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Abstract: Analyses of COVID-19 vaccines have become a forefront of pandemic-related research, as
jurisdictions around the world encourage vaccinations as the most assured method to curtail the need
for stringent public health measures. Kaplan–Meier models, a form of “survival analysis”, provide a
statistical approach to improve the understanding of time-to-event probabilities of occurrence. In
applications of epidemiology and the study of vaccines, survival analyses can be implemented to
quantify the probability of testing positive for SARS-CoV-2, given a population’s vaccination status.
In this study, a large proportion of Ontario COVID-19 testing data is used to derive Kaplan–Meier
probability curves for individuals who received two doses of a vaccine during a period of peak Delta
variant cases, and again for those receiving three doses during a peak time of the Omicron variant.
Data consisting of 614,470 individuals with two doses of a COVID-19 vaccine, and 49,551 individuals
with three-doses of vaccine, show that recipients of the Moderna vaccine are slightly less likely to
test positive for the virus in a 38-day period following their last vaccination than recipients of the
Pfizer vaccine, although the difference between the two is marginal in most age groups. This result is
largely consistent for two doses of the vaccines during a Delta variant period, as well as an Omicron
variant period. The evaluated probabilities of testing positive align with the publicly reported
vaccine efficacies of the mRNA vaccines, supporting the resolution that Kaplan–Meier methods in
determining vaccine benefits are a justifiable and useful approach in addressing vaccine-related
concerns in the COVID-19 landscape.

Keywords: COVID-19; delta variant; Kaplan–Meier; omicron variant; survival analysis; vaccines;
variants; variants of concern

1. Introduction

The rollout of vaccinations to help protect against contracting SARS-CoV-2 and poten-
tially incurring serious illness has been a priority of many public health authorities and gov-
ernments worldwide since their initial emergency approval in late 2020, including Ontario,
Canada [1,2]. While clinical efficacies of the available vaccines indicate immunization-based
protection against COVID-19, population-driven probabilities have important potential in
describing the success of vaccines.

Survival analysis is a statistical concept wherein the probability of survival, from a
defined event, can be developed using time-to-event data. In COVID-19 research, appli-
cations of survival analysis have been only scarcely published, despite having significant
potential to inform on the trajectory of the epidemic, in a variety of facets. One such facet
is the use of survival estimates to understand the probability of testing positive for the
virus among populations of vaccinated individuals. The results of these analyses represent
significant potential to indicate the merits of vaccines.
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An Ontario-wide collection of positivity data for COVID-19 testing was assembled
for individuals who had also received one or more doses of a Health Canada-approved
vaccine. From these data, a Kaplan–Meier survival analysis approach determined the
survival probabilities for testing negative for the virus. Since “survival” in this case is
“not receiving a positive PCR test”, the inverse survival probability was then calculated
to determine the probability of testing positive for the virus. Applied to separate age
categories, these results show the age- and vaccination-specific probabilities of receiving a
positive test for COVID-19.

The objective of this study is to quantify and describe the success and benefits of
approved COVID-19 vaccines using a survival analysis approach. The novelty of applying
Kaplan–Meier methods in the context of calculating probabilities of contracting COVID-19
despite having received multiple doses of a vaccine places this investigation at the forefront
of pandemic research. This article introduces various contexts in which survival analyses
were applied, beginning with an overview of the Kaplan–Meier method in Section 2.
Section 3 details the methodology and procedures used to manipulate the Ontario dataset
for analysis. Section 4 reports the results of the survival analysis for different age groups
and various vaccines. Section 5 provides a discussion on the reasoning and significance of
the survival probabilities within these age groups, highlighting the impact of COVID-19
variants of concern. Finally, Section 6 addresses the assumptions and limitations inherent in
the modeling methods. Collectively, these data provide important insights into the success
of different vaccination combinations in Canada’s COVID-19 landscape.

2. Survival Analyses in Epidemiological Contexts

Statistical characterization of possible events is a common approach to assessing
the temporal nature of imposed conditions. Survival analysis calculates estimates of the
probability of occurrence for a specific event, based on previously recorded timestamps
and incidence counts for that event, also known as “time-to-event” data [3]. Due to its
simplicity in the required calculations and processing of data, survival analysis procedures
offer versatility for an array of problems, such as predicting pipe failures or the longevity
of business plans, as examples [4,5]. In medicine, survival analysis is often used to describe
the probability of becoming ill or facing mortality over time, derived from collected data in
which patients had previously become seriously or fatally ill [6].

Survival analysis has a potentially significant role in opportunities to monitor epi-
demics, where the individual impacts of an infectious disease are typically binary in nature;
that is, infected (a confirmed “infected” datapoint) or not (either a confirmed “negative”
case, or an unresponsive censored case) [7]. Since parameters such as contact interval or
initial infection may be right-censored, survival analysis has been increasingly used by
those studying the impacts and longevity of epidemics [8].

