Derivation of an Optimal

Boundary Layer Width

for the Smooth Variable Structure Filter

S. Andrew Gadsden, Mohammed El Sayed, and SadihBibi

Abstract—In this paper, an augmented form of the smooth
variable structure filter (SVSF) is proposed. The §¥SF is a
state estimation strategy based on variable structe and
sliding mode concepts. It uses a smoothing boundaty remove
chattering (excessive switching along an estimatedtate
trajectory). In its current form, the SVSF definesthe boundary
layer by an upper-bound on the uncertainties presenin the
estimation process (i.e., modeling errors, magnitud of noise,
etc.). This is a conservative approach as one woulik limiting
the gain by assuming a larger smoothing boundary $ispace
than what is necessary. A more well-defined boundgrlayer
will yield more accurate estimates. This paper devies a
solution for an optimal boundary layer width by minimizing
the trace of the a posteriori covariance matrix. Tle results of
the derivation are simulated on a linear mechanicasystem for
the purposes of control, and compared with the Kalran filter.

. INTRODUCTION

The extended Kalman filter (EKF) was introduced for
nonlinear systems and measurements [2]. Essentiadly
EKF works in a similar fashion to the KF, but regsi
linearization (i.e., first-order Taylor series) [3]his comes
at a cost of optimality. The act of truncating thigher-
orders through the process of linearization removes
information on how the system behaves or the mappin
the measurements, thus introducing uncertaintieshin
estimation process. For mild nonlinearities, theFEKas
been shown to work very well. However, the EKFhswn
to fail in cases where the model or measurement® ha
significant nonlinearities [4].

Sliding mode control and estimation techniques Haeen
around for quite a few decades, and are mainly lpoplue
to their relative ease of implementation and rofess to
modeling uncertainties [5,6]. In a typical slidingode

TATE and parameter estimation theory is particylarlcontrol scenario, one utilizes a discontinuous cHifitg gain

important for the successful control of mechaniaadl
electrical systems. In most control scenarios, mber of
states may be required, however direct observations
measurements may not always be available. Estimédims
such as filters can be used to extract informatonthe
states from the system. The term filter is usecabse one
needs to remove unwanted signals such as noise thiem
measurements, in order to obtain an accurate dstiofdhe
states. Clearly, for the successful control of atew,
accurate knowledge of the states is critical.

The most popular and well-studied estimation metisod
the Kalman filter (KF). Introduced in the early D2§ it
yields a statistically optimal solution for lineastimation
problems in the presence of Gaussian noise [1]. Kihes
formulated in a predictor-corrector manner, suct thne
first predicts the state estimates using knowled§ehe
system model. These estimates are termed a prieaning
‘prior to’ knowledge of the observations. A corieat term
is then added based on the innovation (also cafisidiuals

to maintain the states along some desired traje¢fdr This
plane is quite often referred to as a sliding stefan which
the purpose is to keep the state values alongsthisce by
minimizing the state errors. Ideally, if the statdue is off
or away from the surface, a switching gain wouldibed to
push the state towards the sliding surface. The gsi
calculated based on the proximity of the statesnfra
switching hyperplane. Once on the surface, theestalide
along the surface referred to as a sliding mode THe
discontinuous switching brings an inherent amouft
stability to the control or estimation strategy, ilwhalso
introducing excessive chattering (from the switghirmhese
sliding mode concepts are based on variable steictu
control, in which one alters the dynamics of a eysby the
introduction of high-frequency switching [5].

A smoothing boundary layer may be introduced alttreg
sliding surface in order to saturate and smooth thet
chattering within the boundary region. In the KIReamay
derive the optimal gain (to be applied on taepriori

or measurement errors), thus forming the updateda or€stimate) by taking the partial derivative of theosteriori

posteriori (meaning ‘subsequent to’ the observalicstate
estimates.
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covariance (trace) with respect to the gain [Z[8 trace of
the covariance is taken because it representstate arror
vector. Similarly, one can solve for the ‘optimabundary
layer widths for the SVSF by performing the sam&oac
but with respect to the smoothing boundary layantg.

