
  

  

Abstract — State and parameter estimation is important for 

the control of systems, particularly when not all of the system 

information is available for the designer. Filters are used to 

extract state information from measurements, which are 

typically corrupted by noise. A common measure of the 

performance of an estimate by a filter is through the use of a 

covariance matrix. This essentially provides a measure of the 

error in the estimate. Furthermore, knowledge of this 

covariance can lead to a more accurate derivation and greater 

number of applications for the filter. Introduced in 2007, the 

smooth variable structure filter (SVSF) is a relatively new 

filter. It is a predictor-correct estimator based on sliding mode 

control and estimation. In its current form, the SVSF is not a 

classical filter in the sense that it does not have a covariance 

matrix. This paper introduces the SVSF in a new form without 

affecting its original proof of stability, and outlines the 

derivation of a covariance matrix that can be used for 

comparative purposes as well as other applications. A linear 

mechanical system referred to as an electrohydrostatic actuator 

(EHA) is used to numerically demonstrate the new SVSF. The 

results are compared with the classical Kalman filter (KF), 

which is the most common and efficient filtering strategy for 

linear systems. 

I. INTRODUCTION 

OR many control applications, knowledge of the current 

states and parameters of the systems are essential for 

accurate and reliable control. Depending on the system, 

sensors are used to obtain measurements from the 

environment, typically taking readings of position, velocity, 

acceleration, force, and pressure. It is quite common for the 

measurements to be corrupted by noise, which are unwanted 

signals that reduce the quality of the information obtained 

[1]. A filter may be used to estimate the state of a dynamic 

system, whether linear or nonlinear. The word filter is used 

because when finding the best estimate, one has to filter out 

the noisy signals or uncertain observations [2]. Filters belong 

in the domain of estimation theory, which involves finding a 

value of some parameter of interest. For example, for space 

vehicles, inertial measuring units may be used to calculate 

the acceleration. However, since their alignment deteriorates 

over time, calculating the acceleration by other means (i.e., 

state estimation) may be desirable [3]. 
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In the case of many mechanical and electrical systems, the 

detection and diagnosis of faults prior to their inception is 

critical for a reliable and safe operation. An effective method 

of determining faults is by utilizing a model-based condition 

monitoring approach, where a set of physical mathematical 

models pertaining to each fault condition are used. The value 

of multiple parameters may be analyzed within the models, 

and could be used to diagnosis the type of fault [4]. An 

interesting example for the requirement of accurate fault 

detection and estimation is in electrohydrostatic actuators 

(EHAs). An EHA is an emerging type of actuator typically 

used in the aerospace industry, and are self-contained units 

comprised of their own pump, hydraulic circuit, and 

actuating cylinder [5]. A few important parameters of this 

system include internal and external leakage, friction, and 

bulk modulus. These system parameters may be related to 

specific faults that the EHA may experience during its 

operation, such as a leak in one of the fittings, a blown 

piston seal, contaminants stuck in a seal or a gear pump, or 

the presence of air pockets in the hydraulic oil. 

These values cannot be measured directly and must be 

estimated using state and parameter estimation techniques 

such as the Kalman filter (KF) or the smooth variable 

structure filter (SVSF). The KF was introduced in 1960, and 

remains one of the most popular and studied filters to date 

[6]. It provides an elegant and statistically optimal solution 

for linear dynamic systems in the presence of Gaussian 

white noise [7,8]. However, the optimality of the KF comes 

at a price of stability and robustness. The KF assumes that 

the system model is known and is linear, the system and 

measurement noises are white, and the states have initial 

conditions that are modeled as random variables with known 

means and variances [2,9]. However, the previous 

assumptions do not always hold in real applications, 

particularly an exact knowledge of the system equations. If 

one of these assumptions is violated, the KF performance 

may yield suboptimal estimations and can even become 

unstable. Furthermore, the KF is sensitive to computer 

precision and the complexity of certain calculations (i.e., 

matrix inversions) [8]. The SVSF is a relatively new 

predictor-correct estimation method based on sliding mode 

theory [5]. It yields suboptimal estimates, however is 

extremely robust and stable to modeling uncertainties and 

errors. This makes it an attractive filter for applications 

where reliable estimates are required. Furthermore, it has 

been shown to be an effective method for helping to predict 

and diagnose faults in systems [4,5]. 
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II. ESTIMATION METHODS 

