
 

 

 

 

  

Abstract— A multilayered neural network is a multi-input, 

multi-output (MIMO) nonlinear system in which training can 

be regarded as a nonlinear parameter estimation problem by 

estimating the network weights. In this paper, the relatively 

new smooth variable structure filter (SVSF) is used for the 

training of a nonlinear multilayered feed forward network. The 

SVSF is a recursive sliding mode parameter and state estimator 

that has a predictor-corrector form. Using a switching gain, a 

corrective term is calculated to force the network weights to 

converge to within a neighbourhood of the optimal weight 

values. SVSF-based trained  neural networks are used to 

classify engine faults on the basis of vibration data. Two faults 

are induced in a four-stroke, eight-cylinder engine. 

Furthermore, a comparative study between the popular back 

propagation method, the extended Kalman filter (EKF), and 

the SVSF is presented. Experimental results indicate that the 

SVSF is comparable with the EKF, and both methods 

outperform back propagation. 

I. INTRODUCTION 

ACK propagation (BP) used to be one of the most 

commonly used algorithm in the field of multilayer 

perceptron training [1]. It is a first-order stochastic gradient 

descent method that iteratively adjusts weights to minimize 

the output error in a supervised manner. However, since 

early versions of BP involve a constant learning rate, a slow 

speed of convergence is attained. In fact, several enhanced 

training algorithms have been developed through the 

literature to improve training performance, mapping 

accuracy and speed of convergence compared to the BP 

algorithm [2]. Most of these techniques like quasi-Newton 

and Levenburg-Marquardt demonstrate better performance 

as they involve second-order derivative information. In 

addition, these algorithms are implemented in a batch (multi-

streaming) mode where weights are updated based on more 

than one training sample in the training set, in contrast with 

the conventional BP where weights are updated by involving 

only one training sample (a serial mode) [3]. Even though 
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second-order algorithms have proven to outperform the 

classical first-order BP, they may suffer from poor 

convergence properties due to problems with local minima 

[2]. 

The Kalman filter (KF) is the most popular state 

estimation tool. It provides statistically optimal estimations 

for linear systems in the presence of Gaussian white noise. 

In the case of nonlinear systems, the extended Kalman filter 

is applied by linearizing the system around the latest state 

estimate at each time interval. An EKF-based neural network 

training technique was first introduced by Singhal and Wu in 

1989 [4]. The EKF provides a powerful neural network 

training capability compared to conventional first-order 

gradient algorithms, such as the BP [2]. In literature, the 

EKF has been extensively applied for training of both feed-

forward [5] and recurrent networks [6,7] in both a global 

form (GEKF) or in a decoupled form (DEKF). Although the 

EKF demonstrates a close performance compared to a 

second-order derivative, batch-based method, it can avoid 

local minima problems by encoding second-order 

information in terms of a state error covariance matrix [2]. 

Accordingly, the EKF represents an efficient and practical 

alternative to second-order training methods. 

The recently proposed smooth variable structure filter 

(SVSF) provides a robust dynamic adaptation, high-rate of 

convergence, and can guarantee estimation stability for 

bounded uncertainties and noise levels [8]. The SVSF has 

been successfully applied for parameter and state estimation 

[9,10]. 

In this paper, the SVSF is used for feed-forward neural 

network training. The SVSF is applied in a global (GSVSF), 

multi-streaming mode. The GSVSF’s performance is 

compared to the standard first and second-order derivative 

BP algorithms, as well as to the GEKF using an engine fault 

detection pattern classification problem. The paper is 

organized as follows: Section II provides a general 

description of the feed-forward multilayer perceptron, and 

Section III describes the global and decoupled extended 

Kalman filter-based training algorithms. Section IV-A 

provides an introduction to the SVSF, Section IV-B 

considers the formulation of the SVSF for neural networks 

training. Section V considers the application of SVSF 

training method to an engine experimental setup besides 

involves trained networks experimental results using the 

three training techniques discussed above. Section VI 

includes concluding remarks and recommendations for 

future work. 
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II. FEED-FORWARD MULTILAYERED NEURAL NETWORK  

A multilayer feed forward network consists mainly of a 

set of sensory units (input source nodes) that constitutes the 

input layer, one or more hidden layers and an output layer. 

As shown in Fig. 1, each node is connected to all nodes in 

the adjacent layer by links (weights), and computes a 

weighted sum of the inputs. An offset (bias) is added to the 

resultant sum followed by a nonlinear activation function 

application. The input signal propagates through the network 

in a forward direction on a layer-by-layer basis. 

