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ABSTRACT 
Electrohydrostatic actuators (EHAs) are an emerging type 

of actuator typically used in the aerospace industry, and are 
self-contained units comprised of their own pump, hydraulic 
circuit, and actuating cylinder. Recently, a novel EHA system 
has been developed. A particularly important parameter of this 
system is the bulk modulus. This value cannot be measured 
directly and must be estimated using state and parameter 
estimation techniques such as the Kalman filter (KF), particle 
filter (PF), or the smooth variable structure filter (SVSF). The 
cubature Kalman filter (CKF), recently proposed in 2009, is an 
estimation method that makes use of the standard derivation of 
the Kalman filter, as well as defined cubature points which are 
used to draw the probability distribution of the states with 
greater accuracy. The SVSF is a relatively new estimation 
strategy which is very robust and stable to modeling errors and 
uncertainties. The combination of these two methods (CKF-
SVSF) yields an accurate and stable estimation method which 
has been applied on an EHA. The results of this combination 
are compared against the standard KF in terms of accuracy, 
robustness to errors and uncertainties, and filter complexity. 

 
INTRODUCTION 
 For the successful control of many mechanical and 
electrical systems, knowledge of the current states and 
parameters is critical. Sensors are used to obtain measurements 
from the environment, most commonly taking kinematic 
readings (i.e., position, velocity, and acceleration). It is quite 
common for measurements to be corrupted by sensor noise. 
Whether it is from the measurements or the system, noise 
represents unwanted signals that reduce the quality of the 
information available for the controller [1]. To minimize the 

effects of noise, one may apply a filter, which essentially 
attempts to estimate the true state or parameter value by 
removing (or filtering) the unwanted signals [2]. Filters belong 
in the domain of estimation theory, which encompasses 
mathematical techniques and algorithms used to determine the 
true values of system states. In space vehicles, for example, 
inertial measuring units may be used to calculate the 
acceleration. However, since their alignment deteriorates over 
time, calculating the acceleration by other means (i.e., state 
estimation) may be desirable [3]. 
 For linear systems, the most well-known and studied filter 
is the Kalman filter (KF). The KF was introduced in 1960, and 
provides an elegant solution to linear estimation problems [4]. 
It provides a statistically optimal solution in the sense that it 
minimizes the state estimation error for linear systems with 
Gaussian distributed noise [5,6]. Although the KF is an 
effective estimation strategy, the accuracy of the filter comes at 
a trade-off with stability and robustness. The very strong 
assumptions (i.e., linearity, Gaussian noise, no modeling 
uncertainties) are seldom held in practice, particularly in the 
area of control or target tracking. If one of the assumptions is 
violated, the performance of the KF can become degraded 
which increases the chance of numerical instability [7,1]. 
Nonlinear estimation problems introduce another level of 
uncertainty through un-modeled dynamics. 
 In the presence of nonlinear systems or measurements, 
suboptimal techniques are required to tackle the estimation 
problem. Popular nonlinear estimation techniques include the 
extended Kalman filter (EKF), the unscented Kalman filter 
(UKF), and the particle filter (PF) [2]. The EKF utilizes the 
first-order Taylor series expansion (i.e., Jacobian) of the 
nonlinear equations to create linearized system and 
measurement matrices. One major drawback of this method is 
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that it comes at a cost of higher-order un-modeled uncertainties 
[7]. The UKF is able to capture a higher order of the 
nonlinearities by using a set of deterministically chosen sample 
points (typically referred to as sigma points) which, after a 
transformation, captures the true mean and covariance up to the 
second order of nonlinearity [8]. The PF has recently become a 
very popular method for solving nonlinear estimation problems. 
Like the name suggests, the PF makes use of weighted particles 
or ‘point masses’ distributed in a manner that estimates the 
probability distribution function (PDF) of the values of interest 
[8]. The PDF contains all of the pertinent statistical 
information, and may be considered as holding the solution to 
the estimation problem [2]. 
 Most recently, the cubature Kalman filter (CKF) and 
smooth variable structure filter (SVSF) have been proposed. 
The CKF makes use of a third-degree cubature rule to 
numerically compute Gaussian-weighted integrals, which 
represent the joint state-measurement predictive density [9]. 
This enables a very close approximation of the nonlinear 
estimation problem. The SVSF is a relatively new predictor-
correct estimation method based on sliding mode theory [10]. It 
yields suboptimal estimates, however is extremely robust and 
stable to modeling uncertainties and errors. This paper 
discusses a combined estimation method (referred to as the 
CKF-SVSF) which makes use of the accuracy of the CKF and 
the stability of the SVSF. For demonstration purposes, the filter 
is applied on a parameter estimation problem involving an 
electrohydrostatic actuator (EHA). The results (CKF-SVSF) of 
which are compared against the EKF, CKF, and SVSF. Note 
that the results of the UKF were nearly identical to the EKF, 
such that they were omitted. 
 