A. Kalman Filter 

As previously mentioned, the KF provides an elegant and 

statistically optimal solution for linear dynamic systems in 

the presence of Gaussian white noise. It is an estimation 

method that utilizes measurements linearly related to the 

states or parameters of the systems, and error covariance 

matrices, to generate a gain referred to as the Kalman gain. 

This gain is applied to the a priori state estimate, thus 

creating an a posteriori (i.e., updated) estimate of the states. 

The estimation process is iterative and continues in a 

predictor-corrector fashion while maintaining a statistically 

minimal state error covariance matrix (for linear systems). 

A typical linear dynamic system and measurement model 

are defined by using the following two equations, 

respectively: 

 ���� � ��� � ��� � �� (1) ���� � ����� � ���� (2) 

 

Please refer to the Appendix for a list of pertinent 

nomenclature and variable definitions. The following five 

equations form the core of the KF algorithm, and are used in 

an iterative fashion. Equation (3) defines the a priori 

estimate based on the system definition, and (4) is the 

corresponding state error covariance matrix. The Kalman 

gain is defined by (5), and is used to update the state 

estimate shown in (6). The a posteriori state error covariance 

matrix is then calculated by (7). 

 �	����� � �
�	��� � ���� (3) ������ � ������� � 
� (4) ���� � ������������������ � ������� (5) �	������� � �	����� � ��������� � ��	������ (6) �������� � �� � ������������ (7) 

 

A number of different methods have extended the classical 

KF to nonlinear systems, with the most popular ones being 

the extended (EKF) and unscented (UKF) forms [9,10]. The 

EKF is conceptually similar to the KF; however, the 

nonlinear system and measurement matrices are linearized 

according to its Jacobian (i.e., first-order partial derivative). 

This linearization process sometimes causes instabilities 

when implementing the EKF [10]. The UKF is typically 

more accurate than the EKF since it is able to capture a 

higher order of the nonlinearities [8]. The UKF 

approximates the distribution of the states by a Gaussian 

density, using a set of deterministically chosen sample points 

which, after a transformation, captures the true mean and 

covariance up to the second order of nonlinearity [11]. The 

UKF is sometimes referred to as a type of linear regression 

Kalman filter since it is based on statistical linearization, 

rather than analytical linearization like the EKF. 

B. Smooth Variable Structure Filter 

Sliding mode control and estimation techniques have been 

around for quite a few decades, and are mainly popular due 

to their relative ease of implementation and robustness to 

modeling uncertainties [12,13]. In a typical sliding mode 

control scenario, one utilizes a discontinuous switching 

plane along some desired trajectory [14]. This plane is quite 

often referred to as a sliding surface, in which the purpose is 

to keep the state values along this surface by minimizing the 

state errors (between the desired trajectory and the estimated 

or actual values). Ideally, if the state value is off or away 

from the surface, a switching gain would be used to push the 

state towards the sliding surface. Once upon the surface, the 

motion of the system as the states slide along the surface is 

called a sliding mode [14]. The discontinuous switching 

brings an inherent amount of stability to the control or 

estimation strategy, while also introducing excessive 

chattering (i.e., high-frequency switching) which may be 

undesirable in control since it may excite un-modeled 

dynamics. A boundary layer may be introduced along the 

sliding surface in order to saturate and smooth out the 

chattering within the boundary region. These sliding mode 

concepts are based on variable structure control, in which 

one alters the nonlinear dynamics of a system by the 

introduction of high-frequency switching [12]. 

