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ABSTRACT 
 An information filter is one that propagates the inverse of 
the state error covariance, which is used in the state and 
parameter estimation process. The term ‘information’ is based 
on the Cramer-Rao lower bound (CRLB), which states that the 
mean square error of an estimator cannot be smaller than an 
amount based on its corresponding likelihood function. The 
most common information filter (IF) is derived based on the 
inverse of the Kalman filter (KF) covariance. This paper 
introduces preliminary work completed on developing the 
information form of the smooth variable structure filter (SVSF). 
The SVSF is a relatively new type of predictor-corrector 
estimator based on sliding mode concepts. A covariance 
derivation was recently proposed for the SVSF, such that now 
the information form can be finalized (i.e., SVSIF). The paper 
summarizes the recursive equations used in the smooth variable 
structure information filter. 
 
 
INTRODUCTION 
 In the estimation field, filters may be classified as either 
covariance or information filters. A covariance filter is the most 
common type of filter used for estimating the states or 
parameters of a system. The most popular covariance filter is 
the Kalman filter [1,2]. It provides an elegant and statistically 
optimal solution for linear dynamic systems in the presence of 
Gaussian white noise [3,1]. However, the optimality of the KF 
comes at a price of stability and robustness. The KF assumes 
that the system model is known and is linear, the system and 
measurement noises are white, and the states have initial 
conditions that are modeled as random variables with known 
means and variances [4,5]. However, the previous assumptions 
do not always hold in real applications, particularly an exact 
knowledge of the system equations. If one of these assumptions 
is violated, the KF performance may yield suboptimal 
estimations and can even become unstable. Furthermore, the 

KF is sensitive to computer precision and the complexity of 
certain calculations (i.e., matrix inversions) [1]. 
 An information filter is one that propagates the inverse of 
the state error covariance, instead of using the normal 
covariance in the gain calculation like with the KF [6]. The 
term ‘information’ is based on the Cramer-Rao lower bound 
(CRLB), where the Fisher information matrix (FIM) is 
calculated as the inverse of the covariance matrix [4]. The 
CRLB states that the mean square error of an estimator cannot 
be smaller than an amount based on its corresponding 
likelihood function [4]. A filter is considered efficient if its 
variance is equal to the CRLB. There are certain advantages to 
using the information formulation of a filter. For example, if no 
prior information is available, one may initialize the 
information matrix using zeros such that no bias exists in the a 
priori estimate [1]. Furthermore, the observational update of the 
information matrix is more robust than the covariance filter 
form, which makes it a more attractive method when round-off 
errors may be an issue [1]. It is well known that the largest 
complaint to information filtering is the lack of physical 
understanding that ‘information states’ may bring. However, 
one may invert the information matrix such that the states may 
be interpreted physically [1]. 
 
 
REVIEW OF ESTIMATION METHODS 
 
a) Kalman Filter 
 As previously mentioned and presented in [7], the KF 
provides an elegant and statistically optimal solution for linear 
dynamic systems in the presence of Gaussian white noise. It is 
an estimation method that utilizes measurements linearly 
related to the states or parameters of the systems, and error 
covariance matrices, to generate a gain referred to as the 
Kalman gain. This gain is applied to the a priori state estimate, 
thus creating an a posteriori (i.e., updated) estimate of the 
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states. The estimation process is iterative and continues in a 
predictor-corrector fashion while maintaining a statistically 
minimal state error covariance matrix (for linear systems). 
 A typical linear dynamic system and measurement model 
are defined by using the following two equations, respectively: 

 
���� = ��� + ��� + �� (1) 
���� = ����� + ���� (2) 

 
 Please refer to the end of the paper for a list of pertinent 
nomenclature and variable definitions. The following five 
equations form the core of the KF algorithm, and are used in an 
iterative fashion. Equation (3) defines the a priori estimate 
based on the system definition, and (4) is the corresponding 
state error covariance matrix. The Kalman gain is defined by 
(5), and is used to update the state estimate shown in (6). The a 
posteriori state error covariance matrix is calculated by (7). 

