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ABSTRACT 

 
In this paper, we study a nonlinear bearing-only target tracking problem using four different 
estimation strategies and compare their performances. This study is based on a classical ground 
surveillance problem, where a moving airborne platform with a sensor is used to track a moving 
target. The tracking scenario is set in two dimensions, with the measurement providing angle 
observations. Four nonlinear estimation strategies are used to track the target: the popular 
extended and unscented Kalman filters (EKF/UKF), the particle filter (PF), and the relatively new 
smooth variable structure filter (SVSF). The SVSF is a predictor-corrector method used for state 
and parameter estimation. It is a sliding mode estimator, where gain switching is used to ensure 
that the estimates converge to true state values. An internal model of the system, either linear or 
nonlinear, is used to predict an a priori state estimate. A corrective term is then applied to 
calculate the a posteriori state estimate, and the estimation process is repeated iteratively. The 
performances of these methods applied on a bearing-only target tracking problem are compared 
in terms of estimation accuracy and filter robustness. 
 
Keywords: bearing-only tracking, state estimation, extended Kalman filter, unscented Kalman 
filter, particle filter, smooth variable structure filter 
 

1. INTRODUCTION 
 
In target tracking applications, one may be concerned with surveillance, guidance, obstacle 
avoidance or tracking a target given some measurements [1]. In a typical scenario, sensors 
provide a signal that is processed and output as a measurement. These measurements are related 
to the target state, and are typically noise-corrupted observations [1]. The target state usually 
consists of kinematic information such as position, velocity, and acceleration. The measurements 
are processed in order to form and maintain tracks, which are a sequence of target state estimates 
that vary with time [1]. A tracking filter is used in a recursive manner to carry out the target state 
estimation. 
 

A good target tracking benchmark is the nonlinear bearing-only measurement problem [1, 
2]. These problems are of great interest in sonar applications, where two-dimensional bearing-
only targets are prevalent [3]. Many techniques have been developed to solve these types of 
nonlinear problems. A very popular method is the EKF, which is an extension of the Kalman 
filter (KF) [4]. The KF provides an elegant and statistically optimal solution for linear dynamic 
systems in the presence of Gaussian white noise. The EKF is conceptually similar to the iterative 
KF process, except that the nonlinear system and measurement matrices are linearized according 
to its corresponding Jacobian, which is a first-order partial derivative. In this simulation scenario, 
only the measurement equation requires linearization. Furthermore, a moving observer measures 
noisy bearings to a target on the ground [2]. Based on these measurements, filters are used to 
obtain estimates of the position and velocity of the target. 
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The following section describes the simulation scenario and tracking problem in more 
detail. Section 3 provides a general overview and implementation strategy for the EKF. 
Following that, the UKF is described. The PF is introduced in Section 5, followed by the SVSF is 
in Section 6. The results of the simulation are then provided followed by a brief comparison of 
the two methods. A list of the nomenclature may be found in Appendix A. 
 

2. BEARING-ONLY TRACKING SCENARIO 
 
The benchmark problem that is studied here is shown in Fig. 1. This problem is described in [2, 
4], and will be presented as such. An elevated platform with a sensor travels according to the 
following equations: 
 

kpkpkp xxx   (1) 

kpkpkp yyy   (2) 

 
Where xp and yp are the horizontal and vertical position coordinates, respectively. The 

first term on the right-hand side of the above two equations refers to the average platform position 
coordinates. The last term represents perturbations (i.e. random wind disturbances), and are 
assumed to be zero-mean Gaussian and independent with variances of Rx = 1 m2 and Ry = 1 m2, 
respectively. Note that k represents the discrete time sequence (from 0 to 20 seconds). 
 

 
Figure 1. Platform and Target Trajectory 

 
 The average platform motion is assumed to be horizontal with constant velocity, and may 
be described by the following two equations [2]: 
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The system equation (for the target) is defined according to the following: 
 

kkk w
T

T
x

T
x 



















2

10

1 2

1
 (5) 



 3

The state vector is defined by the position (m) and velocity (m/s) of the target. The 
sampling period used in this simulation was 1 seconds, and is defined by T. The system noise 
described by wk is zero-mean Gaussian with a variance of Q = 10-2 m2/s4. The initial position of 
the target was set to 80 m, and the initial velocity was set to 1 m/s. 
 
