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Abstract — The state estimation of targets is afidiflt
task, particularly if the target exhibits nonlinear
behaviour, which is often the case. Currently, theost
popular filters used in target tracking are the Kmahln
filter (KF) and its various forms, as well as theagicle
filter (PF). Introduced in 2007, the smooth variabl
structure filter (SVSF) is a relatively new predat
corrector method based on sliding mode estimatiém.
the past, this filter has been used successfully foe
state and parameter estimation of mechanical and
electrical systems for the purpose of control. Tlaper
introduces a new interacting multiple model (IMM)
method that makes use of the SVSF estimation siggte
An air traffic control (ATC) problem is used to copare
the common EKF-IMM with the proposed SVSF-IMM
in terms of tracking accuracy, robustness, and
computational complexity. Furthermore, this paper
demonstrates that the SVSF is an effective method f
nonlinear target tracking.

Keywords: Target tracking, interacting multiple models,
Kalman filtering, smooth variable structure filter,
estimation.

1

Nonlinear target tracking is of particular interést both
civilian and military applications. Both of theseogps are
concerned with the surveillance, guidance, obstacle
avoidance, or tracking of a target which exhibivslimear
behaviour given some measurements [1]. A sensdr asic

a radar is used within the environment to obtain
information on the system of interest. Typicallyesk
measurements are noisy, such that a filter musiskd to
remove unwanted noise or uncertainties, and esgirinzt
true state. The target state usually consists érkatic
information such as position, velocity, and acaaien.
The ability to obtain accurate estimates of thdages is
critically important for civilian (i.e., air traffi control)
and military (i.e., air defense) groups so thabiinfed
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decisions may be made based on knowledge of atsarge
trajectory or future flight path. Estimation theory
encompasses a variety of different methods and
techniques that may be applied on linear or noaline
systems in order to smooth, estimate, or predettiues

of important states and parameters [2].

The most common and well-studied estimation
technique is the Kalman filter (KF) [2,3,4]. In 186
Kalman introduced a method that may be applieéhtat
dynamic systems in the presence of Gaussian nédjsé [
provides an elegant and statistically optimal sotutby
minimizing the mean-squared estimation error (i.e.,
difference between the true state values and ttmaged
values). However, in practice, most dynamic systanes
in fact nonlinear. Since the introduction of the K&t
linear systems, a variety of derivations have bzeated
to handle nonlinear systems. The two most commen ar
the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF). The EKF makes use of the first
order linearization (i.e. Jacobian) of the nonlinegstem
and measurement equations. Although this method
augments the standard KF to work for nonlinearesyst
it comes at a cost of higher-order un-modelled
uncertainties [2]. The UKF is able to handle a kigbrder
of the nonlinearities by using a set of determiocaly
chosen sample points (i.e., sigma points) which are
applied on a transformation such that it captuhesttue
mean and covariance up to the second order of
nonlinearity [1,5]. A great deal of research hasrbe
published on these filters, including on their rstmess
and numerical stability [6,7,8,9,10,11].

Another popular estimation technique that has also
been well studied is the particle filter (PF). TRE takes
the Bayesian approach to dynamic state estimation,
which one attempts to accurately represent thegtnitity
distribution function (PDF) of the values of intsrd1].
Like the name suggests, the PF makes use of wdighte
particles or ‘point masses’ distributed in a mantteat
estimates the PDF, which contains all of the pertin



statistical information, and may be considered @sgihg The following two equations describe a linear
the solution to the estimation problem [3]. In the system dynamic and measurement model used in denera
literature, it is shown that the PF is typically mmo  for state estimation:

accurate than the UKF, however at a cost of contipata

time, which is dependent on the number of parti¢lds Xie41 = Axy + Buy + wy (1)
Hence, a trade-off exists between the level of mmu Zpo1 = HXpy1 + Viyq (2
required by the problem, and the computational time

available. The next five equations form the core of the KF

The smooth variable structure filter (SVSF) iseavn algorithm, and are used in an iterative fashion, in
predictor-corrector method used for state and patam  conjunction with the linear form of (1) and (2). Uizgion
estimation [12,13,14]. It is based on sliding mode (3) extrapolates the a priori state estimate ands(4he
concepts, where one uses a sliding or switchinfaser corresponding error covariance. The Kalman gain by
along the state trajectory to predict the statamedes. A calculated by (5), and is used to update the sistienate

