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Abstract – The state estimation of targets is a difficult 
task, particularly if the target exhibits nonlinear 
behaviour, which is often the case. Currently, the most 
popular filters used in target tracking are the Kalman 
filter (KF) and its various forms, as well as the particle 
filter (PF). Introduced in 2007, the smooth variable 
structure filter (SVSF) is a relatively new predictor-
corrector method based on sliding mode estimation. In 
the past, this filter has been used successfully for the 
state and parameter estimation of mechanical and 
electrical systems for the purpose of control. This paper 
introduces a new interacting multiple model (IMM) 
method that makes use of the SVSF estimation strategy. 
An air traffic control (ATC) problem is used to compare 
the common EKF-IMM with the proposed SVSF-IMM 
in terms of tracking accuracy, robustness, and 
computational complexity. Furthermore, this paper 
demonstrates that the SVSF is an effective method for 
nonlinear target tracking. 
 
Keywords: Target tracking, interacting multiple models, 
Kalman filtering, smooth variable structure filter, 
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1 Introduction 

Nonlinear target tracking is of particular interest for both 
civilian and military applications. Both of these groups are 
concerned with the surveillance, guidance, obstacle 
avoidance, or tracking of a target which exhibits nonlinear 
behaviour given some measurements [1]. A sensor such as 
a radar is used within the environment to obtain 
information on the system of interest. Typically these 
measurements are noisy, such that a filter must be used to 
remove unwanted noise or uncertainties, and estimate the 
true state. The target state usually consists of kinematic 
information such as position, velocity, and acceleration. 
The ability to obtain accurate estimates of these states is 
critically important for civilian (i.e., air traffic control) 
and military (i.e., air defense) groups so that informed 

decisions may be made based on knowledge of a targets’ 
trajectory or future flight path. Estimation theory 
encompasses a variety of different methods and 
techniques that may be applied on linear or nonlinear 
systems in order to smooth, estimate, or predict the values 
of important states and parameters [2]. 
 The most common and well-studied estimation 
technique is the Kalman filter (KF) [2,3,4]. In 1960, 
Kalman introduced a method that may be applied to linear 
dynamic systems in the presence of Gaussian noise [4]. It 
provides an elegant and statistically optimal solution by 
minimizing the mean-squared estimation error (i.e., 
difference between the true state values and the estimated 
values). However, in practice, most dynamic systems are 
in fact nonlinear. Since the introduction of the KF for 
linear systems, a variety of derivations have been created 
to handle nonlinear systems. The two most common are 
the extended Kalman filter (EKF) and the unscented 
Kalman filter (UKF). The EKF makes use of the first-
order linearization (i.e. Jacobian) of the nonlinear system 
and measurement equations. Although this method 
augments the standard KF to work for nonlinear systems, 
it comes at a cost of higher-order un-modelled 
uncertainties [2]. The UKF is able to handle a higher order 
of the nonlinearities by using a set of deterministically 
chosen sample points (i.e., sigma points) which are 
applied on a transformation such that it captures the true 
mean and covariance up to the second order of 
nonlinearity [1,5]. A great deal of research has been 
published on these filters, including on their robustness 
and numerical stability [6,7,8,9,10,11]. 
 Another popular estimation technique that has also 
been well studied is the particle filter (PF). The PF takes 
the Bayesian approach to dynamic state estimation, in 
which one attempts to accurately represent the probability 
distribution function (PDF) of the values of interest [1]. 
Like the name suggests, the PF makes use of weighted 
particles or ‘point masses’ distributed in a manner that 
estimates the PDF, which contains all of the pertinent 



statistical information, and may be considered as holding 
the solution to the estimation problem [3]. In the 
literature, it is shown that the PF is typically more 
accurate than the UKF, however at a cost of computation 
time, which is dependent on the number of particles [1]. 
Hence, a trade-off exists between the level of accuracy 
required by the problem, and the computational time 
available. 
 The smooth variable structure filter (SVSF) is a new 
predictor-corrector method used for state and parameter 
estimation [12,13,14]. It is based on sliding mode 
concepts, where one uses a sliding or switching surface 
along the state trajectory to predict the state estimates. A 
corrective term (based on a function of the measurement 
errors) is used to keep the estimate within a region of the 
true state values. In the past, this method has typically 
been used for the control of mechanical and electrical 
systems [14,15]. Although the SVSF method is not 
optimal, it is very robust and works extremely well for 
systems when not all of the dynamics are known. This 
paper demonstrates that the SVSF may be a viable 
estimation method for nonlinear target tracking 
applications. 
 It is quite common for target tracking applications to 
implement multiple model methods with estimation 
techniques to increase the overall accuracy. When 
tracking an aircraft, for example, it may be assumed that 
the system behaves according to one of a finite number of 
models (i.e., uniform motion, coordinated turn, etc.) [3]. 
In the interacting multiple model (IMM) method, the state 
estimate may be computed using each possible model, 
with each filter using a different combination of the 
previous model-conditioned estimates [3]. These filters 
then interact with each other based on some probability of 
the system model being correct. This paper introduces a 
new IMM method based on the SVSF (i.e., SVSF-IMM) 
and discusses the improvement that it brings when 
compared with the popular EKF-IMM. 

