

Abstract— A multilayered neural network is a multi-input,

multi-output (MIMO) nonlinear system in which training can

be regarded as a nonlinear parameter estimation problem by

estimating the network weights. In this paper, the relatively

new smooth variable structure filter (SVSF) is used for the

training of a nonlinear multilayered feed forward network. The

SVSF is a recursive sliding mode parameter and state estimator

that has a predictor-corrector form. Using a switching gain, a

corrective term is calculated to force the network weights to

converge to within a neighbourhood of the optimal weight

values. SVSF-based trained neural networks are used to

classify engine faults on the basis of vibration data. Two faults

are induced in a four-stroke, eight-cylinder engine.

Furthermore, a comparative study between the popular back

propagation method, the extended Kalman filter (EKF), and

the SVSF is presented. Experimental results indicate that the

SVSF is comparable with the EKF, and both methods

outperform back propagation.

I. INTRODUCTION

ACK propagation (BP) used to be one of the most

commonly used algorithm in the field of multilayer

perceptron training [1]. It is a first-order stochastic gradient

descent method that iteratively adjusts weights to minimize

the output error in a supervised manner. However, since

early versions of BP involve a constant learning rate, a slow

speed of convergence is attained. In fact, several enhanced

training algorithms have been developed through the

literature to improve training performance, mapping

accuracy and speed of convergence compared to the BP

algorithm [2]. Most of these techniques like quasi-Newton

and Levenburg-Marquardt demonstrate better performance

as they involve second-order derivative information. In

addition, these algorithms are implemented in a batch (multi-

streaming) mode where weights are updated based on more

than one training sample in the training set, in contrast with

the conventional BP where weights are updated by involving

only one training sample (a serial mode) [3]. Even though

Manuscript submitted June 20, 2011.

The authors are with the Department of Mechanical Engineering at

McMaster University, Hamilton, Ontario, Canada. Ryan M. Ahmed is an

M.A.Sc. graduate, part-time Ph.D student, and a research engineer at Ford

Motor Company (e-mail: ryan.ahmed@mcmaster.ca) interested in artificial

intelligence, fault detection, and control systems. Mohammed El Sayed is a

Ph.D. candidate (e-mail: abugabma@mcmaster.ca) with interests in fluid

power systems, sliding mode control, and automation. S. Andrew Gadsden

is a Ph.D. candidate, and both an ASME and IEEE student member. He is

funded by the National Sciences and Engineering Research Council of

Canada (NSERC) (e-mail: gadsdesa@mcmaster.ca). Dr. Saeid R. Habibi is

a Professor and Chair in the Department of Mechanical Engineering at

McMaster University (e-mail: habibi@mcmaster.ca).

second-order algorithms have proven to outperform the

classical first-order BP, they may suffer from poor

convergence properties due to problems with local minima

[2].

The Kalman filter (KF) is the most popular state

estimation tool. It provides statistically optimal estimations

for linear systems in the presence of Gaussian white noise.

In the case of nonlinear systems, the extended Kalman filter

is applied by linearizing the system around the latest state

estimate at each time interval. An EKF-based neural network

training technique was first introduced by Singhal and Wu in

1989 [4]. The EKF provides a powerful neural network

training capability compared to conventional first-order

gradient algorithms, such as the BP [2]. In literature, the

EKF has been extensively applied for training of both feed-

forward [5] and recurrent networks [6,7] in both a global

form (GEKF) or in a decoupled form (DEKF). Although the

EKF demonstrates a close performance compared to a

second-order derivative, batch-based method, it can avoid

local minima problems by encoding second-order

information in terms of a state error covariance matrix [2].

Accordingly, the EKF represents an efficient and practical

alternative to second-order training methods.

The recently proposed smooth variable structure filter

(SVSF) provides a robust dynamic adaptation, high-rate of

convergence, and can guarantee estimation stability for

bounded uncertainties and noise levels [8]. The SVSF has

been successfully applied for parameter and state estimation

[9,10].