The variable structure filter (VSF) was first proposed in 

2003, and was introduced as a new type of predictor-

corrector estimator based on sliding mode concepts [15]. It 

is a type of sliding mode estimator, where gain switching is 

used to ensure that the estimates converge to within a 

boundary of the true state values (i.e., existence subspace). 

An internal model of the system, either linear or nonlinear, is 

used to predict an a priori state estimate. A corrective term 

(i.e., gain) is then applied to calculate the a posteriori state 

estimate, and the estimation process is repeated iteratively. 

The smooth variable structure filter (SVSF) was later 

derived from the VSF, and uses a much simpler and less 

complex gain calculation [4]. In its present form, the SVSF 

is stable and robust to modeling uncertainties and noise, 

given an upper bound on the level of un-modeled dynamics 

or knowledge of the magnitude of noise. The basic 

estimation concept of the SVSF is shown in the following 

figure. Some initial values of the estimated states are made 

based on probability distributions or designer knowledge. 

An area around the true system state trajectory is defined as 

the existence subspace. Through the use of the SVSF gain, 

the estimated state will be forced to within this region. Once 

the value enters the existence subspace, the estimated state is 

forced into switching along the system state trajectory. A 

saturation term may be used in this region to reduce the 

magnitude of chattering or smooth-out the result. As 

previously mentioned, the SVSF gain introduces a certain 

amount of chattering which brings an inherent amount of 

stability. This makes the estimation strategy an attractive 

method for control problems when not all of the dynamics 

are well known or defined correctly. 
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Fig. 1. The smooth variable structure filter estimation concept is 

shown in the above figure [4]. 

 

The SVSF method is model based and applies to smooth 

nonlinear dynamic equations. The estimation process is 

iterative and may be summarized by the following set of 

equations (for a linear control or estimation problem). Like 

the KF, the system model is used to calculate a priori state 

and measurement estimates. A corrective term, referred to as 

the SVSF gain, is calculated as a function of the error in the 

predicted output and a smoothing boundary layer. This gain 

is then used to update the state estimate. The estimation 

process is stable due to the gain calculation of (11). 

Furthermore, the switching found within the existence 

subspace is smoothed out by using the saturation term of 

(11), which is defined by the a priori output error and some 

predetermined boundary layer width. 

 �	����� � �
�	��� � ���� (8) �̂����� � ���	����� (9) ������� � ���� � �̂����� (10) ���� � ����������� � �������� � ��� �������� ! (11) �	������� � �	����� � ���� (12) ��������� � ���� � ���	������� (13) 

 

Two critical variables in the SVSF estimation process are 

the a priori and a posteriori output error estimates, defined 

by (10) and (13), respectively. The estimation process is 

stable and convergent if the following lemma is satisfied: 

 |��| � |����| (14) 

 

 The proof, as defined in [4], is such that if one defines #��� as a random but bounded amplitude such that #��� � $, then |��| � |����| applies to the phase where |��| � $ that is defined by the reachability phase. Let a 

Lyapunov function be defined such that ���� � ����� . 

Hence, the estimation process is stable if %����� � ����� ����& � 	. Furthermore, note that this stability condition is 

satisfied by (14) [4,16]. 

C. A Revised Form of the SVSF 

In its current form, the SVSF is not a classical filter in the 

sense that it does not have or make use of a covariance 

matrix. A covariance may be used for a variety of reasons: to 

determine an optimal value of the gain (i.e., such as in the 

case of the KF), for the implementation of interacting 

multiple model (IMM) methods that can be used for target 

tracking or fault detection and diagnosis, or to create other 

forms such as the information filter (i.e., inverse of the 

covariance) [2]. A covariance matrix is a function of state 

estimation errors (i.e., the difference between the actual and 

the estimated values), and may be defined as the expectation 

of the error squared, as follows: 