2 Estimation Methods 

The Kalman filter (KF) can quite easily be referred to as 
the ‘workhorse’ of estimation. It is the most studied and 
implemented method for target tracking and other 
estimation problems. For the purpose of this paper, and 
due to page constraints, only the results of the EKF-IMM 
will be compared with the SVSF-IMM. 

2.1 Kalman Filter 

As previously mentioned, the KF provides an elegant and 
statistically optimal solution for linear dynamic systems in 
the presence of Gaussian white noise. It is a method that 
utilizes measurements linearly related to the states, and 
error covariance matrices, to generate a corrective term 
referred to as the Kalman gain. This gain is applied to the 
a priori state estimate, thus creating an a posteriori 
estimate. The estimation process continues in a predictor-
corrector fashion while maintaining a statistically minimal 
state error covariance matrix for linear systems. 

 The following two equations describe a linear 
system dynamic and measurement model used in general 
for state estimation: 
 

���� = ��� + ��� + �� (1) 
���� = ����� + ���� (2) 

 
 The next five equations form the core of the KF 
algorithm, and are used in an iterative fashion, in 
conjunction with the linear form of (1) and (2). Equation 
(3) extrapolates the a priori state estimate and (4) is the 
corresponding error covariance. The Kalman gain may be 
calculated by (5), and is used to update the state estimate 
and error covariance, described by (6) and (7), 
respectively. 
 

�	���|� = �
�	�|� + ���� (3) 
����|� = ���|��� + 
�  (4) 

���� = ����|���������|��� + ������� (5) 

�	���|��� = �	���|� + ��������� − ��	���|�� (6) 
����|��� = �� − ����������|� (7) 

  
 The effects due to mismodeling can be negative, as 
both the Kalman gain and covariance matrix calculations 
are dependent on the system and measurement matrices. 
Furthermore, the performance and stability of the KF may 
also be dependent on the definition of the process and 
measurement noise, made through covariance matrices 
[2,12]. Overlooked nonlinearities in the system may also 
cause the KF to become unstable. The EKF may be used 
for nonlinear systems (as described by the first two 
equations). It is conceptually similar to the iterative KF 
process, described above. The nonlinear system and 
measurement matrices are linearized according to its 
corresponding Jacobian, which is a first-order partial 
derivative. This linearization can sometimes cause 
instabilities when implementing the EKF [2]. 

2.2 Smooth Variable Structure Filter 

Sliding mode control and estimation techniques have been 
around for quite a few decades, and are mainly popular 
due to their relative ease of implementation and 
robustness to modelling uncertainties [16,17]. In a typical 
sliding mode control scenario, one utilizes a discontinuous 
switching plane along some desired trajectory [18]. This 
plane is quite often referred to as a sliding surface. The 
purpose of the control method is to keep the state values 
along this surface by minimizing the state errors (i.e., 
difference between the desired trajectory and the 
estimated or actual values). If the value of the state is not 
on or away from the sliding surface, a corrective term is 
used to push the state towards the surface. The motion of 
the system as the states slide along the surface is called a 
sliding mode [18]. The switching term introduces an 
inherent amount of stability to the control or estimation 
strategy, while also introducing excessive chattering (i.e., 
high-frequency switching) which may be undesirable in 



control since it may excite un-modelled dynamics. It is 
regular practice to introduce a boundary layer along the 
sliding surface in order to saturate or smooth-out the 
chattering within this region. These concepts are based on 
variable structure control, in which one alters the 
nonlinear dynamics of a system by high-frequency 
switching [16]. 
 The original variable structure filter (VSF) was first 
proposed in 2003 [13]. It was a new type of estimator 
based on sliding mode concepts, used in a predictor-
corrector fashion. Gain switching is incorporated to ensure 
that the estimates converge to within a boundary of the 
true state values. This boundary is referred to as the 
existence subspace. An estimate of the state is predicted 
using a linear or nonlinear model of the system. A 
corrective term (i.e., gain) is applied to update the 
estimate. This approach is similar to the KF, however the 
actual structure and development of the gain is very 
different. The smooth variable structure filter (SVSF) was 
later derived from the VSF, and uses a much simpler and 
less complex gain calculation [14]. In its present form, the 
SVSF is stable and robust to modelling uncertainties and 
noise, given an upper bound on the level of un-modeled 
dynamics or knowledge of the magnitude of noise [14,19]. 
The basic estimation concept of the SVSF is shown in the 
following figure. 
 