The nonlinear measurement (sensor) equation is defined by: 
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The first term on the right-hand side of equation 6 is the measured bearing between the 

horizontal and the line-of-sight from the sensor to the target [2]. The measurement noise vk+1 is 
defined as zero-mean Gaussian with a variance of Rs = (3°)2. 
 

3. EXTENDED KALMAN FILTER 
 
3.1 Introduction 
 
As previously mentioned, the KF provides an elegant and statistically optimal solution for linear 
dynamic systems in the presence of Gaussian white noise. It is a method that utilizes 
measurements linearly related to the states, and error covariance matrices, to generate a gain 
referred to as the Kalman gain. This gain is applied to the a priori state estimate, thus creating an 
a posteriori estimate. The estimation process continues in a predictor-corrector fashion while 
maintaining a statistically minimal state error covariance matrix for linear systems. 
 

The following two equations describe the system dynamic model and the measurement 
model used in general for (linear) state estimation. 
 

kkkk wxFx 1  (7) 

1111   kkkk vxHz  (8) 
 

The next five equations form the KF algorithm, and are used in an iterative fashion, in 
conjunction with Eqs. (7) and (8). Equation 9 extrapolates the a priori state estimate, and Eq. (10) 
is the corresponding state error covariance. The Kalman gain may be calculated by Eq. (11), and 
is used to update the state estimate and error covariance, described by Eqs. (12) and (13), 
respectively. 
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The effects due to mismodeling can be negative, as both the Kalman gain and covariance 
matrix calculations are dependent on the system and measurement matrices. Furthermore, the 
performance and stability of the KF may also be dependent on the definition of the process and 
measurement noise, made through covariance matrices [5, 6]. Overlooked nonlinearities in the 
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system may also cause the KF to become unstable. The EKF may be used for nonlinear systems. 
It is conceptually similar to the iterative KF process. The nonlinear system (F) and measurement 
(H) matrices are linearized according to its corresponding Jacobian, which is a first-order partial 
derivative. This linearization can sometimes cause instabilities when implementing the EKF [5]. 
 
3.2 Implementation of the EKF 
 
The EKF was implemented in what is referred to as mixed coordinates. The measurement was left 
in polar coordinates (bearing only), while the states of the target were in Cartesian coordinates. 
The system matrix in this case is already linear; however the measurement matrix is nonlinear. 
Taking the partial derivative of the nonlinear component in Eq. (6) with respect to the first state 
yields: 
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Furthermore, note that only the knowledge of the average platform positions are used 

such that the linearized form of the nonlinear measurement matrix becomes: 
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Two cases were studied: normal conditions, and poor initial conditions. Under the first 

scenario, the initial position used by the EKF was set to the true value (80 m) and the initial 
velocity was set to 1 m/s. During the second scenario, the initial position estimate was set to 40 m. 
The initial covariance matrix used by the EKF is defined as follows: 
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4. UNSCENTED KALMAN FILTER 

 
4.1 Introduction 
 
The UKF is a popular extension of the KF, and is typically more accurate than the EKF since it is 
able to capture a higher order of the nonlinearities. The UKF approximates the posterior 
distribution of the states by a Gaussian density, using a set of deterministically chosen sample 
points which, after a transformation, captures the true mean and covariance up to the second order 
of nonlinearity [1]. The UKF is sometimes referred to as a type of linear regression Kalman filter 
since it is based on statistical linearization, rather than analytical linearization like the EKF [1]. 
An advantage of the UKF method is the fact that no calculation of the first-order Jacobian is 
necessary, which can be a challenging task. An unscented transform is a method for calculating 
the random variable statistics after it goes through a nonlinear transformation [1]. A number (2n + 
1) of weighted sample points are deterministically chosen in an attempt to accurately approximate 
the true mean and covariance of the state distribution [1]. Given a nonlinear system, and based on 
the assumption that the posterior density of the state is Gaussian, one may first attempt to 
represent this density using the following two equations: 
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The predicted density (represented by N sample points) and measurement may be 

calculated as follows: 
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The update step may be described by: 
 

)ˆ(ˆˆ |111|11|1 kkkkkkkk zzKxx    (21) 
T
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Please refer to Appendix B for further equations supporting the UKF derivation. Note 

that the UKF assumes a Gaussian distribution in its derivation, when in fact many nonlinear 
systems are non-Gaussian. This difference can lead to discrepancies and errors in the estimated 
values. 
 