Generalized insights into the progression of infectious disease transmission are con-
sidered useful for decision-making by public health authorities [9]. Survival analysis
provides the ability to draw generalized conclusions, as the estimated long-term param-
eters drawn from previously collected data on the virus of concern can be statistically
inferred, thereby ignoring the impact of external factors such as the social behaviors of a
population, co-morbidities, and age-based vulnerabilities, among others [9,10].

2.1. The Kaplan–Meier Method

Survival analysis models can produce errors when an outcome is reached by means
that have ignored the initial conditions (e.g., a patient dies due to factors unrelated to the
monitored illness) [11]. In such cases where observations are considered as incomplete,
the Kaplan–Meier method of survival analysis may be implemented to generate an estimate
that takes the form of a step-function containing discontinuities at the time of observed
non-survival, without any assumptions regarding the distribution, thus maintaining a
non-parametric approach [11].
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In practice, non-survival is considered as failing to meet the desirable outcome in
a defined context. Traditionally, this has typically referred to the occurrence of patient
death [11]. In the context of COVID-19 testing, this could simply be a “positive” result from
a tested individual. Therefore, survival would dictate that the patient was not carrying
the virus: a “negative” result. This nominal categorization (a clinical “yes” or “no”) is
described by Equation (1) (where x is the survival status of an individual, k) [12].

xk =

{
1 (non − survival)
0 (survival)

(1)

Hence, for an analysis surrounding COVID-19 positivity, x = 1 would imply a “posi-
tive” test result, and x = 0 indicates a “negative” result.

The survival probability describes the probability that a member of the population
will not face the undesirable outcome at a given time. The probability at a defined time
will influence the probability at a later time, since the total non-survival counts (qi) will
increase temporally, and, therefore, the probability of survival is assumed to increase more
substantially over time. This is more concisely described in Equation (2) [13], although more
detailed mathematics are provided in Section 3.

Ŝ(ti) = ∏
(

1 − qi
Ni

)
(2)

Several estimators of the variance in Kaplan–Meier survival probabilities exist, but a
common and often preferred calculation method is the Greenwood formula [14]. Following
this paper’s syntax, the Greenwood formula is defined in Equation (3).

V̂ar
(
Ŝ(ti)

)
= Ŝ(ti)

2 ∑
(

qi
Ni(Ni − qi)

)
(3)

As introduced, Kaplan–Meier curves are a collection of step-wise estimates. For this
reason, the graphical presentation of the results from a Kaplan–Meier analysis implies
significant context on the type of data used, and the reliability of any conclusions. If a plot
includes fewer steps with larger “jumps”, it can be assumed that there were relatively few
data points for that particular analysis (or a high number of censored cases), which would
suggest less precision within the results [15]. Likewise, a collection of very small steps that
are too numerous to count would indicate better precision and more defensible conclusions
from the analysis [15].

The censoring of data in this estimator method introduces the concept of a nonpara-
metric maximum probability, or a “missing data problem” [16,17]. This method in survival
analysis allowing right-censored data is very beneficial in scenarios with truncated or
interval-based censoring within datasets [16,18,19].

2.2. Application of the Kaplan–Meier Method

Applications of the Kaplan–Meier method in epidemiological studies have been few,
despite being one of the most common approaches to modeling survival estimates [20].
Primarily, applications of the method are most common in the prediction of the probability
of death with respect to time, typically in medical fields such as oncology, nephrology,
and rheumatology [21–24].

Similarly, the success of vaccines and their responses within a population have not
been extensively studied using an analysis with Kaplan–Meier estimates. Studies on “break-
through infections” of COVID-19 have become a later focus of pandemic research, using
Kaplan–Meier analyses to determine how likely it is that one will become infected with
COVID-19 despite having already received one or more doses of a vaccine [25–27]. In three
studies focusing on breakthrough infections by the end of 2021, two concluded that signifi-
cant protection against infection can be declared, considering relatively low probabilities of
testing positive for two to three months under Kaplan–Meier survival probabilities [25,27].
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One of the three studies, however, found that Moderna vaccine recipients were less likely to
have a breakthrough infection compared to those who received Pfizer [26]. The significance
of this discrepancy is open to interpretation since the difference between the cumulative
incidents of breakthroughs for each vaccine was reported as 12% for the third month after
having received both doses [26].

