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ABSTRACT 
 

Pneumatic actuators offer desirable properties for many 
applications, such as compactness, low costs, high power-to-weight 
ratios, reliability, and simplicity. However, due to many 
nonlinearities (air compressibility, friction, air flow through valve), 
accurate position and force control of pneumatic actuators is 
extremely difficult and expensive to achieve. There is a growing 
interest in PWM-controlled pneumatic systems using low cost on/off 
solenoid valves instead of servo valves in order to develop less 
expensive pneumatic servo systems. In addition, a new type of 
pneumatic McKibben muscle actuator possesses significant 
advantages like a very high force/weight and force/volume 
performance, quick response, and wide operational ranges in a 
variety of environments.   
 

In this paper, a high speed on/off valve is applied to control a 
pneumatic McKibben muscle actuator system. However, the complex 
nonlinear dynamics of the actuator in addition to those already 
mentioned make the modeling and accurate control of the pneumatic 
system a difficult challenge. As a result, the designed model is 
nonlinear and may still contain unknown parameters that require 
identification in order to obtain reasonable dynamical matching with 
the real system. Furthermore, the discontinuous switching nature of 
the on/off valve causes transients in the system, making the analytic 
modeling of the system even more complex.  
 

The objective of this research is to develop an analytical model 
of the system which includes the nonlinearities of the system, and the 
transformation of the discontinuities into a continuous form. The use 

of analytical models enables the implementation of conventional 
analytical control approaches, such as sliding mode control, and 
provides a tool for the analysis of stability and robustness. In this 
paper, the modeling process is applied to a one degree of freedom 
pneumatic system for which the analytical nonlinear system model is 
developed by a combination of physical and empirical methods. An 
extensive set of experimental tests are performed to characterize the 
dynamics of the overall system. A non-analytic and analytic model of 
the system are developed and validated by a comparison of the 
simulated results with the experimental implementation of the 
system.  
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INTRODUCTION 
 

Pneumatic actuators are commonly avoided for advanced 
applications due to problems with control caused by the 
compressibility of air and other nonlinear effects. Pneumatic control 
systems are mainly used in simple industrial applications with limited 
requirements for accurate control of motion and force. However, high 
power-to-weight ratios, compactness, ease of maintenance, and the 
safety of pneumatic actuators, offer desirable features for many 
industrial designs. The pneumatic McKibben muscle actuator is a 
new type of actuator that offers a high force-to-weight ratio and is 
able to operate in a wide range of environments. The compressibility 
of air, the nonlinear air flow characteristics through the valves, 
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friction and the nonlinear characteristics of the McKibben muscle 
actuator result in a complex and difficult system to model and 
control. 

 
In the theoretical analysis of pneumatic systems, a combination 

of thermodynamics, fluid dynamics and the dynamics of the motion 
is required. The mathematical analysis requires the consideration of 
the mass flow rates through the valve, the determination of the 
pressure, volume and temperature of the air in the actuator, and the 
determination of the dynamics of the load. Furthermore, 
identification techniques, although usually based on linear methods, 
can be used for finding the mathematical model of the pneumatic 
system. An accurate model of the actuator is an important condition 
for both control design and for optimizing its operation. 

 
In recent years, a considerable amount of research has been 

performed to develop inexpensive servo-pneumatic systems using 
on/off solenoid valves with a pulse-width modulation (PWM) 
technique. In a PWM-controlled system, the power is delivered to the 
actuator in discrete packets of fluid mass, as the valve is either 
completely on or off. If the switching frequency of the valve is 
significantly higher than the system dynamics, the system will act as 
a low-pass filter responding similarly as to a continuous mass flow 
input. However, due to the discontinuous switching, the development 
of an analytical dynamic model of the system is rather difficult, and 
often prevents the direct use of analytical control designs. 

 
Although previous work has shown the potential of PWM-

controlled pneumatics, they have suffered due to the lack of an 
analytical approach for analyzing the system [1–4]. However, some 
effort has been made in the area of analytical modeling of such 
systems [5–7]. A state space averaging approach was presented in [8] 
for modeling a pulse-width modulation (PWM) based on pneumatic 
systems. It provided the analytic method necessary to remove the 
discontinuities associated with switching and resulted in a model 
suitable to standard nonlinear control design techniques. In [9] a 
methodology for deriving a nonlinear dynamic model for a 
pneumatic servo system was presented. The model includes cylinder 
dynamics, payload motion, friction, and valve characteristics. 
Experimental results demonstrating the ability of the model to predict 
the measured position and cylinder chamber pressure were included. 
In one article, the nonlinearities of the system were handled by 
proposing a switching controller based on the reduced order 
nonlinear model of the system [10]. Another notable paper introduced 
an experimentally developed discrete-time model of a PWM-
controlled pneumatic servo system, for which a controller was 
developed based on discrete-time control methods [11]. Another 
strategy used a linear state-space averaged model and a linear robust 
controller based on a loop shaping approach [12]. This approach was 
later followed by a nonlinear averaged model and a sliding mode 
controller design [13, 14]. A linearization approach was subsequently 
used in an attempt to remove the need for complicated nonlinear 
controllers [15]. 