 
REVIEW OF ESTIMATION METHODS 
 
a) Kalman Filter 
 As previously mentioned, the KF provides an elegant and 
statistically optimal solution for linear dynamic systems in the 
presence of Gaussian white noise. It is an estimation method 
that utilizes measurements linearly related to the states or 
parameters of the systems, and error covariance matrices, to 
generate a gain referred to as the Kalman gain. This gain is 
applied to the a priori state estimate, thus creating an a 
posteriori (i.e., updated) estimate of the states. The estimation 
process is iterative and continues in a predictor-corrector 
fashion while maintaining a statistically minimal state error 
covariance matrix (for linear systems). 
 A typical linear dynamic system and measurement model 
are defined by using the following two equations, respectively: 

 ���� = ��� + ��� + �� (1) ���� = ����� + ���� (2) 
 

 Please refer to the end of the paper for a list of pertinent 
nomenclature and variable definitions. The following five 
equations form the core of the KF algorithm, and are used in an 

iterative fashion. Equation (3) defines the a priori estimate 
based on the system definition, and (4) is the corresponding 
state error covariance matrix. The Kalman gain is defined by 
(5), and is used to update the state estimate shown in (6). The a 
posteriori state error covariance matrix is calculated by (7). 

 
�	���|� = �
�	�|� + ���� (3) 
����|� = ���|��� + 
� (4) 

���� = ����|���������|��� + ������� (5) 

�	���|��� = �	���|� + ��������� − ��	���|�� (6) 
����|��� = �� − ����������|� (7) 

 
b) Cubature Kalman Filter 
 As presented in [11], the CKF is the closest known 
approximate filter in the sense of completely preserving 
second-order information due to the maximum entropy 
principle [9]. According to the maximum entropy principle, 
given the first two order statistics of a hidden process, it is 
Gaussian that maximizes the information entropy criterion of 
that process. In deriving the CKF, it is assumed that the 
predictive density of the joint state-measurement random 
variable is Gaussian. Under this assumption, the Bayesian filter 
reduces to the problem of how to compute integrals in which 
the integrands are all of the following form: 

 ��������� �������� × ���  ��� (8) 
 
 The CKF uses a third-degree cubature rule to numerically 
compute the above Gaussian-weighted integrals. For example, 
the cubature rule approximates an n-dimensional Gaussian 
weighted integral as follows: 
 

! �(�)
ℝ�

N"�; #, $%&� ≈
1

2�'�(# + √$*�+
��

�	�
 (9) 

 
 Where a square-root factor of the covariance $ satisfies the 

relationship $ = √$√$�
 and the set of 2� cubature points are 

given by: 
 

*� = , √���, � = 1, 2, … , �
−√�����, � = � + 1, � + 2, … , 2�- (10) 

 
 With �� denoting the ith elementary column vector. The 
third-degree cubature rule is exact for polynomial integrands up 
to the third degree or for any odd-degree polynomial. For a 
detailed exposition of how the cubature points were derived, 
the reader may consult [9]. For improved numerical stability, 
the CKF can be restructured to propagate the square-roots of 
the error covariances. The following equations represent the 
iterative square-root CKF estimation process [9]: 
 

.��|� = /�|�*� + �	�|� � = 1, 2, … ,2� (11) 
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.����|�∗ = � 0.��|�1 � = 1, 2, … ,2� (12) 

�	���|� =
1

2�'.����|�

∗

��

�	�
 (13) 