In this paper, the SVSF is used for feed-forward neural

network training. The SVSF is applied in a global (GSVSF),

multi-streaming mode. The GSVSF’s performance is

compared to the standard first and second-order derivative

BP algorithms, as well as to the GEKF using an engine fault

detection pattern classification problem. The paper is

organized as follows: Section II provides a general

description of the feed-forward multilayer perceptron, and

Section III describes the global and decoupled extended

Kalman filter-based training algorithms. Section IV-A

provides an introduction to the SVSF, Section IV-B

considers the formulation of the SVSF for neural networks

training. Section V considers the application of SVSF

training method to an engine experimental setup besides

involves trained networks experimental results using the

three training techniques discussed above. Section VI

includes concluding remarks and recommendations for

future work.

Fault Detection of an Engine Using a Neural Network

Trained by the Smooth Variable Structure Filter

Ryan M. Ahmed, Mohammed A. El Sayed, S. Andrew Gadsden, and Saeid R. Habibi

B

2011 IEEE International Conference on Control Applications (CCA)
Part of 2011 IEEE Multi-Conference on Systems and Control
Denver, CO, USA. September 28-30, 2011

978-1-4577-1063-6/11/$26.00 ©2011 Crown 1190

II. FEED-FORWARD MULTILAYERED NEURAL NETWORK

A multilayer feed forward network consists mainly of a

set of sensory units (input source nodes) that constitutes the

input layer, one or more hidden layers and an output layer.

As shown in Fig. 1, each node is connected to all nodes in

the adjacent layer by links (weights), and computes a

weighted sum of the inputs. An offset (bias) is added to the

resultant sum followed by a nonlinear activation function

application. The input signal propagates through the network

in a forward direction on a layer-by-layer basis.

Consequently, the network represents a static mapping

between inputs and outputs.

)(2 tx

)(11
txN −

)(1 tx

1
1
−N

1
1
=N

1
2
−N

1
2
=N

1−Nk

1=Nk

)(1 tx k

)(txk
Nk

)(2 tx k

)(txk
Nk

2

12−Nb

2

1b
2

2b

k
Nkb 1−

kb2
kb1

Fig. 1. Schematic diagram of feed-forward multilayer perceptron

network [13]

Let � denote the total number of layers, including the

input and output layers. Node(�,) denotes the 		�
 node in

the ��
 layer, and	�� − 1 is the total number of nodes in the

��
 layer. The operation of node(� + 1,) is described by

the following equation:

�����(�) = �(� ��,��
�� �

�!�
���(�) + "����) (1)

where ���(�) denotes the output of �#$%(�, &)	for the �
training pattern, ��,�� denotes the link weight from node(�, &)
to the	node(� + 1,). "�� is the node offset (bias) for node(�,). The function �(.) is a nonlinear sigmoid

activation function that is commonly used for feedforward

networks as it resembles the biological neurons operation. It

is defined by:

�(�) = 1
1 + % () 									* > 0	and − ∞ < � < ∞ (2)

For simplicity, as shown in Fig. 2, the node bias is

considered as a link weight by setting the last input �� to

�#$%(� + 1,)	to value of one as follows:

 	���� (�) = 1,																		1 ≤ � ≤ �								��,��� = "����,													1 ≤ � ≤ � − 1		Consequently,	(1)	can be rewritten in the following form:

	�����(�) = �(���,��
��

�!�
���(�)) (3)

w
n

i 1,

w
n

i 2,

w
n

Nni,

x
n

i

1+

x
n

Nn

x
n

2

x
n

1

9:;�<(=) = >(�?:,@;
A;

@!<
9@;(=))

Fig. 2. Node (n+1, i) representation

III. GLOBAL AND DECOUPLED EKF-BASED NN TRAINING

The EKF has been tailored to train feed-forward neural

networks by formulating the network as a filtering problem

[11]. Accordingly, feed-forward multilayer perceptron

network behaviour can be described by a nonlinear discrete-

time state space representation [12]:

 	�B�� = �B + CB (4)

DB = EB(�B , FB) + GB (5)

Equation (4) represents the system equation. It

demonstrates the neural network as a stationary system with

an additional zero mean, white system noise	ωI	with a

covariance described by		JCBCKLM = NB,KOB .	Neural network

weights and biases wI are regarded as the system’s state.

