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ABSTRACT 
 
This paper discusses the undervalued importance of 
Regularized Least Squares, and its continued 
usefulness in solving supervised and semi-
supervised learning problems. The common two 
moon classification problem was used to study and 
compare the effectiveness of three methods: the 
Support Vector Machine (Radial Basis Functions 
and 6th Order Polynomials), Laplacian Regularized 
Least Squares, and K-Means with Regularized Least 
Squares (KM-RLS). The latter approach, which 
appears to be novel, is shown to be a very strong 
candidate for designing the hidden layer part of the 
classifier. As shown in the detailed results section, 
the KM-RLS method yields excellent results, and is 
computationally faster and less complex, when 
compared with the commonly used Support Vector 
Machine. 
 
Keywords: Regularized Least Squares, Support 
Vector Machine, Laplacian, K-Means, and 
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1. INTRODUCTION 
 
In neural networks, the process of classifying data 
involves labeling each data point to a certain group 
or class. The machine learning process is commonly 
utilized to perform the classification. Machine 
learning involves computer algorithms and 
techniques that enable computers to appear to 
‘learn’ or perform a set of iterations with increasing 
accuracy. The three most common types of machine 
learning are: unsupervised, semi-supervised, and 
supervised. 
 

In the case of unsupervised learning, labeled 
examples are not available; hence the learning 
process is termed unsupervised. It is important to 
note that the use of unlabeled examples is not 
computationally expensive. However, it may lead to 
less accurate results when compared to semi-
supervised and supervised learning. Semi-
supervised learning combines both labeled and 

unlabeled data. Supervised learning functions—
generally created through training—map inputs 
directly to the desired outputs. Essentially, the 
supervised learner is “to predict the value of the 
function for any valid input object after having seen 
a number of training examples” [1]. 

 
The most common classification methods 

include: the Support Vector Machine (SVM), Self 
Organizing Maps (SOM), Linear Vector 
Quantization (LVQ), and feedforward neural 
networks such as the basic perceptron. It is proposed 
that clustering techniques such as K-Means (KM) 
may be used in conjunction with classification 
methods such as Regularized Least Squares (RLS) 
to enhance the quality and accuracy of the 
classification. 
 
2. WHY REGURALIZED LEAST SQUARES? 

 
Inverse problems are typically systems where the 
model parameters are obtained from a set of 
observed data. In terms defined by Hadamard, 
inverse problems are usually ill-posed [2]. 
Hadamard stated that well-posed problems are 
mathematical models of physical systems where a 
solution exists, is unique, and depends continuously 
on the data [3]. To solve inverse problems 
numerically, “one must introduce some additional 
information about the solution, such as an 
assumption on the smoothness or a bound on the 
norm” [4]. This process is typically referred to as 
regularization. 
 

A simple form (and the most popular) is 
Tikhonov regularization. Tikhonov introduced the 
idea in [2] when he considered a system of linear 
algebraic equations. Assuming that the system has 
no exact solution, a common approach to finding an 
approximate solution is to use the method of linear 
least squares [2]. As stated by Rifkin and Lippert, if 
one combines Tikhonov regularization in a 
Reproducing Kernel Hilbert Space (RKHS) using 
the square loss method, one obtains the Regularized 
Least Squares (RLS) classification algorithm [5]. 



Generally speaking, a RKHS is “a function space in 
which pointwise evaluation is a continuous linear 
functional” [6]. As defined in [5], the Tikhonov 
minimization problem with a square loss may be 
written as follows: 
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Where X and Y are the data points, λ is the 
regularization parameter, K is the kernel matrix 
(which may be linear, polynomial, or Gaussian), f is 
the solution to Eq. (1), and c exists and is unique. 
Rifkin and Lippert [5] used some basic properties of 
the RKHS to rewrite Eq. (1) into the following: 
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Differentiating Eq. (3) with respect to c, one obtains 
Eq. (4). Note that I is an identity matrix. It is 
important to note that a “regularized least squares 
classification problem may now be solved by a 
single system of linear equations” [5]. 
 