Limited vaccine-related applications outside of COVID-19 include characterizing the
uptake of the immunization program for vaccines preventing Haemophilus influenzae type
b infection (the Hib vaccine) in young children and predicting the success of phase II trials
for a vaccine targeting maternal cytomegalovirus (CMV) [28,29]. In the study analyzing
Hib vaccine uptake, a population segment in Germany was determined to be insufficiently
following the WHO-recommended immunization schedule, using a Kaplan–Meier back-
calculation from positive infections to define the theoretical age at which a child would have
been vaccinated [28]. A study of immediate-postpartum mothers in Tuscaloosa, Alabama,
concluded from a Kaplan–Meier analysis that the vaccine under trial for CMV was at least
10% more likely to maintain non-infection for a period of 42 months [29].

In COVID-19 contexts, there have been very few studies using survival analysis and
modified applications of Kaplan–Meier curves in the interpretation of various facets of the
pandemic. Within the first year of global transmission, an early study used Kaplan–Meier
estimators to determine recovery times from an infected population in India; the survival
probability was calculated at daily intervals (based on time-to-recovery data) to allow
for a determination that, at the time, there was only a 4% probability of recovering from
the virus within 10 days of infection [30]. The trial process for using remdesivir to treat
those hospitalized with COVID-19 also used this method of survival analysis, estimating
the probability of recovery at a given time post-injection [31]. Kaplan–Meier curves have
also been used to declare the significance of potential co-morbidities or illness factors in
conjunction with COVID-19, such as an analysis proving that patients with diabetes were
more likely to experience more severe illness if they also contracted COVID-19 [32]. Results
from the study showed a survival probability over 30% less in the diabetes group than in
the non-diabetes control group, following 20 days of hospitalization [32].

Applications of Kaplan–Meier survival analysis to study the success of COVID-19
vaccines are novel in pandemic-related research and are shown below to provide useful
insights into the time-based benefit of immunization against the virus.

3. Methods: Modeling Vaccinated Ontarians

Characterizing the trends of positive testing over time is an essential tool in under-
standing the benefits and long-term protection implications of the various vaccines over
time. A Kaplan–Meier method of survival analysis was implemented to determine the
probability of testing positive for the virus over time as characterized by time since the
receipt of vaccines.

Data for the model were sourced from a data package consisting of the Ontario
population tested for COVID-19 from a period of March 2020 to late December 2021.
These data were sourced from ICES under an agreement to conduct COVID-19 research in
Canada. These datasets were linked using unique encoded identifiers and were analyzed
at ICES. The legal parameters associated with privacy legislation that govern the research
of ICES permit the collection and analyses of Ontario’s health care data without consent,
in applications aimed at safeguarding public health.

Prior to implementing the survival estimation model, the dataset underwent a prepa-
ration process to remove erroneous data. The entire population is grouped based on
“dose status” indicating how many doses of any vaccine were received. Each dose status
receives its independent dataframe; population with one dose dataframe (df_dose_1), pop-
ulation with two doses dataframe (df_dose_2), and population with three doses dataframe
(df_dose_3). All individuals who were not vaccinated were removed from the dataset.

The data were then separated by specified vaccine type. The possible conditions
considered are detailed in Table 1.
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Table 1. Segregated vaccine types for the dataset, where a dosage regime may comprise various
vaccine combinations.

Doses Vaccines under Consideration

1 Pfizer (1) Moderna (1) AstraZeneca (1) - -

2 Pfizer (2) Moderna (2) AstraZeneca (2) AZ (1) + Pfizer (1) AZ (1) + Moderna (1)

3 Pfizer (3) Moderna (3) - - -

Individuals who may have had multiple tests had their testing results merged to
constitute a single data point (thereby ensuring that an individual person is not considered
more than once in the analysis). Only positive and negative test results were analyzed,
and statuses of any tests that were categorized as indeterminant, canceled, pending, or re-
jected were all removed from consideration in the dataset. The testing data consisted
of 614,470 tested individuals with two doses of a COVID-19 vaccine and 49,551 tested
three-dose recipients.

Two periods of analysis were chosen on the basis of the dominant strain of the virus at
that time, and the population sizes were modified as follows:

• Period 1 (“Delta period”): 77,220 possible persons, 5 July 2021 to 12 August 2021
[inclusive],

• Period 2 (“Omicron period”): 21,658 possible persons, 16 November 2021 to 24 Decem-
ber 2021 [inclusive].

Both periods span 38 days. For the “Omicron period”, the dates were chosen based on
the mean date for when the population would have received a third dose of the vaccine
(30 November), backdated 14 days prior to the mean date to account for individuals
who would have become “fully immunized” by 30 November. This was then extended
until the last available date of data collection (24 December), which encompasses a total
of 38 days. The reliability of data was compromised following 24 December 2021, when
Ontario announced major modifications to the criteria and volume of COVID-19 testing [33].
The “Delta period” was adjusted to reflect the same duration as the “Omicron period” (in
this case, starting 14 days prior to the mean date of the second dose).