Consequently, the network represents a static mapping 

between inputs and outputs. 
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Fig. 1. Schematic diagram of feed-forward multilayer perceptron 

network [13] 

 

Let � denote the total number of layers, including the 

input and output layers. Node(�, 	) denotes the 		� node in 

the �� layer, and	�� − 1 is the total number of nodes in the 

�� layer. The operation of node(� + 1, 	) is described by 

the following equation: 

 

�����(�) = �(� ��,��
�� �

�!�
���(�) + "����) (1) 

 

where ���(�) denotes the output of �#$%(�, &)	for the � 
training pattern, ��,��  denotes the link weight from node(�, &) 
to the	node(� + 1, 	). "�� is the node offset (bias) for node(�, 	). The function �(. ) is a nonlinear sigmoid 

activation function that is commonly used for feedforward 

networks as it resembles the biological neurons operation. It 

is defined by: 

 

�(�) = 1
1 + % () 									* > 0	and − ∞ < � < ∞ (2) 

 

For simplicity, as shown in Fig. 2, the node bias is 

considered as a link weight by setting the last input �� to 

�#$%(� + 1, 	)	to value of one as follows: 

 	���� (�) = 1,																		1 ≤ � ≤ �								��,��� = "����,													1 ≤ � ≤ � − 1		Consequently,	(1)	can be rewritten in the following form: 

 

	�����(�) = �(���,��
��

�!�
���(�)) (3) 
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Fig. 2. Node (n+1, i) representation 

 

III. GLOBAL AND DECOUPLED EKF-BASED NN TRAINING 

The EKF has been tailored to train feed-forward neural 

networks by formulating the network as a filtering problem 

[11]. Accordingly, feed-forward multilayer perceptron 

network behaviour can be described by a nonlinear discrete-

time state space representation [12]: 

 	�B�� = �B + CB (4) 

DB = EB(�B , FB) + GB (5) 

 

Equation (4) represents the system equation. It 

demonstrates the neural network as a stationary system with 

an additional zero mean, white system noise	ωI	with a 

covariance described by		JCBCKLM = NB,KOB .	Neural network 

weights and biases wI are regarded as the system’s state. 

Equation (5) is the measurement (observation) equation. It is 

a nonlinear equation relating network desired (target) 

response  DB  to the network input FB and network’s 

weights	�B. The nonlinear function EB represents the 

measurements matrix, which comprises the network overall 

transfer function. A zero-mean, white measurement noise vI 

is added whose covariance is defined as	JGBGKLM = NB,KRB. 

As previously mentioned, the KF provides an optimal state 

estimate for linear systems. However, for this particular 

problem, the EKF will be implemented due to the 

nonlinearity present in the measurements. 

Consider a feed-forward multilayer perceptron network 

with two hidden layers as shown in Fig. 3. All activation 

functions of the first, second and output layers are nonlinear 
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sigmoidal functions denoted as	φT, φTT and φU respectively. 

The network transfer function in terms of network weights, 

inputs and activation functions can be mathematically 

defined as: 

 D�(�)
= �V WXVY(�)	�ZZ [XZZ(�)	�Z\XZ(�)F(�)]^_ 

for i=1,2..m 
 

(6) 

Where `	denotes number of output neurons, XZ ,XZZ ,XV 

are group weight matrices for first hidden layer, second 

hidden layer and output layer, respectively. Linearization is 

performed by differentiating the network transfer function 

with respect to network synaptic weights (i.e.: deriving the 

Jacobian). The Jacobian matrix EB|K��b(c�dbe  can be 

mathematically expressed as follows: 

 

EB|K��b(c�dbe =

fg
gg
gg
gh
iD�iX�

iD�iXjiDjiX�
iDjiXj

⋯
iD�iX�liDjiX�l⋮ ⋱ ⋮iDoiX�

iDoiXj ⋯ iDoiX�lp
qq
qq
qq
r

 (7) 

 

where �L denotes total number of synaptic weights 

(including bias), s specifies number of input neurons, by 

differentiating (6) with respect to different weight 

groups	XZ ,XZZ ,XV and for i, l=1, 2 ... m get:  
 
iD�iXVt = u

�V́ [XVY�ZZ\XZZ�Z(XZF)]^	�ZZ\XZZ�Z(XZF)], 	w		 = x
0,										#�ℎ%z�	{%  (8) 

 
iD�iXZZ = �V́ [XVY�ZZ\XZZ�Z(XZF)]^XVY�ZŹ \XZZ�Z(XZF)]�Z(XZF) (9) 

 
iD�iXZ = �V́ [XVY�ZZ\XZZ�Z(XZF)]^XVY�ZŹ \XZZ�Z(XZF)]XZZ�Ź (XZF)F (10) 

 

By augmenting (8), (9), and (10) in one matrix: 

 

EB|K��b(c�dbe = J iDiXV 					
iD
iXZ 				

iD
iXZZM (11) 

 EB|K��b(c�dbe  is the m-by-�L measurement matrix of the 

linearized model around the current weight estimate. 

