diagonal matrix of some vector a 

������ Defines a saturation of the term a 

� SVSF ‘convergence’ or memory parameter 

� SVSF boundary layer width 

|�| Absolute value of some parameter a 

! Transpose of some matrix or sample time 

^ Estimated vector or values 

# $ 1|# A priori time step (i.e., before applied gain) 

# $ 1|# $ 1 A posteriori time step (i.e., after update) 
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