X����|�

∗
=

1

√2� �������|�

∗ − �����|�� ������|�

∗ − �����|��	 
	…  �������|�

∗ − �����|��
 
(14) 

/���|� = ����(�X��+1|�

∗ /
�
�+ (15) 

.����|� = /���|�*� + �	���|� � = 1, 2, … ,2� (16) 

2����|� = ℎ 0.����|�
1 � = 1, 2, … ,2� (17) 

�̂���|� =
1

2�'2����|�
��

�	�
 (18) 

X���|� =
1

√2� �������|� − �����|�� ������|�
− �����|��	 

	…  �������|�
− �����|��
 

(19) 

 

Z���|� =
1

√2� �������|� − �̂���|�� ������|�
− �̂���|��	 

	…  �������|�
− �̂���|��
 

(20) 

�� 0� �� = ���� �Z���|� �����

X���|� 0
� (21) 

���� = �/� (22) 
�����|��� = �����|� + ��������� − �̂���|�� (23) ����|��� = � (24) 

 
c) Smooth Variable Structure Filter 
 As presented in [12], sliding mode control and estimation 
techniques have been around for quite a few decades, and are 
mainly popular due to their relative ease of implementation and 
robustness to modeling uncertainties [13,14]. In a typical 
sliding mode control scenario, one utilizes a discontinuous 
switching plane along some desired trajectory [15]. This plane 
is quite often referred to as a sliding surface, in which the 
purpose is to keep the state values along this surface by 
minimizing the state errors (between the desired trajectory and 
the estimated or actual values). Ideally, if the state value is off 
or away from the surface, a switching gain would be used to 
push the state towards the sliding surface. Once upon the 
surface, the motion of the system as the states slide along the 
surface is called a sliding mode [15]. The discontinuous 
switching brings an inherent amount of stability to the control 
or estimation strategy, while also introducing excessive 
chattering (i.e., high-frequency switching) which may be 
undesirable in control since it may excite un-modeled 
dynamics. A boundary layer may be introduced along the 
sliding surface in order to saturate and smooth out the 
chattering within the boundary region. These sliding mode 
concepts are based on variable structure control, in which one 
alters the nonlinear dynamics of a system by the introduction of 
high-frequency switching [13]. 
 The variable structure filter (VSF) was first proposed in 
2003, and was introduced as a new type of predictor-corrector 

estimator based on sliding mode concepts [16]. It is a type of 
sliding mode estimator, where gain switching is used to ensure 
that the estimates converge to within a boundary of the true 
state values (i.e., existence subspace). An internal model of the 
system, either linear or nonlinear, is used to predict an a priori 
state estimate. A corrective term (i.e., gain) is then applied to 
calculate the a posteriori state estimate, and the estimation 
process is repeated iteratively. The smooth variable structure 
filter (SVSF) was later derived from the VSF, and uses a much 
simpler and less complex gain calculation [10]. In its present 
form, the SVSF is stable and robust to modeling uncertainties 
and noise, given an upper bound on the level of un-modeled 
dynamics or knowledge of the magnitude of noise. The basic 
estimation concept of the SVSF is shown in the following 
figure. Some initial values of the estimated states are made 
based on probability distributions or designer knowledge. An 
area around the true system state trajectory is defined as the 
existence subspace. Through the use of the SVSF gain, the 
estimated state will be forced to within this region. Once the 
value enters the existence subspace, the estimated state is 
forced into switching along the system state trajectory. A 
saturation term may be used in this region to reduce the 
magnitude of chattering or smooth-out the result. As previously 
mentioned, the SVSF gain introduces a certain amount of 
chattering which brings an inherent amount of stability. This 
makes the estimation strategy an attractive method for control 
problems when not all of the dynamics are well known or 
defined correctly. 

 
Fig. 1. The smooth variable structure filter estimation concept 
is shown in the above figure [10]. 

