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ABSTRACT 
 
In this paper, a robust and stable control strategy is applied to a Festo 
fluidic muscle actuator, with the objective of trajectory following 
control. A complete model of this system is not available which leads 
to unmodeled dynamics and uncertainties. Furthermore, full-state 
feedback is required for this type of control. However, in practice not 
all of the states are measured or available due to cost or availability 
of instruments, thus a full-state observer is required. The Smooth 
Variable Structure Filter (SVSF) is a relatively new predictor-
corrector method used for state and parameter estimation, and has a 
form that is able to provide full-state information. In this regard, a 
new strategy that combines Sliding Mode Control (SMC) with the 
SVSF is used to control this system. The estimated states from the 
SVSF are used by the sliding mode controller to obtain a 
discontinuous control signal. This signal drives the plant to follow a 
desired state trajectory required by the pneumatic McKibben muscle 
actuator. Simulation results were generated based on a realistic 
desired trajectory. The results of the SMC-SVSF control strategy are 
compared with a tuned PID controller. The described control strategy 
is able to overcome the nonlinearities present in the system, has a fast 
response time, and is robust and stable to modeling uncertainties and 
measurement noise. 
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INTRODUCTION 
 
Pneumatic actuators are commonly avoided for advanced 
applications due to problems with control caused by the 
compressibility of air and other nonlinear effects. Pneumatic control 
systems are mainly used in simple industrial applications with limited 
requirements for accurate control of motion and force. However, high 
power-to-weight ratios, compactness, ease of maintenance, and the 
safety of pneumatic actuators, offer desirable features for many 
industrial designs. The pneumatic McKibben muscle actuator is a 
new type of actuator that offers a high power-to-weight performance 
and is able to operate in a wide range of environments. The 
compressibility of air, the nonlinear air flow characteristics through 
the valves, and the nonlinear characteristics of the McKibben muscle 
actuator result in a complex and difficult system to model and 
control. 
 

A brief review of literature demonstrates that a large number of 
control strategies have been proposed to handle the effects of the 
nonlinearities present in the muscle actuator. These include the 
following: PID implementation [1], adaptive control strategies [2–5], 
nonlinear optimal predictive control [6], variable structure systems 
[7, 8], gain scheduling [9], neural networks [10], and neuro-
fuzzy/genetic control methods [11–15]. Furthermore, other studies 
have shown sliding mode controllers applied to pneumatic muscle 
actuators [16–21]. Sliding mode control (SMC) is a form of variable 
structure control (VSC) [22]. It is commonly implemented for the 
control of nonlinear systems, and can provide accurate tracking with 
a bounded error in the presence of parameter variations and model 
uncertainties [22, 23]. Since the system structure is highly nonlinear 
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and not completely known, the SMC strategy was chosen for the 
control of the system. 

In recent years, a considerable amount of research has been 
performed to develop inexpensive servo-pneumatic systems using 
PWM-driven on/off solenoid valves. In a PWM-controlled system, 
the power is delivered to the actuator in discrete packets of fluid 
mass, as the valve is either completely on or off. However, if the 
switching frequency of the valve is significantly higher than the 
system dynamics, the system will act as a low-pass filter responding 
similarly as for continuous mass flow. The development of an 
analytical dynamic model of the system is difficult, and often 
prevents the direct use of analytical control designs. 
 

Although previous work has shown the potential of PWM-
controlled pneumatics, they have suffered due to the lack of an 
analytical approach for analyzing the system [24–27]. However, 
some effort has been made in the area of analytical modeling of such 
systems [28–30]. In one article, the nonlinearities of the system were 
handled by proposing a switching controller based on the reduced 
order nonlinear model of the system [31]. Another notable paper 
introduced an experimentally developed discrete-time model of a 
PWM-controlled pneumatic servo system, for which a controller was 
developed based on discrete-time control methods [32]. Another 
strategy used a linear state-space averaged model and a linear robust 
controller based on a loop shaping approach was introduced [33]. 
This approach was later followed by a nonlinear averaged model and 
a sliding mode controller design [34, 35]. A linearization approach 
was later used in an attempt to remove the need for complicated 
nonlinear controllers [36]. 
 

The overall system is highly nonlinear and not completely 
known leading to unmodeled uncertainties. Furthermore, full-state 
feedback is required for the control strategy to be implemented. 
However, in practice not all of the states are measured or available 
due to cost or availability of instruments. Hence, a full-state observer 
based on the Smooth Variable Structure Filter (SVSF) has been used 
[37]. The SVSF is a relatively new predictor-corrector method used 
for state and parameter estimation, and has a form that is able to 
provide full-state information. In this regard, a new strategy that 
combines SMC with the SVSF is used to control this system. The 
estimated states from the SVSF are used by the sliding mode 
controller to obtain a discontinuous control signal for the valve. This 
control strategy is able to overcome the nonlinearities present in the 
system, has a fast response time, and is robust and stable to modeling 
uncertainties and noise. 
 