 
The objective of this research is to develop an analytical model 

of the pneumatic system which includes the nonlinearities of the 
system, and the transformation of the discontinuities into a 
continuous form. The use of analytical models enables the 
implementation of conventional analytical control approaches, such 
as sliding mode control, and provides a tool for the analysis of 
stability and robustness. In this paper, the modeling process is 

applied to a one degree of freedom pneumatic system where a 
McKibben muscle actuator mechanism is controlled by a single high-
speed solenoid valve. A non-analytical and analytical mass flow rate 
model through the valve are developed and combined with the 
nonlinear model of the actuator and the mechanism. An extensive set 
of experimental tests are performed to characterize the dynamics of 
the overall system. The models are validated by a comparison of the 
simulated results with the experimental implementation of the 
system. Finally, a traditional PI-controller is tuned with the help of a 
mathematical model, and is implemented in the real system. 
 
SYSTEM MODELING 
 
System Setup and Structure 
 

The system hardware is illustrated schematically in Fig. 1. The 
Festo fluidic muscle (MAS10-300 mm) is hanging vertically, 
actuating (lifting) the attached payload.  The supply pressure (0.65 
MPa abs.) for the system is provided by the proportional pressure 
regulator (Festo VPPM-6L-L1-G18-0L6H-V1N). A single 3/2 high 
speed on/off solenoid valve (Festo MHE2-1/8-MS1H-3/2G-M7) is 
controlled to actuate the muscle actuator and the payload. The 
solenoid is driven by pulsed valve control signal generated in DSpace 
and Matlab environment. An electronic amplifier is used to provide 
sufficient power to actuate the valve. A pressure sensor (Festo SDE1-
D6-G2-H18-C-PU-M8) provides a feedback signal for the controller. 
The displacement of the actuator and payload is measured by an 
electrical potentiometer. Flow restrictors shown between the actuator 
and valve are optional and can be used to reduce excessive pressure 
chattering, if necessary. The tubing between the valve and the 
actuator is kept short as possible, and thus can be neglected in the 
overall model.  
 

 
Fig. 1. System setup 

 
McKibben Muscle Actuator model 
 

The McKibben muscle is an actuator that consists of a rubber 
tube with a non-extensible fiber surrounding [16]. This physical 
configuration causes the muscle to have variable-stiffness spring-like 
characteristics, nonlinear passive elasticity, physical flexibility, and 
very lightweight compared to other types of actuators [17]. The only 
commercially available muscle actuator (MAS) by Festo differs 
slightly from the general McKibben type muscle. The fiber of the 
fluidic muscle is knit into the tube, offering easy assembly and 
improved hysteretic behavior and linearity compared to conventional 
designs [18]. 
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During pressurization of the muscle with air, the muscle widens 
in diameter and shortens in length. The maximum force is obtained at 
the beginning of the contraction and decreases with increasing 
contraction [19]. The actuator is unidirectional and its maximum 
contraction without load is typically 20% to 25%. The nominal force-
to-contraction at different pressure levels is nonlinear, and adds to the 
difficulty of effectively modeling the muscle actuator. As with all 
actuation systems, effective application of pneumatic muscle 
actuators relies on being able to accurately model and predict the 
forces that will be generated under any operating conditions. In 
general, the properties of the muscle actuator depend on the 
geometric parameters shown in Fig. 2.  
 