The EKF-based neural network training introduced by 

Singhal and Wu is known as the global extended Kalman 

filter (GEKF) [4]. In GEKF algorithm, all network weights 

and biases are simultaneously processed and a second-order 

information matrix correlating each pair of network weights 

is involved and updated [2]. Consequently, the GEKF 

computational complexity is |(`	�Lj) and storage 

requirements of	|(�Lj) is required which is relatively high 

compared to the standard BP algorithm. 

 

Iϕ

oϕ
IIϕ

)(kWI )(kWII

)(1 ku

)(2 ku

)(kuz

)(1 ky

)(kym

)(kW
mo

)(
1

kWo

 
Fig. 3. Feed-forward multilayer perceptron with ‘z’ inputs, 2 hidden 

layers and ‘m’ outputs 

 

The DEKF-based neural network training algorithm 

illustrated below represents the most general EKF-based 

neural network training form. The GEKF represents a 

special case of the DEKF by setting weight group number to 

one. Neural network training using the DEKF algorithm can 

be expressed as follows [13]: 

 

		}B = J�(EB� )L	~B� 	EB� 		+ RB
�

�!�
M � (12) 

�B� = ~B� 		EB� 		�� (13) 

�B = $B − $�B (14) 

��B��� = ��B� + �B� 	�B (15) 

~B��� = ~B� − �B� 	\EB�]L	~B� + OB�  (16) 

 

where, the following are defined: 

  �     m-by-m matrix known as global scaling matrix (or 

global conversion factor). 

  C     ��-by-m gradient matrix, it involves weights gradient 

w.r.t every output node.    		α     m-by-1 matrix representing innovation which is the 

difference between desired (target) and actual 

network output.  

  P  					��-by-�� error covariance matrix.    

  Q    		��-by-�� process covariance matrix. 

  K      ��-by-m Kalman gain matrix. 

  $�B     m-by-1  output estimate. 

  $B     m-by-1 target (desired) output. 

  R      m-by-m measurement noise covariance matrix. 

 

The above DEKF training algorithm operates in a serial 

mode fashion. In serial mode, one training sample is 

involved in error calculation, gradients computation and 

synaptic weight update. A problem known as recency 

phenomenon arises with serial mode when training tends to 

be influenced by the most recent samples [2]. Consequently, 

a trained network fails to remember former input-output 

mappings thus serial-mode training reduces training 

performance. The recency phenomenon can be circumvented 

using multi-streaming training technique, [14,15,16]. Multi-

streaming EKF training allows multiple training samples to 

be batched and processed at the same time. It involves 

training M multiple identical parallel neural networks using 
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several training samples followed by a single weight update 

using the entire M networks errors. The above algorithm can 

be adjusted to multi-streaming mode by replacing m with M 
x m [3]. 

IV. SMOOTH VARIABLE STRUCTURE FILTER (SVSF) 

NEURAL NETWORK TRAINING 

A. Introduction to the SVSF  

In 2007, the smooth variable structure filter (SVSF) was 

introduced based on variable structure theory and sliding 

mode concepts [8]. It implements a switching gain to 

converge the estimates to within a boundary of the true 

states (i.e., existence subspace). In its present form, the 

SVSF has been shown to be stable and robust to modeling 

uncertainties and noise [17,18]. The SVSF method is model 

based and may be applied to differentiable linear or 

nonlinear dynamic equations. The original form of the SVSF 

as presented in [8] did not include covariance derivations. 

An augmented form of the SVSF was presented in [19], 

which includes a full derivation for the filter. The basic 

estimation concept of the SVSF is shown in the following 

figure. 

 
Fig. 4. SVSF estimation concept [8] 

 

Further to an initial condition, the estimated state is forced 

to within a region around the state trajectory referred to as 

the existence subspace. The width of the existence subspace β is a function of the uncertain dynamics associated with the 

inaccuracy of the internal model of the filter and varies with 

time [8]. Typically this value is not exactly known but an 

upper bound may be selected based on a priori knowledge. 

Once the estimate enters the existence subspace, it is forced 

into switching along the system state trajectory. A saturation 

term may be used in this region to reduce the magnitude of 

chattering and smooth out the result.  