SYSTEM MODELING 
 
System Setup and Structure 
 
The system hardware is illustrated schematically in Fig. 1. The Festo 
fluidic muscle (MAS10-300 mm) is hanging vertically, actuating 
(lifting) the attached payload. The supply pressure (0.65 MPa abs.) 
for the system is provided by the proportional pressure regulator 
(Festo VPPM-6L-L1-G18-0L6H-V1N). A 3/2 high switching on/off 
solenoid valve (Festo MHE2-1/8-MS1H-3/2G-M7) is controlled to 
actuate the muscle actuator and the payload. The controller is 
implemented in a DSpace and Matlab Simulink environment and 
provides the pulsed valve control signal. An electronic amplifier is 
used to provide sufficient power to actuate the valve. Flow control 

valves were added between the on/off solenoid valve and the muscle 
actuator to filter out the pressure vibrations caused by the pulsing of 
the solenoid valve. A pressure sensor (Festo SDE1-D6-G2-H18-C-
PU-M8) provides a feedback signal for the controller. The 
displacement of the actuator and payload is measured by an electrical 
potentiometer. 
 

 
Fig. 1. System hardware 

 
McKibben Muscle Actuator 
 
The McKibben muscle is an actuator that consists of a rubber tube 
with a non-extensible fiber surrounding [38]. This physical 
configuration causes the muscle to have variable-stiffness spring-like 
characteristics, nonlinear passive elasticity, physical flexibility, and 
very light weight compared to other types of artificial actuators [39]. 
The Festo fluidic muscle differs slightly from the general McKibben 
type muscle. The fiber of the fluidic muscle is knit in the tube, 
offering easy assembly and improved hysteretic behavior and 
nonlinearity compared to conventional designs [40]. 
 

During pressurization of the muscle with compressed air, the 
muscle widens in diameter and shortens in longitudinal direction. The 
maximum force is gained at the beginning of the contraction and 
decreases with increasing contraction [38]. The actuator is 
unidirectional and its maximum contraction without load is typically 
20% to 25%. The nominal force-to-contraction at different pressure 
levels is highly nonlinear, and adds to the difficulty of effectively 
modeling the muscle actuator. As with all actuation systems, effective 
design with pneumatic muscle actuators relies on being able to 
accurately model and predict the forces that will be generated under 
any operating conditions. In general, the properties of the muscle 
actuator depend on the geometric parameters shown in Fig. 2.  
 

 
Fig. 2. Geometric model of McKibben actuator [39] 

 
From the geometry of the muscle, the overall length of the 

actuator and the diameter are given by the following two equations: 
 

cosbL   (1) 
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Where b is the length of one braid strand, considered to be 
inextensible, and n is the number of times a strand encircles the 
muscle’s circumference from end-cap to end-cap. Assuming an ideal 
cylindrical shape, the enclosed volume is defined as follows: 
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From the principle of virtual work and conservation of energy, 

the following is the work required to deform the muscle membrane 
(assuming quasi-static conditions): 
 

dL

dV
pF   (4) 

 
Substitution of equation (3) into (4) leads to the force generation 

equation, first proposed in [41]: 
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Where F is the contractile muscle force, D0 is the diameter of 

the actuator at the braid angle of 90° (theoretical maximum), and p is 
the muscle pressure. The same force equation was given in a more 
useful form as follows [42, 17]: 
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Where r0 and θ0 are respectively the minimum radius and braid 

angle, l0 is the maximum length, and ε is contraction ratio. Equations 
(5) and (6) give a basis for predicting the generated muscle force. 
However, they fail to completely model the behaviour of braided 
muscle actuators due to the assumption of lossless operation. 
Subsequently, various hypotheses have been developed to account for 
the effects of tubing elasticity, internal frictions, braid thickness, 
stretching of the fibres, end cap diameter (not cylindrical) and 
material modeling in order to provide more accurate models [38, 39, 
42–45]. Despite the improvements, errors between the predicted and 
measured force still exists. Especially in the case of Festo fluidic 
muscles, the models have been too inaccurate leading to a use of 
various corrective factors and exponential curve fitting methods [17, 
46]. In this paper, an alternative force model is introduced. At the 
maximum possible constant pressure (0.6 MPa in this case); the 
maximum force depends nonlinearly on the muscle contraction. A 
third-order polynomial fit can be introduced to describe this 
relationship, as follows: 
 

3
3

2
210max )( xaxaxaaxF   (7) 

 
When the muscle displacement is held constant, the actuator 

force depends almost linearly on the pressure. Thus, a factor to 
describe the force per unit pressure as a function of the muscle 
displacement is introduced: 
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Where pmax is the maximum available muscle pressure and pm is 
the measured muscle pressure. Coefficients k0 [N], k1 [N/m] k2 [Pa] 
are found by using least squares methods. 
 