 
Fig. 2. Geometric model of McKibben actuator [17] 

 
From the geometry of the muscle, the overall length of the 

actuator and the diameter are given by the following two equations: 
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Where bs is the length of one braid strand, considered to be 

inextensible, and ns is the number of times a strand encircles the 
muscle’s circumference from end-cap to end-cap. Assuming an ideal 
cylindrical shape, the enclosed volume is defined as follows: 
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From the principle of virtual work and the conservation of 

energy, and assuming quasi-static and lossless conditions, the force 
required to deform the membrane can be expressed by: 
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Substitution of equation (3) into (4) leads to the force 

generation equation, first proposed in [19]: 
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Where F is the contractile muscle force, D0 is the diameter of the 
actuator at the braid angle of 90° (theoretical maximum), and p is the 
muscle pressure. An improved force equation takes the form [20, 21]: 
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Where r0 and θ0 are the minimum radius and braid angle, 
respectively. L0 is the maximum (initial) length, and ε is the 
contraction ratio. Equations (5) and (6) give a basis for predicting the 
generated muscle force. However, they fail to completely model the 
behaviour of braided muscle actuators due to the assumption of 
lossless operation. Subsequently, various hypotheses have been 
developed to account for the effects of tubing elasticity, internal 
frictions, braid thickness, stretching of the fibres, end cap diameter 
(i.e. non-cylindrical muscle shape) and material modeling in order to 
provide more accurate models [16, 17, 21–25]. Despite the 
improvements, errors between the predicted and measured force still 
exists. Especially in the case of Festo fluidic muscles, the models 
have been too inaccurate leading to a use of various corrective factors 
and exponential curve fitting methods [21, 25].  
 

It has also been observed that there exists hysteresis in the 
muscles during operation caused mainly by friction present in the 
system. To account for the friction in the mathematical models, a 
constant force offset can be subtracted from or added into the 
calculated static force depending on whether the muscle is 
contracting or expanding [17]. In [21] a parameter k was introduced, 
which “tunes the slope of the considered static model” and matches 
the modeled data with the experimental values.  
 

 
Fig. 3. Measured muscle force including hysteresis behavior 

 
In Figure 3, the measured muscle force as a function of the 

displacement and pressure is shown, which also includes the 
hysteretic behavior of the Festo fluidic muscle. At the operating point 
x=0, the actuator is at rest and the positive displacement x refers to 
the amount of displacement/shortening of the actuator.  The negative 
displacement indicates the stretching of the actuator from its nominal 
length. It should be noted that the actuator can provide even higher 
initial forces when pre-stretched.  The force produced by the actuator 
decreases non-linearly as the contraction/displacement increases. 
When the actuator reaches its minimum length/maximum 
displacement the actuator does not provide any force. 
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The muscle actuator introduces a variable spring and a damper 
in parallel. The variable spring component is described by the static 
muscle force equation including hysteresis phenomena. The damper 
component describes the dynamics of the actuator including the 
viscous friction effect. For modeling the static force characteristics, 
averaged force/displacement curves at each pressure level are 
determined by calculating the average of the hysteresis loops shown 
in Figure 4. In order to capture the nonlinear force characteristics, an 
alternative fitting approach from the aformentioned methods is used. 
The maximum available force as a function of displacement is 
introduced by fitting a 4th-order polynomial function for the curve at 
the maximum pressure 0.6 MPa. As a result, the nonlinear curve 
shape of the force/displacement characteristics is captured.  When the 
muscle displacement is held constant, the actuator force depends 
almost linearly on the pressure. However, the slope of the force per 
unit pressure changes as a function of the displacement and thus the 
muscle force can be described by: 
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(7) 

 
Where pmax is the maximum available muscle pressure and pm is the 
current muscle pressure. Coefficients k0 [N], k1 [N/m], and k2 [Pa] are 
found by using least-squares methods. 
 

 
Fig. 4. Static muscle force model 

 
Figure 4 illustrates the predicted force plotted against the 

measured force data at different pressure levels (0.1 to 0.6 MPa). The 
model is able to predict the force reasonably well for almost every 
pressure. Some deterioration exists between the model and actual 
data at lower pressure levels (less than 0.2 MPa).  
 

For modeling the hysteresis, a similar approach as in [17] is 
used. The shape and the width of the hysteresis loops are almost the 
same for each pressure level as shown in Figure 3. An average value 
for the width of the hysteresis loop resulted in 32 N. Thus a friction 
force offset FC (Coulomb friction) of 16 N can be added into the 
static force model described by the equation (7), as follows: 
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Fig. 5. Comparison between the modeled and actual force including 
hysteresis 
 

In Figure 5, the muscle force model (equation (8)) is compared 
with the measured data. As a conclusion, the model is able to provide 
a reasonably good prediction for the muscle force, including the 
effect of hysteresis. 
 