The 14-day lag period described above was selected in alignment with findings that
the majority of vaccines are effective and provide maximum protection (against COVID-19
and the Omicron variant) two weeks after receiving a second dose of the vaccine [34].

Moreover, a third dose (or “booster” dose) is recognized to provide an increase in
protection following the same period of time [35]. In practice, this would mean that for a
two-dose analysis, time “0” represented 14 days following receipt of the second vaccine
dose, and a three-dose analysis would represent 14 days following receipt of the third dose.
Mathematically, this can be considered as an injection time occurring at t = −14 days,
with respect to the most recent dose. This is outlined more concisely below.

Although it has been reported that re-infection for COVID-19 is possible, a degree of
“immunity” is notable in previously infected cases [36]. For this reason, individuals who
had previously tested positive for the virus (prior to either of the isolated timeframes) were
excluded from this analysis to ensure that the individuals within the population were more
similar in their ability to contract the virus.

For the “Delta period”, all individuals who tested positive before 1 July 2021 were
removed from consideration in the dataset. For the “Omicron period”, all individuals who
tested positive before 1 November 2021 were removed from consideration in the dataset.
The only test results that were accepted for these periods are those that occurred 14 days
after a person’s most recent vaccination since they otherwise would have become infected
while not yet “fully immunized” from their vaccine dosage. Tests that occurred prior to
14 days post-vaccine receipt were removed from the dataset.

It should be noted that the date ranges coincide with distinct variants of concern
dominating as the primary form of the virus in monitored cases. The onset of the virus’
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Omicron variant of concern developed into the dominant strain of the virus within a
very short time over Delta in late 2021 [37]. For this reason, the basis of conclusions for
the modeling results indicates the probability of testing positive for the virus, with a high
probability that the case is associated with the defined period’s dominant variant of concern.
While it is not assured that every case associated with these results would belong to the
dominant variant, the high abundance of variant-based cases implies that this assumption
is an appropriate generalization.

The duration of vaccination is then calculated for each individual:

• t = 0 is defined as the start of a given period (either 5 July or 16 November 2021),
• datevaccine is defined as the date at which a person received their last vaccine dose,
• An observed test date occurs at any given number of days following t = 0 (defined

as ttest),
• The duration of vaccination for any given person is calculated as ttest − (datevaccine + 14).

Using this common timeline, a Kaplan–Meier approach was then applied to the data.
“Survival” in this application of a survival analysis indicates the status of an individual as
“not testing positive for the virus”. At a given time, t, an individual may report a positive
test (deemed a value of 1), or negative/no longer monitored for a positive result (a value
of 0). If the initial population of the entire group of analysis is described by the variable Ni,
and the number of individuals testing positive at t is provided as qi, the probability of not
testing positive, or the probability of survival, at t is determined by Equation (4) [38].

S(ti) =
Ni − qi

Ni
(4)

The probability of not testing positive until the time defined at t is evaluated by
taking the product of all probabilities of “survival” from the times precursive to t [38].
This is justified by the understanding that the survival of the population at a time, ti, is
influenced by the survival from the initial time (i = 1) until the time immediately before i
(simply, i − 1) [13]. This is presented more concisely in Equation (5) (where Ŝ(t) represents
the cumulative survival probability).

Ŝ(ti) = S(ti)× Ŝ(ti−1) (5)

Alternatively, the probability of testing positive (non-survival) at a given time can be
determined by Equations (6) and (7).

D(ti) = 1 − S(ti) (6)

D̂(ti) = 1 − Ŝ(ti) (7)

In the survival analysis for the probability of becoming a confirmed case of COVID-19,
the results of interest surround the value of D(t) at various timestamps following vacci-
nation to assess and compare the temporal benefit of individual vaccines for specific age
demographics. A 95% statistical confidence interval was then applied to all estimates (i.e.,
the inverse Kaplan–Meier curves).

4. Results

The data used for integration with the Kaplan–Meier model were a collection of
positive test results from individuals living in Ontario with one, two, or three doses of a
COVID-19 vaccine. The vaccines summarized in Table 2 were recognized in the dataset.

In addition to the three vaccines listed, data were also scrutinized for those who had
received a combination of vaccines, specifically AstraZeneca as a first dose with Pfizer or
Moderna as a second dose. The combination of mRNA vaccines (one Pfizer dose with one
Moderna dose) was not studied. Overall, the available dataset encompasses a significant
number of Ontarians, with 614,470 people receiving any form of two vaccine doses.
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Table 2. Overview of COVID-19 vaccines used within the entire population of recorded data.