Equation (5) is the measurement (observation) equation. It is

a nonlinear equation relating network desired (target)

response DB to the network input FB and network’s

weights	�B. The nonlinear function EB represents the

measurements matrix, which comprises the network overall

transfer function. A zero-mean, white measurement noise vI

is added whose covariance is defined as	JGBGKLM = NB,KRB.

As previously mentioned, the KF provides an optimal state

estimate for linear systems. However, for this particular

problem, the EKF will be implemented due to the

nonlinearity present in the measurements.

Consider a feed-forward multilayer perceptron network

with two hidden layers as shown in Fig. 3. All activation

functions of the first, second and output layers are nonlinear

1191

sigmoidal functions denoted as	φT, φTT and φU respectively.

The network transfer function in terms of network weights,

inputs and activation functions can be mathematically

defined as:

 D�(�)
= �V WXVY(�)	�ZZ [XZZ(�)	�Z\XZ(�)F(�)]^_

for i=1,2..m

(6)

Where `	denotes number of output neurons, XZ ,XZZ ,XV

are group weight matrices for first hidden layer, second

hidden layer and output layer, respectively. Linearization is

performed by differentiating the network transfer function

with respect to network synaptic weights (i.e.: deriving the

Jacobian). The Jacobian matrix EB|K��b(c�dbe can be

mathematically expressed as follows:

EB|K��b(c�dbe =

fg
gg
gg
gh
iD�iX�

iD�iXjiDjiX�
iDjiXj

⋯
iD�iX�liDjiX�l⋮ ⋱ ⋮iDoiX�

iDoiXj ⋯ iDoiX�lp
qq
qq
qq
r

 (7)

where �L denotes total number of synaptic weights

(including bias), s specifies number of input neurons, by

differentiating (6) with respect to different weight

groups	XZ ,XZZ ,XV and for i, l=1, 2 ... m get:

iD�iXVt = u

�V́ [XVY�ZZ\XZZ�Z(XZF)]^	�ZZ\XZZ�Z(XZF)], 	w		 = x
0,										#�ℎ%z�	{% (8)

iD�iXZZ = �V́ [XVY�ZZ\XZZ�Z(XZF)]^XVY�ZŹ \XZZ�Z(XZF)]�Z(XZF) (9)

iD�iXZ = �V́ [XVY�ZZ\XZZ�Z(XZF)]^XVY�ZŹ \XZZ�Z(XZF)]XZZ�Ź (XZF)F (10)

By augmenting (8), (9), and (10) in one matrix:

EB|K��b(c�dbe = J iDiXV 					
iD
iXZ 				

iD
iXZZM (11)

 EB|K��b(c�dbe is the m-by-�L measurement matrix of the

linearized model around the current weight estimate.

The EKF-based neural network training introduced by

Singhal and Wu is known as the global extended Kalman

filter (GEKF) [4]. In GEKF algorithm, all network weights

and biases are simultaneously processed and a second-order

information matrix correlating each pair of network weights

is involved and updated [2]. Consequently, the GEKF

computational complexity is |(`	�Lj) and storage

requirements of	|(�Lj) is required which is relatively high

compared to the standard BP algorithm.

Iϕ

oϕ
IIϕ

)(kWI)(kWII

)(1 ku

)(2 ku

)(kuz

)(1 ky

)(kym

)(kW
mo

)(
1

kWo

Fig. 3. Feed-forward multilayer perceptron with ‘z’ inputs, 2 hidden

layers and ‘m’ outputs

The DEKF-based neural network training algorithm

illustrated below represents the most general EKF-based

neural network training form. The GEKF represents a

special case of the DEKF by setting weight group number to

one. Neural network training using the DEKF algorithm can

be expressed as follows [13]:

		}B = J�(EB�)L	~B� 	EB� 		+ RB
�

�!�
M � (12)

�B� = ~B� 		EB� 		�� (13)

�B = $B − $�B (14)

��B��� = ��B� + �B� 	�B (15)

~B��� = ~B� − �B� 	\EB�]L	~B� + OB� (16)

where, the following are defined:

 � m-by-m matrix known as global scaling matrix (or

global conversion factor).

