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ABSTRACT

Electrohydrostatic actuators (EHAS) are an emerdypg
of actuator typically used in the aerospace ingustnd are
self-contained units comprised of their own pumpdraulic
circuit, and actuating cylinder. Recently, a noElA system
has been developed. A particularly important patamef this
system is the bulk modulus. This value cannot baswmed
directly and must be estimated using state and npetex
estimation techniques such as the Kalman filter)(Kfarticle
filter (PF), or the smooth variable structure filt&VSF). The
cubature Kalman filter (CKF), recently propose®d09, is an
estimation method that makes use of the standaidatien of
the Kalman filter, as well as defined cubature ®imhich are
used to draw the probability distribution of theates with
greater accuracy. The SVSF is a relatively newrregion
strategy which is very robust and stable to modeéirrors and
uncertainties. The combination of these two meth(cisF-
SVSF) yields an accurate and stable estimation adetthich
has been applied on an EHA. The results of thisbioation
are compared against the standard KF in terms odracy,
robustness to errors and uncertainties, and fithemplexity.

INTRODUCTION
For the successful control of many mechanical and

electrical systems, knowledge of the current statesl
parameters is critical. Sensors are used to obta@msurements
from the environment, most commonly taking kinemati
readings (i.e., position, velocity, and accelergtidt is quite
common for measurements to be corrupted by sensige.n
Whether it is from the measurements or the systeaise
represents unwanted signals that reduce the quafityhe
information available for the controllgd]. To minimize the
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effects of noise, one may apply a filter, which ezgglly
attempts to estimate the true state or paramethre vhy
removing (or filtering) the unwanted signg§. Filters belong
in the domain of estimation theory, which encompass
mathematical techniques and algorithms used tarmdate the
true values of system states. In space vehiclesefample,
inertial measuring units may be used to calculadte t
acceleration. However, since their alignment detates over
time, calculating the acceleration by other mearss, (state
estimation) may be desiralig].

For linear systems, the most well-known and salidiier
is the Kalman filter (KF). The KF was introducedlfi60, and
provides an elegant solution to linear estimatiosbfems([4].

It provides a statistically optimal solution in tlsense that it
minimizes the state estimation error for lineartays with
Gaussian distributed noisgs,6]. Although the KF is an
effective estimation strategy, the accuracy offitier comes at
a trade-off with stability and robustness. The vetyong
assumptions (i.e., linearity, Gaussian noise, nodeatiog

uncertainties) are seldom held in practice, padity in the

area of control or target tracking. If one of tresamptions is
violated, the performance of the KF can become atbept
which increases the chance of numerical instabifityl].

Nonlinear estimation problems introduce anotherelleof

uncertainty through un-modeled dynamics.

In the presence of nonlinear systems or measuitsmen
suboptimal techniques are required to tackle th@meson
problem. Popular nonlinear estimation techniquestudte the
extended Kalman filter (EKF), the unscented Kalnfdier
(UKF), and the particle filter (PH)2]. The EKF utilizes the
first-order Taylor series expansion (i.e., Jacopiarf the
nonlinear equations to create linearized system and
measurement matrices. One major drawback of thihadeis
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that it comes at a cost of higher-order un-modeleckrtainties
[7]. The UKF is able to capture a higher order of the
nonlinearities by using a set of deterministicalhosen sample
points (typically referred to as sigma points) whiafter a
transformation, captures the true mean and coweiap to the
second order of nonlinearif]. The PF has recently become a
very popular method for solving nonlinear estimatwoblems.
Like the name suggests, the PF makes use of wediglateicles

or ‘point masses’ distributed in a manner thatnestes the
probability distribution function (PDF) of the vals of interest
[8]. The PDF contains all of the pertinent statistical
information, and may be considered as holding tietisen to
the estimation problefi2].