 
Fig. 3. Static muscle force modeling 

 
Figure 3 shows the predicted force plotted against the force data 

provided by the manufacturer, at different pressure levels (0.1 to 0.6 
MPa). For estimating the maximum force (Fmax) in equation (7), a 
fourth-order polynomial curve fit was used. The model is able to 
predict the force reasonably well for almost every pressure. Some 
deterioration exists between the model and actual data only at lower 
pressure levels (less than 0.2 MPa). Also, it should be noted that our 
model does not take into account the hysteresis effect caused by 
inherent friction. In Festo fluidic muscles, the hysteresis is reported 
to be approximately 5% [40]. This adds to the uncertainties in the 
overall system model. Various approaches have been attempted to 
describe the dynamic characteristics of the muscle actuator. A 
common way is to treat the pneumatic muscle as a spring-mass-
damper system. This method requires experimentation in order to 
obtain the stiffness and damping coefficients. The muscle damping 
coefficient is difficult to determine exactly, such that a constant 
approximation of it is included in the friction model. 
 
Pressure Dynamics 
 
Knowledge of the actual pressure inside the muscle is essential for 
understanding the dynamic behavior. The pressure depends on the 
quotient amount of air and volume of the muscle. The diameter and 
length of the muscle were measured, and the volume of the muscle 
was calculated assuming a cylindrical shape of the actuator. The 
volume shows a nearly linear behavior, dependent on displacement: 
 

,)( 10 xvvxVm   (9) 
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Fig. 4. Muscle volume in correlation with displacement 

For calculating the pressure inside the muscle, it is assumed that 
the air is ideal gas and the change of air is isothermal, such that the 
pressure change can be expressed as follows: 
 

 mmg
m

m VpmRT
V

p  
1  (10) 

 
Where ρ, R, T, Vm and mg denote the specific heat ratio density, 

gas constant, temperature, volume of the muscle, and gas mass, 
respectively. The expression inside the bracket of equation (10) 
considers the power balance of the pressurized flow rate. The first 
term inside the bracket gives the pressure change due to the mass 
flow in or out of the muscle chamber. The second term considers the 
pressure change due to the change of the muscle chamber volume. 
The reciprocal volume before the bracket takes into account the 
compressibility of the gas. 
 
High Speed Valve Modeling 
 
The mass flow rate model of the 3/2 high speed on/off valve is an 
essential part of the system model. Based on isentropic flow 
assumptions, the mass flow rate dmg/dt through a valve orifice with 
an effective area Av has to be treated as compressible and turbulent. If 
the upstream to downstream pressure ratio is larger than a critical 
pressure ratio pcr the flow will attain sonic velocity (choked flow) 
and will depend linearly on the upstream pressure. If the pressure 
ratio is smaller than critical value the mass flow depends nonlinearly 
on both pressures. The standard equation for the mass flow rate may 
be expressed as follows [47]: 
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Where Cf is a non-dimensional discharge coefficient, pu is the 

upstream pressure, and pd is the downstream pressure. The meaning 
of the upstream and downstream pressure is different for the charging 
and discharging process of the muscle chamber. For charging, the 
valve is actuated and the supply pressure is considered the upstream 
pressure, and the muscle pressure is the downstream pressure. For 
discharging, the valve is closed and the muscle pressure is upstream 
pressure and the ambient pressure is the downstream pressure.  
 

The 3/2-on/off solenoid valve is controlled with the duty cycle 
of the PWM-modulated signal. The time period of the PWM-signal is 
determined as TPWM and is the inverse of the switching frequency 
TPWM=1/fPWM. The switching time for opening and closing the valve 
is approximately 2 ms, which reduces the maximum available duty 
cycle range. The switching frequency and the duty cycle determine 
how long the valve is open and closed during time period TPWM. 
Valve delays and the discontinuous high frequency switching 
increase the complexity of the valve model, and are difficult to 
handle in the view point of controller design. Thus, an alternative 
valve model is needed for controller design. In a PWM-controlled 
system, the power is delivered to the actuator in discrete packets of 
fluid mass, as the valve is either completely open (on) or closed (off). 
If the switching frequency of the valve is significantly higher than the 
system dynamics, the system responds similarly as in the case of 
continuous mass flow. As the control signal for the valve is actually 
the duty cycle, it is necessary to determine the average mass flow 
rate as a function of muscle pressure and duty cycle control signal. 
 

In this case, a similar procedure is followed as was introduced in 
[48], where the mass flow rate model was determined for a 
proportional servo valve. The equivalent mass flow rate has nonlinear 
characteristics and is a function of pressure pm inside the muscle, and 
the control signal u (duty cycle). Thus, one obtains the representation 
for the pressure change as follows: 
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In equation (12), the second term can be computed once the 

muscle volume is Vm is known, and the muscle pressure is given. In 
the first term, the nonlinear valve function is difficult to measure. 
Alternatively, the nonlinear valve characteristic can be approximated 
experimentally by inflating and deflating a constant volume which 
causes the second term in equation (12) to disappear. A set of input 
signals with different duty cycles were applied to the valve and the 
pressure response in the constant chamber was measured. It is 
obvious that due to high frequency switching, the pressure signal 
contains a significant amount of vibrations. Thus, the pressure 
response requires filtering in order to obtain an averaged response. 
The average pressure signal may then be differentiated in order to 
obtain the pressure change at different times. By distributing the 
computed slopes of the pressure curve at the corresponding parameter 
pairs (u and pm), a parametric representation of the surface of the 
pressure change can be obtained. Using this surface, the mass flow 
rate can be estimated using equation (13). Figure 5 shows the 
estimated mass flow rate plotted as a function of input signal (duty 
cycle) and the muscle pressure. 
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Fig. 5. Estimated mass flow rate for on/off valve 

 
In order to estimate the mass flow rate, a 2nd order bi-

polynomial function was used, as follows: 
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(13) 

 
Where m1-9 are the coefficients found using the least squares 

method. The output obtained from this function is plotted in Fig. 6. It 
can be observed that the model approximates the averaged mass flow 
rate behavior of the valve quite well.  