 
�	���|� = �
�	�|� + ���� (3) 
����|� = ���|���

+ � (4) 

���� = ����|���������|���
+ ������� (5) 

�	���|��� = �	���|� + ��������� − ��	���|�� (6) 
����|��� = �� − ����������|� (7) 

 
 The effects due to mismodeling can be negative, as both 
the Kalman gain and covariance matrix calculations are 
dependent on the system and measurement matrices. 
Furthermore, the performance and stability of the KF may also 
be dependent on the definition of the process and measurement 
noise, made through covariance matrices [1,8]. Overlooked 
nonlinearities in the system may also cause the KF to become 
unstable. The EKF may be used for nonlinear systems (as 
described by the first two equations). It is conceptually similar 
to the iterative KF process, described above. The nonlinear 
system and measurement matrices are linearized according to 
its corresponding Jacobian, which is a first-order partial 
derivative. This linearization can sometimes cause instabilities 
when implementing the EKF [1]. The unscented Kalman filter 
(UKF) is able to handle a higher order of the nonlinearities by 
using a set of deterministically chosen sample points (i.e., 
sigma points) which are applied on a transformation such that it 
captures the true mean and covariance up to the second order of 
nonlinearity [9]. A great deal of research has been published on 
these filters, including on their robustness and numerical 
stability [10,11,12,13,14,15]. 
 
b) Information Filter 
 The main information filter (IF) used in literature is based 
on the KF, where one utilizes the inverse of the covariance 
matrices. The information states are defined as functions of the 
covariance inverses and the true state vectors, as follows [3]: 
 

�	���|� = ����|��� �	���|� (8) 
�	���|��� = ����|����� �	���|��� (9) 

 Applying the matrix inversion lemma to (4) and (7) yields 
the corresponding information matrices, as presented in [3]: 
 

����|���
= �� − �����������|������ (10) 

����|�����
= ����|���

+�����
�� �� (11) 

 
Where: 
 

�� = ��������|���������������|������
+ ���

�� ��� (12) 

 
 It has been shown already in literature that the gain 
associated with the IF (simplified) is as follows [3,6]: 
 

������
= �����|����� �����

��  (13) 
 
 Using the above gain and information matrices, one may 
be able to determine (refer to [3,6]) the predicted and updated 
information vectors used by the information filter, respectively: 
 

�	���|� = �� − �������	�|� (14) 
�	���|��� = �	���|� + �����

�� �� (15) 
 
 Equations (10) through (15) constitute the main formulas 
used in the information filter. Furthermore, note that the actual 
inverses do not have to be calculated, as the states are solved in 
a recursive manner. 
 
c) Smooth Variable Structure Filter 
 As presented in [7], sliding mode control and estimation 
techniques have been around for quite a few decades, and are 
mainly popular due to their relative ease of implementation and 
robustness to modeling uncertainties [16,17]. In a typical 
sliding mode control scenario, one utilizes a discontinuous 
switching plane along some desired trajectory [18]. This plane 
is quite often referred to as a sliding surface, in which the 
purpose is to keep the state values along this surface by 
minimizing the state errors (between the desired trajectory and 
the estimated or actual values). Ideally, if the state value is off 
or away from the surface, a switching gain would be used to 
push the state towards the sliding surface. Once upon the 
surface, the motion of the system as the states slide along the 
surface is called a sliding mode [18]. The discontinuous 
switching brings an inherent amount of stability to the control 
or estimation strategy, while also introducing excessive 
chattering (i.e., high-frequency switching) which may be 
undesirable in control since it may excite un-modeled 
dynamics. A boundary layer may be introduced along the 
sliding surface in order to saturate and smooth out the 
chattering within the boundary region. These sliding mode 
concepts are based on variable structure control, in which one 
alters the nonlinear dynamics of a system by the introduction of 
high-frequency switching [16]. 
 The variable structure filter (VSF) was first proposed in 
2003, and was introduced as a new type of predictor-corrector 
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estimator based on sliding mode concepts [19]. It is a type of 
sliding mode estimator, where gain switching is used to ensure 
that the estimates converge to within a boundary of the true 
state values (i.e., existence subspace). An internal model of the 
system, either linear or nonlinear, is used to predict an a priori 
state estimate. A corrective term (i.e., gain) is then applied to 
calculate the a posteriori state estimate, and the estimation 
process is repeated iteratively. The smooth variable structure 
filter (SVSF) was later derived from the VSF, and uses a much 
simpler and less complex gain calculation [20]. In its present 
form, the SVSF is stable and robust to modeling uncertainties 
and noise, given an upper bound on the level of un-modeled 
dynamics or knowledge of the magnitude of noise. 

 

 
Fig. 1. The smooth variable structure filter estimation concept 
is shown in the above figure [20]. 
 