4.2 Implementation of the UKF 
 
The UKF was implemented using the above equations. 
 

5. PARTICLE FILTER 
 
5.1 Introduction 
 
The particle filter (PF) has many names: Monte Carlo filters, interacting particle approximations 
[7], bootstrap filters [8], condensation algorithm [9], and survival of the fittest [10], to name a few. 
Compared to the KF, it is a newer development, being introduced in 1993. Since then, the PF has 
become a very popular method for solving nonlinear estimation problems, ranging from 
predicting chemical processes to target tracking. The PF takes the Bayesian approach to dynamic 
state estimation, in which one attempts to accurately represent the probability distribution 
function (PDF) of the values of interest [1]. The PDF contains all of the pertinent statistical 
information, and may be considered as holding the solution to the estimation problem [1]. 
Essentially, the distribution holds a probability of values for the state being observed. The 
stronger or tighter the prediction PDF, the more accurate the state estimate. 
 

The PF obtains its name from the use of weighted particles or ‘point masses’ that are 
distributed throughout the PDF to form an approximation. These particles are used in a recursive 
manner to obtain new particles and importance weights, with the goal of creating a more accurate 
approximation of the PDF. In general, as the number of implemented particles becomes very 
large, the PDF becomes more accurate [1]. An important step in the PF is that of resampling, 
which eliminates particles with low weights and multiplies those with high weights [1]. This 
helps to avoid the degeneracy problem with the PF, which refers to only one particle having a 
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significant importance weight after a large number of recursions. Furthermore, it also increases 
the accuracy of the PDF approximation by replicating particles with high weights. The sequential 
importance resampling (SIR) algorithm is a very popular form of the PF, and may be summarized 
by Eqs. (23) to (26). The first equation draws samples or particles from the proposal distribution. 
Equation (24) updates the importance weights up to a normalizing constant. Next, the normalized 
weights are calculated for each particle. Finally, a constant known as the effective number of 
particles is calculated as shown in Eq. (26). Resampling is performed if the effective number is 
lower than some design threshold. 
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5.2 Implementation of the PF 
 
The PF was implemented using N = 5,000 particles with an effective number of particles set to 
0.8. The code was initialized by sampling from the distribution used to initialize the EKF. 
 

6. SMOOTH VARIABLE STRUCTURE FILTER 
 
6.1 Introduction 
 
In 2002, the variable structure filter (VSF) was introduced as a new predictor-corrector method 
used for state and parameter estimation [6, 11]. It is a type of sliding mode estimator, where gain 
switching is used to ensure that the estimates converge to true state values. An internal model of 
the system, either linear or nonlinear, is used to predict an a priori state estimate. A corrective 
term is then applied to calculate the a posteriori state estimate, and the estimation process is 
repeated iteratively. The SVSF was later derived from the VSF, and uses a simpler and less 
complex gain calculation [12]. In its present form, the SVSF is stable and robust to modeling 
uncertainties and noise, given an upper bound [12]. The basic concept of the SVSF is shown in 
Fig. 2. Assume that the solid line in Fig. 2 is a trajectory of some state (amplitude versus time). 
An initial value is selected for the state estimate. The estimated state is pushed towards the true 
value. Once the value enters the existence subspace, the estimated state is forced into switching 
along the system state trajectory [12]. 
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Figure 2. SVSF Estimation Concept [12] 

 
The SVSF method is model based and applies to smooth nonlinear dynamic equations. 

The estimation process may be summarized by Eqs. (27) to (30), and is repeated iteratively. An a 
priori state estimate is calculated using an estimated model of the system. In this case, there is no 
input into the system. This a priori value is then used to calculate an a priori estimate of the 
measurement, defined by Eq. (28). A corrective term, referred to as the SVSF gain, is calculated 
as a function of the error in the predicted output, as well as a gain matrix and the smoothing 
boundary layer width. The corrective term calculated in Eq. (29) is then used in Eq. (30) to find 
the a posteriori state estimate. 
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Two critical variables in this process are the a priori and a posteriori output error 

estimates, defined by Eqs. (31) and (32), respectively [12]. Note that Eq. (31) is the output error 
estimate from the previous time step, and is used only in the gain calculation. 
 
