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ABSTRACT 

The most popular and well-studied estimation method is the Kalman filter (KF), which was introduced in the 
1960s. It yields a statistically optimal solution for linear estimation problems. The smooth variable structure 
filter (SVSF) is a relatively new estimation strategy based on sliding mode theory, and has been shown to be 
robust to modeling uncertainties. The SVSF makes use of an existence subspace and of a smoothing boundary 
layer to keep the estimates bounded within a region of the true state trajectory. This article discusses the 
application of two estimation strategies (the KF and the SVSF) on a multi-target tracking problem. 
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1. INTRODUCTION 

In target tracking applications, one may be concerned with surveillance, guidance, obstacle avoidance or 
tracking a target given some measurements [1]. In a typical scenario, sensors provide a signal that is processed 
and output as a measurement. These measurements are related to the target state, and are typically noise-
corrupted observations [1]. The target state usually consists of kinematic information such as position, velocity, 
and acceleration. The measurements are processed in order to form and maintain tracks, which are a sequence of 
target state estimates that vary with time [1]. Multiple targets and measurements may yield multiple tracks. 
Gating and data association techniques help classify the source of measurements, and help associate 
measurements to the appropriate track [1]. Typically these gating techniques help to avoid extraneous 
measurements which would otherwise cause the estimation process to go unstable and fail. A tracking filter is 
used in a recursive manner to carry out the target state estimation. 

State and parameter estimation techniques are quite useful for systems when not all of the dynamics are 
known. Estimation theory involves finding a value of some parameter of interest, which affects the output of the 
system, often in the presence of inaccurate or uncertain observations [2]. States are representative of the 
dynamics of a system. For example, for space vehicles, inertial measuring units may be used to calculate the 
acceleration. However, since their alignment deteriorates over time, calculating the acceleration by other means 
(i.e., state estimation) may be desirable [3]. The purpose of estimation, as described by Bar-Shalom et al. in [2], 
can be one of many reasons: determination of planet orbit parameters, statistical inference, aircraft traffic control 
system (i.e., tracking), use in control plants with uncertainties (i.e., parameter identification or state estimation), 
determination of model parameters (i.e., system identification), message retrieval from noisy signals (i.e., 
communication theory), and also signal and image processing. A filter may be used to estimate the state of a 
dynamic system, whether linear or nonlinear. The word filter is used because when finding the best estimate, 
one has to filter out the noisy signals or uncertain observations [3]. 

2. THE KALMAN FILTER 

In the estimation world, even after 50 years, the Kalman filter (KF) method remains the most studied and one of 
the most popular tools used to estimate states from systems [2,4,5]. It may be applied on linear dynamic systems 
in the presence of Gaussian white noise, and provides an elegant and statistically optimal solution by 
minimizing the mean-squared estimation error. The following five equations form the core of the KF algorithm, 
and are used in an iterative fashion. Equations (2.1) and (2.2) define the a priori state estimate ݔො௞ାଵ|௞ based on 
knowledge of the system ܣ and previous state estimate ݔො௞|௞, and the corresponding state error covariance matrix 

௞ܲାଵ|௞, respectively. 

ො௞ାଵ|௞ݔ ൌ ො௞|௞ݔܣ ൅  ௞ (2.1)ݑܤ

௞ܲାଵ|௞ ൌ ܥ ௞ܲ|௞்ܥ ൅ ܳ௞ (2.2) 



The Kalman gain ܭ௞ାଵ is defined by (2.3), and is used to update the state estimate ݔො௞ାଵ|௞ାଵ as shown 
in (2.4). The gain makes use of an innovation covariance ܵ௞ାଵ, which is defined as the inverse term found in 
(2.3). 

௞ାଵܭ ൌ ௞ܲାଵ|௞ܥൣ்ܥ ௞ܲାଵ|௞்ܥ ൅ ܴ௞ାଵ൧
ିଵ

 (2.3) 

ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅ ௞ାଵݖ௞ାଵൣܭ െ  ො௞ାଵ|௞൧ (2.4)ݔܥ

The a posteriori state error covariance matrix ௞ܲାଵ|௞ାଵ is then calculated by (2.5), and is used 
iteratively, as per (2.2). 