 � � 
'�(�(�) � 
'%� � �	&%� � �	&�) (15) 

 

In this paper, a revised form of the SVSF is introduced in 

order to obtain a simplified covariance matrix. It is proposed 

that the SVSF gain and update estimate be modified 

respectively as follows: 

 ���� � *+�, -����������� � ��������
� ��� �������� !. /*+�, ���������0�� 

(16) �	������� � �	����� � ����������� (17) 

 

 Essentially the nature of the SVSF remains the same, as 

one divides the gain by the a priori output error, and then 

multiplies by it again in the a posteriori estimate equation. 

However, introducing this notation enables one to derive a 

much simpler covariance derivation. Furthermore, note that 

the proof of stability for the SVSF is not affected. It is 

interesting to note that the a priori and a posteriori state error 

covariance matrices for the SVSF are similar to the KF for 

linear systems. 

III. A REVISED SMOOTH VARIABLE STRUCTURE FILTER 

A. SVSF Covariance Derivation 

The following is the proof for the a priori state error 

covariance equation used in the SVSF for linear systems, for 

the case without modeling errors. The a priori state error 

covariance matrix may be defined as follows: 

 ������ � 
1�(������(������ 2 (18) 

 

Where the a priori state error may be defined by: 

 �(����� � ���� � �	����� (19) 

 

The discrete model of the system may be described by the 

following equation: 

 ���� � ��� � ��� � �� (20) 
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Furthermore, the uncertain estimation model for the 

system that is used in the prediction stage of the SVSF may 

be defined as follows: 

 �	����� � �
�	��� � ���� (21) 

 

Substituting (20) and (21) into (19) yields: 

 �(����� � ��� � ��� ��� � �
�	��� � ���� (22) 

 

 Adding and subtracting �
�� to both sides of (22) yields 

the following: 

 

������� � �� � ����� � ����� � ������ � �� � �	�
� � �� (23) 

 

Simplifying (23) further yields the following a priori state 

error equation: 

 �(����� � �3�� � �
�(��� � �4�� ��� (24) 

 

For this case, we have no model mismatch  

��
 � �
���
�� � �� such that the a priori state error 

equation simplifies to the following: 

 �(����� � ��(��� ��� (25) 

 

Substituting (25) and its corresponding transpose into (18) 

yields the following definition for the a priori state error 

covariance: 

 ������ � 
����(��� ������(���� �� ���
��� (26) 

 

Expanding the terms in (26) yields the following: 

 ������ � 
���(����(���� �� � ��(�����
� �
���(���� �� � ����

��� (27) 

 

Note that the system noise is typically modeled as 

Gaussian white noise, such that it is zero-mean with a 

covariance referred to as Q. Furthermore, it is assumed that 

the system noise and the state errors are independent of each 

other. Based on these assumptions we then have the 

following: 

 ���N�	�
�� (28) 


'��) � 
'��
�) � 	 (29) 


'����
�) � 
� (30) 


1���(���� 2 � 
'��)
��(���� � � 	 (31) 


1�(�����
�2 � 
1�(���2
���

�� � 	 (32) 

 

 Also, it is important to note the definition for the previous 

time step’s a posteriori state error covariance: 

 ���� � 
1�(����(���� 2 (33) 

 

Applying the above six definitions to (27) yields the a 

priori state error covariance equation for the SVSF as 

follows: 

 ������ � ������� � 
� (34) 

 

In this case, it is shown that the a priori state error 

covariance is a function of the previous a posteriori state 

error covariance, the system model, and the system noise 

covariance. The proof for the a posteriori state error 

covariance equation may now be solved. The a posteriori 

state error covariance matrix may be defined as follows: 

 �������� � 
1�(��������(�������� �5�����2 (35) 

 

Where the a posteriori state error may be defined by: 

 �(������� � ���� � �	������� (36) 

 