The effect of the smoothing boundary layer is shown in 

Fig’s. 5 and 6. When the smoothing boundary layer is 

defined larger than the existence subspace boundary, the 

estimated state trajectory is smoothed. However, when the 

smoothing boundary layer is too small, chattering remains 

indicating the uncertainties have been underestimated 

 

 
Fig. 5. The smoothing boundary layer concept, with smoothing effects [8] 

 

 
Fig. 6. The smoothing boundary layer concept, with chattering effects [8]. 

B. SVSF-Based Neural Networks Training 

The SVSF can be applied for training nonlinear feed-

forward neural networks through estimation of the network 

weights. The SVSF has been adapted to train feed-forward 

neural networks by visualizing the network as a filtering 

problem. This process is iterative and may be summarized 

by the following set of equations. The predicted state (or 

neural network weight) estimates ��B��|B	and state error 

covariances ~B��|B 	are first calculated respectively as 

follows: 

 ��B��|B = ���B|B + �FB (17) 

~B��|B = �~B|B�L + OB (18) 

 

Utilizing the predicted state estimates ��B��|B, the 

corresponding predicted measurements ŝB��|B	 and 

measurement errors %d���|� may be calculated: 

 ŝB��|B = ���B��|B (19) 

%d���|� = sB�� − ŝB��|B (20) 

 

The SVSF gain is a function of: the a priori and a 

posteriori measurement errors %d���|� and %d�|�, the 

smoothing boundary layer widths �, the ‘SVSF’ memory or 

convergence rate �, as well as the linear measurement matrix �. For the derivation of the SVSF gain �B��, refer to [8,19]. 

The SVSF gain is defined as a diagonal matrix such that: 
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�B�� = ��$	*� �[�%d���|�� + � �%d�|��^
∘ {*� W%d���|�� _� $	*� [%d���|�^ � 

(21) 

 

This gain is used to calculate the updated state estimates ��B��|B�� as well as the updated state error covariance matrix 

~B��|B��: 

 ��B��|B�� = ��B��|B + �B��%d���|� (22) 

~B��|B�� = (� − �B���)~B��|B(� − �B���)L+ �B��RB���B��L  
(23) 

 

Finally, the updated measurement estimate z�I��|I�� and 

measurement errors e����|��� are calculated, and are used in 

later iterations: 

 ŝB��|B�� = ���B��|B�� (24) 

%d���|��� = sB�� − ŝB��|B�� (25) 

 

The estimation process is stable and convergent if the 

following lemma is satisfied: 

 |%B| > |%B��| (26) 

 

The proof, as defined in [8], is such that if one defines ηI�� as a random but bounded amplitude such that �B�� ≤�, then |%B| > |%B��| applies to the phase where |%B| > � 

that is defined by the reachability phase. Let a Lyapunov 

function be defined such that GB�� = %B��j . Hence, the 

estimation process is stable if (∆GB�� = %B��j − %Bj) < 0. 

Furthermore, note that this stability condition is satisfied by 

(17) [8,20]. 

V. EXPERIMENTAL RESULTS 

A. Experimental Setup, Data Acquisition, and Analysis 

The experimental setup involves a four stroke, 5.0 L, eight 

cylinder, Coyote-VP engine. The test is performed at 

FORD’s Powertrain Research and Development Centre 

(PRDC). Vibration data has been recorded over four seconds 

using a charge-type piezoelectric accelerometer. The 

accelerometer has been attached to the engine lug in a 

premeditated position in order to detect faults of interest. 

Vibration data has been acquired using a PROSIG 5600 data 

acquisition system with built-in 16-bit analog-to-digital 

convertor card set at a sampling frequency of 32,768 Hz. 

After data acquisition, the time domain data has been 

converted offline to the crank angle domain as shown in Fig. 

7 using the cam identification (CID) sensor signal. 

 
Fig. 7. Baseline, Missing bearing, and Piston Chirp vibration data in the 

crank angle domain 

 

CID sensor is used to detect camshaft angle position. It’s a 

non-contact sensor mounted on the engine and generate 

sinusoidal pulses at specific angles of	90° − 120° − 60° −
120° − 60° − 180° − 90°per engine cycle. First sinusoidal 

pulse zero-crossing indicates that the first cylinder is 10° 
away from the top-dead-center (TDC). After transformation 

to the crank angle domain, data resampling is performed so 

that each engine cycle has the same number of points. 

Two faults have been induced in the engine. They involve 

missing bearing fault (MB) and piston chirp (PC) fault. 