6.2 Implementation of the SVSF 
 
The initial conditions used by the SVSF were the same as those used by the EKF. The nonlinear 
measurement matrix is linearized as per Eq. (15) and correspondingly used in Eq. (29). There are 
two main SVSF design parameters. The first parameter (γ) controls the speed of convergence, 
where as the second (Ψ) refers to the boundary layer width which is used to smooth out the 
switching action. These parameters were tuned by trial-and-error, based on minimizing the 
estimation error. The first parameter was set to the following: 
 

2.0  (33) 
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To increase the quality of the estimate (in terms of convergence speed and estimation 
accuracy), the boundary layer was made to change with time. Essentially, the variable boundary 
layer allows the state estimate to approach the true value as quickly as possible by using a large 
boundary layer width. Once the state estimate is within an acceptable range of the true value, the 
layer width is decreased, and the estimate is smoothed out. A simple two-stage approach was 
used, as shown in Tab. 1, where the values were determined by trial-and-error. For example, if 
the absolute position error (between the estimate and the true value) was greater than 2.0, a value 
of 10 was set for the boundary layer width. Once the absolute position error was less than 2.0, the 
boundary layer was reduced to a smaller value (5x10-3). 
 
Table 1. Values for the SVSF Variable Boundary Layer 

State 1 / Ψ1 1 / Ψ2 Error Range 

Position 0.1 200 > |2.0| 
Velocity 80 50,000 > |0.4| 

 
 Furthermore, since there is no velocity measurement available, the SVSF algorithm 
described in the previous section needs to be slightly modified. The measurement function 
described by Eq. (6) needs to be augmented such that a position estimate is formed based on the 
horizontal and vertical platform positions, and the measurement, as follows: 
 

1
1

1
11 )tan(

ˆ





 

kp
k

kp

k x
z

y
  (34) 

 
Furthermore, an estimate of the velocity based on Eq. (34) may be defined by: 
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The output errors used in Eqs. (31) and (32) are then determined by calculating the 

following, where the second term is found by Eqs. (27) and (35): 
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7. POSTERIOR CRAMÉR-RAO LOWER BOUND 

 
The Cramér-Rao lower bound (CRLB) is defined as the inverse of the Fisher information matrix 
(FIM), which quantifies the available information found in the observations about a state [4]. The 
CRLB provides a lower bound on the achievable variance in the estimation of a parameter. A 
derivation that can be used for discrete-time nonlinear filtering is the posterior form (PCRLB) 
[13-15]. This allows meaningful evaluations of estimation techniques, such that the root mean 
square error (RMSE) for each filter can be determined and compared with the PCRLB. Ideally, 
one would want the RMSE to reach the PCRLB, or be as close as possible. The CRLB of the 
error covariance matrix is defined as the inverse of the FIM [4]: 
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The inverse of the PCRLB may be calculated recursively as follows [13]: 
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8. SIMULATION RESULTS 

 
An example of the position and velocity target estimates (single run) is shown in Fig. 3. Under 
normal conditions, when compared with the EKF and UKF, the position was estimated more 
accurately using the PF and SVSF. Since there was no measurement directly associated with the 
velocity, the performance of the four filters was found to be significantly worse when attempting 
to estimate the velocity. However, the filters remained relatively stable, with the EKF providing a 
slightly worse estimate for the velocity. Under poor initial conditions, as shown in Fig. 4, the 
SVSF converged towards the true position value faster than the other three filters. Notice how the 
EKF overshot the estimate whereas the SVSF did not. The SVSF appears to be more robust, 
mainly due to the inherent switching function shown in Eq. (29) that allows the estimate to stay 
within a close proximity of the true value. Once within an accurate range of the true value 
trajectory, the EKF, UKF, and SVSF yielded relatively the same performance as in the normal 
case. However, the initial estimation errors were too great for the PF to catch up and provide an 
accurate estimate. Note that the EKF and UKF were found to be more sensitive than the SVSF to 
the influence of the poor initial condition, as shown in the estimate of the target velocity. 
 