The RLS algorithm allows the training process 
to be much simpler, as the required solution is in the 
form of linear equations (see Eq. (4)). Unlike the 
SVM, which requires solving a quadratic equation, 
the RLS has the potential for yielding accurate 
results at a quicker pace since it is computationally 
less expensive. The computational time of the SVM 
is dependent on the amount of computer power and 
memory available, the number of data points, and 
the number of Support Vectors generated. The steps 
to solving a general RLS problem include 
computing the K matrix, and solving the 
corresponding linear system. As such, the RLS 
algorithm is simpler to understand when compared 
with the SVM. Combining the RLS method with the 
K-Means algorithm yields interesting results. 
Although the Regularized Least Squares 
classification method is not a new method, it 
becomes apparent that it is a useful tool for 
supervised and semi-supervised learning. 
 
 
 
 

3. THE K-MEANS ALGORITHM: 
CANDIDATE FOR THE HIDDEN LAYER 

 
The K-Means (KM) algorithm is used to cluster 
objects or points into partitions, based on specific 
attributes. Essentially, the main goal of KM is to 
minimize the total intra-cluster variance [7]. The 
cluster variance may be calculated using the 
following squared error function [7]: 
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Where k refers to the number of clusters (S), x refers 
to the data points, and μ is the corresponding 
centroid. 
 

The first step is to partition the inputs into initial 
sets, and then calculate the mean (or the centroid). 
Next, the algorithm creates new partitions by 
relating each point with the closest mean [7]. The 
centroids are then recalculated, and the algorithm 
repeats itself until convergence. In general, these 
steps are completed rather quickly. Hence, this 
method remains rather popular due to its relatively 
fast computational time. However, note that the 
final solution depends on the initial set of clusters. 
The quality of the global optimum can therefore 
vary between iterations. A common way to avoid 
this includes running the algorithm a few times and 
returning the best cluster found [7]. Including the 
KM clustering method with a classification tool 
such as RLS proves to be quite useful. 

 
4. COMPARATIVE EVALUATION:  

TWO MOONS PROBLEM 
 
This section outlines the main results of 
implementing the SVM, the Laplacian RLS 
(LapRLS), and KM-RLS techniques on the two 
moons problem. Note that the following results were 
obtained using: Windows XP (Professional Edition) 
Operating System (SP 2), Intel Dual Core 2.5 GHz, 
1.0 GB of RAM, and 3.0 GB of Virtual Memory. 
MATLAB 7.4.0 (R2007a) was used to run the code 
and generate the figures. 
 

This problem involves a two moons (or half 
moons) pattern, as shown in Figure 1. The points 
belonging to the top and bottom moon are referred 
to as belonging to Class A and B, respectively. The 
moons are extremely close to each other, where the 
centers have been shifted 0.985 (normalized) 



vertically. Four different datasets were used, each 
with varying noise amplitudes (0, 0.05, 0.15, and 
0.25) for 3,258 points. Simply put, a variety of 
classification techniques were used to separate and 
identify the points belonging to both moons. The 
techniques were then compared and evaluated based 
on the quality of the classification, and the 
computational difficulty and running time. 
 

 
Figure 1: Two Moons Problem 

 
LapRLS Results 
 
The following table lists the quantitative results 
obtained from running the LapRLS simulation. 
 
Table 1: Laplacian RLS Results 

Results 

Data-
set Class A 

Points 
Class B 
Points 

Misclas
sified 
Points 

Classifi
cation 

Percent
age 

Run 
Time 

1 1,638 1,620 
53 

(27, 36) 
98.37 154 sec 

2 1,602 1,656 
45 

(36, 9) 
98.62 155 sec 

3 1,635 1,623 
52 

(23, 29) 
98.40 155 sec 

4 1,621 1,637 
68 

(38, 30) 
97.91 155 sec 

 
SVM Results 
 
The following table lists the quantitative results 
obtained from running the SVM simulation. 
 