 

 
Fig. 6. Fitted model for mass flow rate 

 
Overall Model 
 
The motion equation of the muscle driving a constant payload 
attached in a vertical direction is defined (using Newton’s Second 
Law) as follows: 
 

MgFFxM fm   (14) 

 
Where Fm is the static muscle force, Ff is the friction force, M is 

the total mass of the system and payload, and g is the gravitational 
constant. The frictional force Ff of the system is supposed to be a 
viscous friction (damping) of the muscle actuator, defined by:  
 

dt

dx
BFf 

 (15) 

 
Where B is an experimentally approximated damping factor of 

the muscle actuator. Furthermore, suppose that the state vector for the 
system is defined as follows: 
 

T
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From the nonlinear models described in the previous sections 

(particularly equations (12) and (14)), we have the following 
discrete-time equations which are used in the control and estimation 
processes: 
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Furthermore, note that the measurement equation is defined as 
follows (only pressure and position measurements are available): 
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SLIDING MODE CONTROLLER AND FILTER 
 
SMC Design 
 
SMC is a form of variable structure control, which utilizes a 
discontinuous switching plane along some desired trajectory [22, 23]. 
This plane is often referred to as a sliding surface, in which the 
objective is to keep the state values along this surface by minimizing 
the state errors (between the desired trajectory and the estimated or 
actual values). Ideally, if the state value is off or away from the 
surface, a switching gain would be used to push the state towards the 
sliding surface. Once upon the surface, the motion of the system as 
the states slide along the surface is called a sliding mode [23]. The 
switching brings inherent stability to the control strategy, while also 
introducing excessive chattering (high-frequency switching) which is 
undesirable in practice and can excite unmodeled dynamics. A 
boundary layer may be introduced along the sliding surface in order 
to saturate and smooth out the chattering within the boundary region. 
 

The SMC design is based on the nonlinear system model. Since 
the SMC design allows for model uncertainty, the stick-slip and 
Coulomb friction components are neglected in the model such that 
the friction is described only with viscous friction, as per equation 
(15). Substituting the muscle static force equations (7) and (8), and 
friction equation (15) into equation (14), and taking the derivative 
yields: 
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Where the above terms are defined by: 
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Applying the equivalent control design method from [23] yields 

the following sliding surface definition: 
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The purpose of the equivalent control signal is to keep the 

system state on the sliding surface after it has reached it. The state 
will stay on the surface when dS/dt=0, which gives the equivalent 
control value U: 
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The desired equivalent mass flow rate through the valve can be 

solved using equation (26), as follows: 
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The remaining step is to convert the desired mass flow rate into 

the correct input signal (duty cycle value). Recall the second order 
bi-polynomial fitting equation (13), with the given values for the 
mass flow rates and the pressure measurement. The bi-polynomial 
equation reduces to the following quadratic equation in u: 
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Where the parameters are defined by: 
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The correct value for desired input signal was determined to be 

the most positive root, as follows [48]: 
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Due to the numerical errors in the solution, the equivalent input 

control signal is bounded between 0 and 1 (as per the duct cycle 
signal which controls the valve). The SMC provides an input for the 
system of the following form: 
 

sweq uuu   (31) 

 

The switching component of the input is defined as follows 
(where kSMC is the switching gain, and φ is the boundary layer width): 
 

)/( ssatku SMCsw   (32) 

 
Smooth Variable Structure Filter 
 
In 2002, the variable structure filter (VSF) was introduced as a new 
predictor-corrector method used for state and parameter estimation 
[49, 50]. It is a type of sliding mode estimator, where gain switching 
is used to ensure that the estimates converge to true state values. An 
internal model of the system, either linear or nonlinear, is used to 
predict an a priori state estimate. A corrective term is then applied to 
calculate the a posteriori state estimate, and the estimation process is 
repeated iteratively. The SVSF was later derived from the VSF, and 
uses a simpler and less complex gain calculation [37]. In its present 
form, the SVSF is stable and robust to modeling uncertainties and 
noise, given an upper bound [37]. The basic concept of the SVSF is 
shown in Fig. 7. Assume that the solid line in Fig. 7 is a trajectory of 
some state (amplitude versus time). An initial value is selected for the 
state estimate. The estimated state is pushed towards the true value. 
Once the value enters the existence subspace, the estimated state is 
forced into switching along the system state trajectory [37]. 

