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ABSTRACT

An information filter is one that propagates thgdrse of
the state error covariance, which is used in ttaestnd
parameter estimation process. The term ‘informai®ibased
on the Cramer-Rao lower bound (CRLB), which stdtes the
mean square error of an estimator cannot be smnihldar an
amount based on its corresponding likelihood fumctiThe
most common information filter (IF) is derived bdsen the
inverse of the Kalman filter (KF) covariance. Thimper
introduces preliminary work completed on developitige
information form of the smooth variable structuitef (SVSF).
The SVSF is a relatively new type of predictor-eator
estimator based on sliding mode concepts. A comegia
derivation was recently proposed for the SVSF, dhelh now
the information form can be finalized (i.e., SVSIFhe paper
summarizes the recursive equations used in the tivaoiable
structure information filter.

INTRODUCTION

In the estimation field, filters may be classifiad either
covariance or information filters. A covariancesdil is the most
common type of filter used for estimating the <sater
parameters of a system. The most popular covarifibee is
the Kalman filter[1,2]. It provides an elegant and statistically
optimal solution for linear dynamic systems in giresence of
Gaussian white noigg,1]. However, the optimality of the KF
comes at a price of stability and robustness. Theaksumes
that the system model is known and is linear, tysesn and
measurement noises are white, and the states hatial i
conditions that are modeled as random variablek tiiown
means and varianc¢4,5]. However, the previous assumptions
do not always hold in real applications, particiylaan exact
knowledge of the system equations. If one of tlesseimptions
is violated, the KF performance may yield suboptima
estimations and can even become unstable. Furtheyriwe
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KF is sensitive to computer precision and the caxipf of
certain calculations (i.e., matrix inversiofi$).

An information filter is one that propagates thgerse of
the state error covariance, instead of using themab
covariance in the gain calculation like with the IK&]. The
term ‘information’ is based on the Cramer-Rao loweund
(CRLB), where the Fisher information matrix (FIMk i
calculated as the inverse of the covariance md#]x The
CRLB states that the mean square error of an estincannot
be smaller than an amount based on its correspgndin
likelihood function[4]. A filter is considered efficient if its
variance is equal to the CRLB. There are certairaathges to
using the information formulation of a filter. Fexample, if no
prior information is available, one may initializéhe
information matrix using zeros such that no biaistexn the a
priori estimatg 1]. Furthermore, the observational update of the
information matrix is more robust than the covacmurfilter
form, which makes it a more attractive method whamd-off
errors may be an issyd]. It is well known that the largest
complaint to information filtering is the lack ofhpsical
understanding that ‘information states’ may briktpwever,
one may invert the information matrix such that ste&tes may
be interpreted physicalfd].

REVIEW OF ESTIMATION METHODS

a) Kalman Filter

As previously mentioned and presented[T), the KF
provides an elegant and statistically optimal sotufor linear
dynamic systems in the presence of Gaussian whisenlt is
an estimation method that utilizes measurementsatip
related to the states or parameters of the systants,error
covariance matrices, to generate a gain referredastothe
Kalman gain. This gain is applied to the a pridates estimate,
thus creating an a posteriori (i.e., updated) eg#Bmof the
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states. The estimation process is iterative andirages in a
predictor-corrector fashion while maintaining a tistically
minimal state error covariance matrix (for linegstems).

A typical linear dynamic system and measurementaho
are defined by using the following two equatiorspectively:

(1)
)

Please refer to the end of the paper for a ligbarfinent
nomenclature and variable definitions. The follogvirfive
equations form the core of the KF algorithm, arel @sed in an
iterative fashion. Equation (3) defines the a priestimate
based on the system definition, and (4) is theespwnding
state error covariance matrix. The Kalman gaindfingéd by
(5), and is used to update the state estimate shoyd). The a
posteriori state error covariance matrix is caledady (7).

Xk+1 — Axk + Buk + Wi
Zyr1 = HXpyq + Vs

Rk = Aflqk + By (3

Pes1je = HPyH™ + Qy 4)

Kisr = PeracH" [HPeraH™ + Risa ] (5)
Rr1jk+1 = T + Kk+1[zk+1 - ka+1|k] (6)
Prp1jker = U — Kig1 H] Py (7