II. ESTIMATION STRATEGIES

Consider a linear dynamic system defined by ushey t
following two equations:



(1)
)

Xk+1 — Axk + Buk + Wi
Zgr1 = HXpyq + Vs

The Appendix contains a list of nomenclature. this goal
of any estimation strategy to obtain the best [ssitate
estimate ¥ by minimizing the effects of modeling

uncertainties (typically idl or H), as well as the system and

measurement noisew @ndv, respectively).

A. Kalman Filter

The following five equations form the core of thé-K
algorithm, and are used in an iterative fashiorudfign (3)

defines thea priori estimate based on the system definition,

and (4) is the corresponding state error covarianag&ix.
The Kalman gain is defined by (5), and is usedpdate the
state estimate as shown in (6). Th@osteriori state error
covariance matrix is then calculated by (7).

Rk = Afkuc + By )

Piyqe = HPpeH™ + Qg 4)

Kisr = PesapeHT [HPeayH + Ricas] (5)
Rerjk+1 = Tnaqpe + Kk+1[Zk+1 - ka+1|k] (6)
Priijisr = U — K1 H]Pryrjie (7)

A number of different methods have extended thssatal
KF to nonlinear systems, with the most popular beig
the EKF [4,9]. The EKF is conceptually similar toetKF;
however, the nonlinear system is linearized acogrdo its
Jacobian. This linearization process introducesramties
that can sometimes cause instability [9].

B. Smooth Variable Sructure Filter
The variable structure filter (VSF) was first prepd in

/1‘— System

Amplitude 7 P giing State Trajectory
A \
Estimated State
Trajectory
Existence
F Subspace
/ -
Initial Value of the
Estimated States
Time

Fig. 1. The smooth variable structure filter estiora concept is
shown in the above figure [11].

The SVSF method is model based and applies
differentiable linear or nonlinear dynamic equasiomhe
estimation process is iterative and may be sumimcrizy
the following set of equations (for a linear cohtmar
estimation problem). Like the KF, the system madeised
to calculatea priori state and measurement estimates.
corrective term, referred to as the SVSF gain,aisutated
as a function of the error in the predicted outpnd a
smoothing boundary layer. This gain is then usedpdate
the state estimates. Note that the estimation psoisestable
due to the gain calculation of (11), which keepsdktimates
bounded [11].

The switching found within the existence subspage i
smoothed out by using the saturation term of (dhjch is
defined by thea priori output error and some predetermined
smoothing boundary layer width. In its current forthe
boundary layer width is defined by using the uppeund

to

2003, and was introduced as a new type of predictognowledge of the uncertainties and noise levelswéier,

corrector estimator based on the sliding mode qand®].
It is a type of sliding mode estimator, where gawitching
is used to ensure that the estimates converge ttuinwa
boundary of the true state (i.e., existence sulegpakhe
smooth variable structure filter (SVSF) was lateriekd
from the VSF, and uses a much simpler and less leomp
gain calculation [11]. In its present form, the $VS stable
and robust to modeling uncertainties and noiseergian

upper bound on the level of un-modeled dynamics or

knowledge of the magnitude of noise.

The basic estimation concept of the SVSF is showthe
following figure. An initial estimate of the statés made
based on probability distributions or designer klzage.
Through the use of the SVSF gain, the estimatee syl
be forced to within a region around the state ttajgy
referred to as the existence subspace. Once tlmatesst
enters the existence subspace, it is forced intibclsivg
along the system state trajectory. A saturatiomtaray be
used in this region to reduce the magnitude ofteniag and

an equation for the boundary layer width can bevddrin
the following section, to make it less conservative

Rir1pe = AR + Buy, (8)
Zgrae = HXqqpk 9)
C2psa = Zk+1 ~ Ll (20)
ezk+1|k
Kk+1 = ( eZk+1|k + V ezklk ) ° Sat (T) (11)
Rerapie+r = Xerape + Kiewa (12)
€Zkraikrr — ZhA1 T Hjc\k+1|k+1 (13)

Two critical variables in the SVSF estimation prsxare
the a priori anda posteriori output error estimates, defined
by (10) and (13), respectively.