The identification of the viscous friction of the actuator is often 
a challenging task. The friction may be time-variant and dependent 
on the temperature and the pressure, as well as on the velocity. 
However, in our case, the effects of temperature and pressure are 
neglected. The goal here is to determine the viscous friction as a 
function of velocity with a reasonable amount of accuracy. In the 
analysis, a low-friction pneumatic cylinder is used in the 
measurement setup. First, the friction characteristics of the cylinder is 
determined, by driving it at different constant velocities and 
calculating the friction force with the help of the measured pressure 
in chambers of the piston side and piston rod side. When the cylinder 
piston is moving at a constant velocity, the differential force between 
the chambers can be assumed to be equal with the friction force.  The 
friction characteristics of the combination of the muscle actuator and 
the cylinder can be measured directly by the load cell attached to the 
other end of the muscle actuator. The free end is connected to the 
cylinder piston. In the measurements, first the cylinder chamber is 
pressurized. Then at the given time step the chamber port is opened 
to ambient pressure and the muscle actuator is pressurized to create 
the motion. During this operation the displacement, force and 
cylinder pressure are measured which are then used to calculate the 
total friction force as a function of the velocity.  A rough estimate of 
the viscous friction of the muscle actuator can be obtained by 
subtracting the cylinder friction from the total friction. Figure 6 
shows the estimated friction of the cylinder, muscle actuator, and the 
combination of the two. Furthermore, it should be noted that the 
viscous friction is assumed to be symmetrical for positive and 
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negative velocities. A description of the total muscle force, which 
includes the behavior of friction, may be defined as follows: 
 

dt
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C
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dx
signFFF fCstaticmuscle  )(  (9) 

  
 

 
Fig. 6. Estimated friction characteristics of the muscle actuator 

 
Non-analytic valve model 
 

The PWM pneumatic valve, that controls the airflow into and 
out of the actuator, is a fundamental component of the system. The 
valve considered in this study is a 3/2-high speed solenoid valve 
(Festo MHE2-1/8-MS1H-3/2G-M7) with a switching time of 
approximately 2 ms. The working principle of the solenoid valve is 
described as follows: the tensile force of the preloaded spring, and 
the force exerted by the air, tend to close the valve. Conversely, the 
magnetic force created by the current passing through the coils 
pushes the core and then the poppet, which opens the valve. The area 
of the air passage is a function of the position of the poppet, and it is 
also dependent on the diameter of the restricted passage, as well as 
the geometric form of the poppet. However, the internal structure of 
the solenoid valve is not usually known by the user and is not easily 
measured. Thus, it is not very efficient to establish a model that takes 
into account the electrical, magnetic, and mechanical subsystems of 
the component. 

 
In general, the thermodynamics equations considered for valve 

modeling are those shown in literature for a gas through a nozzle, 
while assuming an adiabatic process, absence of losses, and 
convergent nozzle [26]. Thus, the mass flow rate passing through the 
valve can be expressed as follows: 
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Where Tup is the upstream air temperature and pup is the upstream 
pressure, k=1.4 is the specific heat ratio of air, pdown is the 
downstream pressure, and R=287 J/kg/K is the air constant. Cq and 
Cm are, respectively, the flow rate coefficient and the flow rate 
parameter of the solenoid valve. The critical pressure pcr divides the 
flow into sonic (pdown/pup < pcr) and subsonic (pdown/pup > pcr) flow 
regimes. The flow equation works well usually for a short convergent 
nozzle where the friction and compressibility effects are negligible. 
However, due to the flow rate losses in commercial valves, the 
critical pressure does not have a prefixed expression (usually 0.528) 
but it changes depending on the particular type of valve considered. 
As a result, we have found that the given flow rate equation does not 
correspond well to the mass flow rate characteristics of the solenoid 
valve under study. 

 
Instead, a theoretical model introduced in [7, 27] is used. Here, 

the flow rate is considered constant in a sonic flow zone, while it 
decreases with a quadratic behavior approximated by a quarter of 
ellipse in the subsonic flow zone.  
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Cv is the valve discharge flow coefficient, and bv is the critical 
pressure. In addition, the flow paths of the valve must be considered 
separately. In other words, the model should account for two possible 
flows. When the valve is open the flow path is through the orifice 1 -
> 2 (inflation), and when the valve is closed the flow path is through 
the orifice 2-> 3 (deflation). While inflating, the upstream pressure is 
a constant supply pressure, and the downstream pressure is the 
pressure inside the actuator. When exhausting, the upstream pressure 
is the actuator pressure, and the downstream pressure is the ambient 
pressure. 
 

In order to identify the pneumatic behavior of the valve a set of 
experiments according to the procedure introduced by ISO6358 were 
carried out. In measurements, three upstream pressure levels were 
used and the relevant experimental points were fitted by tuning two 
parameters (Cv, bv) through equation (11). The geometric and tuned 
flow rate parameters are reported in Table 1.  Figure 7 shows a good 
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overlap between the simulated and experimental curves. It should 
also be noticed that the valve’s flow ways are not symmetrical.  