The effects due to mismodeling can be negativehcdbs
the Kalman gain and covariance matrix calculaticar®
dependent on the system and measurement
Furthermore, the performance and stability of therkay also
be dependent on the definition of the process asasorement
noise, made through covariance matri¢és8]. Overlooked
nonlinearities in the system may also cause thedBecome
unstable. The EKF may be used for nonlinear systémss
described by the first two equations). It is coriaafly similar
to the iterative KF process, described above. Toelimear
system and measurement matrices are linearizeddiegato
its corresponding Jacobian, which is a first-ordeartial
derivative. This linearization can sometimes cansgbilities
when implementing the EKFL]. The unscented Kalman filter
(UKF) is able to handle a higher order of the nosdirities by
using a set of deterministically chosen sample tgofie.,
sigma points) which are applied on a transformasiach that it
captures the true mean and covariance up to tlemdesrder of
nonlinearity[9]. A great deal of research has been published on
these filters, including on their robustness andnetical
stability[10,11,12,13,14,15].

b) Information Filter

The main information filter (IF) used in literaturs based
on the KF, where one utilizes the inverse of theac@ance
matrices. The information states are defined astfoms of the
covariance inverses and the true state vectofs|las/s [3]:

(8)
9)

~ _ p-1 =z
Ar+1)k = PrripeXe+1ie

~ _ p-1 o
Ar+1)k+1 = Prrrjres1Xr+1ik+1

Applying the matrix inversion lemma to (4) and gi¢lds
the corresponding information matrices, as preseimtg3]:

Ptk =[1—A,](A)TP R A™? (10)
Pk_+11|k+1 = Pk_+11|k + HRELHT (11)
Where:
_ _ _ _ _ _ -1
Ay = A DTPRAT (A PA™ + Qitd] (12)

It has been shown already in literature that tleng
associated with the IF (simplified) is as folloj@®5]:

KIFk+1 = APk_-&1|k+1HRI;i1 (13)

Using the above gain and information matrices, oray
be able to determine (refer [8,6]) the predicted and updated
information vectors used by the information filtexspectively:

Qs = |1 — Ap|AT Qe

A~ A -1
Ar1jk+1 = Qrvre T HRix 12k

(14)
(15)

Equations (10) through (15) constitute the maimiaas
used in the information filter. Furthermore, natattthe actual
inverses do not have to be calculated, as thesstatesolved in
a recursive manner.

matrices.

¢) Smooth Variable Structure Filter

As presented irf7], sliding mode control and estimation
techniques have been around for quite a few decaaesare
mainly popular due to their relative ease of impdamation and
robustness to modeling uncertaintigs,17]. In a typical
sliding mode control scenario, one utilizes a digitwous
switching plane along some desired trajec{d§]. This plane
is quite often referred to as a sliding surfacewinich the
purpose is to keep the state values along thisasairby
minimizing the state errors (between the desirapbt¢tory and
the estimated or actual values). Ideally, if tregestvalue is off
or away from the surface, a switching gain wouldused to
push the state towards the sliding surface. Oncen ughe
surface, the motion of the system as the statde sliong the
surface is called a sliding modg8]. The discontinuous
switching brings an inherent amount of stabilitytihe control
or estimation strategy, while also introducing essiee
chattering (i.e., high-frequency switching) whichayn be
undesirable in control since it may excite un-medel
dynamics. A boundary layer may be introduced aldhg
sliding surface in order to saturate and smooth the
chattering within the boundary region. These stidimode
concepts are based on variable structure contrakhich one
alters the nonlinear dynamics of a system by theduction of
high-frequency switchinfl6].

The variable structure filter (VSF) was first poged in
2003, and was introduced as a new type of predodmector
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estimator based on sliding mode concdg8. It is a type of
sliding mode estimator, where gain switching isduseensure
that the estimates converge to within a boundaryhef true
state values (i.e., existence subspace). An irtenodel of the
system, either linear or nonlinear, is used to igtezh a priori
state estimate. A corrective term (i.e., gain)hient applied to
calculate the a posteriori state estimate, and e$témation
process is repeated iteratively. The smooth vagiatucture
filter (SVSF) was later derived from the VSF, arssia much
simpler and less complex gain calculati@]. In its present
form, the SVSF is stable and robust to modelingettainties
and noise, given an upper bound on the level omodeled
dynamics or knowledge of the magnitude of noise.

/14— System

Amplitude State Trajectory

Estimated State
Trajectory
Existence
E Subspace
/ ’
Initial Value of the
Estimated States
. Time

Fig. 1. The smooth variable structure filter estiom concept
is shown in the above figufeQ].