Ill. DERIVATION OF THEBOUNDARY LAYER

It is typically assumed that a boundary layer exisir
each state trajectory. For the case when therefeaver

smooths-out the result. The SVSF is robust to dardies, measurements than states, one needs to implement th

making this strategy an attractive method for adntr \oqyced order form of the SVSF [11]. This allows th
problems when not all of the dynamics are well kedi creation of a full measurement matrix, typicallytire form



of an identity. Consequently, each measurement eaio be a(tmce[—Kk+1Pk+1|k])

mapped to its corresponding state boundary layer.tlre K11 = —PkT+1|k (29)
case when there are more measurements than stages, T T
system output (or measurements) can be mappedeto tﬁ(tmce[_P"““‘Kk+1]) _ d(trace| Kk+1Pk+1|k])
states. Therefore, it is assumed that the measuatenage OKje41 0K+ (26)
completely observable. = ~Prsaik
From [12], the revised SVSF gain and theposteriori d(trace[Kis1Pes1xKir1]) oK. P @7)
covariance (with an identity measurement matrixp ar 0Ky1q T ATk k Lk
defined respectively as follows: d(trace[Kys1Re1KFi1])
K, = 2Ky +1Ri+1 (28)
+1
Ki+1 = diag [( €zs1)k t+y ezk|k|)
o sat (1/_)'16 )] diag (e )-1 (15) Combining (24) through (28) yields a solution fbe ffirst
Zieralk ik partial derivative in (22), as follows:
Pk+1|k+1 =(- Kk+1)Pk+1|k(1 - Kk+1)T (16)

+ Kir1Ries 1K1

A solution of the ‘optimal’ value may be found byi\dng
for ¢ from the following:

d(trace[Pyi1jk+1])
o

=0 (17)

Essentially, one needs to substitute (15) into ,(H6)d
(17). Prior to doing this, consider the followingfihitions to
simplify the process of determining a solution; let

(18)
(19)

A= ezk+1|k +y ezk|k|
aob =diag(b)a = bha

Also, consider the following rules for solving palt
derivatives with respect to a matrix [13]:

d(trace[BCBT
For D symmetric: % = 2BC (20)
d(trace[BC
For D not symmetric: d(trace[BCY) =CT (21)

0B

According to the chain rule [14], one may be alde t

rewrite (17) as follows:

d(trace[Pesasa]) — 9(trace[Pesijpsa]) 0Kies

=0 22
oy 0Kj11 o (e2)

Each partial derivative in (22) will be solved neXhe
first term is solved by starting with an expansidr§16):

Pisajier1 = Peraje = K1 Pesaje = Pes1jeKian 23
+Kis1PesrieKirr + Kiv1 Res1 Kigen

Next, each term in (23) will be solved, as per @0 (21):

a(trace[Pk+1|k+1])

=0 (24)
0Kjers

a(trace[Pk+1|k+1]) _ T
9K = _Pk+1|k - Pk+1|k
k+1

+2K; 41 Pesaji + 2K 1 Rin

(29)

Due to the fact that the state error covariancerima
symmetric, (29) may be simplified further:

6(trace[Pk+1|k+1])

30
0Kj41 (30)

= —2Pgyqpk + 2Kk 41 (Pk+1|k + Riy1)

It is important to note that the Kalman gain may be
obtained by solving forK,,, in the above equation (by
setting it to zero) [8]. The second partial derivatin (22)
will now be solved. Note that the region of interés the
value of the boundary layer width is inside theusstion
term of (15). Furthermore, using definitions (18)da(19),
the gain may be rewritten as:

. T—1= . -
Ky+1 = diag (1»[}_ eZk+1|kA) diag (ezk+1lk) (31)
Simplifying (31) yields:
Keon = 974 (32)

Also, note the following two properties for matrix
derivatives [14], assuming that matiixis invertible and is

some parameter of interest:

9DE _dD . ,9E (33)
61:1 ot at
oD~ oD
=—_p1_p-1 34
- D™D (34)
From (32) and (33), one has:

— _
Wi 0V 5 5194 (35)

0y 0y o

Where (35) simplifies to the following:



0Ky 0P~
o = ov A (36)
Utilizing (34), (36) can be written as:
iws _ 0P
Gy = Vg (37)

Finally, the second term in (22) may be found b

simplifying (37), such that:

aI<k+1 _ T2
T (38)
Substituting (30) and (38) into (22) yields:
[_zpk+1|k + 2Kk+1(Pk+1|k + Ry |(=9p2AH) =0 (39)

Recall that the measurement innovation covariandth (
an identity for the measurement matrix) is defibgd?2]:

Sk1 = Pryae + Ria (40)
Such that (39) may be written as:
[—2Psajic + 2Kis1San | (= 724) = 0 (41)
Simplifying (41) further yields:
[_Pk+1|k + K111 |A=0 (42)
Substituting (32) into (42) and expanding furtheeg:
—Prsajk + Y A(Pryaje + Risr) = 0 (43)

Now what remains is to simplify (43) and solve tbe

The proposed boundary layer equation (46) is faonie
a function of the a priori state error covariance,
measurement covariancgpriori and previous posteriori
measurement errors, and the convergence rate o SVS
‘memory’. It appears that the width of the boundkyer is
therefore directly related to the level of modeling
uncertainties (by virtue of the errors) and measam
noise. There is no need to define the boundary laygths
)gs before, as they now may be solved directly ah ¢ime
step. A revised SVSF estimation process may
summarized as follows. Note that [12] describes
covariance derivations in detail.

be
the

Rk = Afkuc + By 47)
Peiije = APy AT + Qi (48)
ezk+1|k = Zgy1 — H£k+1|k (49)
1
Yrs1 = (Pesagic + Rir1) Pesji ( ez,m‘kl +y ezk|k|) (50)
€2rs1)k
Ky = ( €2kr1k +y €2kik ) osat (m) (51)
Rerjk+1 = X1 T K (52)
Pk+1|k+1 =(- Kk+1)Pk+1|k(1 - Kk+1)T (53)
+ Kk+11ik+1KkT+1
ezk+1|k+1 =Zgy1 — H£k+l|k+1 (54)

IV. SIMULATION EXAMPLE

In this section, an electrohydrostatic actuator A:Hs
simulated. The system is based on an actual predbyilt
for control experimentation [11,15]. The purpose this
simulation is to demonstrate that the new formhef 8VSF
is numerically stable, and provides an alternativethe
Kalman filter (KF) for systems when modeling uneertties
are present. However, recall that for known linggstems,
the KF will yield the optimal solution (i.e., besttimate).

The EHA is a third order system with state variable
related to its position, velocity, and acceleratidh is
assumed that all three states have measuremenisatsd

boundary layer widthp. This is accomplished by isolating with them (i.e., full measurement matrix). The ihpo the

they term:

_ = 1
P! = Peyajie[A(Pesaje + Ricr) ] (44)

Finally, solving (44) yields an equation for a adnle
boundary layer (to be calculated at each time siepd
matrix form:

1

— 1
Yisr = diag Py A(Pesaji + Ricer) ] (45)

Furthermore, one can define a simplified versior(4%)
as follows:

ezk|k|)

1
Yrs1 = (Pes1jk + Rics1)Prsji ( ezkﬂ‘kl +y (46)

system is a random normal distribution with magphetd. A
step change is inserted into the input of the sydtalf-way
through the duration. The sample time of the systet001
seconds. The entire EHA system description mayooed
in [15], however for the purpose of this paper, tigcrete
state-space model of the system is simply defisefdlbows:

1 0.001 0 0
Xpy1 = 0 1 0.001 [x, +| 0 Ju (55)
—557.02 —28.616 0.9418 557.02

The initial state values are set to zero. The systad
measurement noises are considered to be Gausstan wi
maximum amplitude corresponding to 5 to 10% error
(Wyax =001 01 1]7 and Vyg =[01 1 10]7).
The initial state error covariance, system noiseadance,
and measurement noise covariance are defined tasggc
as follows:



Pyjo =100Q (56)

Consider another case where there are modelingserro

Q = 10diag(Wyay) (57) and the filter model is defined incorrectly as doik:
R = 10diag Vyax) (58)
1 0001 0 0
For the SVSF estimation process, the boundary layer ¥k+1 =| 0 1 0.001 |x,+f 0 ]”k (59)
—240 -28 0.9418 557.02

widths were initialized asy,=[1 10 100]". The
boundary widths were initialized based on soaeriori

knowledge of the noise; however, their values aevery
sensitive to the success of the estimation proddss.main
results of applying the KF and the new SVSF onERA

problem are shown in the following figure. This uig
shows the true position of the EHA with the corgasting
estimates. The estimation results of both filteesralatively
the same. It is important to remind the reader thatKF is
an optimal strategy given white noise and in theeabe of
uncertainties, so at the very best the SVSF cap witch
the estimation accuracy.

EHA: Position Estimates

Pos (m)

R | | . T
0 02 04 06 0.8 1
Time (sec)

Fig. 2. EHA simulation results with the Kalman ditand the
proposed smooth variable structure filter. The ltssare nearly
the same; hence the lines are difficult to distislgu

The velocity and acceleration estimates were rkadbtithe

same as those shown in the above figure (and were t

omitted for space constraints). The RMSE resultsinhing
the simulation are as follows:

TABLE |
RMSESMULATION RESULTS
Filter Position Velocity Acceleration
(m) (m/s) (m/<)
KF 0.0233 0.2370 2.4415
SVSF 0.0246 0.2381 2.4422

As shown in the above table, the KF provides thienad
result. However, the new form of the SVSF yieldeear-
optimal estimate of the states. Although the presiform of
the SVSF yielded relatively good results, it wasl siot
optimal [12]. An advantage of using the new formtioé
SVSF over the KF is its robustness to modelingrersmd
uncertainties.

The following figure shows the results of applyihg KF
and the new SVSF on the EHA problem with an inctrre
system model introduced at 0.5 seconds, as deffin€d9).

EHA: Position Estimates
25 T T
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Fig. 3. EHA simulation results with modeling uneanties
introduced at 0.5 seconds. Notice how the KF filsyield a
reasonable estimate.

The RMSE results of running the simulation with
modeling uncertainties are as follows:

TABLE Il
RMSESIMULATION RESULTS
Filter Position Velocity Acceleration
(m) (m/s) (m/s)
KF 0.4036 0.5018 2.7031
SVSF 0.0234 0.2276 2.7125

For this case, as shown in the previous table, SM8F
provides the best result in terms of estimatiororerThe
position error for the KF increased by roughly %) and
the velocity error increased by about 200%. The etind
errors were introduced in the acceleration terrthefsystem
model described by (59). Both the KF and SVSF wdlthe
same acceleration estimate. However, the SVSF redai
stable and near-optimal for the first two statesjke the
KF. The following figure shows the boundary layeidth
over-time for the acceleration estimate. Notice hthe
boundary layer increases at the inception of theletiog
uncertainties at 0.5 seconds. This compensatesthier
increased errors and uncertainties.



Optimal Boundary Layer Width
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Fig. 4. The acceleration boundary layer width isveh above.
Notice how the width increases at the introductidrmodeling
uncertainties.

V. CONCLUSIONS
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