 C ��-by-m gradient matrix, it involves weights gradient

w.r.t every output node. 		α m-by-1 matrix representing innovation which is the

difference between desired (target) and actual

network output.

 P 					��-by-�� error covariance matrix.

 Q 		��-by-�� process covariance matrix.

 K ��-by-m Kalman gain matrix.

 $�B m-by-1 output estimate.

 $B m-by-1 target (desired) output.

 R m-by-m measurement noise covariance matrix.

The above DEKF training algorithm operates in a serial

mode fashion. In serial mode, one training sample is

involved in error calculation, gradients computation and

synaptic weight update. A problem known as recency

phenomenon arises with serial mode when training tends to

be influenced by the most recent samples [2]. Consequently,

a trained network fails to remember former input-output

mappings thus serial-mode training reduces training

performance. The recency phenomenon can be circumvented

using multi-streaming training technique, [14,15,16]. Multi-

streaming EKF training allows multiple training samples to

be batched and processed at the same time. It involves

training M multiple identical parallel neural networks using

1192

several training samples followed by a single weight update

using the entire M networks errors. The above algorithm can

be adjusted to multi-streaming mode by replacing m with M
x m [3].

IV. SMOOTH VARIABLE STRUCTURE FILTER (SVSF)

NEURAL NETWORK TRAINING

A. Introduction to the SVSF

In 2007, the smooth variable structure filter (SVSF) was

introduced based on variable structure theory and sliding

mode concepts [8]. It implements a switching gain to

converge the estimates to within a boundary of the true

states (i.e., existence subspace). In its present form, the

SVSF has been shown to be stable and robust to modeling

uncertainties and noise [17,18]. The SVSF method is model

based and may be applied to differentiable linear or

nonlinear dynamic equations. The original form of the SVSF

as presented in [8] did not include covariance derivations.

An augmented form of the SVSF was presented in [19],

which includes a full derivation for the filter. The basic

estimation concept of the SVSF is shown in the following

figure.

Fig. 4. SVSF estimation concept [8]

Further to an initial condition, the estimated state is forced

to within a region around the state trajectory referred to as

the existence subspace. The width of the existence subspace β is a function of the uncertain dynamics associated with the

inaccuracy of the internal model of the filter and varies with

time [8]. Typically this value is not exactly known but an

upper bound may be selected based on a priori knowledge.

Once the estimate enters the existence subspace, it is forced

into switching along the system state trajectory. A saturation

term may be used in this region to reduce the magnitude of

chattering and smooth out the result.

The effect of the smoothing boundary layer is shown in

Fig’s. 5 and 6. When the smoothing boundary layer is

defined larger than the existence subspace boundary, the

estimated state trajectory is smoothed. However, when the

smoothing boundary layer is too small, chattering remains

indicating the uncertainties have been underestimated

Fig. 5. The smoothing boundary layer concept, with smoothing effects [8]

Fig. 6. The smoothing boundary layer concept, with chattering effects [8].

B. SVSF-Based Neural Networks Training

The SVSF can be applied for training nonlinear feed-

forward neural networks through estimation of the network

weights. The SVSF has been adapted to train feed-forward

neural networks by visualizing the network as a filtering

problem. This process is iterative and may be summarized

by the following set of equations. The predicted state (or

neural network weight) estimates ��B��|B	and state error

covariances ~B��|B 	are first calculated respectively as

follows:

 ��B��|B = ���B|B + �FB (17)

~B��|B = �~B|B�L + OB (18)

Utilizing the predicted state estimates ��B��|B, the

corresponding predicted measurements ŝB��|B	 and

measurement errors %d���|� may be calculated:

 ŝB��|B = ���B��|B (19)

%d���|� = sB�� − ŝB��|B (20)

The SVSF gain is a function of: the a priori and a

posteriori measurement errors %d���|� and %d�|�, the

smoothing boundary layer widths �, the ‘SVSF’ memory or

convergence rate �, as well as the linear measurement matrix �. For the derivation of the SVSF gain �B��, refer to [8,19].