 
Fig. 7. SVSF Estimation Concept [37] 

 
The SVSF method is model based and applies to smooth 

nonlinear dynamic equations. The estimation process may be 
summarized by equations (33) to (36), and is repeated iteratively. An 
a priori state estimate is calculated using an estimated model of the 
system. This value is then used to calculate an a priori estimate of the 
measurement, defined by equation (34). A corrective term, referred to 
as the SVSF gain, is calculated as a function of the error in the 
predicted output, as well as a gain matrix and the smoothing 
boundary layer width. The corrective term calculated in equation (35) 
is then used in equation (36) to find the a posteriori state estimate. 
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Two critical variables in this process are the a priori and a 
posteriori output error estimates, defined by equations (37) and (38), 
respectively [37]. Note that equation (37) is the output error estimate 
from the previous time step, and is used only in the gain calculation. 
 
Sliding Mode Controller and Filter Strategy 
 
The estimated states from the SVSF are used by the sliding mode 
controller to obtain a discontinuous control signal. This signal drives 
the plant to follow a desired state trajectory required by the 
pneumatic McKibben muscle actuator. This control strategy may be 
summarized as follows (assuming some initial values): 
 
1. The uncertain system model is used to determine the a priori 

state and measurement estimates (equations (33) and (34)). 
2. Estimated and measured state values are used to calculate the 

error (equations (37) and (38), depending on the time step). 
3. The SVSF corrective gain is calculated as a function of the 

errors (equation (35)). 
4. The a posteriori estimates are formed based on the corrective 

gain (equation (36)). 
5. The updated estimates and desired state values are fed into the 

SMC, where the sliding surface (equation (25)) and equivalent 
control (equation (30)) are calculated. 

6. As per the SMC strategy, an input is calculated based on the 
equivalent input and the switching component (equation 32). 

7. Based on this control input, the system (plant) model is 
controlled and new measurements are taken. These 
measurements are then used at the start of the process (step 2), 
after the new a priori state estimates have been calculated. 

 
The above process is iteratively repeated until the end of the 

desired trajectory tracking process. 
 
SIMULATION RESULTS AND DISCUSSION 
 
This section describes the results of simulating the SMC-SVSF 
strategy on the aforementioned system models for following a 
desired state trajectory. The following equation describes the desired 
position for the muscle actuator: 
 

)2sin( ftAxd   (39) 
 

Where A refers to some desired amplitude (0.02 m in this case), 
f is the frequency of vibration (0.2 Hz), and t is the simulation time 
(up to 10 seconds). The payload mass (M) used in the simulation was 
10 kg. The desired velocity and accelerations are simply the 
corresponding derivatives of equation (39). Gaussian measurement 
noise added to the simulation was 10 kPa for the pressure sensor, and 
0.1 mm for the measurement sensor. The SMC gain was set to a 
constant 20, the boundary layer was defined as 125, and the break-
frequency (λ) used was 75. For the SVSF, the constant diagonal gain 
value (γ, used in the SVSF gain calculation) was set to 0.2, and the 
boundary layers for the states were defined as 1300, 250, 200, and 
200, respectively (as per equation (16)). These values were obtained 
by trial-and-error. 
 

The estimated pressure was calculated quite well. In fact, as 
shown in Fig. 8, it is nearly impossible to differentiate between the 
measured and estimated pressures. 

 

 
Fig. 8. Measured and estimated pressures 

 
The desired, measured, and estimated positions are shown in 

Fig. 9. After less than half a second, the measured position was very 
close to the desired trajectory. The initial measured and estimated 
position were clearly set to 0 m, which caused the delay in reaching 
the desired trajectory, which immediately demanded 0.0225 m at the 
start of the simulation (this is akin to a step input). Note that there is 
no overshoot present when the trajectory is reached, and there 
appears to be no steady state errors. 

 
Fig. 9. Desired, measured, and estimated positions 

  
Figure 10 shows the error between the desired and estimated 

position (note the scale). The position error ranges between 0.1 mm 
and about -0.3 mm. Clearly this is well within acceptable ranges, and 
demonstrates the effectiveness of this control strategy. 
 

 
Fig. 10. Position error (between desired and estimated) 
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Furthermore, the demanded and estimated velocities are shown 
to be fairly close. Larger errors existed (and were expected) due to 
the fact that no measurements were available for the velocity. The 
velocity estimate had to be extracted based on a relationship with the 
pressure and position measurements found within the system model. 
That being said, however, the results are still quite reasonable. 
 

 
Fig. 11. Desired and estimated velocities 

 
 
 
 

The results of the SMC-SVSF control strategy were also 
compared with a tuned PID controller. The PID was tuned to 50, 80, 
and 0.1 for the proportional, integral, and derivative gains, 
respectively. Figure 12 shows the comparison of the position results 
between the two methods. 
 