 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1. Parameters used for valve identification 
 

 
Fig. 7. Flow rate fits for passages 1->2 and 2->3 

 
Analytic valve model 
 

It is quite obvious that the mass flow rate model of the 3/2 high 
speed on/off valve is an essential part of the system model. The 
solenoid valve is controlled with the duty ratio of the PWM-
modulated signal. The time period of the PWM-signal is determined 
as TPWM and is the inverse of the switching frequency TPWM=1/fPWM. 
The switching time for opening and closing the valve is 
approximately 2 ms, which naturally reduces the maximum available 
duty cycle range. The switching frequency and the duty cycle 
determine how long the valve is open and closed during time period 
TPWM. Valve delays and the discontinuous high frequency switching 
increase the complexity of the valve model, and are difficult to 
handle in the view point of controller design. Thus the non-analytic 
model introduced (equation (11)) is not feasible and an alternative 
valve model is needed. In a PWM-controlled system, the power is 
delivered to the actuator in discrete packets of fluid mass, as the 
valve is either completely open (on) or closed (off). If the switching 
frequency of the valve is significantly higher than the system 
dynamics, the system responds similarly as in the case of continuous 
mass flow. As the control signal for the valve is actually the duty 

ratio, it is necessary to determine the average mass flow rate as a 
function of actuator pressure and duty ratio control signal. 

 
  In its place, a procedure similar to the one introduced in [28] 

is followed, where an equivalent mass flow rate model was 
determined for a proportional servo valve. The mass flow rate has 
nonlinear characteristics and is a function of pressure p inside the 
volume, and the control signal u (duty ratio [0-1]). Thus, one obtains 
a traditional representation for the pressure change as follows: 
 

V

V
kppum

V

kRT
p eq



 ),(  (12) 

 
In equation (12), the second term can be computed once the 

volume V is known, and the pressure is given. In the first term, the 
nonlinear valve function is difficult to measure. Alternatively, the 
nonlinear valve characteristic can be approximated experimentally by 
charging and discharging a constant volume chamber. This causes the 
second term in equation (12) to disappear, allowing the mass flow 
rate to be calculated from the rate of change of pressure. A set of 
input signals with different duty cycles were applied to the valve and 
the pressure response in the constant volume chamber was measured. 
Due to the PWM switching, the pressure signal contains a significant 
amount of vibrations. Thus, the pressure response requires digital 
filtering in order to obtain an averaged response. The average 
pressure signal may then be differentiated in order to obtain the 
pressure change at different times. By distributing the computed 
slopes of the pressure curve at the corresponding parameter pairs (u 
and p), a parametric representation of the surface of the pressure 
change can be obtained. Using this surface, the mass flow rate can be 
estimated using equation (12). Figure 8 illustrates the 
estimated/measured mass flow rate plotted as a function of input 
signal (duty ratio) and the relative actuator pressure.  Note that a 
negative mass flow rate indicates a discharging flow. 

 

 
Fig. 8. Estimated mass flow rate for on/off valve 

 
In order to model the mass flow rate, a 2nd order bi-polynomial 

function was used, as follows: 
 

Parameter Description Value 
R Air constant 287 [J/(kg*K)] 
Tup Upstream 

temperature 
293 [K]  

pup Upstream pressure 0.5,0.6,0.7 
[MPa] (abs) 

A Valve  diameter 3.14e-6 [m2] 

Cv  (1 -> 2) Flow coefficient  0.36 

Cv  (2 -> 3) Flow coefficient 0.39 

bv  (1 -> 2) Critical pressure 0.28 

bv  (2 -> 3) Critical pressure 0.49 
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Where m1-9 are the coefficients found using the least-squares method.  
 

 
Fig. 9. Fitted model for mass flow rate 

 
The output obtained from this function is plotted in Fig. 9. It 

can be observed that the model approximates the averaged mass flow 
rate behavior of the valve quite well. The maximum fitting error is 

41096.1   kg/s, or 4.13 % of the range. The RMSE is 5105.5  kg/s 
or 1.16 %.  
 