Vaccine Branded Name Name Used in this Study Vaccine Type Ages Eligible for Receipt
(January 2022)

Pfizer-BioNTech’s COVID-19
Vaccine (BNT162b2) Comirnaty Pfizer mRNA 5 and older [37]

Moderna’s COVID-19
Vaccine (mRNA-1273) Spikevax Moderna mRNA 12 and older [38]

The vaccination-age groups describe the persons associated with a specific receipt of
vaccination, segregated by age range. The largest vaccination-age group in the dataset was
the Pfizer (two doses) for those aged 20 to 39, inclusive. The summarized N values for each
vaccination-age group are provided in Table 3.

Table 3. N values for each vaccination-age group as determined from the Ontario dataset.

Two Doses (Delta Period) Three Doses (Omicron Period)

Vaccine All Ages Under 20 20 to 39 40 to 64 65 and Older All Ages Under 20 20 to 39 40 to 64 65 and Older

Pfizer 59,061 14,583 18,660 16,537 9281 19,213 - 6500 7643 4843

Moderna 18,159 1188 7936 6079 2956 2445 - 405 855 1176

Due to the limited population size for those receiving AstraZeneca (either in full or in
combination with an mRNA vaccine), the results were restricted to only Pfizer and Moderna
recipients, which constitute a significant and considerable population of Ontarians for
justifiable modeling.

The application of the Kaplan–Meier method for the vaccination-age groups is pre-
sented graphically. The probability of testing positive is depicted as a function of the
elapsed time subsequent to the administration of different vaccine regimens, comprising
either two or three doses, accordingly.

Figure 1a,b illustrate the probability of testing positive for the virus for all ages
during the Delta and Omicron periods, respectively, for each of the vaccines and vaccine
combinations. Note that the scale for Figure 1a is an exaggerated scale compared to that in
Figure 1b, such that the visual presentation displays the marginal difference between either
vaccine, which is less prominent in the Delta figure when compared to the Omicron period
(Figure 1b). Although the difference in the curves is exaggerated in Figure 1a, this margin
remains less than 1% for the duration of the plot.

When separated into individual age groups, the trends for the two-dose probability of
testing positive during the Delta Period were similar across all curves and aligned with the
results presented in the aggregated curve (Figure 1a). However, the “under 20” age group
showed the only difference, with Moderna recipients showing a slightly higher probability
of testing positive compared to those who received Moderna, following 25 days post-full
effectiveness of two-dose vaccine protection. Despite this variance, all results indicate less
than a 3% probability of testing positive at day 30 of either period, regardless of vaccine
type. The two-dose plots for each vaccine-age group during the Delta Period are presented
in Figure 2. Again, note that this scale is different from the plot for Omicron cases, for ease
of interpretability.

With the exception of a span of 5 days in the “under 20” curve, Pfizer recipients show
a slightly higher probability of testing positive when compared to those who received
Moderna for both doses during this period although it is worth noting that this margin of
difference is acutely small (less than 1% difference in probability), and it has been reported
that a 1% to 2% difference in effectiveness is not recognized as sufficiently significant to
discriminate between vaccines [39,40].
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(a) All ages with two doses of Pfizer and
Moderna (Delta Period), exaggerated

vertical axis.

(b) All ages with three doses of Pfizer and
Moderna (Omicron Period).

Figure 1. Comparison of COVID-19 infection rates for different vaccination regimes: (a) Two doses
during the Delta period, and (b) Three doses during the Omicron period.

Figure 2. Individual vaccination-age groups with two doses of Pfizer and Moderna (Delta Period),
exaggerated vertical axis. (Top left): ages under 20. (Top right): ages 20 to 39, inclusive. (Bottom left):
ages 40 to 64, inclusive. (Bottom right): ages 65 and older.

Contrasting with the marginally different curves during the Delta Period, the curves
associated with Omicron display more discrepancy between the two vaccines, and overall
higher probabilities of testing positive (presented in Figure 1b). In all cases, the Kaplan–
Meier estimates produce multi-day periods with no change in the y-values of the curve,
which indicates a zero-positivity rate during that period of time. This is accompanied
by wider confidence intervals, exacerbated when compared to the marginal confidence
intervals seen for the plots associated with two vaccine doses. The results associated
with these charts indicate that the reduced size of the population in this period (due to
the timing of the rollout for third doses) influenced the estimates computed using the
Kaplan–Meier method.
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Figures 3 and 4 represent the Omicron Period, three-dose probability curves for the age
categories from 40 to 64 (inclusive) and 65 and older age groups, respectively. In both cases,
Pfizer recipients maintained a slightly higher probability of testing positive for COVID-19
when compared to those who received Moderna for all three doses. Despite not showing the
same low probabilities seen in the two-dose figures, both age groups produced significantly
high survival probabilities (low probabilities of testing positive), with the 65 and older
group remaining less than 5% in positivity probability for the 30-day period shown.