The SVSF gain is defined as a diagonal matrix such that:

1193

�B�� = ��$	*� �[�%d���|�� + � �%d�|��^
∘ {*� W%d���|�� _� $	*� [%d���|�^ �

(21)

This gain is used to calculate the updated state estimates ��B��|B�� as well as the updated state error covariance matrix

~B��|B��:

 ��B��|B�� = ��B��|B + �B��%d���|� (22)

~B��|B�� = (� − �B���)~B��|B(� − �B���)L+ �B��RB���B��L
(23)

Finally, the updated measurement estimate z�I��|I�� and

measurement errors e����|��� are calculated, and are used in

later iterations:

 ŝB��|B�� = ���B��|B�� (24)

%d���|��� = sB�� − ŝB��|B�� (25)

The estimation process is stable and convergent if the

following lemma is satisfied:

 |%B| > |%B��| (26)

The proof, as defined in [8], is such that if one defines ηI�� as a random but bounded amplitude such that �B�� ≤�, then |%B| > |%B��| applies to the phase where |%B| > �

that is defined by the reachability phase. Let a Lyapunov

function be defined such that GB�� = %B��j . Hence, the

estimation process is stable if (∆GB�� = %B��j − %Bj) < 0.

Furthermore, note that this stability condition is satisfied by

(17) [8,20].

V. EXPERIMENTAL RESULTS

A. Experimental Setup, Data Acquisition, and Analysis

The experimental setup involves a four stroke, 5.0 L, eight

cylinder, Coyote-VP engine. The test is performed at

FORD’s Powertrain Research and Development Centre

(PRDC). Vibration data has been recorded over four seconds

using a charge-type piezoelectric accelerometer. The

accelerometer has been attached to the engine lug in a

premeditated position in order to detect faults of interest.

Vibration data has been acquired using a PROSIG 5600 data

acquisition system with built-in 16-bit analog-to-digital

convertor card set at a sampling frequency of 32,768 Hz.

After data acquisition, the time domain data has been

converted offline to the crank angle domain as shown in Fig.

7 using the cam identification (CID) sensor signal.

Fig. 7. Baseline, Missing bearing, and Piston Chirp vibration data in the

crank angle domain

CID sensor is used to detect camshaft angle position. It’s a

non-contact sensor mounted on the engine and generate

sinusoidal pulses at specific angles of	90° − 120° − 60° −
120° − 60° − 180° − 90°per engine cycle. First sinusoidal

pulse zero-crossing indicates that the first cylinder is 10°
away from the top-dead-center (TDC). After transformation

to the crank angle domain, data resampling is performed so

that each engine cycle has the same number of points.

Two faults have been induced in the engine. They involve

missing bearing fault (MB) and piston chirp (PC) fault.

Vibration signals recorded from these two fault cases as well

as the baseline fault-free engine case are used as a training

data set for neural networks training.

B. SVSF, EKF, and BP Neural Networks Training

In this paper, fully connected feedforward multilayer

perceptron with 281 input neurons representing vibration

data points in the crank angle domain, two hidden layers

with four neurons each, and three output units is used. The

number of hidden layers and the number of hidden neurons

are selected using trial and error to find the optimal results

with minimal number of neurons. The trained network

should be able to classify engines to either one of the two

induced faults or to a baseline (fault-free) case as follows:

(1, 0, 0: Baseline engine), (0, 1, 0: Piston Chirp fault

detected), (0, 0, 1: Missing Bearing fault detected).

The test has been conducted through several runs, 30

engine cycles from each case stated before (i.e.: Baseline,

MB, and PC) resulting in 90 training sets. Trained neural

nets have been tested using 10 engine cycles from each case

resulting in 30 testing set. Tesing data has never been used

during network training.