Pressure dynamics 
 

Knowledge of the actual pressure inside the muscle actuator is 
essential for understanding the dynamic behavior. The pressure 
depends on the mass of the air and the volume of the muscle. The 
diameter and length of the muscle were measured, and the volume of 
the muscle was calculated assuming a cylindrical shape. The volume 
shows a nearly linear behavior, dependent on displacement: 
 

,)( 10 xvvxVm   (14) 

 

 
Fig. 10. Muscle volume in correlation with displacement 

 

For calculating the pressure inside the muscle, it is assumed 
that the air is ideal gas and the change of air is adiabatic, such that 
the pressure change follows: 
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Where k (1.4 for adiabatic process), R, T, Vm and pm denotes the 
specific heat ratio, gas constant, air temperature, volume of the 
muscle, and muscle pressure, respectively. The second main 
expression of equation (15) considers the power balance of the 
pressurized flow rate. The first term (following the subtraction sign) 
represents the pressure change due to the mass flow in or out of the 
muscle chamber. The second term represents the pressure change due 
to the change of the muscle chamber volume. The reciprocal volume 
takes into account the compressibility of the air. 
 
Overall system model 
 

The motion equation of the muscle driving a constant payload 
attached in a vertical direction is defined (using Newton’s Second 
Law) as follows: 
 

Mg
dt

dx
C

dt

dx
signFFxM fcstatic  )(  (16) 

 
Where Fstatic is the static muscle force given in equation (7), M is the 
total mass of the system and payload, and g is the gravitational 
constant. Fc is the Coulomb friction, and Cf is an experimentally 
approximated damping factor of the muscle actuator.  

 
In conventional analytical control approaches, such as sliding 

mode control, a state-space description of the system is preferred. 
Thus, suppose that the state vector for the system is defined as 
follows: 
 

T
mstates xxxPx ][   (17) 

 
From the nonlinear models described in the previous sections 

(particularly equations (7), (13), (15) and (16)), we have the 
following discrete-time equations which can be used in the control 
and estimation processes [31]: 
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It should be noted that the analytic mass flow rate model 

(equation (13)) enables the use of this kind of system presentation. 
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SIMULATION AND EXPERIMENTAL RESULTS 
 

This section describes the results of validating the developed 
valve models and overall system model with measurements. In 
addition, the final system model is used for tuning the parameters of 
a traditional PI-controller, which is used to control the actuator to 
follow a desired displacement trajectory.  
 
Valve model validation 
 

In the previous section, two solenoid valve models were 
developed: non-analytical and analytical. The non-analytical valve 
model is based on equation (11) for which the tunable parameters 
were found by fitting the equation to match with experimental data. 
In the model, the flow paths of the valve are described separately, as 
the air flow is through passage 1->2 when the valve is “on” and 
through 2->3 when the valve is “off”. During the “on” state, the valve 
inflates the actuator volume, and the supply pressure is the upstream 
pressure while the actuator pressure is the downstream pressure. 
During the “off” stage, they are actuator pressure and ambient 
pressure, respectively. The non-analytical model also includes the 
valve delay (~2 ms) in the switching phenomena when the valve 
changes its state. 
 

The measurements are carried out with a known constant 
volume. During the inflation process, the supply pressure is 5.5 Mpa 
(relative) and the initial pressure in the volume is zero. The volume is 
pressurized operating the solenoid valve with different duty ratios 
(25, 50 and 75 %) of 50 Hz PWM-signal. The chosen frequency is 
fast enough for the system dynamics and also provides a reasonable 
resolution for controlling the available duty ratio values. It should be 
noted, that the valve delay decreases the maximum available duty 
ratio range into 10-90% using this frequency. During the deflation 
process, the volume is first pressurized to a maximum value (5.5 MPa 
rel.), and then the valve is operated similarly with different duty 
ratios as in the inflation process. 
  

 
 

Fig. 11. The validation of valve models when inflating a constant 
volume with different PWM-duty ratios 

 

 
Fig. 12. The validation of valve models when deflating a constant 
volume with different PWM-duty ratios 
 

Figures 11 and 12 illustrate the simulated and measured 
pressure responses for the inflation and deflation processes. The non-
analytical valve model gives a good overall estimation for inflating 
pressure curves. However, the model is unable to completely estimate 
the pressure response during the deflation process. The deviation is 
caused by the silencer that was attached to the third valve port. The 
use of the silencer is necessary because of the very loud noise caused 
by the high speed valve switching. The silencer clearly changes the 
characteristics of the flow through 2 -> 3. The effects of the silencer 
on the pressure response are strongest when the pressure inside the 
volume approaches the steady-state value. As the pressure drop 
across the valve decreases the silencer slows down the flow. In 
consequence, the pressure in the simulations drops faster causing a 
steady-state offset compared to the measurements. The effects of the 
silencer at higher upstream pressure levels are almost negligible, and 
the model is able to follow the measured pressure curves quite 
accurately. Clearly, better estimation results would be gained if the 
valve was operated without the silencer. 
 