 
Fig. 12. Comparison of SMC-SVSF and PID positions 

 
The root mean squared errors (RMSE) were calculated for both 

strategies. The RMSE for the PID was 0.0018 m (or 1.8 mm), and the 
RMSE for the SMC-SVSF was calculated to be 0.00014 m (or 0.14 
mm). Clearly the SMC-SVSF strategy outperforms when compared 
with the PID method.  
 
CONCLUSIONS 
 
In this paper, a robust and stable control strategy was applied to a 
model of a Festo fluidic muscle actuator. The main objective of this 
application was trajectory following control. A complete model of 
this system was not available, and not all of the states had 
corresponding measurements. As such the SVSF was used to provide 
full-state information for those states without measurements. A new 

strategy that combines SMC with SVSF was used to control this 
system. The inherent robustness of the SMC-SVSF method is one of 
its main advantages over other controllers. The described control 
strategy was found to overcome the nonlinearities present in the 
system, has a fast response time, and is robust and stable to modeling 
uncertainties and measurement noise. 
 
NOMENCLATURE 
 
Av [m2] effective orifice area of the valve 
B [Ns/m] viscous friction coefficient 
Cf [-] discharge coefficient of the valve 
D, D0 [m] muscle actuator diameter 
F [N] force  
Fmax [N] maximum muscle force muscle 
Fmuscle [N] force generated by the muscle 
K [-] SVSF gain 
L [m] muscle actuator length 
M [kg] weight of the payload 
pm [Pa] pressure inside the muscle 
p0  [Pa] atmosphere pressure 
ps  [Pa] supply pressure 
R [J/(kgK)] gas constant 
S [-] sliding surface 
T [K] air temperature 
TPWM [s] time period of PWM-signal 
TS [s] sampling time (0.001 sec) 
V [m3] volume  
Vm [m3] volume of the muscle 
a0-3 [m] muscle force coefficients 
bs [m] length of one braid strand 
fPWM [Hz] switching frequency of the PWM-signal 
g [m/s2] gravity constant 
kSMC [-] SMC gain 
k [-] specific air heat ratio 
k0 [N] coefficient for muscle force eq. 
k1 [N/m] coefficient for muscle force eq. 
k2 [Pa] coefficient for muscle force eq. 
l [m] muscle length 
l0 [m] muscle initial length 

eqm  [kg/s] equivalent mass flow rate 

gm  [kg/s] mass flow rate 

m1-9 [-] coefficients for eq. mass flow rate 
ns [-] number of strand encircles 
p [Pa] pressure  
pcr [Pa] critical pressure ratio 
pd [Pa] valve downstream pressure 
pm [Pa] pressure inside the muscle 
pmax [Pa] maximum muscle pressure  
p0  [Pa] atmosphere pressure 
pu  [Pa] valve downstream pressure 
u [-] control signal (duty cycle ratio) 
ueq [-] equivalent control signal  
x  [m] displacement of the muscle 
θ, θ0 [º] muscle braid angle, initial braid angle 
φ [-] SMC boundary layer thickness 
γ [-] constant diagonal gain (between 0 and 1) 
Ψ [-] SVSF boundary layer thickness 
ε [-] muscle contraction ratio 
λ [-] break-frequency of SMC filter 
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ρ [kg/m3] gas density 
v0, v1, [m3, m2] muscle volume coefficient 
^ [-] denotes and estimated value 
~ [-] denotes an error value 
· [-] denotes a time derivative 
 
REFERENCES 
 
[1] Caldwell, D.G., Medrano-Cerda, G.A, and Goodwin, M.J., Braided 

pneumatic actuator control of a multi-jointed manipulator, Proceedings 
of the IEEE International Conference on Systems, Man and Cybernetics, 
pp. 423–428, Le Touquet, 1993. 

[2] Caldwell, D.G., Medrano-Cerda, G.A, and Goodwin, M.J., 
Characteristics and adaptive control of pneumatic muscle actuators for a 
robotic elbow, Proceedings of the 1994 IEEE International Conference 
on Robotics and Automation, Vol. 4, May 1994, pp. 3558–3563. 

[3] Caldwell D.G., Medrano-Cerda, G.A., and Goodwin, M.J., Control of 
Pneumatic Muscle Actuators, IEEE Control Systems Magazine, Vol. 15, 
No. 1, pp. 40–48, 1995. 

[4] Medrano-Cerda, G.A., Bowler, C.J., and Caldwell, D.G., Adaptive 
position control of antagonistic pneumatic muscle actuators, IEEE/RSJ 
International Conference on Intelligent Robots and Systems, Vol. 1, pp. 
378–383, Pittsburgh, PA, USA, 1995. 

[5] Lilly, J., Adaptive tracking for pneumatic muscle actuators in bicep and 
tricep configurations, IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 11, 
No. 3, pp. 333–339, Sep. 2003. 

[6] Nagaoka, T., Konishi, Y., and Ishigaki, H., Nonlinear optimal predictive 
control of rubber artificial muscle, Proc. SPIE- Int. Soc. Opt. Eng., Vol. 
2595, pp. 54–61, Oct. 1995. 