 The basic estimation concept of the SVSF is shown in the 
above figure. Some initial values of the estimated states are 
made based on probability distributions or designer knowledge. 
An area around the true system state trajectory is defined as the 
existence subspace. Through the use of the SVSF gain, the 
estimated state will be forced to within this region. Once the 
value enters the existence subspace, the estimated state is 
forced into switching along the system state trajectory. A 
saturation term may be used in this region to reduce the 
magnitude of chattering or smooth-out the result. As previously 
mentioned, the SVSF gain introduces a certain amount of 
chattering which brings an inherent amount of stability. This 
makes the estimation strategy an attractive method for control 
problems when not all of the dynamics are well known or 
defined correctly. 
 The SVSF method is model based and applies to smooth 
nonlinear dynamic equations. The estimation process is 
iterative and may be summarized by the following set of 
equations (for a linear control or estimation problem). Like the 
KF, the system model is used to calculate a priori state and 
measurement estimates. A corrective term, referred to as the 
SVSF gain, is calculated as a function of the error in the 
predicted output and a smoothing boundary layer. This gain is 
then used to update the state estimate. The estimation process is 

stable due to the gain calculation of (19). Furthermore, the 
switching found within the existence subspace is smoothed out 
by using the saturation term of (19), which is defined by the a 
priori output error and some predetermined boundary layer 
width. 
 

�	���|� = �
�	�|� + ���� (16) 
�̂���|� = ���	���|� (17) 

�	���|�
= ���� − �̂���|� (18) 

���� = ���	���|��+ � ��	�|��� ∘ �� !�	���|�

" # (19) 

�	���|��� = �	���|� + ���� (20) 
�	���|��� = ���� − ���	���|��� (21) 

 
 Two critical variables in the SVSF estimation process are 
the a priori and a posteriori output error estimates, defined by 
(18) and (21), respectively. The estimation process is stable and 
convergent if the following lemma is satisfied: 
 

|��| > |����| (22) 
 
 The proof, as defined in [20], is such that if one defines 
%��� as a random but bounded amplitude such that %��� ≤ &, 
then |��| > |����| applies to the phase where |��| > & that is 
defined by the reachability phase. Let a Lyapunov function be 
defined such that ���� = ����
 . Hence, the estimation process is 
stable if �∆���� = ����


− ��
� < 0. Furthermore, note that this 
stability condition is satisfied by (22) [20,21]. 
 As presented in [20], the SVSF is not a classical filter in 
the sense that it does not have or make use of a covariance 
matrix. More recently, as shown in [7], a revised form of the 
SVSF estimation process was proposed. This derivation 
included covariance calculations, which enables one to create 
an information form of the SVSF. The modified SVSF process 
(which is solved recursively) was defined as follows: 
 

�	���|� = �
�	�|� + ���� (23) 
����|� = ���|���

+ � (24) 
�̂���|� = ���	���|� (25) 

�	���|�
= ���� − �̂���|� (26) 

���� = '(�) *���	���|�� + � ��	�|���
∘ �� !�	���|�" #+ ,'(�) ��	���|��-

��

 
(27) 

�	���|��� = �	���|� + �����	���|� (28) 
����|��� = �� − ����������|��� − �������

+ ������������
�  

(29) 

�	���|��� = ���� − ���	���|��� (30) 
 
 The adaptations of (27) and (28) do not affect the general 
nature of the SVSF (i.e., the gain may be divided by the a priori 
measurement error, but it gets multiplied out at the next step 
when updating the estimate). Introducing this notation enables 
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one to derive a much simpler covariance derivation. 
Furthermore, the proof of stability for the SVSF is not affected 
[20]. It is interesting to note that the a priori and a posteriori 
state error covariance matrices for the SVSF are similar to the 
KF for linear systems. 
 
 
DERIVATION OF THE SVSIF 
 In this section, a new information filter based on the SVSF 
is derived, and is referred to as the smooth variable structure 
information filter (SVSIF). To begin, one again defines the 
information vectors as follows: 
 

�	���|� = ����|��� �	���|� (31) 
�	���|��� = ����|����� �	���|��� (32) 

 
 Next, one needs to determine the inverse of the covariances 
defined by (24) and (29). Consider the following definition: 
 

�� = �����|������ (33) 
 
Such that, from (24): 
 

����|���
= ���

��
+ ��������� (34) 

 
 Writing (34) in such a manner allows one to use the matrix 
inversion lemma, which is defined by [3]: 
 
����� + ���������� = �� − ������������ + ������������� (35) 

 
 This yields a more complete form of (34), or the a priori 
information matrix, as follows: 
 

����|���
= ,� − ��.�� + ���

�� /��- �� (36) 

 
Alternatively, in other words: 
 

����|���
= �� − ����� (37) 

�� = ��.�� + ���
�� /�� (38) 

 
 Next, the a posteriori information matrix needs to be 
solved: 
 

����|�����
= ��� − ����������|��� − �������

+ ������������
� ��� 

(39) 