Most recently, the cubature Kalman filter (CKF)dan
smooth variable structure filter (SVSF) have beeoppsed.
The CKF makes use of a third-degree cubature role t
numerically compute Gaussian-weighted integrals,ickwvh
represent the joint state-measurement predictivesitie[9].
This enables a very close approximation of the inear
estimation problem. The SVSF is a relatively newdgctor-
correct estimation method based on sliding moderihd(Q]. It
yields suboptimal estimates, however is extremelyust and
stable to modeling uncertainties and errors. Thapep
discusses a combined estimation method (referredstdhe
CKF-SVSF) which makes use of the accuracy of thé-@id
the stability of the SVSF. For demonstration pugspshe filter
is applied on a parameter estimation problem inwnglvan
electrohydrostatic actuator (EHA). The results (EB¥SF) of
which are compared against the EKF, CKF, and S\I\&Fe
that the results of the UKF were nearly identicaltte EKF,
such that they were omitted.

REVIEW OF ESTIMATION METHODS

a) Kalman Filter

As previously mentioned, the KF provides an elégard
statistically optimal solution for linear dynamigssems in the
presence of Gaussian white noise. It is an estimatiethod
that utilizes measurements linearly related to $tates or
parameters of the systems, and error covarianceicest to
generate a gain referred to as the Kalman gairs §hin is
applied to the a priori state estimate, thus cngatan a
posteriori (i.e., updated) estimate of the stafd® estimation
process is iterative and continues in a predictorector
fashion while maintaining a statistically minimaiate error
covariance matrix (for linear systems).

A typical linear dynamic system and measurementeho
are defined by using the following two equatiorespectively:

(1)
)

Xp+1 = Axk + Buk + Wi
Zkr1 = HXpyq + Vs

Please refer to the end of the paper for a ligbafinent
nomenclature and variable definitions. The follogvirfive
equations form the core of the KF algorithm, arel @sed in an

iterative fashion. Equation (3) defines the a priestimate
based on the system definition, and (4) is theesmpwnding
state error covariance matrix. The Kalman gainaéngd by
(5), and is used to update the state estimate shoy@). The a
posteriori state error covariance matrix is caldaby (7).

Rk = Afku{ + Buy (3
Peyqje = HPyp H™ + Qy 4)

-1
Ky = Pk+1|kHT[HPk+1|kHT + Rieya) (5)
Rir1jk+1 = T + Kk+1[zk+1 - ka+1|k] (6)
Priajker = U — Kyt H] Prsr i (7

b) Cubature Kalman Filter

As presented in11], the CKF is the closest known
approximate filter in the sense of completely preisg
second-order information due to the maximum entropy
principle [9]. According to the maximum entropy principle,
given the first two order statistics of a hidderogmss, it is
Gaussian that maximizes the information entropyeddn of
that process. In deriving the CKF, it is assumedt tthe
predictive density of the joint state-measuremeabdom
variable is Gaussian. Under this assumption, thee8an filter
reduces to the problem of how to compute integiralahich
the integrands are all of the following form:

nonlinear function X Gaussian (8)

The CKF uses a third-degree cubature rule to nicalbr
compute the above Gaussian-weighted integrals.ekample,
the cubature rule approximates an n-dimensional sSan
weighted integral as follows:

1 2n
lRnf(x) N p, 2)dx = ﬁ; f(# + \/fstl) (9)

Where a square-root factor of the covariabicatisfies the

relationshipZ = \/f\/fT and the set o2n cubature points are
given by:

S(' _ { \/ﬁei,
t —\/zei_n,

With e; denoting thei™ elementary column vector. The
third-degree cubature rule is exact for polynormggrands up
to the third degree or for any odd-degree polyntnkar a
detailed exposition of how the cubature points weeeived,
the reader may consyl®]. For improved numerical stability,
the CKF can be restructured to propagate the sqoate of
the error covariances. The following equations espnt the
iterative square-root CKF estimation procgs

i=1,2,..,n

(10)
i=n+1n+2..,2n

X’:k|k = Sklkfi + 5C\k|k i=12..2n (11)
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lekk+1|k = f (Xiklk) i = 1, 2, ...,ZTL (12)