Figure 3. Ages 40 to 64 (inclusive) with three doses of Pfizer and Moderna (Omicron Period).

Figure 4. Ages 65 and older with three doses of Pfizer and Moderna (Omicron Period).

For those aged 20 to 39 (inclusive), Figure 5 differs slightly from these two figures,
showing Pfizer and Moderna curves that differ over time; Moderna recipients show a higher
probability of testing positive for approximately 25 days, and Pfizer recipients overtake the
higher probabilities after this timestamp. It is important to note that this curve presents
wider confidence intervals, and this contrast to other trends is likely attributable to the
smaller population of young adults receiving a third dose of any vaccine by the end of 2021.

Due to the negligible population size of those under the age of 20 receiving three doses
of any vaccine in 2021, this age group is not assessed for the Omicron Period analysis.
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Figure 5. Ages 20 to 39 (inclusive) with three doses of Pfizer and Moderna (Omicron Period).

5. Discussion

In most of the figures described above, the results show that Moderna provides the
most successful probability against testing positive for the virus, for all age groups, for the
longest period of time. This result was consistent among the groups that had received
two vaccine doses, as well as those who had received a third dose. Although these results
favor the protection provided by the Moderna vaccine over the other mRNA-type vaccine,
Pfizer, it is important to note that this difference is essentially negligible. In all age groups,
a three-dose regime for either mRNA class of immunization, during a wave of Omicron
cases, results in comparably low probabilities of testing positive for the virus (and, therefore,
a relatively high survival probability) for extended periods of time: in many cases, less than
10% positivity probability past 30 days since the full effectiveness of a recipient’s third dose.

It has been reported that two doses of Pfizer alone are associated with a vaccine
effectiveness (‘VE’) of 95% [41]. Although the results of the survival analysis undertaken
in this study do not imply or prove the efficacy of a vaccine, they do support the general
findings associated with the benefits of the vaccines. That is, in all studied populations
receiving two doses of Pfizer during a wave of Delta cases, a calculated probability of testing
positive within a 30-day period never exceeded 5% (or, reversely, survival/not testing
positive never fell below 95%).

The survival curves for both vaccines following two doses aggregated for all ages
proved that, despite hierarchical differences in probability for testing positive, the difference
between the “most successful” and “least successful” vaccines remains negligible (<1%)
for at least a period of a full month during a wave of cases (following full effectiveness of
a recipient’s second dose). For this same period, both vaccines also remain significantly
below the 5% probability of testing positive, regardless of age. These results indicate that
the vaccines are highly beneficial in avoiding testing positive for the virus, aligning with
reports that each of the available vaccines is highly successful at protecting the population
and mitigating severe illness [42].

Despite the common trends in the three-dose plots, where Pfizer is commonly noted to
result in a higher probability for testing positive than Moderna, the curves are accompanied
by wider confidence intervals than those associated with two-doses, and atypical behaviors
(steeper curves, and large jumps in difference between each curve) are evident in each plot.
An important context provides insight into this inconsistency, primarily relating to vaccine
rollout in these age groups. In late 2021, when Omicron variant cases were spiking in
Canada, Canadians were only just beginning to receive three doses of the vaccine. For this
reason (and as seen in Table 3), the population sizes for these vaccination-age groups are
smaller than the matching groups from the summer period, and results are, therefore, more
likely to be consistent with a broader range of conclusions. Vaccine rollout in younger
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populations was modified further in 2021 to default (where possible) to the injection of
Pfizer rather than Moderna, due to reports of myocarditis as a side effect in those under
the age of 30 occurring more commonly in those who receive Moderna [43]. Hence, it is
perhaps attributable to this preferential distribution of the Pfizer vaccine that results in
a larger population size for those under the age of 30 and, therefore, a wider confidence
interval on the Moderna curve for these plots (Figures 3–5).

5.1. The Role of Variants of Concern

Early publications on the onset of the Omicron variant have reported that those with
three doses of a COVID-19 vaccine are less likely to constitute symptomatic infection
groups, despite evolving mutations of the original strain [44]. Additionally, as previously
noted, the data used for this survival analysis were narrowed to two timeframes, the second
being late 2021, which would have been subject to an increasingly significant number of
Omicron-specific cases in combination with Delta cases. Due to the higher transmissibility
of Omicron when compared to the previous dominant strain, Delta [45], the results of the
survival analyses are subject to variability.

In survival analysis, a strictly Omicron infection population is predicted to show
higher probabilities of testing positive when compared to the Delta population, since
more of the population will contract the virus, exhibit symptoms, and pursue testing.
Although infection may cause equal or more severe illness in those with the Delta variant,
the less transmissible behavior of the Delta variant leads to lower probabilities of testing
positive in an exclusively Delta dataset.