[7] Hamerlain, M., Anthropomorphic robot arm driven by artificial muscles 
using a variable structure control, Proc. IEEE Int. Conf. Intelligent 
Robots Systems, Pittsburgh, PA, Aug. 1995, pp. 550–555. 

[8] Repperger, D.W., Johnson, K.R., and Phillips, C.A., A VSC position 
tracking system involving a large scale pneumatic muscle actuator, Proc. 
of the IEEE Conf. on Decision & Control, Vol. 4, pp. 4302–4307, 1998. 

[9] Repperger, D.W., Phillips, C. A., and Krier, M., Controller design 
involving gain scheduling for a large scale pneumatic muscle actuator, 
Proc. IEEE Conf. Control Applications, Kohala Coast, HI, Aug. 1999, 
pp. 285–290. 

[10] Hesselroth, T., Sarkar, K., Van der Smagt, P., and Schulten, K., Neural 
network control of a pneumatic robot arm, IEEE Trans. Syst., Man, 
Cybern. B, Cybern., Vol. 24, No. 1, pp. 28–38, 1994. 

[11] Carbonell, P., Jiang, Z. P., and Repperger, D. W., A fuzzy backstepping 
controller for a pneumatic muscle actuator system, Proc. IEEE Int. 
Symp. Intelligent Control, Mexico City, Sep. 2001, pp. 353–358. 

[12] Chan, S. W., Lilly, J., Repperger, D. W., and Berlin, J. E., Fuzzy PD+I 
learning control for a pneumatic muscle, Proc. 2003 IEEE Int. Conf. 
Fuzzy Systems, St. Louis, MO, May 2003, pp. 278–283. 

[13] Chang, X., and Lilly, J. H., Tracking control of a pneumatic muscle by 
an evolutionary fuzzy controller, Intell. Automat. Soft Comput., Vol. 9, 
No. 3, pp. 227–244, Sep. 2003. 

[14] Balasubramanian, K., and Rattan, K.S., Fuzzy logic control of a 
pneumatic muscle system using linearizing control scheme, International 
Conference of North American Fuzzy Information Processing Society, 
pp. 432-436, 2003. 

[15] Balasubramanian, K., and Rattan, K.S., Feedforward control of a non-
linear pneumatic muscle system using fuzzy logic, IEEE International 
Conference of Fuzzy Systems, Vol.1, pp.272-277, 2003. 

[16] Cai, D., and Yamaura, H., A VSS control method for a manipulator 
driven by an artificial muscle actuator, Electron. Commun., Part 3, 
Vol.80, No. 3, pp.55–63, Japan, 1997. 

[17] Tondu, B., and Lopez, P., Modeling and Control of McKibben Artificial 
Muscle, IEEE Control Systems Magazine, pp. 15–38, April 2000. 

[18] Carbonell, P., Jiang, Z., and Repperger, D., Nonlinear control of a 
pneumatic muscle actuator: backstepping vs. sliding-mode, Proceedings 
of the 2001 IEEE International Conference on Control Applications, 
Mexico City, Mexico, pp. 167–172, Sept. 2001. 

[19] Lilly, J.H., and Yang L., Sliding mode tracking for pneumatic muscle 
actuators in opposing pair configuration, IEEE Transactions on Control 
Systems Technology, Vol. 13, pp. 550–558, July 2005. 

[20] Mihajlov, M., Hubner, M., Ivlev, O., and Gräser, A., Modeling and 
Control of Fluidic Robotic Joints with Natural Compliance, Proceedings 
of the 2006 IEEE International Conference on Control Applications, 
Munich, Germany, October 4–6, 2006, pp. 2498–2503. 

[21] Arenas, J., Pujana-Arrese, A., Riano, S., Martinez-Esnaola, A., and 
Landaluze, J., Sliding mode position control of a 1-dof set-up based on 
pneumatic muscles. 

[22] Utkin, V. I., Sliding Modes and Their Application in Variable Structure 
Systems, Moscow, Russia: MIR Publishers, 1978. 

[23] Slotine, J.J., and Li, W., Applied Nonlinear Control. Englewood Cliffs, 
NJ: Prentice-Hall, 1991. 

[24] Morita, Y.S., Shimizu, M., and Kagawa, T., An Analysis of Pneumatic 
PWM and its Application to a Manipulator, Proc. of International 
Symposium of FluidControl and Measurement, Tokyo, pp. 3–8, 1985. 

[25] Noritsugu, T., 1986, Development of PWM Mode Electro-Pneumatic 
Servomechanism, Part I: Speed Control of a Pneumatic Cylinder, J. Fluid 
Control, 17–1, pp. 65–80. 

[26] Noritsugu, T., 1986, Development of PWM Mode Electro-Pneumatic 
Servomechanism, Part II: Position Control of a Pneumatic Cylinder, J. 
Fluid Control, 17–2–, pp. 7–31. 

[27] Lai, J.-Y., Singh, R., and Menq, C.-H, Development of PWM Mode 
Position Control for a Pneumatic Servo System, Journal of the Chinese 
Society of Mechanical Engineers, Vol. 13, No. 1, pp. 86–95, 1992. 