The basic estimation concept of the SVSF is shimwthe
above figure. Some initial values of the estimastates are
made based on probability distributions or desidgmawledge.
An area around the true system state trajectodgfimed as the
existence subspace. Through the use of the SVSk, ¢z
estimated state will be forced to within this regi®nce the
value enters the existence subspace, the estinsitgd is
forced into switching along the system state ttajgc A
saturation term may be used in this region to redthe
magnitude of chattering or smooth-out the resutpfeviously
mentioned, the SVSF gain introduces a certain amatin
chattering which brings an inherent amount of ditgbiThis
makes the estimation strategy an attractive mefoodontrol
problems when not all of the dynamics are well knowor
defined correctly.

The SVSF method is model based and applies to ttmoo
nonlinear dynamic equations. The estimation procéss
iterative and may be summarized by the following eé
equations (for a linear control or estimation pesh). Like the
KF, the system model is used to calculate a pstate and
measurement estimates. A corrective term, refetoeds the
SVSF gain, is calculated as a function of the eirorthe
predicted output and a smoothing boundary layeis §hin is
then used to update the state estimate. The eitim@abcess is

stable due to the gain calculation of (19). Funtiae, the
switching found within the existence subspace isathed out
by using the saturation term of (19), which is defl by the a
priori output error and some predetermined boundayer
width.

Rir1jk = ARy + Buy, (16)
Zip1e = HEqq)k (17)
eZk+1|k =Zg+1 — ZAk+1|k (18)
€211k
Kiy1 = ( zrsrp| TV €2k ) o sat (—lljl ) (29)
Ristks1r = Bure + Ky (20)
eZk+1|k+1 = Zgy1 — H£k+1|k+1 (21)

Two critical variables in the SVSF estimation sg are
the a priori and a posteriori output error estirmatiefined by
(18) and (21), respectively. The estimation proiggestable and
convergent if the following lemma is satisfied:

lex] > lexsal (22)

The proof, as defined if20], is such that if one defines
Nk+1 @S a random but bounded amplitude such 4hat < B,
then |e,| > |ex+1| applies to the phase wheg,| > B that is
defined by the reachability phase. Let a Lyapunawcfion be
defined such that,,, = e?,,. Hence, the estimation process is
stable if(Avy,, = eZ,; — e2) < 0. Furthermore, note that this
stability condition is satisfied by (2220,21].

As presented ifi20], the SVSF is not a classical filter in
the sense that it does not have or make use ofvariaoce
matrix. More recently, as shown if¥], a revised form of the
SVSF estimation process was proposed. This devivati
included covariance calculations, which enables tonereate
an information form of the SVSF. The modified SV@focess
(which is solved recursively) was defined as folklow

Rir1jk = ARy + Buy, (23)
Peyax = AP AT + Qp (24)
Zier1pe = HRypapi (25)
€2ksrk — Zk+1 T Zi1k (26)
K41 = diag [( €Zksalk +vy eZklkD

ezk+1|k , -1 (27)

o sat (T)] [dlag (ezk+1lk)]
Xicr1lks1 = Xperajic T Kier1€z,,4 (28)
Peitjerr = (U = Ko ) Py e (I — Ky DT (29)

+ Kis1Ries1Kpi 11

Czpraker — Lkl T ﬁfk+1|k+1 (30)

The adaptations of (27) and (28) do not affectgbreral
nature of the SVSF (i.e., the gain may be dividedhe a priori
measurement error, but it gets multiplied out & tlext step
when updating the estimate). Introducing this notaenables
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one to derive a much simpler covariance derivation.
Furthermore, the proof of stability for the SVSkist affected
[20]. It is interesting to note that the a priori angb@steriori
state error covariance matrices for the SVSF ardlai to the

KF for linear systems.

DERIVATION OF THE SVSIF

In this section, a new information filter basedtba SVSF
is derived, and is referred to as the smooth vhriabructure
information filter (SVSIF). To begin, one again ibefs the
information vectors as follows:

(31)
(32)

A _ p-1 =&

Arr1jke = PrvapeXe+1ie
A~ _ p-1 a
Ak+1jk+1 = Pk+1|k+1xk+1|k+1

Next, one needs to determine the inverse of tharcances
defined by (24) and (29). Consider the followindjiéon:

Ag = AP AT (33)
Such that, from (24):
Pt = (47 +1Quenl™] (34)

Writing (34) in such a manner allows one to userttatrix
inversion lemma, which is defined b3j:
(35)

lar' + apazaj]™ = [I — ayay(afaja, + a3)'ajla

This yields a more complete form of (34), or theraori
information matrix, as follows:

- _ -1
Pt = [1 = Aq(4q + 0ik) '] 44 (36)
Alternatively, in other words:
Pk_-I:—Ll|k = [1 - Ar]Aq (37)
A= Ag(Ag + Qit) ™ (38)