The mixing of the two variants during the study period would, therefore, favor higher
positivity rates in any group that happens to have more cases of the newer variant. Since
data were not explicitly segregated by variant type in the dataset during the analyses, it is
assumed that disproportionate totals of each variant in vaccination-age groups are possible,
and a likely cause for minor discrepancies. To minimize this issue, the dates selected for
analyses were chosen based on the dominant strain of the virus at that time, when caseloads
were high.

5.2. Validation

As a simple validation of the use of Kaplan–Meier for this study, a log-rank test for each
age group under the two variant time periods was conducted, and 5% and 1% significance
levels were considered. For the tests, smaller significance levels suggest a more stringent
analysis. A p-value that is less than a given significance level would indicate that there is a
statistically significant difference in the survival analysis curves under consideration. This
is summarized in Table 4.

Table 4. Log-rank p-values for different age groups and periods.

Age Group Delta Period Omicron Period

Under 20 0.47 –

20 to 39 0.07 0.04

40 to 64 0.06 0.30

65 and Older 0.07 0.005

For the analysis of “all ages”, the Delta log-rank test returned a p-value of 0.02,
and 0.005 for Omicron. This suggests a statistically significant difference at the 1% level for
Omicron, and the 5% level for both Delta and Omicron.

For the under-20 age group, Delta results had an associated p-value of 0.47 (with
no applicable analysis for Omicron). Since this value is greater than both 5% and 1%
significance levels, there were no statistically significant differences found for this aspect of
the analyses.
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In adults aged 20 to 39, p-values from the log-rank testing were 0.07 and 0.04 for
Delta and Omicron, respectively. Again, these values suggest that the analyses had no
statistically significant differences for this age group, with the exception of the 5% level for
the Omicron period.

Log-rank p-values of 0.06 and 0.30 for Delta and Omicron were evaluated for the
analyses associated with the 40 to 64 age category. For both considered significance levels,
in either variant time period, it can be concluded that there were no statistically significant
differences found.

Finally, the 65 and older age group only had a statistically significant difference at the
1% and 5% levels for Omicron, having associated p-values of 0.07 and 0.005 for Delta and
Omicron, respectively.

The statistically significant differences between the populations and their estimated
probabilities constitute a minority of the log-rank results, which broadly suggests a rela-
tively stringent analysis and appropriate use of Kaplan–Meier with the available dataset.

6. Limitations of the Study

Several assumptions and simplifications within the dataset and the use of the Kaplan–
Meier model for analyses in this study are directly linked to any discrepancy in data
presentation and cases of low accuracy for select age group results. As introduced in the
description of the three-dose plots, inconsistent curve shapes as compared to the similarly
shaped curves in the two-dose plots are noted. Primarily, the three curves contain several
extended time periods with no change in the value on the y-axis, therefore implying
that there would be no greater probability of testing positive on one day following full
vaccine protection when compared to several days later. These “flatline” sections are
inconsistent with expected analysis results and are presented with significantly wide
confidence intervals (Moderna showing wider confidence intervals and longer periods of
flat behavior than Pfizer, although the low accuracy is noted for both curves).

Lower accuracy in three doses for individuals aged 20 to 39 is largely attributable to
limited population size. Whereas the total three-dose Moderna population for those 65 and
older was 11,713, the 20 to 39 group only had 527 reported recipients of three Moderna
doses. This significant difference in total populations would suggest that Kaplan–Meier
calculations for the smaller group could lead to longer periods of time between reported
positive cases. This consequently leads to prolonged intervals where the function S(t)
value does not change, since the number of individuals testing positive q(t) may persist at
zero for several days in succession. Hence, a difference in sample size is a limitation of the
model, which may impact the confidence in curve behavior. However, these differences do
not inhibit the drawing of generalized conclusions from the model results.

Although the plots are accompanied by wide confidence interval bands, the general-
ized presentation of the results is still considered valid due to consistent alignment with the
findings in other, more attuned Kaplan–Meier curves (i.e., the differences between Pfizer
and Moderna are consistent among all age groups).

A key assumption in this application of survival analysis is that the only factor impact-
ing positivity rates in the pandemic is vaccination—this approach neglects those factors
which may cause increases in positivity. This is to say, populations are assumed to be
equally interacting and behaving with no differences among age groups—all individuals,
irrespective of age or social status, are anticipated to experience comparable levels of
exposure to the virus. This assumption is categorically false, although necessary to employ.