Table 2: Support Vector Machine Results 

Results 

Data
set 

Met
hod 

Class 
A 

Points 

Class 
B 

Points 

Miscla
ssified 
Points 

Classif
ication 
Percen

tage 

Run 
Time 

RBF 818 810 36 97.79 51 min 
1 

Poly 
6 

814 814 0 100 75 min 

RBF 823 805 35 97.85 52 min 
2 

Poly 
6 

814 814 0 100 73 min 

RBF 815 813 35 97.85 54 min 
3 

Poly 
6 

820 808 6 99.63 73 min 

RBF 807 821 39 97.60 52 min 
4 

Poly 
6 

811 817 13 99.20 76 min 

 
KM-RLS Results 
 
The following table lists the quantitative results 
obtained from running the KM-RLS simulation. 
 
Table 3: K-Means RLS Results 

Results 

Data
set 

Cluste
rs 

Total 
(Each) 

Class 
A 

Points 

Class 
B 

Points 

Miscla
ssified 
Points 

Classi
ficatio

n 
Percen

tage 

Run 
Time 

1 
42 

(21) 
1,629 1,629 

0 
(0, 0) 

100 
≈ 8 
sec 

2 
34 

(17) 
1,627 1,631 

2 
(2, 0) 

99.94 
≈ 5 
sec 

3 
36 

(18) 
1,620 1,638 

13 
(11, 2) 

99.60 
≈ 6 
sec 

4 
78 

(39) 
1,614 1,644 

17 
(16, 1) 

99.48 
≈ 28 
sec 

 
The following figure illustrates the results of the 

KM-RLS simulation. Note how the clusters are well 
formed within the data points. The classification 
regions (different shades) are well defined and 
classify the data points within a reasonable amount 
of error. Figure 3 (next page) zooms in on the upper 
region of Figure 2 for more detail. 
 

 
Figure 2: KM-RLS Results 

 



 
Figure 3: KM-RLS Results (Upper Zoomed) 

 
5. DISCUSSION 

 
Figures 4 through 7 were created to aid the 
comparison process of the classification techniques. 
Figure 4 demonstrates that the KM-RLS algorithm 
performed extremely well. The KM-RLS method 
obtained a higher average classification percentage 
over the four datasets, and also performed the 
calculations considerably faster (by about an order 
of 3). Figure 5 represents the ratio of average 
classification percentage and run time. In other 
words, it demonstrates the amount of classification 
per time. A higher ratio refers to a quicker 
classification process. Note how the SVM 
performed slowly. However, as shown in Figure 6, 
the SVM (Poly 6) yielded a higher quality 
classification, when compared with LapRLS (even 
though LapRLS was faster). 
 

It is interesting to note that the Laplacian RLS 
performed differently depending on the number of 
labeled data used. For example, the best results were 
obtained when 25 labeled data were used. The 
algorithm therefore required a significant amount of 
parameter tuning in order to find the appropriate 
balance. Based on the above results and opinions of 
the authors, the ranking of the classification 
techniques (for the tested cases) is as follows: KM-
RLS, SVM (Poly 6), LapRLS, and finally SVM 
(RBF). This ranking was based on computational 
complexity, run time, and classification results. 
Overall, the K-Means algorithm combined with 
Regularized Least Squares yielded more accurate 
solutions, as demonstrated in the results. 
 

 
Figure 4: Average Results per Experiment 

 

 
Figure 5: Ratio of Average Classification 

Percentage and Run Time 
 

 
Figure 6: Classification Percentage per Dataset 

 



 
Figure 7: Run Time per Dataset 

 
6. CONCLUSIONS 

 
KM-RLS yielded excellent results. It was relatively 
easy to code and the algorithm compiled very fast. 
From a user point-of-view, the process of running 
the code was also very easy as the parameter tuning 
process (to obtain optimal results) was easy 
(especially when compared to LapRLS). For these 
reasons, using the two moon problem as an example, 
the KM-RLS classification technique was found to 
be superior when compared to the SVM and 
LapRLS. 
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