From the SVSF, we have the state update and a priori 

measurement error equations, respectively as follows: 

 �	������� � �	����� � ����������� (37) ������� � ���� � ��	����� (38) 

 

Substitution of (37) and (38) into (36) yields: 

 �(������� � ���� � �	����� � ����6���� ���	�����7 (39) 

 

The measurement update equation is defined as follows: 

 ���� � ����� � ���� (40) 

 

Substitution of (40) into (39) yields: 

 ��������� � ���� � �������
� �����
���� � ���� � 
�������� 

(41) 

 

Based on the state error definitions we have: 

 �(������� � �(����� � ����6��(����� � ����7 (42) 

 

Simplifying (42) yields the following definition for the a 

posteriori state error equation: 

 �(������� � %� � �����&�(����� � �������� (43) 

 

 Substituting (43) and its corresponding transpose into (35) 

yields the following definition for the a posteriori state error 

covariance: 

 �������� � 
1�%� � �����&�(�����
� �����������(������ %� � �����&�
� ����� ����

� ��5�����2 (44) 

 

Expanding the terms in (44) yields the following: 
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�������� � 
1�%� � �����&�(������(������ %� ������&� � %� � �����&�(���������� ����
� ����������(������ %� � �����&� �������������� ����

� ��5�����2  (45) 

 

 Note that the measurement noise is typically modeled as 

Gaussian white noise, such that it is zero-mean with a 

covariance referred to as R. Furthermore, it is assumed that 

the measurement noise and the state errors are independent 

of each other. Based on these assumptions we then have the 

following: 

 �����N�	������ (46) 


'����) � 
'����� ) � 	 (47) 


'��������� ) � ���� (48) 


1�����(������ 2 � 
'����)
��(������ � � 	 (49) 


1�(���������� 2 � 
1�(�����2
������ � � 	 (50) 

 

 Applying the above five definitions to (45) yields the a 

posteriori state error covariance equation for the SVSF as 

follows: 

 �������� � %� � �����&������%� � �����&�
� ������������

�  
(51) 

 

 In this case, it is shown that the a posteriori state error 

covariance is a function of the a priori state error covariance, 

the measurement model, and the measurement noise 

covariance. 

B. The Revised SVSF Estimation Process 

The following equations summarize the new estimation 

process for the SVSF, applied to linear systems: 
 �	����� � �
�	��� � ���� (52) ������ � ������� � 
� (53) �̂����� � ���	����� (54) ������� � ���� � �̂����� (55) ���� � *+�, -����������� � ��������

� ��� �������� !. /*+�, ���������0�� 
(56) �	������� � �	����� � ����������� (57) �������� � %� � �����&������%� � �����&�

� ������������
�  

(58) ��������� � ���� � ���	������� (59) 

IV. EHA SIMULATION 

In this section, an electrohydrostatic actuator (EHA) is 

simulated. The EHA to be simulated is based on an actual 

prototype built for experimentation [4,5]. The purpose of 

this simple simulation is to demonstrate that the new 

estimation process for the SVSF is functional, and that the 

derived covariance matrix is numerically similar to that of 

the KF for linear systems. Note that for linear systems the 

KF will yield the optimal solution (i.e., best estimate). 

The EHA is a third order system with state variables 

related to its position, velocity, and acceleration. It is 

assumed that all three states have measurements associated 

with them (i.e., full measurement matrix). The input to the 

system is a random normal distribution with magnitude 1. A 

step change is inserted into the input of the system half-way 

through the duration. The sample time of the system is 0.001 

seconds. The entire EHA system description may be found 

in [5], however for the purpose of this paper, the discrete 

state-space model of the system is simply defined as follows: 

 ���� � � � ����� �
� � �����

������� ��	�
�
 �����	
� �� 
 � �

�
������

� �� (60) 

 