2n

1
Xr+1lk = ﬁz Xik+1|k (13)

i=1

1 . . R
xlfk+1|k = E [(X1k+1|k - xk+1|k) (X2k+1|k - xk+1|k) (14)
- (K = )|
Sk+1|k = tria([)quuk SQk]) (15)
Xijpape = Ster1ieSi ¥ T 1=1,2,...2n (16)
Zisrpe = h (Kigyy) 1= 12,20 (17)
1 2n
Braie = %Z Zipr (18)
i=
1 o o
Xir1jk = N [(X1k+1,k - xk+1|k) (Xz,m”c - xk+1|k) (19)
(tom o)
1 " "
Zis1jk = Ner [(Z1k+1|k - Zk+1|k) (Zz,mw - Zk+1|k) (20)
(o~ o)
A 0\ _ ., . (Zrrik SR
(B C) = tria (Xk+1|k 0 ) D)
Wi = B/A (22)
Rrrjier1 = B + Wier1(Zies1 — 2k+1|k) (23)
5k+1|k+1 =C (24)

¢) Smooth Variable Structure Filter

As presented ifil2], sliding mode control and estimation
techniques have been around for quite a few decaahesare
mainly popular due to their relative ease of impdatation and
robustness to modeling uncertaintigg3,14]. In a typical
sliding mode control scenario, one utilizes a dnsitmous
switching plane along some desired trajec{d3]. This plane
is quite often referred to as a sliding surfacewinich the
purpose is to keep the state values along thisasarfby
minimizing the state errors (between the desiragttory and
the estimated or actual values). Ideally, if tregestvalue is off
or away from the surface, a switching gain wouldused to
push the state towards the sliding surface. Oncen ughe
surface, the motion of the system as the statde sliong the
surface is called a sliding modgl5]. The discontinuous
switching brings an inherent amount of stabilitythe control
or estimation strategy, while also introducing essiee
chattering (i.e., high-frequency switching) whichayn be
undesirable in control since it may excite un-medel
dynamics. A boundary layer may be introduced aldhg
sliding surface in order to saturate and smooth the
chattering within the boundary region. These stidimode
concepts are based on variable structure contralhich one
alters the nonlinear dynamics of a system by theduction of
high-frequency switchinfl3].

The variable structure filter (VSF) was first poged in
2003, and was introduced as a new type of predaximector

estimator based on sliding mode concdp§. It is a type of
sliding mode estimator, where gain switching isduseensure
that the estimates converge to within a boundaryhef true
state values (i.e., existence subspace). An iftenodel of the
system, either linear or nonlinear, is used to iotezh a priori
state estimate. A corrective term (i.e., gain)hient applied to
calculate the a posteriori state estimate, and ettémation
process is repeated iteratively. The smooth vagiabtucture
filter (SVSF) was later derived from the VSF, arsgksia much
simpler and less complex gain calculatid®]. In its present
form, the SVSF is stable and robust to modelingettainties
and noise, given an upper bound on the level omodeled
dynamics or knowledge of the magnitude of noises bhasic
estimation concept of the SVSF is shown in theofeihg

figure. Some initial values of the estimated stades made
based on probability distributions or designer klemge. An
area around the true system state trajectory imelbfas the
existence subspace. Through the use of the SVSk gz

estimated state will be forced to within this regi®nce the
value enters the existence subspace, the estinsited is
forced into switching along the system state titajgc A

saturation term may be used in this region to redthe

magnitude of chattering or smooth-out the resutpfeviously
mentioned, the SVSF gain introduces a certain amatin
chattering which brings an inherent amount of $tsbiThis

makes the estimation strategy an attractive metbodontrol

problems when not all of the dynamics are well knoar

defined correctly.

S T— System
Amplitude F gl g State Trajectory

Estimated State
Trajectory
Existence
i Subspace
/ *
Initial Value of the
Estimated States
> Time

Fig. 1. The smooth variable structure filter estio concept
is shown in the above figuféQ].

The SVSF method is model based and applies to ttmoo
nonlinear dynamic equations. The estimation process
iterative and may be summarized by the following eé
equations (for a linear control or estimation pesh). Like the
KF, the system model is used to calculate a pstate and
measurement estimates. A corrective term, refetoeds the
SVSF gain, is calculated as a function of the eirorthe
predicted output and a smoothing boundary layeis §hin is
then used to update the state estimate. The estin@bcess is
stable due to the gain calculation of (28). Funtiae, the
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switching found within the existence subspace isathed out
by using the saturation term of (28), which is defl by the a
priori output error and some predetermined boundawper

width.