corrective term (based on a function of the measarg and error covariance, described by (6) and (7),
errors) is used to keep the estimate within a regibthe respectively.
true state values. In the past, this method haEdlp
been used for the control of mechanical and etsdtri Ricr1)i =A,?k|k + Bu, (3)
systems [14,15]. Although the SVSF method is not Pesipe = HPpcH™ + Q. ()
optimal, it is very robust and works extremely wist _ r r -1 5
systems when not all of the dynamics are knowns Thi Kir1 = PryapH [HPk+1|kH +Rk+1] ®)
paper demonstrates that the SVSF may be a viable  Ririjes1 = Zkwaje + Kira[Zerr — HRicrnpe] (6)
estimation method for nonlinear target tracking Peiajksr = U = Kis 1 H] Py i @)
applications.

It is quite common for target tracking applicagao The effects due to mismodeling can be negative, as

implement multiple model methods with estimation both the Kalman gain and covariance matrix cal@aat
techniques to increase the overall accuracy. Whenare dependent on the system and measurement raatrice

tracking an aircraft, for example, it may be assurteat Furthermore, the performance and stability of thieray
the system behaves according to one of a finitebmurof also be dependent on the definition of the procass
models (i.e., uniform motion, coordinated turn,.e{8]. measurement noise, made through covariance matrices

In the interacting multiple model (IMM) method, thtate [2,12]. Overlooked nonlinearities in the system nadso
estimate may be computed using each possible modelcause the KF to become unstable. The EKF may b& use
with each filter using a different combination diet for nonlinear systems (as described by the firsb tw
previous model-conditioned estimates [3]. Thestersl equations). It is conceptually similar to the itara KF

then interact with each other based on some priityati process, described above. The nonlinear system and
the system model being correct. This paper intreduz measurement matrices are linearized according 4o it
new IMM method based on the SVSF (i.e., SVSF-IMM) corresponding Jacobian, which is a first-order iphrt
and discusses the improvement that it brings when derivative. This linearization can sometimes cause
compared with the popular EKF-IMM. instabilities when implementing the EKF [2].

2 Estimation Methods 2.2 Smooth Variable Structure Filter

The Kalman filter (KF) can quite easily be refertedas Sliding mode control and estimation techniques Hzeen

the ‘workhorse’ of estimation. It is the most sedliand around for quite a few decades, and are mainly lpopu
implemented method for target tracking and other gue to their relative ease of implementation and

estimation problems. For the purpose of this paped robustness to modelling uncertainties [16,17]. hypical
due to page constraints, only the results of thé-H{M sliding mode control scenario, one utilizes a digitnious
will be compared with the SVSF-IMM. switching plane along some desired trajectory [T8iis

plane is quite often referred to as a sliding sze¢farhe

2.1 Kalman Filter purpose of the control method is to keep the statees

As previously mentioned, the KF provides an elegant along this surface by minimizing the state errars.,(
statistically optimal solution for linear dynamigs¢ems in ~ difference between the desired trajectory and the
the presence of Gaussian white noise. It is a ndethat estimated or actual values). If the value of tlaests not
utilizes measurements linearly related to the stasmd  on or away from the sliding surface, a correcteent is
error covariance matrices, to generate a corredévem used to push the state towards the surface. Thi@mot

referred to as the Kalman gain. This gain is agpiiethe ~ the system as the states slide along the surfacaiied a
a priori state estimate, thus creating an a pasteri sliding mode [18]. The switching term introduces an
estimate. The estimation process continues in diqice- inherent amount of stability to the control or Bsttion
corrector fashion while maintaining a statisticatiynimal strategy, while also introducing excessive chattgfi.e.,
state error covariance matrix for linear systems. high-frequency switching) which may be undesirainie



control since it may excite un-modelled dynamidsisl The SVSF method is model based and applies to

regular practice to introduce a boundary layer gltime smooth nonlinear dynamic equations. The main esibma
sliding surface in order to saturate or smooth-the process may be summarized by (8) to (12), andosated
chattering within this region. These concepts aged on iteratively. An a priori state estimate is calcathusing an