Next, the a posteriori information matrix needs ke
solved:

Pitijksr = [(I = Kis1H) Pesape (I = Kyt DT

-1 (39)
+ Kk+1Rk+1KkT+1]
Similar to before, one can define the following:
-1
As = [ = Kirs )P = Ky 1) (40)
Such that:
Ay = (I = Ky n ) TPl pe (= Kpeyt H) 7 (41)

The a posteriori information matrix can then besrigen
as follows:
Pitajisr = A5 + Kip Rip1 Kyl ™! (42)

Doing so allows one to use the matrix inversianrg, to
solve for the complete form of (39):

Piitpers = [ = AsKiss (K1 AsKier + Ricka) ' Ki 1A (43)
Alternatively, in other words:

Pk_+11|k+1 =1 _AthT+1]As (44)

A = AgKpr1 (K1 AgKper 1 + Ry )™ (45)

Now that both the information matrices have been
determined, the next step in deriving the SVSI®iformulate
the prediction and update equations for the infdionavectors.
Substitution of (37) into (31) and noting thgt, 4, = AXy, +
Bu,, (assuming a system input) yields the following:

Qs = [ — A JA (AR + Buy) (46)
Substitution of (33) into (46) yields:
Ak = I — A JATT P A7 ARy (47)

+[I = A JATT P A7 Buy,

Simplifying (47) and substituting (32) yields tlaepriori
information vector equation:
Qerriie = [ = A AT (Qgppe + P A Buy) (48)

The same approach may be used to solve for thetaipda
equation, starting with manipulating (32):

Ars1jksr = [Pk_+11|k + Kk+1]5ek+1|k+1 (49)
Substitution of (28) into (49) yields:
Arapker = [Pesage + Kita) (’?k+1|k + Kk+1ezk+1|k) (50)
Expanding (50) gives:
Aiearjiert = PRk + Pk_+11|kKk+1€zk+1,k (51)

_1 ~
+ Kiv1Xer1ji + €z,

Simplifying (51) further yields the following sdian for
the a posteriori information vector equation:
Aierrje+r = Araapie + Kit1 2 (52)

Equations (31) through (52) represent the deovatif the
smooth variable structure information filter.
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The following sets of equations summarize theaitee
process for the smooth variable structure inforamefilter:

Qs = [ — AJATT (G + P;aiA_lBuk) (53)
- _ -1
Pt = [1 = Aq(4q + 0ik) '] 44 (54)
Arr1jesr = Qe + Kid1Zisn (55)
Pk_+11|k+1 =[I _Asz+1(KkT+1Asz+1 (56)
+ R;il)_lKg+1]AS
Where the support equations include the following:
Ag = AP AT (57)
-1
Ay =Aq(Aq + Q1) (58)
Ag = (I = Kot ) TPy o (I = Kpe H) 71 (59)
Ay = AKpey1 (Ko 1AgKperr + Rig) ™" (60)

CONCLUSIONS

This paper introduced a new information filter éd®n the
smooth variable structure filter (SVSF). After aviesv of
estimation methods, a detailed description of #@vetion was
provided, which outlined the main steps taken tonidate the
SVSIF. The difference between the IF and the S{Bteesses
stem from the gain formulation of the SVSF. Futwark will
provide a thorough comparison of the IF and the IEV® the
estimation literature, the SVSF has been shownet@ bmore
robust method, particularly when compared with Keman
filter (KF). The enhanced robustness is due to libandary
layer concepts brought forth through the SVSF gaihich
enables the estimate to converge within a regioarat the true
state trajectory. Due to this, it is expected tinat SVSIF will
be more stable in terms of modeling errors and rtaicgies,
which will make it a more reliable information éit

NOMENCLATURE
The following is a list of the nomenclature usedtighout
this paper.

Table 1. List of Nomenclature

Parameter Definition

State vector or values

Measurement (system output) vector or values
System noise vector

Measurement noise vector

Linear system transition matrix

Input gain matrix

Linear measurement (output) matrix
Filter gain matrix (i.e., KF or SVSF)
State error covariance matrix

System noise covariance matrix
Measurement noise covariance matrix
Measurement (output) error vector

QU RITTI ™R I NR

diag(a) Defines a diagonal matrix of some vecior
sat(a) Defines a saturation of the tean
y SVSF ‘convergence’ or memory parameter
P SVSF boundary layer width
la] Absolute value of some parameter
T Transpose of some vector or matrix
~ Denotes error or difference
A Estimated vector or values
k+1lk A priori time step (i.e., before applied gain)
k+1lk+1 A posteriori time step (i.e., after update)
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