0 100 200 300 400 500 600 700
-20

0

20

Crank angle(Degrees)

A
c
c
e
le

ra
ti

o
n

(m
/s

e
c
2
)

RUN 1 Accelerometer readings for Baseline data

0 100 200 300 400 500 600 700

-20

0

20

Crank angle(Degrees)

A
c
c
e
le

ra
ti

o
n

(m
/s

e
c
2
)

RUN 1 Accelerometer readings for Missing Bearing

0 100 200 300 400 500 600 700
-20

0

20

Crank angle(Degrees)

A
c
c
e
le

ra
ti

o
n

(m
/s

e
c
2
)

RUN 1 Accelerometer readings for Piston Chirp

1194

Fig. 8. Performance (Mean Squared Error) Variation vs. Number of

Epochs

As mentioned earlier, networks were trained using the

SVSF, EKF, batch first order, and second order BP

algorithms (Levenberg-Marquardt and Quasi-Newton). Fig.

8 shows root mean square error (RMSE) variation for the

first 17 epochs. The SVSF convergence properties

outperform the conventional first order BP algorithms and

it’s comparable with the EKF and second order BP. At the

sixth epoch, where training starts to stabilize, the SVSF

reaches the least RMSE of 0.0221 followed by the EKF with

RMSE of 0.0522. While at the 15
th

 epoch, the LM achieves

the least RMSE of		2.8% ¤ followed by the SVSF with

RMSE of 0.0065. Table I shows the trained networks RMSE

using several training techniques after the 6
th

 and the 15
th

epoch.

TABLE I

RMSE FOR VARIOUS TRAINING TECHNIQUES AFTER THE 6TH

AND THE 15TH
 EPOCH

Training technique RMSE, 6th RMSE, 15th

Batch First-order BP 0.4276 0.4052

Levenberg-Marquardt 0.1215 2.8% ¤
Quasi-Newton 0.1261 0.0119

EKF 0.0522 0.0180

SVSF 0.0221 0.0065

Trained networks have been tested using 30 data sets

(Fig.’s 9, 10, 11, 12 and 13), which demonstrate training and

testing classification results for trained networks using first-

order BP, second-order Levenberg-Marquardt, Quasi-

Newton, EKF, and SVSF, respectively. Further details

regarding the confusion matrix is attached in the Appendix.

The EKF and SVSF are used in a global form and in multi-

streaming fashion.

Fig. 9. Training and testing confusion matrices for batch first order BP

Fig. 10. Training and testing confusion matrices for Levenberg-

Marquardt

Training and testing results after 30 epochs are

summarized in Table II. The SVSF achieved the highest

testing percentage in both training and testing along with

Quasi-Newton followed by the EKF and Levenberg-

Marquardt, and finally BP.

TABLE II

OVERALL TRAINING AND TESTING CLASSIFICATION RESULTS

Training technique TRAINING % TESTING %

First-order BP 91.1 80

Levenberg-Marquardt 100 93.3

Quasi-Newton 100 96.7

EKF 100 93.3

SVSF 100 96.7

Fig. 11. Training and testing confusion matrices for Quasi-Newton

1195

Fig. 12. Training and testing confusion matrices for EKF

Fig. 13. Training and testing confusion matrices for SVSF

VI. CONCLUSION

In this research, the GSVSF has been successfully applied

to train multilayered feed-forward networks and to detect

and classify engine faults. The GSVSF demonstrated

stability guarantee, fast speed of convergence, and high

parameter estimation accuracy. The GSVSF training

performance outperforms first order back propagation

algorithms and it is comparable to the GEKF, and second

order back propagation algorithms in terms of number of

epochs and convergence speed. The GSVSF has shown

better performance compared to GEKF in terms of

generalization capability and in terms of RMSE variations

during training. Further work involves application of the

GSVSF to train recurrent multilayer perceptron (RMLP)

networks for system identification.

VII. APPENDIX

 The following figure demonstrates the confusion matrix in

more detail.