variable structure control, in which one alters the estimated model of the system. This value is treaduo
nonlinear dynamics of a system by high-frequency calculate an a priori estimate of the measurenusiined
switching [16]. by (9). A corrective term, referred to as the S\{aln, is
The original variable structure filter (VSF) wasst calculated as a function of the error in the prisdic
proposed in 2003 [13]. It was a new type of estomat output, as well as a gain matrix and the smoothing
based on sliding mode concepts, used in a predictor boundary layer width. The corrective term calcudaie
corrector fashion. Gain switching is incorporateeihsure (11) is then used in (12) to find the a posteristate
that the estimates converge to within a boundaryhef estimate.
true state values. This boundary is referred tothas
existence subspace. An estimate of the state digpeel Rrrape = f (Ripo i) (8)
using a linear or nonlinear model of the system. A 2k+1|k=ﬁ(3?k+1|k) 9)
corrective term (i.e., gain) is applied to update t

estimate. This approach is similar to the KF, hcavethe Coerape = Zerl T Ptk (10)
actual structure and development of the gain isy ver K,. . = ( e +vle )osat (ezkﬂ) (11)
different. The smooth variable structure filter (&%) was et Flelk “hlk Y
later derived from the VSF, and uses a much simguier Rrs1ee1r = X + K (12)
less complex gain calculation [14]. In its presienin, the Coeraerr = Zerr — B(Ricr1jicr1) (13)
SVSEF is stable and robust to modelling uncertasnéied
noise, given an upper bound on the level of un-rieatle Two critical variables in this process are theriarp
dynamics or knowledge of the magnitude of noiseaj and a posteriori output error estimates, defined(1g)
The b_aS|c.est|mat|on concept of the SVSF is showthé and (12), respectively [14]. Note that (13) is tipdated
following figure. output error estimate, and is used only in the gain
calculation at the next time step.
T—
Amplitude / /’ :ylastteer"l"lrajectory 3 Pr Oposed SVSF-I M M Strategy
\ The SVSF provides an estimation process that is sub
) optimal albeit stable. Therefore, utilizing a mplki model
T e strategy which increases the overall accuracy @& th
estimation process is beneficial. However, it ipdamant
Existence to note that the SVSF in its current form cannot be
E Subspace integrated with the IMM strategy. The standard IMM
o utilizes covariance outputs from the filter. Howevthe
/ SVSF as introduced in [14] does not have a coveeian
Initial Value of the derivation.
Estimated States A revised form of the SVSF was introduced in [5]
 rime such that a simplified covariance matrix may beaitsd.

It was proposed that the SVSF gain and update atim
Figure 1. SVSF Estimation Concept [14] be modified respectively as follows:

An initial estimate of the state is made based on — g
 inital estin _ K = diag [([en] + ¥ [eses])

probability distributions or designer knowledge. Area e L (19)
around the true system state trajectory is defiagedhe o sat (ﬂ)] [diag (ezk+1lk)]
existence subspace, and is a function of the wmoées R R v
(i.e., level of noise) present in the system. Tiytothe use Kiertfert = Xierae + Kiera€zypy, (15)
of the SVSF gain, the estimated state will be fdrée
within this region. Once the value enters the exisé The SVSF process essentially remains the same, as
subspace, the estimated state is forced into swiich ~one divides the gain by the a priori output ereord then
along the system state trajectory. A saturatiomteray multiplies by it again in the a posteriori estimatgation.

be used in this region to reduce the magnitude of HOWeVer, intI’OdUCing the SVSF in this notation daab
chattering or smooth-out the result. Typically the one to derive a much simpler covariance derivation.
existence subspace or boundary layer width is défin Furthermore, the proof of stability for the SVSFriet
larger than it should be (i.e., conservative). Aialale affected [5,14]. Itis interesting to note that thpriori and
boundary layer may be introduced such that a more @ posteriori state error covariance matrices fer $VSF
accurate estimate of the state is made over tigie [1 are similar to the KF for linear systems.