 
 The SVSF method is model based and applies to smooth 
nonlinear dynamic equations. The estimation process is 
iterative and may be summarized by the following set of 
equations (for a linear control or estimation problem). Like the 
KF, the system model is used to calculate a priori state and 
measurement estimates. A corrective term, referred to as the 
SVSF gain, is calculated as a function of the error in the 
predicted output and a smoothing boundary layer. This gain is 
then used to update the state estimate. The estimation process is 
stable due to the gain calculation of (28). Furthermore, the 
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switching found within the existence subspace is smoothed out 
by using the saturation term of (28), which is defined by the a 
priori output error and some predetermined boundary layer 
width. 
 

�	���|� = �
�	�|� + ���� (25) 
�̂���|� = �4�	���|� (26) 

�����|�
= ���� − �̂���|� (27) 

���� = 05�����|�5 + 6 5���|�51 ∘  �� 7�����|�8 9 (28) 

�	���|��� = �	���|� + ���� (29) 
�����|��� = ���� − �4�	���|��� (30) 

 
 Two critical variables in the SVSF estimation process are 
the a priori and a posteriori output error estimates, defined by 
(27) and (30), respectively. The estimation process is stable and 
convergent if the following lemma is satisfied: 
 |��| > |����| (31) 
 
 The proof, as defined in [10], is such that if one defines ;��� as a random but bounded amplitude such that ;��� ≤ <, 
then |��| > |����| applies to the phase where |��| > < that is 
defined by the reachability phase. Let a Lyapunov function be 
defined such that ���� = ����� . Hence, the estimation process is 
stable if "∆���� = ����� − ���% < 0. Furthermore, note that this 
stability condition is satisfied by (31) [10,17]. 
 
 
COMBINED CUBATURE KALMAN AND SMOOTH 
VARIABLE STRUCTURE FILTERING STRATEGY 
 In this section, a new estimation method (referred to as the 
CKF-SVSF) is discussed, as presented in [11]. In 2008, it was 
proposed that the EKF may be combined with the SVSF for an 
improved estimation process [18,19]. The CKF-SVSF method 
takes a similar approach to the method of combination. The 
SVSF provides an estimation process that is sub-optimal albeit 
stable. It is hence beneficial to be able to combine the accurate 
performances of the CKF with the stability of the SVSF. As 
such, the SVSF strategy can be used to force the estimated 
states to within a boundary and then on, the corrective action 
being principally transferred to the CKF. 
 To combine these two methods, the gain of the SVSF needs 
to be further modified. The new form takes advantage of the 
orthogonality of the Kalman gain with respect to the actual 
system states [7,1]. The augmented gain includes the addition 
of a constant positive vector (П), which is forced in a direction 
determined by a vector (&��). The vector d
� originates from 
the a priori state estimates and is orthogonal to the trajectory 
traced by the actual system states. This vector points towards 
the state values and the switching surface. The orthogonality 
condition is satisfied by setting &�� = =��������|�, by virtue of 

the Kalman derivation [7]. Furthermore, one may combine the 
CKF with the SVSF by setting the boundary layer widths (8) to 

one, and by making the additive term (П) relatively large with 
respect to 6. The CKF plays a greater role in the estimation 
process with a larger additive term with respect to 6 [18]. It is 
important to note that when outside of the smoothing boundary 
layer, the corrective gain is essentially the same as the SVSF 
gain. While inside the boundary layer, the corrective term is 
primarily composed of the CKF gain. 
 The following is a summary of the CKF-SVSF estimation 
process for nonlinear systems, broken up into two stages 
(prediction and update). 
 
Prediction equations: 
 

�����|� = � �����,���N	��;���|�,
�|��
ℝ��

��� (32) 


���|� = � �����,���������,���N	��;���|�,
�|��
ℝ��

���
− �����|������|�� + 
� 

(33) 

�̂���|� = � ℎ������,�����N	����;�����|�,
���|��
ℝ��

����� (34) 

�����|� = ���� − �̂���|� (35) 
 
Update equations: 
 

������|�
= � ���	ℎ�
����	, ���	�N����	; ����	|�,���	|��

ℝ��

����	
− ����	|��̂��	|�
  

(36) 

������|�
= � ℎ�����	,���	�ℎ�
����	, ���	�N����	; ����	|�,���	|��

ℝ��

����	
− �̂��	|��̂��	|�
 + ���	 

(37) 

���� = 
�����|�
�����|���  (38) 

���� = ���� ��������|�� + � ����|�� + П�
∘ ��� ����������|��  !����� "�����|�#��� 

(39) 

�����|��� = �����|� + ���������|� (40) 
���|��� = 
���|� − ����
�����|�����
�  (41) 

�̂���|��� = � ℎ������,�����N	����;�����|���,
���|����
ℝ��

����� (42) 

�����|��� = ���� − �̂���|��� (43) 
 
 
 Note that the integrals found within the CKF-SVSF 
estimation method represent the summation of cubature points 
used to approximate the state distribution, as suggested by (9). 
 