It has been reported that in many applications of Kaplan–Meier models, independence
among cohorts, constant conditions, and equivalent non-survival risks for all cohorts
constitute required modeling assumptions to reflect the statistical nature of the particular
model [46]. While the assumptions made may not be considered fully realistic in all
scenarios, the disclosure of these assumptions as indicated herein provides an avenue
of interpretation that is conscientious of the limitations of the model and the variability
among members of a study population [46]. The unknown aspect of human behavior,



BioMedInformatics 2024, 4 2129

which impacts results such as those presented in survival analysis, can be considered a
“social factor”.

In this study, the social factor is considered as the reason for the oldest age category
having the lowest probabilities of testing positive, despite scientific knowledge that this
age group is less immunologically respsonsive to a dose of vaccine [47]. Since biologically,
the vaccine could work less effectively in those in the 65 and older demographic, the Kaplan–
Meier curves showing low positive testing probabilities are likely a result of the social
behaviors of this group, due to the cautious nature of those who are more aged and
vulnerable to severe disease, and the distancing of families from older generations during
the pandemic to protect the health of loved ones. It can be assumed that the social factor
protects this age group from excessive exposure, leading to fewer positive test data points
for computation in the survival analysis. Furthermore, the transient nature of younger
groups, including the working population, would cause increased exposure to the virus,
and, therefore, a higher number of positive cases, despite a potentially greater immunity
gain from the vaccines. Although social factors may differ significantly between age groups,
this trend is limited when comparing results within age groups.

Restrictions in the available data limited this study in comparing breakthrough in-
fections with the un-vaccinated Ontario population and single-dose recipients. The two
periods studied (Delta and Omicron peak periods) were matched intentionally with study
populations having received two and three vaccine doses, respectively, for two primary
reasons: to accommodate gaps in patient and testing data, and to accurately depict the
impacts of the vaccines as inoculation actively occurs in tandem with a wave of the pan-
demic. Since most of the population would have received a second dose several months
before the Omicron study period, only the three-dose regimen was considered in that period
to better reflect the benefits of the vaccine as it is being introduced during the ongoing
wave of infection.

While the application of the Kaplan–Meier model in this study does not expressly
re-design or innovate the model itself, a key success of this application has been continuing
to build consensus in statistical modeling while using the proven model in novel contexts.
Kaplan–Meier and survival analysis in the areas of COVID-19 breakthrough infections
and vaccine-related virus positivity for the province of Ontario is an untouched realm of
pandemic research. Although a standard and proven model is used in the study, the popu-
lation that was modeled and the relative imminence of further COVID-19 threats allow for
the introduction of a new Canadian perspective on the pandemic. Hence, this report on
Ontario’s temporal response and impacts of COVID-19 vaccines and waves of infection
delivers notable new insights.

7. Conclusions

A survival analysis approach to modeling and predicting vaccine success in the
COVID-19 pandemic is a virtually unexplored field, utilizing statistical estimation tech-
niques with widespread discussions of the monumental COVID-19 pandemic. Kaplan–
Meier estimates of the probability for testing positive show that marginal differences put
multiple doses of the Moderna vaccine across all ages at a slight advantage to those who
received Pfizer—maintaining this slight difference over time (in most cases, at least for
upwards of 30 days, and predicted to continue for longer periods). Those individuals 65
and older returned a small confidence interval result, showing an extended period of time
with negligible difference between the two vaccines, with less than 5% probability of testing
positive for the virus within a month post-third dose. At the same timestamp, the 20 to
39 (inclusive) age group presented the highest probability of testing positive; however,
the limited population size of this group caused wider confidence intervals. Although gen-
erally, the findings for this age category are indicative of higher positivity trends, the wider
confidence interval suggests slightly less precision in the computed results.

Finally, for all ages following two doses of either vaccine, there is a significantly
low probability of testing positive for as many as 30 days post-vaccination. The highest
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probabilities of positivity resided with those who received Pfizer compared to the lowest
probabilities associated with Moderna recipients.

The results of this survival analysis approach to vaccine characterization support the
general findings and directions of previous immunological studies, as well as broader
public health messaging that vaccines are successful, and although differences in each
immunization exist, their overall variances are negligible. As the Food and Drug Adminis-
tration in the United States set forth plans for the fourth doses of vaccines in fall 2022 [48],
the modeling-based insights into the vaccines support that additional doses during times
of peaking infection can substantially minimize risks of becoming infected (and infectious).
A probability of testing positive reaching values in excess of 20% after 38 days of full
effectiveness from a vaccine (Figure 3) indicates that the fall months function as a strategic
time for the rollout of additional inoculation to curb further spread of the virus. Survival
analysis is a practical approach to deriving generalized plots of post-vaccine probability of
infection. It is evident that higher uptake in the vaccination program, and multiple doses,
can help reduce the probability that individuals will experience COVID-19 symptoms, seek
testing, and receive a positive result. On this trajectory, fewer seriously ill cases can keep
the threat of the virus at bay and safeguard public health and safety.
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