The analytical valve model was described in the previous 
section. The purpose of it is to provide mass flow estimation through 
the valve as a function of the duty ratio and the pressure of the 
controlled volume. The model assumes that the supply pressure at the 
first valve port is constant (6.5 MPa abs.) and port 3 is at the ambient 
pressure. The valve relies heavily on the measurements that are 
naturally sensitive to the uncertainties. A large number of 
measurements were carried out and the pressure responses of the 
constant volume were measured. From the measured data, the 
pressure change was captured and the approximation for the average 
mass flow rate was calculated at different volumetric pressure levels 
and duty ratios. A 2nd-order bi-polynomial function was fitted to the 
obtained data with relatively good accuracy. The comparison of 
analytical model to the non-analytical model and measured pressure 
responses are shown in Figures 11 and 12, respectively. Despite some 
divergences between the model and the measurement, the model is 
able to estimate the pressure with reasonable accuracy. The 
advantage of the model is its suitability to be used for conventional 
control design, such as sliding mode control. The effectiveness of the 
model was proved in [29], where it was used successfully with the 
smooth variable structure filter (SVSF) to estimate the system states 
for the sliding mode controller. In the controller, a model based feed-
forward control was used to provide an equivalent control signal 
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(duty ratio) for the valve. Based on the nonlinear state-space model 
(equations (18-21)), the equivalent desired mass flow may be 
estimated. The 2nd-order bi-polynomial function can then be solved to 
find the desired duty ratio when the desired flow rate and the actuator 
pressure (measured) are known. The sliding mode controller and the 
filter are known to be very robust to parameter variations and other 
uncertainties, yielding an error tolerance for the estimated mass flow 
rate model. 
 
System model validation 
 

The overall model was verified for both the non-analytic and 
analytic valve models. In the validation process, a set of input signals 
(duty ratio) of triangle waveform was applied to the system. The 
frequency of the waveform was varied and the duty ratio value 
changed between 0.05 and 0.95. In the case of the non-analytical 
model, a pulse width modulator is used to convert the duty ratio 
signal into an appropriate on/off control (f=50 Hz) for the valve.  
 

The simulation and measurement results for input signal 
frequencies 0.08 and 0.25 Hz are shown in Figures 13 and 14. First of 
all, notice that the measured displacement signal contains no 
excessive chattering. The chosen PWM-frequency is thus high 
enough compared to the system dynamics. Although not shown here, 
the amplitude of chattering in the actuator pressure is approximately 
15 kPa. An experiment with a PWM-frequency of 25 Hz resulted in 
an unacceptably large amount of chattering into the actuator 
displacement. An even smoother trajectory was gained with PWM-
frequency of 100 Hz. The drawback of using that is the poor 
resolution of the input signal; even if an 0.1 ms sampling time is 
used.   
 

 
Fig. 13. Simulated and measured displacement response for a triangle 
(f=0.08 Hz) input signal 
 

The simulation results show that both models are able to 
estimate the displacement of the actuator and payload (9.6 kg) with 
reasonable good accuracy. An extremely good accuracy is obtained 
during the upward motion. The models fail to describe the creeping 
effect near the maximum displacement. It is a nominal effect for this 
type of actuator caused by material deformations. The largest 
modeling errors occur during the downwards motion. This is caused 
by the simplified hysteresis model where a constant force offset is 
either reduced from or added into the static muscle force model 
depending on the sign of the actuator velocity. Thus, the model does 

not take into account the real transition between the inflating and 
deflating curves. As a result, the accuracy of the models is not as 
good compared to the upwards motion. In addition, the un-modeled 
silencer affects the accuracy of the non-analytical model. Altogether, 
both the models can estimate the real process reasonably well, as the 
maximum displacement error is approximately 10% and the RMSE 
values for the displacement are around 3-5%.  
 

 
Fig. 14. Simulated and measured displacement response for a triangle 
(f=0.25 Hz) input signal 
 