Rirapk = ARy + Buy, (25)
Zrre = HRppqpi (26)
eZk+1|k = Zg+1 — 2k+1|k (27)
ezk |k
K1 = ( €zpsap| TV ezklkD osat (—121 ) (28)
Riertike1r = Tirrpe + Kisr (29)
ezk+1|k+1 =Zky1 — H'),C\k+1|k+1 (30)

Two critical variables in the SVSF estimation psg are
the a priori and a posteriori output error estirmatiefined by
(27) and (30), respectively. The estimation proécestable and
convergent if the following lemma is satisfied:

lex] > lexsal (31)

The proof, as defined ifil0], is such that if one defines
Nk+1 @s a random but bounded amplitude such #hat < 8,
then |e,| > |e,,| applies to the phase whele,| > g that is
defined by the reachability phase. Let a Lyapunawfion be
defined such that,,, = eZ,,. Hence, the estimation process is
stable if(Avy,; = eZ,; — e2) < 0. Furthermore, note that this
stability condition is satisfied by (31)0,17].

COMBINED CUBATURE KALMAN AND SMOOTH
VARIABLE STRUCTURE FILTERING STRATEGY

In this section, a new estimation method (refetreds the
CKF-SVSF) is discussed, as presentefllij. In 2008, it was
proposed that the EKF may be combined with the S¥é8=n
improved estimation proce$48,19]. The CKF-SVSF method
takes a similar approach to the method of comtnatirhe
SVSF provides an estimation process that is suipraptalbeit
stable. It is hence beneficial to be able to combive accurate
performances of the CKF with the stability of the#F. As
such, the SVSF strategy can be used to force thmated
states to within a boundary and then on, the ctiwe@ction
being principally transferred to the CKF.

To combine these two methods, the gain of the Siw&dFels
to be further modified. The new form takes advaetaf) the
orthogonality of the Kalman gain with respect te@ tactual
system statef7,1]. The augmented gain includes the addition
of a constant positive vector), which is forced in a direction
determined by a vectorlf, ). The vectord, originates from
the a priori state estimates and is orthogonah#ottajectory
traced by the actual system states. This vectantpdowards
the state values and the switching surface. Thieoganality
condition is satisfied by setting,, = Wicr1€z4100 by virtue of

the Kalman derivatiofi7]. Furthermore, one may combine the
CKF with the SVSF by setting the boundary layerthadip) to

one, and by making the additive terih) (relatively large with
respect toy. The CKF plays a greater role in the estimation
process with a larger additive term with respect {d8]. It is
important to note that when outside of the smogthinundary
layer, the corrective gain is essentially the samdahe SVSF
gain. While inside the boundary layer, the correctierm is
primarily composed of the CKF gain.

The following is a summary of the CKF-SVSF estiimat
process for nonlinear systems, broken up into twages
(prediction and update).

Prediction equations:

Rrs1jk = ff(xk'uk)w(xk;fk|ktpklk) dxy, (32)
R™x
Pryae = f F G ) FT o i) N B Pagie) (33)
R™x
— ResrieRirage + Qe
2k+1|k = f ﬁ(xk+1'uk+l)j\/(xk+1; fk+1|k' Pk+1|k) AXpeyq (34)
R™x
S Zes1lk (35)
Update equations:
Pz = fxk+1ﬁT(xk+1ruk+1)W(xk+1;fk+1|kka+1|k) AXpeq (36)
R
— Rir1pelhi
Pty = fﬁ(xk+1ruk+1)7lT(xk+1‘ukﬂ)W(xkﬂi’?;c+1|krPk+1|k) Axpe1 (37)
Rix

= Zisrk s + Ris
Witr = Pesye sy Pzt (38)

K4, = diag [( Crne| TV |Czipe| + l'[)
Wk+1elk+1\k . -1 (39)

osat T (dlag [ezkﬂ‘k])
Riertpierr = Ziraje T Kir1€z,,,, (40)
Pk+1|k+1 = Pk+1|k - Kk+1Pzzk+”kKkT+1 (41)
2k+1|k+1 = fE(xk+1'uk+1)w(xk+1:£k+1|k+1'Pk+1|k+1) dxp4q (42)
R™x

Czrsrrr — Lk+1 T Ziy1jket (43)

Note that the integrals found within the CKF-SVSF
estimation method represent the summation of cubaiaints
used to approximate the state distribution, as estgg by (9).