The corresponding covariance equations for the .= < ; i w0i e w0i 1T
prediction and update stages are respectively et:fas Pejie =Zl‘i|jk|k {Pklk + [xklk _xklk] [xk|k _xklk] } (21)

follows [5]: =1 i=1.r
Prsjie = APy AT + Q. (16) Mode-Matched Filtering and Update (EKF or SVSF):
Pesijksr = (I = Ky H) Pya e (I = Kiey  H)T
T 1) _ al 20\ oj (pOi

+ Kier 1R 1K1 Ajyy = N[Zkﬂ' Zk+1|k(xk|k)'5k+1(Pk|k)] (22)
Note that the linearized syste@) and measuremexit) J=Lr
matrices would be used for the above calculations. Wjpyr = EAjk+15j j=1..,r (23)

In this paper, the IMM was implemented as per r

section 11.6 of [3]. The IMM concept is shown ireth c= ZAj" c (24)
following figure. Essentially, both the EKF and SVS = i

estimation strategies may be applied on two mo¢Mlis
and M,). Prior to feeding the initial estimates and Estimate and Covariance Combination:

covariance’s into the filter models, an interact{arixing) .

stage takes place (as per (18) to (21)). Mixing . N

probabilities are used like weights to determine th xk+1|k+1=zxk+1|k+1#fk+1 (25)
corresponding estimates and covariance. Using these . j=1

values and the measurement as inputs, the filteuletes Pesies =z,4,.k“ (Rl aers + [#Lasiens = Zresniess (B snens — Berapers] ) (26)
the corresponding estimates, covariance, and liked =

function. These likelihood functions (i.e., the Ipability The proposed SVSF-IMM estimation strategy

density function of the measurements based on the ijizes (8) to (17) in conjunction with (18) to&R
innovation defined by (22)) are used to determipdates

to the mode probability and mixing calculations3)2nd 4 ATC Target Tracking Problem
(24)). Furthermore, the two sets of state estimates S . .
covariance’s may be combined (for output purposesg) o The pro_blem_ to be studied ”ﬁ‘VO_'VeS an arr trafioniol
to determine the IMM estimate of the respectiveefil (ATC) situation, _where one Is mteres_ted in tragkihe
(i.e., EKF or SVSF), as per (25) and (26) [3]. trajectory of an aircraft, as introduced in [3].

4.1 Simulation
Fk—1k—1), Pk -1k —1) 2k -1k = 1), Pk -1k -1)

| { A sensor (i.e., radar) stationed at the origin fes direct

I Interaction/mixing |» ik = 1k~ 1) position only measurements, with a standard deviatif
100 m in each coordinate. As shown in the following

8"k = Uk = 1), P2 (k = 1]k = 1) 2% (k — 1k = 1), P%(k — 1}k — 1) figure, an aircraft starts from an initial positioof

[25,000 m, 10,000 m] attime t =0 s, and flies twesd at

Ak = e LAk a4 Fter LA 120 m/s for 125 s. The aircraft then begins a coatdd

M My turn for a period of 90 s at a rate of 1°/s. ItrtHées

southward at 120 m/s for 125 s, followed by another

il (k|k), P (k|k 2 (kk), P?(k|k . ° .
T L FED coordinated turn for 30 s at 3°/s. The aircraft nthe
ey | M Ly E(kIK).PHE)  State estmate | continues to fly westward until it reaches its fina
Aa(k) — mixing probability | (k) £ (klk), P2 ) and covariance | ) destination.
calculation u(k) —{ combination o
¥
25 1 r T S S— : |

Figure 2. Interacting Multiple Model Concept [3]

The main IMM process and equations, as presented 15 ------ ------ ------ ------ ------ ------ ----- :
in [3], are defined as follows. R S D S o S P S

Mixing Stage:
1 . .
Hiljre = 7 Pijtiye - L) = 1.7 (18) 1 o
r T e T T Dok IETT Trajectory
At — e e ; Initial I
Cj = z pl’jl’lik ] = 1, e, T (19) 5 _J ______ L ______ _____ x‘ ______ _, ______ L (l:l} g::;m I
=1 : : : : : : : % Measurements
r 25 \ I i I \ I i I : I
~0j ~i . 250 20 -4 -1 -0.5 o 0.5 1 1.5 2 25 3
xk|k - Z xk|k#i|jk|k ] = 1' R (20) w {mj w10t

i=1 Figure 3. Aircraft Trajectory



In ATC scenarios, the behaviour of civilian aiftra  linearized form as shown below. The terms in th&t la
may be modeled by two different modes: uniform moti  column of (32) are correspondingly defined in (33).
(UM) which involves a straight flight path with arstant