 
APPLICATION TO AN EHA SYSTEM 
 In this section, an electrohydrostatic actuator (EHA) is 
simulated. The EHA to be simulated is based on an actual 
prototype built for experimentation [10,20]. The purpose of this 
simulation is to demonstrate that the combined estimation 
process (CKF-SVSF) yields a very accurate estimate, without 



 5 Copyright © 2010 by ASME 

negatively impacting its stability to modeling errors or 
uncertainties. 
 The EHA is a third order (typically linear) system with 
state variables related to its position, velocity, and acceleration. 
It is assumed that all three states have measurements associated 
with them (i.e., full measurement matrix). The input to the 
system is a random normal distribution with magnitude 1. The 
sample time of the system is 0.001 seconds. The entire EHA 
system description may be found in [20]. However, for the 
purpose of this paper, three states (kinematic information) and 
one parameter (bulk modulus) will be estimated. The estimation 
of the parameter creates a nonlinear estimation problem. The 
system model equations are defined as follows: 
 ����� = ��� + >��� 

����� = ��� + >��� 

�����
= (1 − >?� − >?����+��� − >?����

+ ��>����� 
����� = ��� 

(44) 

 
Where: 
 �� = 2@��� AB ⁄  

?� = 2��� AB ⁄  ?� = D B ⁄  ?� = �� A⁄  

(45) 

 
 The initial state values are set to zero. The initial true bulk 
modulus is set to 2 × 10! ��, whereas the corresponding initial 
estimate is 1.5 × 10! ��. Half-way through the simulation the 
true bulk modulus is changed. The system and measurement 
noises are considered to be Gaussian with maximum amplitude 
corresponding to ="#� = �0.0001 0.001 0.01�� and B"#� = �0.01 0.01 0.01�� for the states. The initial state 
error covariance, system noise covariance, and measurement 
noise covariance are defined respectively as follows: 
 � | = 10
 (46) 


 = 5="#�="#��  (47) � = 5B"#�B"#��  (48) 
 
 For the SVSF estimation process, the ‘memory’ or 
convergence rate was set to 6 = 0.1, and the boundary layer 
widths were defined as 8 = �0.1 10 50��. These 
parameters were tuned by trial-and-error, with the goal of 
decreasing the estimation error. The main results of applying 
the EKF, CKF, SVSF, and the CKF-SVSF on the EHA problem 
are shown in the following sets of figures. The first figure 
shows the true position of the EHA with the corresponding 
estimates. For the position, the estimation results of both filters 
are relatively the same. The velocity and acceleration estimates 
were relatively the same as those shown in the following figure 
(and were thus omitted for space constraints). 
 

 
Fig. 2. The position estimates for the EHA simulation are 
shown in the above figure. Note that the lines are nearly 
concentric and thus are relatively difficult to distinguish. 
 

 
Fig. 3. The bulk modulus estimates for the EHA simulation are 
shown in the above figure. Note that the EKF and CKF 
estimates are nearly the same and thus are relatively difficult to 
distinguish. 
 
