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ABSTRACT 

This article discusses the application of the smooth variable 
structure filter (SVSF) on a target tracking problem. The SVSF is 
a relatively new predictor-corrector method used for state and 
parameter estimation. It is a sliding mode estimator, where gain 
switching is used to ensure that the estimates converge to true 
state values. An internal model of the system, either linear or 
nonlinear, is used to predict an a priori state estimate. A 
corrective term is then applied to calculate the a posteriori state 
estimate, and the estimation process is repeated iteratively. The 
results of applying this filter on a target tracking problem 
demonstrate its stability and robustness. Both of these attributes 
make using the SVSF advantageous over the well-known Kalman 
and extended Kalman filters. The performances of these 
algorithms are quantified in terms of robustness, resilience to 
poor initial conditions and measurement outliers, tracking 
accuracy and computational complexity. 

NOMENCLATURE 
A System matrix. 

B Input matrix. 

C Output matrix. 

e State estimation error. 

k Time step index. 

m Number of measurements. 

n Number of states. 

P Error covariance matrix. 

Q System noise covariance matrix. 

R Measurement noise covariance matrix. 

Sat Saturation function. 

t Simulation time. 

u Input. 

v Measurement noise. 

w System noise. 

x System states. 

z Measurement output. 

ξ Cartesian coordinate (position) along the x-axis. 

γ Constant diagonal gain matrix with elements having values 
between 0 and 1. 

η Cartesian coordinate (position) along the y-axis. 

Ω Turn rate of the target. 

Ψ Smoothing boundary layer. 

τ Sampling time. 

^ Denotes an estimated value. 

~ Denotes an error value. 

· On top of a parameter denotes a time derivative. 

Furthermore, note that subscript k+1|k refers to an a priori 
time step and the subscript k+1|k+1 refers an a posteriori time 
step. A superscript of T denotes a matrix transpose. 

INTRODUCTION 
In the estimation world, even after 50 years, the Kalman filter 

(KF) method remains the most studied and one of the most 
popular tools used to estimate states from systems [1-3]. It may be 
applied on linear dynamic systems in the presence of Gaussian 
white noise, and provides an elegant and statistically optimal 
solution by minimizing the mean-squared estimation error. The 
impact that the KF has had on estimation and control problems is 
considered to be one of the greatest achievement in estimation 
theory [2]. For example, the KF may be used to precisely track 
spacecraft through the solar system, and according to many, was 
one of the enabling technologies for the modern Space Age [2]. 



  

In practice, many systems are in fact nonlinear, such that 
linear estimation techniques may not be used to provide optimal 
solutions. However, suboptimal techniques may be applied to 
handle the nonlinearities. Such techniques include the extended 
Kalman filter (EKF) and the smooth variable structure filter 
(SVSF). The EKF is a popular extension of the KF, and is 
commonly used in target tracking [4]. It uses partial derivatives of 
the nonlinearities in the state dynamic and measurement models, 
such that linearized approximations are obtained and then used in 
the estimation process [2, 4]. The SVSF is a new predictor-
corrector method used for state and parameter estimation [5, 6]. It 
is a type of sliding mode estimator, where gain switching is used 
to ensure that the estimates converge to true state values. 

In target tracking applications, one may be concerned with 
surveillance, guidance, obstacle avoidance or tracking a target 
given some measurements [4]. In a typical scenario, sensors 
provide a signal that is processed and output as a measurement. 
These measurements are related to the target state, and are 
typically noise-corrupted observations [4]. The target state usually 
consists of kinematic information such as position, velocity, and 
acceleration. The measurements are processed in order to form 
and maintain tracks, which are a sequence of target state estimates 
that vary with time [4]. Multiple targets and measurements may 
yield multiple tracks. Gating and data association techniques help 
classify the source of measurements, and help associate 
measurements to the appropriate track [4]. A tracking filter is used 
in a recursive manner to carry out the target state estimation. 

STATE ESTIMATION 
State and parameter estimation techniques are quite useful for 

systems when not all of the dynamics are known. Estimation 
theory involves finding a value of some parameter of interest, 
which affects the output of the system, often in the presence of 
inaccurate or uncertain observations [3]. States are representative 
of the dynamics of a system. For example, for space vehicles, 
inertial measuring units may be used to calculate the acceleration. 
However, since their alignment deteriorates over time, calculating 
the acceleration by other means (i.e. state estimation) may be 
desirable [7]. 