[28] Kunt, C., and Singh, R., 1990, A Linear Time Varying Model for On-Off 
Valve Controlled Pneumatic Actuators, ASME J. Dyn. Syst., Meas., 
Control, 112–4, pp. 740–747. 

[29] Ye, N., Scavarda, S., Betemps, M., and Jutard, A., 1992, Models of a 
PneumaticPWM Solenoid Valve for Engineering Applications, ASME J. 
Dyn.Syst., Meas., Control, 114–4, pp. 680–688. 

[30] Messina, A., Giannoccaro, N.I., and Gentile, A., Experimenting and 
modeling the dynamics of pneumatic actuators controlled by pulse width 
modulated technique, Mechatronics, No. 15, pp. 859–881, 2005. 

[31] Paul, A. K., Mishra, J. K., and Radke, M. G., 1994, Reduced Order 
Sliding Mode Control for Pneumatic Actuator, IEEE Trans. Control 
Syst. Technol., 2–30, pp. 271–276. 

[32] Van Varseveld, R. B., and Bone, G. M., 1997, Accurate Position Control 
of a Pneumatic Actuator Using On/Off Solenoid Valves, IEEE/ASME 
Trans. Mechatron., 2–30, pp. 195–204. 

[33] Barth, E. J., Zhang, J., and Goldfarb, M., 2003, Control Design for 
Relative Stability in a PWM-Controlled Pneumatic System, ASME J. 
Dyn. Syst., Meas., Control, 125–3, pp. 504–508. 

[34] Shen, X., Zhang, J., Barth, E., and Goldfarb, M., Nonlinear averaging 
applied to the control of pulse width modulated (PWM) pneumatic 
systems, Proceedings of the American control Conference, pp. 4444–
4448, Boston, 2004. 

[35] Shen, X., Zhang, J., Barth, E., and Goldfarb, M., Nonlinear Model-Based 
Control of Pulse Width Modulated Pneumatic Servo Systems, Journal of 
Dynamic Systems, Measurement and Control, September 2006, Vol. 
128, pp. 663–669. 

[36] Taghizadeh, M., Ghaffari, A., and Najafi, F., A Linearization Approach in 
Control of PWM-Driven Servo-Pneumatic Systems, 40th Southeastern 
Symposium on Systems Theory (SSST), March 2008, pp. 395–399. 

[37] Habibi, S., The Smooth Variable Structure Filter, Proceedings of the 
IEEE, Vol. 95, No. 5, pp. 1026–1059. 

[38] Schulte, R.A., The characteristics of the McKibben artificial muscle, In 
the Applications of External Power in Prosthetics and Orthotics. Publ. 
874, Nas-RC, pp. 94–115, 1962. 

[39] Chou, P., and Hannaford, B., Measurement and Modeling of a McKibben 
Pneumatic Artificial Muscles, IEEE Transactions on Robotics and 
Automation, Vol. 12, No. 1, Feb 1996. 

[40] Festo, Fluidic Muscle MAS, Festo Brochure, 2002. 
[41] Gaylord, R. H., Fluid Actuated Motor System and Stroking Device, US 

Patent No. 2,844,126. July 22, 1958. 
[42] Inoue, K., Rubbertuators and applications for robotics, In 4th 

International Symposium on Robotics Research, pp. 57–63, 1987. 



 10 Copyright © 2009 by ASME 

[43] Klute, G. K., and Hannaford, B., Accounting for elastic energy storage in 
McKibben artificial muscle actuators, ASME Journal of Dynamic 
Systems, Measurement and Control, Vol. 122, 2000. 

[44] Delson, N., Hanak, T., Loewke, K., and Miller, D.N., Modeling and 
implementation of McKibben Actuators for a Hopping Robot. 

[45] Davis, S., and Caldwell, D. G., Braid effects on contractile range and 
friction modeling in pneumatic muscle actuators, The International 
Journal of Robotics Research, Vol. 25, No. 4, April 2006, pp. 359–369. 

[46] Kerscher, T., Albiez, J., Zöllner, J. M., and Dillman, R., FLUMUT – 
Dynamic Modelling of Fluidic Muscles Using Quick-Releases, 
Proceedings of the 3rd International Symposium on Adaptive Motion in 
Animals and Machines, Illmenau, Germany, 2005. 

[47] Shearer, J.L., Study of pneumatic processes in the continuous control of 
motion with compressed air (I, II), ASME Trans., pp.233–249, 1956. 

[48] Rao, Z., and Bone, G. M., Nonlinear modeling and control of servo 
pneumatic actuators, IEEE Transactions on Control Systems 
Technology, Vol. 16, No. 3, pp. 562–569, May 2008. 

[49] Habibi, S., Burton, R., and Chinniah, Y., Estimation Using a New 
Variable Structure Filter, Proceedings of the American Control 
Conference, Anchorage, May 8–10, 2002. 

[50] Habibi, S., and Burton, R., The Variable Structure Filter, Journal of 
Dynamic Systems, Measurement, and Control, ASME, Vol. 125, pp. 
287–293.

 