APPLICATION TO AN EHA SYSTEM

In this section, an electrohydrostatic actuatoHA[E is
simulated. The EHA to be simulated is based on enaha
prototype built for experimentatidii0,20]. The purpose of this
simulation is to demonstrate that the combinednesion
process (CKF-SVSF) yields a very accurate estimatgout
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negatively impacting
uncertainties.

The EHA is a third order (typically linear) systemith
state variables related to its position, velodtyd acceleration.
It is assumed that all three states have measuterassociated
with them (i.e., full measurement matrix). The ibga the
system is a random normal distribution with magiétd. The
sample time of the system is 0.001 seconds. TheeeBHA
system description may be found [B0]. However, for the
purpose of this paper, three states (kinematicrimétion) and
one parameter (bulk modulus) will be estimated. &stemation
of the parameter creates a nonlinear estimatiobl@n The
system model equations are defined as follows:

its stability to modeling esoor

x1k+1 = xlk + szk
ka+1 = sz + TX3k
X341 — (1 —Tos — T‘P2x4k)x3k —Tpi1x;, (44)
+ GpTxy, Uy
KXagpr = Xay
Where:
Gg = ZDpAE/MVO
@1 = 242/ MV, 45
®, =L/Vy (43)
®3 =Bg/M

The initial state values are set to zero. Theainitue bulk
modulus is set t@ x 108 Pa, whereas the corresponding initial
estimate isl.5 x 108 Pa. Half-way through the simulation the
true bulk modulus is changed. The system and meammt
noises are considered to be Gaussian with maximmaplitade
corresponding  to Wy, = [0.0001 0.001 0.01]" and
Vimax = [0.01 0.01 0.01]7 for the states. The initial state
error covariance, system noise covariance, and umeagnt
noise covariance are defined respectively as falow

Q= SWMaxWAZax (47)
R = 5VMaxVI\ZIwax (48)

For the SVSF estimation process, the ‘memory’ or
convergence rate was setjto= 0.1, and the boundary layer
widths were defined asy =[0.1 10 50]’. These
parameters were tuned by trial-and-error, with teal of
decreasing the estimation error. The main resdltapplying
the EKF, CKF, SVSF, and the CKF-SVSF on the EHAbfem
are shown in the following sets of figures. Thestfifigure
shows the true position of the EHA with the cormsgting
estimates. For the position, the estimation resfltsoth filters
are relatively the same. The velocity and accataragstimates
were relatively the same as those shown in theviatig figure
(and were thus omitted for space constraints).

% 10’5 EHA Simulation Results (Position)

Position {m)

— — — CKF-SVSF

] I I I
0 05 1 15 2

Time {s)
Fig. 2. The position estimates for the EHA simwatiare
shown in the above figure. Note that the lines aearly
concentric and thus are relatively difficult tottiguish.

EHA Simulation Results {Bulk Modulus)
25 T T T

S

o

Bulk Modulus (1x18 Pa)

True
———-3V3F

EKF

CKF

— — — CKF-SWSF

1 1 1 T
0 05 1 15 2

Time {s)
Fig. 3. The bulk modulus estimates for the EHA datian are
shown in the above figure. Note that the EKF andFCK
estimates are nearly the same and thus are rdyatiificult to
distinguish.

The RMSE results of running the simulation areciigWs:

Table 1. RMSE Simulation Results

Filter Position Velocity Accel. Bulk
(m) (m/s) m/9) M‘Zgg')us

SVSF 1.095 x 1077 1.626 x 1075 4.742 x 107* 0.0314

EKF 1.304 x 1077 5348 x 1075 4524 %107 0.1457

CKF 1.301x 1077 5317 x 1075 4497 x 10 0.1451

CKF-SVSF 7.931 %1078 4.827 x107° 5558 x 1075 0.0194
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As shown in the above table, the CKF-SVSF provithes
best overall result in terms of estimation accurang rate of
convergence. The three state estimates were @lative same
for all of the filters. A notable difference occunshen
attempting to estimate the parameter. The convemeate is
clearly shown, where the EKF and CKF are the slovessl the
combined method is the fastest. Note that the ER#F @KF
yield the same solution for this estimation problasit is only
mildly nonlinear. The robustness of the combinedhwoeé is
shown when modeling errors are introduced intosthmulation.
The results of increasing the load mass by 10 taftes half-a-
second are shown in the following sets of figures.