The purpose of estimation, as described by Bar-Shalom et al 
in [1], can be one of many reasons: determination of planet orbit 
parameters, statistical inference, aircraft traffic control system (i.e. 
tracking), use in control plants with uncertainties (i.e. parameter 
identification or state estimation), determination of model 
parameters (i.e. system identification), message retrieval from 
noisy signals (i.e. communication theory), and also signal and 
image processing. A filter may be used to estimate the state of a 
dynamic system, whether linear or nonlinear. The word filter is 
used because when finding the best estimate, one has to filter out 
the noisy signals or uncertain observations [3]. In this paper, two 
filters (the commonly used KF/EKF and the relatively new SVSF) 
are applied to a target tracking problem, and the performances          
in terms of robustness, stability, and accuracy are compared. 

Kalman and Extended Kalman Filters 
As previously mentioned, the KF provides an elegant and 

statistically optimal solution for linear dynamic systems in the 
presence of Gaussian white noise. It is a method that utilizes 
measurements linearly related to the states, and error covariance 
matrices, to generate a gain referred to as the Kalman gain. This 
gain is applied to the a priori state estimate, thus creating an a 
posteriori estimate. The estimation process continues in a 
predictor-corrector fashion while maintaining a statistically 
minimal state error covariance matrix for linear systems. 

The following two equations describe the system dynamic 
model and the measurement model used in general for (linear) 
state estimation. 

kkkk wxAx 1  (1) 

1111   kkkk vxCz  (2) 

The next five equations form the KF algorithm, and are used 
in an iterative fashion, in conjunction with Eqs. (1) and (2). 
Equation 3 extrapolates the a priori state estimate, and Eq. (4) is 
the corresponding error covariance. The Kalman gain may be 
calculated by Eq. (5), and is used to update the state estimate and 
error covariance, described by Eqs. (6) and (7), respectively. 
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The effects due to mismodeling can be negative, as both the 
Kalman gain and covariance matrix calculations are dependent on 
the system and measurement matrices. Furthermore, the 
performance and stability of the KF may also be dependent on the 
definition of the process and measurement noise, made through 
covariance matrices [2, 5]. Overlooked nonlinearities in the 
system may also cause the KF to become unstable. The EKF may 
be used for nonlinear systems. It is conceptually similar to the 
iterative KF process. The nonlinear system and measurement 
matrices are linearized according to its corresponding Jacobian, 
which is a first-order partial derivative. This linearization can 
sometimes cause instabilities when implementing the EKF [2]. 



  

Smooth Variable Structure Filter 
In 2002, the variable structure filter (VSF) was introduced as 

a new predictor-corrector method used for state and parameter 
estimation [5, 6]. It is a type of sliding mode estimator, where 
gain switching is used to ensure that the estimates converge to 
true state values. An internal model of the system, either linear or 
nonlinear, is used to predict an a priori state estimate. A corrective 
term is then applied to calculate the a posteriori state estimate, and 
the estimation process is repeated iteratively. The SVSF was later 
derived from the VSF, and uses a simpler and less complex gain 
calculation [8]. In its present form, the SVSF is stable and robust 
to modeling uncertainties and noise, given an upper bound [8]. 
The basic concept of the SVSF is shown in Fig. 1. Assume that 
the solid line in Fig. 1 is a trajectory of some state (amplitude 
versus time). An initial value is selected for the state estimate. The 
estimated state is pushed towards the true value. Once the value 
enters the existence subspace, the estimated state is forced into 
switching along the system state trajectory [8]. 

 

FIGURE 1. SVSF ESTIMATION CONCEPT [8] 

The SVSF method is model based and applies to smooth 
nonlinear dynamic equations. The estimation process may be 
summarized by Eqs. (8) to (11), and is repeated iteratively. An a 
priori state estimate is calculated using an estimated model of the 
system. This value is then used to calculate an a priori estimate of 
the measurement, defined by Eq. (9). A corrective term, referred 
to as the SVSF gain, is calculated as a function of the error in the 
predicted output, as well as a gain matrix and the smoothing 
boundary layer width. The corrective term calculated in Eq. (10) 
is then used in Eq. (11) to find the a posteriori state estimate. 
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Two critical variables in this process are the a priori and a 
posteriori output error estimates, defined by Eqs. (12) and (13), 
respectively [8]. Note that Eq. (12) is the output error estimate 
from the previous time step, and is used only in the gain 
calculation. 

TARGET TRACKING SCENARIO 
A generic air traffic control (ATC) scenario is described in 

this section. The target tracking problem is based on the scenario 
found in section 11.7 of [3]. A radar stationed at the origin 
provides direct position only measurements, with a very large 
standard deviation of 1,000 m in each coordinate. As shown in 
Fig. 2, an aircraft starts from an initial position of [25,000 m, 
10,000 m] at time t = 0 s, and flies westward at 120 m/s for 125 s. 
The aircraft then begins a coordinated turn for a period of 90 s at 
a rate of 1˚/s. It then flies southward at 120 m/s for 125 s, 
followed by another coordinated turn for 30 s at 3˚/s. The aircraft 
then continues to fly westward until it reaches its final destination. 