 
Figure 1. SVSF Estimation Concept [14] 

 
 An initial estimate of the state is made based on 
probability distributions or designer knowledge. An area 
around the true system state trajectory is defined as the 
existence subspace, and is a function of the uncertainties 
(i.e., level of noise) present in the system. Through the use 
of the SVSF gain, the estimated state will be forced to 
within this region. Once the value enters the existence 
subspace, the estimated state is forced into switching 
along the system state trajectory. A saturation term may 
be used in this region to reduce the magnitude of 
chattering or smooth-out the result. Typically the 
existence subspace or boundary layer width is defined 
larger than it should be (i.e., conservative). A variable 
boundary layer may be introduced such that a more 
accurate estimate of the state is made over time [18]. 

 The SVSF method is model based and applies to 
smooth nonlinear dynamic equations. The main estimation 
process may be summarized by (8) to (12), and is repeated 
iteratively. An a priori state estimate is calculated using an 
estimated model of the system. This value is then used to 
calculate an a priori estimate of the measurement, defined 
by (9). A corrective term, referred to as the SVSF gain, is 
calculated as a function of the error in the predicted 
output, as well as a gain matrix and the smoothing 
boundary layer width. The corrective term calculated in 
(11) is then used in (12) to find the a posteriori state 
estimate. 
 

�	���|� = �
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 Two critical variables in this process are the a priori 
and a posteriori output error estimates, defined by (10) 
and (12), respectively [14]. Note that (13) is the updated 
output error estimate, and is used only in the gain 
calculation at the next time step. 

3 Proposed SVSF-IMM Strategy 

The SVSF provides an estimation process that is sub-
optimal albeit stable. Therefore, utilizing a multiple model 
strategy which increases the overall accuracy of the 
estimation process is beneficial. However, it is important 
to note that the SVSF in its current form cannot be 
integrated with the IMM strategy. The standard IMM 
utilizes covariance outputs from the filter. However, the 
SVSF as introduced in [14] does not have a covariance 
derivation. 
 A revised form of the SVSF was introduced in [5] 
such that a simplified covariance matrix may be obtained. 
It was proposed that the SVSF gain and update estimate 
be modified respectively as follows: 
 

���� = ���� ���	����|�� + 
 �	��|���
∘ ��
 �	����|�� �� ����� �	����|���

��

 
(14) 

�	���|��� = �	���|� + ���������|� (15) 
 
 The SVSF process essentially remains the same, as 
one divides the gain by the a priori output error, and then 
multiplies by it again in the a posteriori estimate equation. 
However, introducing the SVSF in this notation enables 
one to derive a much simpler covariance derivation. 
Furthermore, the proof of stability for the SVSF is not 
affected [5,14]. It is interesting to note that the a priori and 
a posteriori state error covariance matrices for the SVSF 
are similar to the KF for linear systems. 



 The corresponding covariance equations for the 
prediction and update stages are respectively defined as 
follows [5]: 
 

����|� = ���|��� + 
� (16) 
����|��� = $� − �����%����|�$� − �����%�

+ ������������
�  

(17) 

 
Note that the linearized system (�) and measurement (�) 
matrices would be used for the above calculations. 
 In this paper, the IMM was implemented as per 
section 11.6 of [3]. The IMM concept is shown in the 
following figure. Essentially, both the EKF and SVSF 
estimation strategies may be applied on two models (M1 
and M2). Prior to feeding the initial estimates and 
covariance’s into the filter models, an interaction (mixing) 
stage takes place (as per (18) to (21)). Mixing 
probabilities are used like weights to determine the 
corresponding estimates and covariance. Using these 
values and the measurement as inputs, the filter calculates 
the corresponding estimates, covariance, and likelihood 
function. These likelihood functions (i.e., the probability 
density function of the measurements based on the 
innovation defined by (22)) are used to determine updates 
to the mode probability and mixing calculations ((23) and 
(24)). Furthermore, the two sets of state estimates and 
covariance’s may be combined (for output purposes only) 
to determine the IMM estimate of the respective filter 
(i.e., EKF or SVSF), as per (25) and (26) [3]. 
  