VIII. ACKNOWLEDGEMENT

The authors would like to thank Haran Arasaratnam

(McMaster) for his help during data acquisition and analysis.

IX. REFERENCES

[1] P. Werbos, "Backpropagation through time; what it does and how to

do it," Proceedings of the IEEE, vol. 78, pp. 1550–1560, 1990.

[2] Simon Haykin, Kalman filtering and neural networks,

04713699850471221546th ed., 2001.

[3] Felix Heimes, "Extended Kalman Filter Neural Network Training:

Experimental Results and Algorithm Improvements," IEEE, vol. 0-

7803-4778-1/98, 1998.

[4] S. Singhal and L. Wu, "Training multilayer perceptrons with the

extended Kalman algorithm," Advances in Neural Information
Processing Systems 1, pp. 133–140, 1989.

[5] G.V. Puskorius and L.A. Feldkamp, "Decoupled extended Kalman

filter training of feedforward layered networks," Proc. IJCNNÕ91 I,
Seattle, pp. 771-777, 1991.

[6] R.J. Williams, "Training recurrent networks using the extended

Kalman filter," Proc. IJCNN’92 IV, pp. 241-246, 1992.

[7] Pu Sun and Marko Kenneth, "Training recurrent neural networks for

very high performance with the extended Kalman algorithm,"

Intelligent Engineering Systems Through Artificial Neural Networks,
vol. 8, pp. 121-126, 1998.

[8] S. R. Habibi, "The Smooth Variable Structure Filter," Proceedings of
the IEEE, vol. 95, no. 5, pp. 1026-1059, 2007.

[9] S.R. Habibi and Burton R., "Parameter identification for a high-

performance hydrostatic actuation system using the variable structure

filter concept," Journal of Dynamic Systems, Measurement and
Control, Transactions of the ASME, vol. v 129, n 2, pp. 229-235.

[10] S. Wang, S. Habibi, and Burton R., "A smooth variable structure filter

for state estimation," Control and Intelligent Systems, vol. v 35, n 4,

pp. 386-393, 2007.

[11] B. D. O. Anderson and J. B. Moore, Optimal Filtering. Englewood

Cliffs: NJ: Prentice-Hall, 1979.

[12] Trebaticky Peter and Jiri Pospichal, "Neural Network Training with

Extended Kalman Filter Using Graphics Processing Unit," in ICANN,

2008, pp. 198-207.

[13] Youji Iiguni, Hideaki Sakai, and Hidekatsu Tokumaru, "A Real-Time

Learning Algorithm for a Multilayered Neural Network Based on the

Extended Kalman Filter," IEEE transaction on signal processing, vol.

Vol. 40, No. 4., April 1992.

[14] L.A. Feldkamp and G.V. Puskorius, "‘A signal processing framework

based on dynamic networks with application to problems in adaptation,

filtering and classification," in IEEE, 1998, pp. 2259-2277.

[15] Feldkamp L.A. and G.V. Puskorius, "Training controllers for

robustness: multi-stream DEKF," in IEEE international Conference on
Neural Networks, Orlando, 1994, pp. 2377-2382.

[16] Feldkamp L.A. and G.V. Puskorius, "Training of robust

neurocontrollers," in IEEE International Conference on Decision and
Control, Orlando, 1994, pp. 2754-2760.

[17] S. R. Habibi and R. Burton, "The Variable Structure Filter," Journal of
Dynamic Systems, Measurement, and Control (ASME), vol. 125, pp.

287-293, September 2003.

[18] S. R. Habibi and R. Burton, "Parameter Identification for a High

Performance Hydrostatic Actuation System using the Variable

Structure Filter Concept," ASME Journal of Dynamic Systems,
Measurement, and Control, 2007.

[19] S. A. Gadsden and S. R. Habibi, "A New Form of the Smooth Variable

Structure Filter with a Covariance Derivation," in IEEE Conference on
Decision and Control, Atlanta, Georgia, 2010.

[20] P. A. Cook, Nonlinear Dynamical Systems. Englewood Cliffs, NJ,

USA: Prentice-Hall, 1986.

1196