 

FIGURE 2. AIRCRAFT TRAJECTORY 

In ATC scenarios, the behaviour of civilian aircraft may be 
modeled by two different modes: uniform motion (UM) which 
involves a straight flight path with a constant speed and course, 
and maneuvering which includes turning or climbing and 
descending [3]. In this case, maneuvering will refer to a 
coordinated turn (CT) model, where a turn is made at a constant 
turn rate and speed. The uniform motion model used for this 
target tracking problem is given by Eq. (14) [3, 9]. 
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(14) 

The state of the aircraft may be defined as follows: 

 T
kkkkkx ][    (15) 

The first two states refer to the position along the x and y-
axis, respectively, and the last two states refer to the velocity 
along the x and y-axis, respectively. The sampling time used in 
this simulation was 5 seconds. When using the CT model, the 
state vector needs to be augmented to include the turn rate, as 
shown in Eq. (16). The CT model may be considered nonlinear if 
the turn rate of the aircraft is not known. Note that a left turn 
corresponds to a positive turn rate, and a right turn has a negative 
turn rate. This sign convention follows the commonly used 
trigonometric convention (the opposite is true for navigation 
convention) [3]. The CT model is then given by Eq. (17) [3, 9]. 

 T
kkkkkkx ][     (16) 
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Since the radar stationed at the origin provides direct position 
measurements only, the measurement equation may be formed 
linearly as follows: 
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Equations (14) to (18) were used to generate the true state 
values of the trajectory and the radar measurements for this target 
tracking scenario. 

SIMULATION RESULTS 
This section provides the results of using both the EKF and 

the SVSF for tracking the target trajectory. Both the UM and the 
CT models were used by each filter. Note that in the following 
figures: EKF 1 or SVSF 1 refers to the UM model, and EKF 2 or 
SVSF 2 refers to the CT model. For each simulation, a total of 
500 Monte Carlo runs were generated to obtain the results. 

As previously mentioned, the EKF uses a linearized form of 
the system and measurement matrices. In this case, the system 
defined in Eq. (17) is nonlinear, such that the Jacobian of it yields 
a linearized form as shown in Eq. (19). The terms in the last 
column of Eq. (19) are defined in Eq. (20). 
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To generate the results for this section, the EKF used the 
following values of P, Q, and R: 
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Note that L1 and L2 are the power spectral densities, and were 
defined as 0.16 and 0.01, respectively [9]. The system and 
measurement noise were generated using their respective 
covariance values. Also, when using the UM model, the fifth row 
and column of Eqs. (21) and (22) were truncated. Furthermore, 
when obtaining the results for the SVSF, the following parameters 
were defined: γ = 0.2, Ψ = 5,000 for the first, second, and fifth 
states, and Ψ = 45,000 for the third and fourth states. These values 
were obtained by trial and error, based on minimizing error. 



  

 (I) Normal Conditions 
This case involved normal conditions, without poor initial 

conditions and the presence of outliers. The initial state estimates 
were set to the true initial state values. The SVSF performed 
significantly better than the EKF for both models. 

EKF. The simulation results obtained using the EKF are 
shown in Fig. 3. While the EKF was using the UM model, the 
trajectory was not tracked well. After the first turn, the EKF was 
unable to recover and performed poorly for the remainder of the 
tracking. The EKF did perform better using the second model; 
however, there was a significant amount of chattering across the 
target trajectory resulting in a higher RMSE. 

 

FIGURE 3. EKF RESULTS FOR CASE (I) 

SVSF. The simulation results obtained using the SVSF are 
shown in Fig. 4. Note how the SVSF was able to track the 
trajectory and measurements relatively well with each model. The 
SVSF appeared to be impartial to both models, with the exception 
of a higher velocity RMSE for the second model. 

 

FIGURE 4. SVSF RESULTS FOR CASE (I) 

The following two tables summarize the RMSE for both 
filtering strategies. 

TABLE 1. SUMMARY OF RMSE FOR BOTH STRATEGIES 
UNDER NORMAL CONDITIONS (UM MODEL) 

RMSE  
per State 

EKF SVSF 

Position 
(States 1, 2) 

3,140 m 1,086 m 

Velocity 
(States 3, 4) 

86.0 m/s 84.0 m/s 

 

TABLE 2. SUMMARY OF RMSE FOR BOTH STRATEGIES 
UNDER NORMAL CONDITIONS (CT MODEL) 

RMSE  
per State 

EKF SVSF 

Position 
(States 1, 2) 

2,565 m 1,162 m 

Velocity 
(States 3, 4) 

40,985 m/s 737.5 m/s 

Omega 
(State 5) 

1.84 rad/s 1.78 rad/s 

(II) Poor Initial Conditions 
This case involved poor initial conditions (the starting 

estimates were increased by a factor of 100). 