 
Similar to before, one can define the following: 
 

� = ��� − ����������|��� − ���������� (40) 
 
Such that: 
 

� = �� − ������������|��� �� − �������� (41) 

 The a posteriori information matrix can then be rewritten 
as follows: 
 

����|�����
= ��

��
+ ������������

� ��� (42) 
 
 Doing so allows one to use the matrix inversion lemma, to 
solve for the complete form of (39): 
 

�
���|���
�� = �� − ������

�����

� ������ + ����

�� �������

� 	�� (43) 
 
Alternatively, in other words: 
 

����|�����
= �� − ������

� �� (44) 
�� = ����������

� ����� + ����
�� ��� (45) 

 
 Now that both the information matrices have been 
determined, the next step in deriving the SVSIF is to formulate 
the prediction and update equations for the information vectors. 
Substitution of (37) into (31) and noting that �	���|� = ��	�|� +
��� (assuming a system input) yields the following: 
 

�	���|� = �� − �����.��	�|� + ���/ (46) 
 
Substitution of (33) into (46) yields: 
 

�����|� = �� − ������	�|�������
��|�
+ �� − ������	�|��������� 

(47) 

 
 Simplifying (47) and substituting (32) yields the a priori 
information vector equation: 
 

�	���|� = �� − ������.�	�|� + ��|���������/ (48) 
 
 The same approach may be used to solve for the update 
equation, starting with manipulating (32): 
 

�	���|��� = �����|���
+ ������	���|��� (49) 

 
Substitution of (28) into (49) yields: 
 

�����|��� = 	���|���
+ ����

�� � �
����|� + �����	���|�
� (50) 

 
Expanding (50) gives: 
 

�����|��� = 	���|��� 
����|� + 	���|��� �����	���|�
+ ����

�� 
����|� + �	���|� 
(51) 

 
 Simplifying (51) further yields the following solution for 
the a posteriori information vector equation: 
 

�	���|��� = �	���|� + �
+1
−1 ���� (52) 

  
 Equations (31) through (52) represent the derivation of the 
smooth variable structure information filter. 
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 The following sets of equations summarize the iterative 
process for the smooth variable structure information filter: 
 

�	���|� = �� − ������.�	�|� + ��|���������/ (53) 

����|���
= ,� − ��.�� + ���

�� /��- �� (54) 

�	���|��� = �	���|� + �
+1
−1 ���� (55) 

����|�����
= �� − ����������

� �����

+ ����
�� �������

� �� 
(56) 

 
Where the support equations include the following: 
 

�� = �����|������ (57) 

�� = ��.�� + ���
�� /�� (58) 

� = �� − ������������|��� �� − �������� (59) 
�� = ����������

� ����� + ����
�� ��� (60) 

 
 

CONCLUSIONS 
 This paper introduced a new information filter based on the 
smooth variable structure filter (SVSF). After a review of 
estimation methods, a detailed description of the derivation was 
provided, which outlined the main steps taken to formulate the 
SVSIF. The difference between the IF and the SVSIF processes 
stem from the gain formulation of the SVSF. Future work will 
provide a thorough comparison of the IF and the SVSIF. In the 
estimation literature, the SVSF has been shown to be a more 
robust method, particularly when compared with the Kalman 
filter (KF). The enhanced robustness is due to the boundary 
layer concepts brought forth through the SVSF gain, which 
enables the estimate to converge within a region around the true 
state trajectory. Due to this, it is expected that the SVSIF will 
be more stable in terms of modeling errors and uncertainties, 
which will make it a more reliable information filter. 
 

NOMENCLATURE 
The following is a list of the nomenclature used throughout 

this paper. 
 
Table 1. List of Nomenclature 
 

Parameter Definition 


 State vector or values 
� Measurement (system output) vector or values 
� System noise vector 
 Measurement noise vector 
� Linear system transition matrix 
� Input gain matrix 
� Linear measurement (output) matrix 
� Filter gain matrix (i.e., KF or SVSF) 
� State error covariance matrix 
� System noise covariance matrix 
� Measurement noise covariance matrix 
� Measurement (output) error vector 

������� Defines a diagonal matrix of some vector a 
������ Defines a saturation of the term a 

� SVSF ‘convergence’ or memory parameter 
� SVSF boundary layer width 
|�| Absolute value of some parameter a 
� Transpose of some vector or matrix 
~ Denotes error or difference 
^ Estimated vector or values 

� + 1|� A priori time step (i.e., before applied gain) 

� + 1|� + 1 A posteriori time step (i.e., after update) 
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