 

 
Figure 2. Interacting Multiple Model Concept [3] 

 
 The main IMM process and equations, as presented 
in [3], are defined as follows. 
 
Mixing Stage: 
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Mode-Matched Filtering and Update (EKF or SVSF): 
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Estimate and Covariance Combination: 
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 The proposed SVSF-IMM estimation strategy 
utilizes (8) to (17) in conjunction with (18) to (26). 

4 ATC Target Tracking Problem 

The problem to be studied involves an air traffic control 
(ATC) situation, where one is interested in tracking the 
trajectory of an aircraft, as introduced in [3]. 

4.1 Simulation 

A sensor (i.e., radar) stationed at the origin provides direct 
position only measurements, with a standard deviation of 
100 m in each coordinate. As shown in the following 
figure, an aircraft starts from an initial position of  
[25,000 m, 10,000 m] at time t = 0 s, and flies westward at 
120 m/s for 125 s. The aircraft then begins a coordinated 
turn for a period of 90 s at a rate of 1˚/s. It then flies 
southward at 120 m/s for 125 s, followed by another 
coordinated turn for 30 s at 3˚/s. The aircraft then 
continues to fly westward until it reaches its final 
destination. 

 
Figure 3. Aircraft Trajectory 



 In ATC scenarios, the behaviour of civilian aircraft 
may be modeled by two different modes: uniform motion 
(UM) which involves a straight flight path with a constant 
speed and course, and maneuvering which includes 
turning or climbing and descending [3]. In this case, 
maneuvering will refer to a coordinated turn (CT) model, 
where a turn is made at a constant turn rate and speed. The 
uniform motion model used for this target tracking 
problem is given as follows [3,20]: 
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(27) 

 
The state vector of the aircraft may be defined as follows: 
 

T
kkkkkx ][ ηξηξ &&=  (28) 

 
 The first two states refer to the position along the x 
and y-axis, respectively, and the last two states refer to the 
velocity along the x and y-axis, respectively. The 
sampling time used in this simulation was 5 seconds. 
When using the CT model, the state vector needs to be 
augmented to include the turn rate, as shown in (29). The 
CT model may be considered nonlinear if the turn rate of 
the aircraft is not known. Note that a left turn corresponds 
to a positive turn rate, and a right turn has a negative turn 
rate. This sign convention follows the commonly used 
trigonometric convention (the opposite is true for 
navigation convention) [3]. The CT model is then given as 
follows [3,20]: 
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 Since the radar stationed at the origin provides direct 
position measurements only, the measurement equation 
may be formed linearly as follows: 
 

kkk vxz +
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 Equations (27) to (31) were used to generate the true 
state values of the trajectory and the radar measurements 
for this target tracking scenario. As previously mentioned, 
the EKF uses a linearized form of the system and 
measurement matrices. In this case, the system defined 
above is nonlinear, such that the Jacobian of it yields a 

linearized form as shown below. The terms in the last 
column of (32) are correspondingly defined in (33). 
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 To generate the results for this section, the EKF used 
the following values for P, Q, and R: 
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 Note that L1 and L2 are the power spectral densities, 
and were defined as 0.16 and 0.01, respectively [20]. The 
system and measurement noise were generated using their 
respective covariance values. Furthermore, when 
obtaining the results for the SVSF, a ‘memory’ of γ = 0.1 
was used. The boundary layer thickness (which is a 
measure of the uncertainties) was tuned by trial-and-error 
(with the goal of decreasing the estimation error), and was 
defined as � = �20 2,500 20 2,500 1��. 

4.2 Results 

The results of the simulation are shown in the following 
sets of figures. The first figure shows the general 
estimation results, with the EKF-IMM and SVSF-IMM 
estimates of the trajectory. Note that the estimates appear 
nearly concentric, however the EKF-IMM slightly 
deviates from the true trajectory at the second turn. The 
second figure shows the RMSE for the estimated position 
(i.e., x- and y-positions combined) over the simulation 
period. The final two figures display the operating mode 
probability (for the first model, i.e., uniform motion) for 
both the EKF-IMM and SVSF-IMM. 
 



 
Figure 4. Estimation Results 

 

 
Figure 5. Position RMSE for Simulation 

 

 
Figure 6. EKF-IMM Operating Mode (UM) 

 

 
Figure 7. SVSF-IMM Operating Mode (UM) 

 The averaged RMSE results are shown in the 
following table. In terms of position RMSE, the SVSF-
IMM performed the best, whereas the EKF-IMM 
performed better when estimating the velocity. 
 