EKF. Changing the initial estimates by a factor of 100 greatly 
affected the quality of the results obtained by the EKF, as 
demonstrated in Fig. 5. The EKF was unable to recover using any 
of the two models, thus resulting in an unstable estimate. 

 

FIGURE 5. EKF RESULTS FOR CASE (II) 



  

SVSF. Changing the initial conditions did not greatly affect 
the behaviour of the SVSF, as shown in Fig. 6. The SVSF 
recovered after only a few time steps, and was stable for the 
remainder of the simulation. 

 

FIGURE 6. SVSF RESULTS FOR CASE (II) 

(III) Presence of an Outlier 
This case involved the presence of an outlier among the 

measurements (the middle measurement (scan 50 of 100) was 
multiplied by a factor of 500), without poor initial conditions. 

EKF. The presence of an outlier greatly affected the results of 
the EKF, as shown in Fig. 7. After the onset of the outlier (about 
half-way through tracking the target), the EKF became unstable 
and was unable to accurately continue with the estimation. 

 

FIGURE 7. EKF RESULTS FOR CASE (III) 

 

 

SVSF. The presence of an outlier did have some effect on the 
SVSF. As shown in Fig. 8, chattering began at the onset of the 
outlier. However, the presence of the chatter was beneficial as it 
allowed the SVSF to remain stable and bounded to within the 
target trajectory. The remainder of the estimation continued as in 
the normal case. 

 

FIGURE 8. SVSF RESULTS FOR CASE (III) 

(IV) Poor Initial Conditions and Presence of an Outlier 
This case involved both the poor initial conditions (the 

starting estimates were multiplied by a factor of 100) and the 
presence of an outlier among the measurements (the middle 
measurement was multiplied by a factor of 500). 

EKF. In this case, the EKF did not perform well at all. In 
fact, as shown in Fig. 9, the EKF was completely unstable and 
was unable to provide any sort of estimate. 

 

FIGURE 9. EKF RESULTS FOR CASE (IV) 



  

SVSF. Unlike the EKF, the SVSF was able to overcome the 
poor initial conditions and the presence of an outlier. Fig. 10 
demonstrates the stability and robustness of this filter. 

 

FIGURE 10. SVSF RESULTS FOR CASE (IV) 

DISCUSSION 
A generic air traffic control problem was studied under four 

different cases: normal, poor initial conditions, presence of an 
outlier, and a combination of the latter two. It was demonstrated 
throughout that the EKF was less robust to modeling 
uncertainties, poor initial conditions, and the presence of outliers. 
The chattering that is present in the SVSF, caused by the gain 
switching, brings an inherent amount of stability and robustness 
to the filter. This is clearly demonstrated in the third case where 
the EKF failed due to the outlier; however the SVSF was able to 
chatter about the trajectory until recovering and providing an 
estimate. The performance of these algorithms was ranked in 
terms of robustness, resilience to poor initial conditions and 
measurement outliers, tracking accuracy and computational 
complexity. Table 3 shows the ranking of the estimation strategies 
for the results of the simulation. The EKF is thought to be slightly 
more complex since it requires the computation of a matrix 
inverse at each correction step, as well as a linearization of the 
nonlinear matrices. The SVSF was also shown to be more robust, 
stable and accurate. 

TABLE 3. PERFORMANCE RANKING OF 
THE ESTIMATION STRATEGIES 

Performance 
Characteristic 

EKF SVSF 

Robustness 2 1 

Stability 2 1 

Accuracy 2 1 

Complexity 2 1 

CONCLUSIONS 
The results of applying the SVSF on a target tracking 

problem demonstrate its stability and robustness. It is shown that 
the EKF performs poorly in the presence of bad initial conditions 
and measurement outliers. However, the SVSF is able to 
overcome these difficulties, and provide a stable estimate of the 
states. Furthermore, the EKF appears to be sensitive to model 
mismatch, as demonstrated by the different estimates of the same 
target, which was calculated using two different target motion 
models. The SVSF was not as affected, and yielded relatively the 
same estimate for both models. Its stability to model mismatch 
and robustness to poor initial conditions and outliers make using 
the SVSF advantageous over the well-known Kalman and 
extended Kalman filters. 
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