% m'ﬁ EHA Simulation Results with Error (Position)

True

———-SYSF
4t . EKF I
L ——— CKF

ﬂ il — = — CKF-SVSF

Position (m)

8 L L 1
0 05 1 15 2

Time (s)

Fig. 4. The position estimates for the EHA simaatiwith
modeling error are shown in the above figure.

EHA Simulation Results with Error (Bulkc Modulus)

True
|| ———-SVSF

o
1

—

H—— — CKF-SVSF 1

&
T

=
T

Bulk Modulus {1x18 Pa)
o

[
T

)

Time (s)

Fig. 5. The bulk modulus estimates for the EHA datian
with modeling error are shown in the above figure.

The effect of changing the mass used by the dilterthe
estimation process is clearly shown at 0.5 secoRdgire 5
shows that the EKF and CKF both fail to provide @od

estimate of the bulk modulus. However, the SVSF aid--
SVSEF still provide very good estimates of the patm This
example demonstrates the robustness of the cominiatidod
due to the boundary layer concepts of the SVSF. SUSF
remains bounded to within a region of the trueestedjectory,
thus minimizing the effects of the modeling erfeurthermore,
the addition of the CKF increases the estimationugscy,
which makes for an attractive filter (CKF-SVSF).

CONCLUSIONS

This paper discussed the results of applying #etyanf
filters for state and parameter estimation on anAERhe
combined estimation strategy was applied and coedpmith
the standard EKF, CKF, and SVSF. For the normat,casvas
found that all of the filters performed relativellye same in
terms of state estimation (the system was only Ipild
nonlinear). However, both the SVSF and CKF-SVSFevatile
to determine the parameter with higher estimatioougacy.
When a modeling error was introduced, the EKF and~C
methods both failed to accurately represent thk inddulus of
the system. The boundary layers introduced by tN&SFS
created a more robust estimation process. Typieatiade-off
exists between estimation accuracy and robustoessteling
uncertainties and errors. However, the combinedate{CKF-
SVSF) was able to maintain a high-level of accuradyle
remaining robust to errors.

NOMENCLATURE
The following is a list of the nomenclature usextighout
this paper.

Table 2. List of Nomenclature

Parameter Definition

State vector or values

Measurement (system output) vector or values
System noise vector

Measurement noise vector

Linear system transition matrix

Input gain matrix

Linear measurement (output) matrix
Filter gain matrix (i.e., KF or SVSF)
State error covariance matrix
Covariance matrix betweenandz
Covariance matrix betweerandz
System noise covariance matrix
Measurement noise covariance matrix
Innovation covariance matrix

CKF update weight or gain

Array of cubature points
Measurement (output) error vector

e xTuOFEF UXRTWREL SN K

diag(a) Defines a diagonal matrix of some vector
sat(a) Defines a saturation of the tean
N(u, o) Normal distribution with meap and variance
& Defined as a cubature point
y SVSF ‘convergence’ or memory parameter
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P SVSF boundary layer width

|a| Absolute value of some parameter
T Transpose of some vector or matrix
~ Denotes error or difference
A Estimated vector or values
k+1lk A priori time step (i.e., before applied gain)
k+1lk+1 A posteriori time step (i.e., after update)
Ag Piston are#5.05 x 10™* m?)
Bg Load friction(760 Ns/m)
D, Pump displacemerft.69 x 10~7 m3/rad)
K, Back EMF constant6980 rad - s/m)
L Leakage coefficienf2.5 x 107 m3/Pa - )
M Load masg20 kg)
Vo Chamber volumé6.85 x 1075 m?)
Be Effective bulk modulug2 x 108 Pa)
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