Table 1. RMSE Results 

Strategy Position Velocity Turn Rate 
EKF-IMM 192.9 23.2 0.035 
SVSF-IMM 131.2 28.9 0.004 

5 Discussion 

For this simulation, the results demonstrate that the 
proposed SVSF-IMM strategy may be used to obtain a 
better position estimate of the target (by roughly 30%), 
when compared with the popular EKF-IMM. It is 
interesting to note that the position error (shown in Fig. 5) 
for the combined method remained bounded, unlike the 
EKF-IMM strategy. Around the 70th to 85th sample 
interval, the EKF-IMM position error grew significantly 
before returning to within acceptable levels. This 
discrepancy can also be seen by looking carefully at the 
second turn of Fig. 4. The astute reader will observe that 
the EKF-IMM estimate slightly drifted away from the true 
trajectory during this period. 
 The reason why the SVSF-IMM method did not drift 
away from the true trajectory is due to the switching 
brought into the estimation process by the SVSF. As 
shown in Fig. 1, the gain formulation of (11) contains a 
boundary layer (defined by the existence subspace or ψ). 
This boundary layer brings about an inherent amount of 
stability, ensuring that the estimate stays within some 
region (defined by the amount of uncertainties within the 
system) close to the true state trajectory. Further to Fig. 5, 
although the SVSF in its current form is not optimal, it 
adds stability of the estimate (shown by the error being 
bounded). Note that the overall position RMSE still 
remains lower than the EKF-IMM method. 
 The operating mode probability for the uniform 
motion model is shown in Figs. 6 and 7. The EKF-IMM 
operating model followed the true probability relatively 
well, with the exception of a spike around the 38th sample. 
The operating mode for the SVSF-IMM also followed the 
true or ideal case much like the EKF-IMM. However, it 
appeared to follow it more closely. This most likely can 
also be attributed to the SVSF gain. The switching brings 
about a type of ‘chattering’ about the state trajectory. This 
chattering enables the filter to follow the true trajectory 
more closely. 
 In terms of estimation accuracy, the new SVSF-IMM 
method yielded an improvement of over 30% in the 
position estimate. This is a significant improvement, 
especially when considering the importance to most target 
tracking scenarios where one is primarily interested in the 
current and future position of the target. The new method 
is considered to be just as complex as the EKF-IMM 
method in terms of computational difficulty and 
simulation time, however provides a more accurate 
(overall) and stable estimate. 



6 Conclusion 

This paper introduced a new interacting multiple model 
(IMM) method that makes use of the SVSF estimation 
strategy. An air traffic control (ATC) problem was used to 
compare this new strategy with the popular EKF-IMM. 
For this simulation, it was found that the SVSF-IMM 
yielded a significant improvement in the position estimate 
(by nearly 30%). Furthermore, by virtue of the SVSF 
switching gain, it was found that the estimates of the new 
method were bounded to within a region of the true state 
trajectory, thereby demonstrating robust performance. 
Future research will compare this strategy with other IMM 
methods, applied on real ATC data. Furthermore, the 
SVSF-IMM method will be implemented on mechanical 
and electrical systems for fault detection and diagnosis. 

Appendix 

The following table defines the nomenclature used 
throughout this paper. 
 
Table 2. List of Nomenclature 
Parameter Definition 

� State vector or values 
� Measurement (system output) vector 
� System noise vector 
� Measurement noise vector 
� Linear system transition matrix 
	 Input gain matrix 

 Linear measurement (output) matrix 
� Filter gain matrix (i.e., KF or SVSF) 
� State error covariance matrix 

 System noise covariance matrix 
� Measurement noise covariance matrix 
� Innovation covariance matrix 
� Measurement (output) error vector 

������� Defines a diagonal matrix of some vector a 
������ Defines a saturation of the term a 

N(�,�) 
Normal distribution with mean � and 
variance � 

� Sample time (seconds) 
Ω Turn rate of the target (aircraft) 
� Mixing weights 
���  Transition (model) probabilities 
Λ Likelihood function 
� SVSF ‘convergence’ or memory parameter 
� SVSF boundary layer width 
|�| Absolute value of some parameter a 

∘ 
Schur product (i.e., element-by-element 
multiplication) 

��  Denotes time derivative of a 
  Transpose of some vector or matrix 
~ Denotes error or difference 
^ Estimated vector or values 

! + 1|! A priori time step (i.e., before applied gain) 
! + 1|! + 1 A posteriori time step (i.e., after update) 
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