௞ܲାଵ|௞ାଵ ൌ ሾܫ െ ሿܥ௞ାଵܭ ௞ܲାଵ|௞ (2.5) 

Equations (2.1) – (2.5) are used in an iterative fashion, and represent the KF estimation process for 
linear systems. A number of different methods have extended the classical KF to nonlinear systems, with the 
most popular and simplest method being the extended Kalman filter (EKF) [6,7]. The EKF is conceptually 
similar to the KF; however, the nonlinear system is linearized according to its Jacobian. Consider the following 
nonlinear system and measurement equations: 

௞ାଵݔ ൌ ݂ሺݔ௞, ௞ሻݑ ൅ ௞ݓ (2.6) 
௞ାଵݖ ൌ ݄ሺݔ௞ାଵሻ ൅  ௞ାଵ (2.7)ݒ

Where ݂ and ݄ represent the nonlinear system and measurement models, respectively. It is possible to 
use the nonlinear functions ݂ and ݄ to predict the state estimates and the measurements. However, these 
functions may not be directly used to calculate the covariance values. The partial derivatives are used to 
compute linearized system and measurement matrices ܨ and ܪ, respectively found as follows [8]: 

௞ܨ ൌ
߲݂
ݔ߲
ฬ
௫ොೖ|ೖ,௨ೖ

 (2.8) 

௞ାଵܪ ൌ
߲݄
ݔ߲
ฬ
௫ොೖశభ|ೖ

 (2.9) 

Equations (2.8) and (2.9) essentially linearize the nonlinear system or measurement functions around 
the current state estimate [9]. This comes at a loss of optimality, as the KF gain is no longer considered to be the 
best solution to the estimation problem [10]. The EKF process may be summarized by the following seven 
equations. The state estimate ݔො௞ାଵ|௞ is predicted using the nonlinear system model (2.10), and the corresponding 
state error covariance matrix ௞ܲାଵ|௞ is found (2.11). 

ො௞ାଵ|௞ݔ ൌ ݂൫ݔො௞|௞,  ௞൯ (2.10)ݑ

௞ܲାଵ|௞ ൌ ௞ܨ ௞ܲ|௞ܨ௞
் ൅ ܳ௞ (2.11) 

The measurement error (or innovation) ݕ෤௞ାଵ is then found (2.12), based on the nonlinear measurement 
model ݄, followed by the measurement error (or innovation) covariance matrix ܵ௞ାଵ (2.13). 

෤௞ାଵݕ ൌ ௞ାଵݖ െ ݄൫ݔො௞ାଵ|௞൯ (2.12) 
ܵ௞ାଵ ൌ ௞ାଵܪ ௞ܲାଵ|௞ܪ௞ାଵ

் ൅ ܴ௞ାଵ (2.13) 

Next, the near-optimal KF gain ܭ௞ାଵ is calculated (2.14). This gain is then used in conjunction with the 
predicted state estimate ݔො௞ାଵ and the measurement error ݕ෤௞ାଵ to update the state estimate (2.15). 

௞ାଵܭ ൌ ௞ܲାଵ|௞ܪ௞ାଵ
் ܵ௞ାଵ

ିଵ  (2.14) 
ො௞ାଵ|௞ାଵݔ ൌ ො௞ାଵ|௞ݔ ൅  ෤௞ାଵ (2.15)ݕ௞ାଵܭ

Finally, the state error covariance matrix is updated (2.16). 

௞ܲାଵ|௞ାଵ ൌ ሺܫ െ ௞ାଵሻܪ௞ାଵܭ ௞ܲାଵ|௞ (2.16) 
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 ሺܽሻ Defines a saturation of the term aݐܽݏ
 SVSF ‘convergence’ or memory parameter ߛ
߰ SVSF boundary layer width 
|ܽ| Absolute value of some parameter a 
 ሼ∙ሽ Expectation of some vector or valueܧ
ܶ Transpose of some vector or matrix 
^ Estimated vector or values 

݇ ൅ 1|݇ A priori time step (i.e., before applied gain) 
݇ ൅ 1|݇ ൅ 1 A posteriori time step (i.e., after update) 
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