Vibration signals recorded from these two fault cases as well 

as the baseline fault-free engine case are used as a training 

data set for neural networks training. 

 

B. SVSF, EKF, and BP Neural Networks Training 

In this paper, fully connected feedforward multilayer 

perceptron with 281 input neurons representing vibration 

data points in the crank angle domain, two hidden layers 

with four neurons each, and three output units is used. The 

number of hidden layers and the number of hidden neurons 

are selected using trial and error to find the optimal results 

with minimal number of neurons. The trained network 

should be able to classify engines to either one of the two 

induced faults or to a baseline (fault-free) case as follows: 

(1, 0, 0: Baseline engine), (0, 1, 0: Piston Chirp fault 

detected), (0, 0, 1: Missing Bearing fault detected). 

The test has been conducted through several runs, 30 

engine cycles from each case stated before (i.e.: Baseline, 

MB, and PC) resulting in 90 training sets. Trained neural 

nets have been tested using 10 engine cycles from each case 

resulting in 30 testing set. Tesing data has never been used 

during network training. 
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Fig. 8. Performance (Mean Squared Error) Variation vs. Number of 

Epochs 

 

As mentioned earlier, networks were trained using the 

SVSF, EKF, batch first order, and second order BP 

algorithms (Levenberg-Marquardt and Quasi-Newton). Fig. 

8 shows root mean square error (RMSE) variation for the 

first 17 epochs. The SVSF convergence properties 

outperform the conventional first order BP algorithms and 

it’s comparable with the EKF and second order BP. At the 

sixth epoch, where training starts to stabilize, the SVSF 

reaches the least RMSE of 0.0221 followed by the EKF with 

RMSE of 0.0522. While at the 15
th

 epoch, the LM achieves 

the least RMSE of		2.8% ¤ followed by the SVSF with 

RMSE of 0.0065. Table I shows the trained networks RMSE 

using several training techniques after the 6
th

 and the 15
th

 

epoch.  
 

TABLE I 

RMSE FOR VARIOUS TRAINING TECHNIQUES AFTER THE 6TH
  

AND THE 15TH
 EPOCH   

Training technique        RMSE, 6th                                                                                         RMSE, 15th                                                                                   

Batch First-order BP 0.4276 0.4052 

Levenberg-Marquardt  0.1215 2.8% ¤ 
Quasi-Newton 0.1261 0.0119 

EKF 0.0522 0.0180 

SVSF 0.0221 0.0065 

  

Trained networks have been tested using 30 data sets 

(Fig.’s 9, 10, 11, 12 and 13), which demonstrate training and 

testing classification results for trained networks using first-

order BP, second-order Levenberg-Marquardt, Quasi-

Newton, EKF, and SVSF, respectively. Further details 

regarding the confusion matrix is attached in the Appendix. 

The EKF and SVSF are used in a global form and in multi-

streaming fashion. 

 

 
Fig. 9. Training and testing confusion matrices for batch first order BP  

 

 
Fig. 10. Training and testing confusion matrices for Levenberg-

Marquardt 

 

Training and testing results after 30 epochs are 

summarized in Table II. The SVSF achieved the highest 

testing percentage in both training and testing along with 

Quasi-Newton followed by the EKF and Levenberg-

Marquardt, and finally BP. 

 
TABLE II 

OVERALL TRAINING AND TESTING CLASSIFICATION RESULTS 

Training technique TRAINING %        TESTING % 

First-order BP          91.1               80 

Levenberg-Marquardt          100              93.3 

Quasi-Newton          100              96.7 

EKF          100              93.3 

SVSF          100                    96.7 

 

 
Fig. 11. Training and testing confusion matrices for Quasi-Newton  
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Fig. 12. Training and testing confusion matrices for EKF  

 

 
Fig. 13. Training and testing confusion matrices for SVSF  

VI. CONCLUSION 

In this research, the GSVSF has been successfully applied 

to train multilayered feed-forward networks and to detect 

and classify engine faults. The GSVSF demonstrated 

stability guarantee, fast speed of convergence, and high 

parameter estimation accuracy. The GSVSF training 

performance outperforms first order back propagation 

algorithms and it is comparable to the GEKF, and second 

order back propagation algorithms in terms of number of 

epochs and convergence speed. The GSVSF has shown 

better performance compared to GEKF in terms of 

generalization capability and in terms of RMSE variations 

during training. Further work involves application of the 

GSVSF to train recurrent multilayer perceptron (RMLP) 

networks for system identification. 

VII. APPENDIX 

 The following figure demonstrates the confusion matrix in 

more detail. 
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