  
Figure 3. Position and Velocity Target Estimates, Respectively 

(Under Normal Conditions) 

  
Figure 4. Position and Velocity Target Estimates, Respectively 

(Under Poor Initial Conditions) 
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The PCRLB and root mean square (RMS) position and velocity errors for 10,000 Monte 
Carlo runs are shown in Figs. 5 and 6. For the normal conditions case, it was found that the PF 
and SVSF performed significantly better than the EKF and UKF, in terms of estimation error. For 
the RMS position error, the PF and SVSF yielded relatively the same results. However, when 
estimating the velocity, the SVSF initially had difficulty due to the lack of a velocity 
measurement. The velocity estimate had to be extracted from the estimated position, as described 
earlier by Eqs. (34) to (36). This estimation process was sensitive to error due to the relatively 
large sampling time. If a smaller sampling time was used, it is expected that the SVSF would 
yield a more accurate velocity estimate. The SVSF was able to overcome the lack of information 
after a few time steps, and provide a relatively stable estimate.  
 

The main difference between the filters becomes apparent in the case of the poor initial 
conditions. The PF was unable to overcome the large initial estimate error; however the estimates 
were approaching the correct values and most likely would have reached them given enough time. 
The PF yields better results if one were to increase the number of particles from 5,000 to 20,000. 
However, this increases the computational time required for the estimation process. Since the PF 
was already running the slowest, it was not desirable to increase the number of particles. The 
EKF had difficulty with estimating the velocity but was able to yield a relatively stable estimate 
after about 10 to 12 time steps. The overall RMSE was significantly lower for the SVSF, thus 
suggesting that the SVSF is more robust to handling initial errors in the estimation process. As 
already mentioned, this is most likely due to the inherent switching found within the SVSF gain. 
 

  
Figure 5. RMS Position and Velocity Errors, Respectively 

(Under Normal Conditions) 

  
Figure 6. RMS Position and Velocity Errors, Respectively 

(Under Poor Initial Conditions) 
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9. CONCLUSIONS 
 
In this paper, we studied a nonlinear bearing-only target tracking problem using four different 
estimation strategies and compared their performances. This study was based on a classical 
ground surveillance problem, which appears to be deceptively simple. The nonlinear position 
measurement and lack of a velocity measurement create an interesting estimation problem. The 
performances of the popular EKF and UKF, the PF, and relatively new SVSF were compared. For 
the normal conditions case, the simulation shows that both the PF and SVSF performed relatively 
the same, beating out the EKF and UKF in terms of accuracy. In the poor initial conditions case, 
the SVSF yielded the most accurate and stable results suggesting that the SVSF is more robust to 
handling initial errors in the estimation process. In its current form, the SVSF offers two very 
important advantages: robustness to modeling errors and uncertainties, as well as estimation 
stability. The only main disadvantage of the SVSF at this point is the tuning process in 
determining the SVSF parameters. However, future forms of the SVSF will include methods such 
that tuning will not be necessary, which will further make this a powerful and useful filter for 
handling nonlinear estimation target tracking problems. 
 

APPENDIX A: LIST OF NOMENCLATURE 
 
C Cramér-Rao lower bound (CRLB) 

e State estimation error 

f, F Nonlinear, linear system matrix 

h, H Nonlinear, linear output matrix 

J Fisher information matrix (FIM) 

k Time step index 

K Gain value (EKF, UKF, or SVSF) 

Neff Effective number of particles 

P Error covariance matrix 

Q System noise covariance matrix 

R Measurement noise covariance matrix 

Sat Saturation function 

t Simulation time 

T Sampling time 

v Measurement noise 

w System noise 

W Sample weight (UKF) 

x System states 

X Sample point (UKF) 

z Measurement output 

γ Constant diagonal gain matrix with 
elements having values between 0 and 1 

ω Particle weight 

π Probability distribution 

 

 Furthermore, note that subscript k+1|k refers to an a priori time step and the subscript 
k+1|k+1 refers an a posteriori time step. A superscript of T denotes a matrix transpose. 

 
APPENDIX B: UKF SUPPORTING EQUATIONS 

 
In the UKF process, Eqs. (17) to (22) also include the following terms: 
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