PI-Control 
 

A PI-controller was tuned by trial-and-error using the non-
analytical and analytical system models. During the operation it was 
noted that the system is very sensitive to oscillations and instability. 
The instability issue limited the maximum gains for the controller 
resulting in a lack of accuracy. A reasonable performance was gained 
with a derivative gain in the controller during the simulations, but 
due to the measurement noise it could not be used in the real system.  
Figures 15 and 16 illustrate the results when the input signal is 
sinusoidal with amplitude of 0.01 m and frequencies of 0.5 and 1 
rad/s. The tuned gains for the controller were P=25 and I=150. It can 
be seen that the system performance is quite poor with the PI-
controller. The response for the initial step is slow, and the system is 
not able to follow the desired trajectory very well. A steady-state 
error of approximately 1.5-2.2 mm is present during the entire cycle. 
The RMSE is over 10%, and increases as the frequency of the desired 
trajectory is increased. It becomes apparent that pneumatic systems 
are very difficult to control accurately. The performance of traditional 
linear approaches like PI and PID controllers is poor with highly 
nonlinear pneumatic systems. Thus, nonlinear and robust approaches 
are needed for better performance. However, the models developed in 
this paper of the pneumatic muscle actuator system give a firm basis 
for the design of more advanced control strategies. The non-
analytical model can be used to simulate the real process quite 
accurately. In addition, the analytical model can be used in the 
model-based controller and state estimator design.  
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Fig. 15. Trajectory (ω=0.5 rad/s) followed control with tuned PI-
controller  
 

 
Fig. 16. Trajectory (ω=1 rad/s) followed control with tuned PI-
controller  
 
CONCLUSIONS 
 

In this paper, a nonlinear model for a pneumatic muscle 
actuator system controlled by an on/off solenoid valve was 
developed. The solenoid valve is operated by a pulse width 
modulated (PWM) scheme which gives an interesting alternative to 
develop low-cost pneumatic servo systems. On the other hand, 
accurate control of highly nonlinear pneumatic systems requires 
advanced control techniques that often use model-based approaches. 
Thus, the main focus of this research was to develop a model for 
control design approaches which capture the major nonlinearities 
present in the system with reasonable accuracy.  In PWM-operated 
systems, the high speed switching of the valve results in 
discontinuities which are often difficult to handle from the viewpoint 
of control design. As a consequence, two valve models were 
developed in this study. The non-analytical model is able to describe 
the real operation of the system with relatively good accuracy, and 
including the nonlinear flow regimes and valve switching delays. The 
model is suitable for system analysis and for testing of controllers. 
The analytical model of the system, which includes the nonlinearities 
of the system, was developed to transform the discontinuities into a 
continuous form. This was accomplished by introducing a continuous 
flow model through the valve as a function of duty ratio of PWM-

signal and actuator pressure. The use of this analytical model enables 
the implementation of conventional analytical control approaches, 
such as sliding mode control, and provides a tool for the analysis of 
stability and robustness. 
 
NOMENCLATURE 
 
A [m2] effective orifice area of the valve 
Cf [Ns/m] viscous friction coefficient 
Cm [-] flow rate coefficient of the valve 
Cq [-] flow rate parameter of the valve 
Cv [-] discharge flow coefficient of the valve 
D, D0 [m] muscle actuator diameter 
F [N] force in general 
Fc [N] Coulomb friction 
Fmax [N] maximum muscle force muscle 
Fmuscle [N] force generated by the muscle 
L,L0 [m] muscle length, initial length 
M [kg] weight of the payload (9.6 kg) 
pcr [Pa] critical pressure ratio 
pdown [Pa] downstream pressure 
pm [Pa] pressure inside the muscle 
pup [Pa] upstream pressure 
ps  [Pa] supply pressure 
p0  [Pa] atmosphere pressure  
R [J/(kgK)] gas constant 
T [K] air temperature 
Tup [K] upstream air temperature 
TPWM [s] time period of PWM-signal 
TS [s] sampling time 
V [m3] volume in general 
Vm [m3] volume of the muscle 
a0-4 [m] muscle force coefficients 
bs [m] length of one braid strand 
bv [m] critical pressure 
fPWM [Hz] switching frequency of the PWM-signal 
g [m/s2] gravity constant 
k [-] specific air heat ratio 
k0 [N] coefficient for muscle force eq. 
k1 [N/m] coefficient for muscle force eq. 
k2 [Pa] coefficient for muscle force eq. 

eqm  [kg/s] equivalent mass flow rate 

m  [kg/s] mass flow rate 
m1-9 [-] coefficients for eq. mass flow rate 
ns [-] number of strand encircles 
p [Pa] pressure  
pcr [Pa] critical pressure ratio 
pdown [Pa] valve downstream pressure 
pm [Pa] pressure inside the muscle 
pmax [Pa] maximum muscle pressure  
p0  [Pa] atmosphere pressure 
pu  [Pa] valve downstream pressure 
r0  [m] initial muscle radius 
u [-] control signal (duty ratio) 
ueq [-] equivalent control signal  
x  [m] displacement of the muscle 
θ, θ0 [º] muscle braid angle, initial braid angle 
ε [-] muscle contraction ratio 
v0, v1, [m3, m2] muscle volume coefficient 
· [-] denotes a time derivative 
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