speed and course, and maneuvering which includes [ sinQ, 7 1-cosQ, 7 1
; e . : 10 - - Al
turning or climbing and descending [3]. In this &as Q, Q, o
maneuvering will refer to a coordinated turn (CT9dul, 01 1-cosQ,r  sinQ,r A
where a turn is made at a constant turn rate ageldsi he [O,AD R Q, Q, 2 (32)
uniform motion model used for this target tracking 00 cosQrz -sinQ, A,
problem is given as follows [3,20]: 00 sinQr cosQ, 7t A,
00 0 0 1
1., (cosQ, D)7é, (sin®,1)é, (sinQ,7)zj, € 1+cosQ, )i,
1070 P - - -,
2 Am Qk Qk Qk Qk
010T 1., A, |_| (sinQ,n)é,  (-cosQ,1)é, (cosQ,n)my, (sinQ, 7)),
%=l g g ot 0 2T (27) 2 e @ o6 & | (3
000 1 T 0 As —(sinf)kr)r‘f"k—(cosAri)rA/?k
0 T (cosQ, 7)7é, ~(sinQ, 7)17j,

The state vector of the aircraft may be definetbligws: ) )
To generate the results for this section, the EHE&d

the following values foP, Q, andR:

Xk = [Ek ,7|< Ek ,7|<]-r (28)

The first two states refer to the position alohg k P =diag([Ry; R, 100 100 1]) (34)
and y-axis, respectively, and the last two stadés ito the [73 72 T
velocity along the x and y-axis, respectively. The 3 0 2 c 0
sampling time used in this simulation was 5 seconds 0 I 0 I 0
When using the CT model, the state vector needseto , 3 2
augmented to include the turn rate, as shown i (P®%e =L/ 0o 7 0 o0 (35)
CT model may be considered nonlinear if the tute of 2 2
the aircraft is not known. Note that a left turnresponds 0 > 0 7 0
to a positive turn rate, and a right turn has aatieg turn L,

o : 0 0 0 0 72

rate. This sign convention follows the commonly duse | L |
trigonometric convention (the opposite is true for 10
navigation convention) [3]. The CT model is thewegi as Rzlooz[o J (36)

follows [3,20]:
Note thatL; andL, are the power spectral densities,

% =& e & e QT (29) and were defined as 0.16 and 0.01, respectively [2te
10 SNQr _1-cosr 12 6 o system and measurement noise were generated siing t
" QQQ _ gk 2 L respective covariance values. Furthermore, when
0 1 _GOSW ST 4 0 2 0 obtaining the results for the SVSF, a ‘memoryycf 0.1
X = Q, Q, X, + 2 W, (30) . . .
00 coQr -sinQr 0 r 0 0 was used. The boundary layer thickness (which is a
00 sinQr o,z 0 0 1 0 measure of the uncertainties) was tuned by tridkemor
00 0 0 1 0 0 1 (with the goal of decreasing the estimation errand was

defined agp = [20 2,500 20 2,500 1]7.
Since the radar stationed at the origin providesct |
position measurements only, the measurement equatio 4.2 Results

may be formed linearly as follows: The results of the simulation are shown in theofwihg
sets of figures. The first figure shows the general

. :[1 000 0}( estimation results, with the EKF-IMM and SVSF-IMM

o100 of" estimates of the trajectory. Note that the estimaftgpear
nearly concentric, however the EKF-IMM slightly

Equations (27) to (31) were used to generaterte t  deviates from the true trajectory at the second.tlihe

state values of the trajectory and the radar measemts second figure shows the RMSE for the estimatedtipasi
for this target tracking scenario. As previouslymiened, (i.e., x- and y-positions combined) over the sirtiala
the EKF uses a linearized form of the system and period. The final two figures display the operatimgde
measurement matrices. In this case, the systermedefi probability (for the first model, i.e., uniform non) for
above is nonlinear, such that the Jacobian ofetdgi a both the EKF-IMM and SVSF-IMM.

+V, (31)
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The averaged RMSE results are shown in the
following table. In terms of position RMSE, the S&S
IMM performed the best, whereas the EKF-IMM
performed better when estimating the velocity.