The initial state values are set to zero. The system and 

measurement noises are considered to be Gaussian with 

maximum amplitude corresponding to 10% error (8�	
 ��	�	� � �	�� and 9�	
 � �	�� �	 �		��). The initial 

state error covariance, system noise covariance, and 

measurement noise covariance are defined respectively as 

follows: 

 ���� � �	
 (61) 
 � *+�,%�� �	 �		�& (62) � � *+�,%�	�� �		 �			�& (63) 

 

For the SVSF estimation process, the ‘memory’ or 

convergence rate was set to � � 	��, and the boundary layer 

widths were defined as  � �	�� �	 �	�� � These 

parameters were tuned by trial-and-error, with the goal of 

decreasing the estimation error. The main results of applying 

the KF and SVSF on the EHA problem are shown in the 

following figure. This figure shows the true position of the 

EHA with the KF and SVSF estimates. The estimation 

results of both filters are relatively the same. It is important 

to note, that even with a tuned SVSF, the KF provides the 

best estimate (i.e., optimal) for a linear system. 

 

 
Fig. 2. The position estimates for the EHA simulation are shown 

in the above figure. Note that the lines are nearly concentric and 

thus are relatively difficult to distinguish. 
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The velocity and acceleration estimates were relatively the 

same as those shown in the previous figure (and were thus 

omitted for space constraints). The RMSE results of running 

the simulation are as follows: 

 
TABLE I 

RMSE SIMULATION RESULTS 

Filter 
Position 

(m) 

Velocity 

(m/s) 

Acceleration 

(m/s2) 

KF 0.0251 0.8218 28.43 

SVSF 0.0254 1.7697 28.76 

 

As shown in the above table, the KF provides the optimal 

result. However, the SVSF estimate remains excellent, with 

a notable difference in the velocity estimate. The final 

covariance estimates of the KF and the SVSF were found to 

be respectively as follows: 

 ��
� � : 	�	� �	�	� �	���
�	�	� ���� �����
�	��� ����� ���

; (64) 

 ����
� � : 	��	 	�	� �	�	�
	�	� ��� ��!� 
�	�	� ��!� ���

; (65) 

 

 By analyzing and comparing the results of the RMSE and 

the covariance values, the SVSF in its revised form appears 

to be yielding an accurate calculation of its respective 

covariance. It is important to note that this covariance 

derivation is for linear systems. The revised SVSF would 

have to be further extended for nonlinear systems. 

V. CONCLUSIONS 

This paper introduced a revised form of the smooth 

variable structure filter with a covariance derivation. The 

proposed estimation strategy was applied to an 

electrohydrostatic actuator for numerical comparison with 

the popular Kalman filter. For linear systems, the covariance 

of the revised SVSF was found to be similar to that of the 

Kalman filter. The addition of the covariance to the SVSF 

creates more of a well-rounded filter and introduces 

opportunity for further research. The revised method may 

now be combined with interacting multiple model methods 

which are used on target tracking, and fault detection and 

diagnosis problems. 

APPENDIX 

The following is a table of important nomenclature used 

throughout this paper: 
TABLE II 

LIST OF NOMENCLATURE 

Parameter Definition � State vector or values � Measurement (system output) vector or values � System noise vector � Measurement noise vector 

	 Linear system transition matrix 
 Input gain matrix 

���� Expectation of some value a � Linear measurement (output) matrix 
 Filter gain matrix (i.e., KF or SVSF) � State error covariance matrix � System noise covariance matrix � Measurement noise covariance matrix � Measurement (output) error vector ������� Defines a diagonal matrix of some vector a ������ Defines a saturation of the term a 

N����� Normal distribution with mean � and variance � � SVSF ‘convergence’ or memory parameter � SVSF boundary layer width |�| Absolute value of some parameter a � Transpose of some vector or matrix 

� Denotes error or difference 

� Estimated vector or values � 
 ��� A priori time step (i.e., before applied gain) � 
 ��� 
 � A posteriori time step (i.e., after update) 
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