The RMSE results of running the simulation are as follows: 
 
Table 1. RMSE Simulation Results 
 

Filter 
Position 

(m) 
Velocity 

(m/s) 
Accel. 
(m/s2) 

Bulk 
Modulus 

(Pa) 

SVSF 1.095 × 10�� 1.626 × 10�� 4.742 × 10�	 0.0314 

EKF 1.304 × 10�� 5.348 × 10�� 4.524 × 10�
 0.1457 

CKF 1.301 × 10�� 5.317 × 10�� 4.497 × 10�
 0.1451 

CKF-SVSF 7.931 × 10�� 4.827 × 10�
 5.558 × 10�� 0.0194 
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 As shown in the above table, the CKF-SVSF provides the 
best overall result in terms of estimation accuracy and rate of 
convergence. The three state estimates were relatively the same 
for all of the filters. A notable difference occurs when 
attempting to estimate the parameter. The convergence rate is 
clearly shown, where the EKF and CKF are the slowest, and the 
combined method is the fastest. Note that the EKF and CKF 
yield the same solution for this estimation problem, as it is only 
mildly nonlinear. The robustness of the combined method is 
shown when modeling errors are introduced into the simulation. 
The results of increasing the load mass by 10 times after half-a-
second are shown in the following sets of figures. 
 

 
Fig. 4. The position estimates for the EHA simulation with 
modeling error are shown in the above figure. 
 

 
Fig. 5. The bulk modulus estimates for the EHA simulation 
with modeling error are shown in the above figure.  
 
 The effect of changing the mass used by the filters in the 
estimation process is clearly shown at 0.5 seconds. Figure 5 
shows that the EKF and CKF both fail to provide a good 

estimate of the bulk modulus. However, the SVSF and CKF-
SVSF still provide very good estimates of the parameter. This 
example demonstrates the robustness of the combined method 
due to the boundary layer concepts of the SVSF. The SVSF 
remains bounded to within a region of the true state trajectory, 
thus minimizing the effects of the modeling error. Furthermore, 
the addition of the CKF increases the estimation accuracy, 
which makes for an attractive filter (CKF-SVSF). 

CONCLUSIONS 
 This paper discussed the results of applying a variety of 
filters for state and parameter estimation on an EHA. The 
combined estimation strategy was applied and compared with 
the standard EKF, CKF, and SVSF. For the normal case, it was 
found that all of the filters performed relatively the same in 
terms of state estimation (the system was only mildly 
nonlinear). However, both the SVSF and CKF-SVSF were able 
to determine the parameter with higher estimation accuracy. 
When a modeling error was introduced, the EKF and CKF 
methods both failed to accurately represent the bulk modulus of 
the system. The boundary layers introduced by the SVSF 
created a more robust estimation process. Typically a trade-off 
exists between estimation accuracy and robustness to modeling 
uncertainties and errors. However, the combined method (CKF-
SVSF) was able to maintain a high-level of accuracy while 
remaining robust to errors. 
 

NOMENCLATURE 
The following is a list of the nomenclature used throughout 

this paper. 
 
Table 2. List of Nomenclature 
 

Parameter Definition 

� State vector or values 
� Measurement (system output) vector or values 
$ System noise vector 
% Measurement noise vector 
& Linear system transition matrix 
' Input gain matrix 
( Linear measurement (output) matrix 
� Filter gain matrix (i.e., KF or SVSF) 

 State error covariance matrix 

�� Covariance matrix between x and z 

�� Covariance matrix between z and z 

 System noise covariance matrix 
) Measurement noise covariance matrix 
* Innovation covariance matrix 
� CKF update weight or gain 
+ Array of cubature points 
� Measurement (output) error vector 

������� Defines a diagonal matrix of some vector a 
������ Defines a saturation of the term a 
N(,,-) Normal distribution with mean , and variance - 

. Defined as a cubature point 
� SVSF ‘convergence’ or memory parameter 
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� SVSF boundary layer width |�| Absolute value of some parameter a 
0 Transpose of some vector or matrix 
~ Denotes error or difference 
^ Estimated vector or values 

1 + 1|1 A priori time step (i.e., before applied gain) 
1 + 1|1 + 1 A posteriori time step (i.e., after update) 

&� Piston area (5.05 × 10�	 2
)  
'� Load friction (760 3�/2)  4� Pump displacement (1.69 × 10�� 2
/5��)  
�� Back EMF constant (6980 5�� ∙ �/2)  
6 Leakage coefficient (2.5 × 10��� 2
/
� ∙ �)  7 Load mass (20 1�)  
8� Chamber volume (6.85 × 10�� 2
)  9� Effective bulk modulus (2 × 10� 
�) 
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