Table 1. RMSE Results

Strategy Position Velocity Turn Rate

EKF-IMM 192.9 23.2 0.035

SVSF-IMM 131.2 28.9 0.004

5 Discussion

For this simulation, the results demonstrate thHa t
proposed SVSF-IMM strategy may be used to obtain a
better position estimate of the target (by rougB0£%s),
when compared with the popular EKF-IMM. 1t is
interesting to note that the position error (shoawfig. 5)

for the combined method remained bounded, unlike th
EKF-IMM strategy. Around the 70 to 88" sample
interval, the EKF-IMM position error grew significdy
before returning to within acceptable levels. This
discrepancy can also be seen by looking careftllthe
second turn of Fig. 4. The astute reader will oleséhat
the EKF-IMM estimate slightly drifted away from thaie
trajectory during this period.

The reason why the SVSF-IMM method did not drift
away from the true trajectory is due to the switghi
brought into the estimation process by the SVSF. As
shown in Fig. 1, the gain formulation of (11) cantaa
boundary layer (defined by the existence subspagg.o
This boundary layer brings about an inherent amadint
stability, ensuring that the estimate stays witkmme
region (defined by the amount of uncertainties imittine
system) close to the true state trajectory. Furihiétig. 5,
although the SVSF in its current form is not optima
adds stability of the estimate (shown by the ebeing
bounded). Note that the overall position RMSE still
remains lower than the EKF-IMM method.

The operating mode probability for the uniform
motion model is shown in Figs. 6 and 7. The EKF-IMM
operating model followed the true probability rataty
well, with the exception of a spike around thd'3ample.
The operating mode for the SVSF-IMM also followée t
true or ideal case much like the EKF-IMM. Howevigr,
appeared to follow it more closely. This most lik&lan
also be attributed to the SVSF gain. The switchiniggs
about a type of ‘chattering’ about the state trajgc This
chattering enables the filter to follow the truajéctory
more closely.

In terms of estimation accuracy, the new SVSF-IMM
method vyielded an improvement of over 30% in the
position estimate. This is a significant improvemen
especially when considering the importance to rtengfet
tracking scenarios where one is primarily intergstethe
current and future position of the target. The meethod
is considered to be just as complex as the EKF-IMM
method in terms of computational difficulty and
simulation time, however provides a more accurate
(overall) and stable estimate.



6 Conclusion

This paper introduced a new interacting multipledeio
(IMM) method that makes use of the SVSF estimation
strategy. An air traffic control (ATC) problem wased to
compare this new strategy with the popular EKF-IMM.
For this simulation, it was found that the SVSF-IMM
yielded a significant improvement in the positiatimate
(by nearly 30%). Furthermore, by virtue of the SVSF
switching gain, it was found that the estimateshef new
method were bounded to within a region of the state
trajectory, thereby demonstrating robust performeanc
Future research will compare this strategy witreotiMM
methods, applied on real ATC data. Furthermore, the
SVSF-IMM method will be implemented on mechanical
and electrical systems for fault detection and olesis.

Appendix

The following table defines the nomenclature used
throughout this paper.

Table 2. List of Nomenclature

Parameter  Definition

x State vector or values

z Measurement (system output) vector

w System noise vector

v Measurement noise vector

A Linear system transition matrix

B Input gain matrix

H Linear measurement (output) matrix

K Filter gain matrix (i.e., KF or SVSF)

P State error covariance matrix

Q System noise covariance matrix

R Measurement noise covariance matrix

S Innovation covariance matrix

e Measurement (output) error vector
diag(a) Defines a diagonal matrix of some vecior
sat(a) Defines a saturation of the telan
N, o) \I:l;r:;nne::leadistribution with meanu and

T Sample time (seconds)

Q Turn rate of the target (aircraft)

u Mixing weights

Dij Transition (model) probabilities

A Likelihood function

y SVSF ‘convergence’ or memory parameter

Y SVSF boundary layer width

|a] Absolute value of some parameter

. Schur product (i.e., element-by-element

multiplication)

a Denotes time derivative af

T Transpose of some vector or matrix

~ Denotes error or difference

A Estimated vector or values
k+ 1k A priori time step (i.e., before applied gain)

k+ 1|k +1 A posteriori time step (i.e., after update)
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