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A B S T R A C T

Condition monitoring plays a vital role in ensuring the reliability and optimal performance of various
engineering systems. Traditional methods for condition monitoring rely on physics-based models and statistical
analysis techniques. However, these approaches often face challenges in dealing with complex systems and the
limited availability of accurate physical models. In recent years, physics-informed machine learning (PIML) has
emerged as a promising approach for condition monitoring, combining the strengths of physics-based modelling
and data-driven machine learning. This study presents a comprehensive overview of PIML techniques in the
context of condition monitoring. The central concept driving PIML is the incorporation of known physical
laws and constraints into machine learning algorithms, enabling them to learn from available data while
remaining consistent with physical principles. Through fusing domain knowledge with data-driven learning,
PIML methods offer enhanced accuracy and interpretability in comparison to purely data-driven approaches.
In this comprehensive survey, detailed examinations are performed with regard to the methodology by which
known physical principles are integrated within machine learning frameworks, as well as their suitability
for specific tasks within condition monitoring. Incorporation of physical knowledge into the ML model may
be realized in a variety of methods, with each having its unique advantages and drawbacks. The distinct
advantages and limitations of each methodology for the integration of physics within data-driven models are
detailed, considering factors such as computational efficiency, model interpretability, and generalizability to
different systems in condition monitoring and fault detection. Several case studies and works of literature
utilizing this emerging concept are presented to demonstrate the efficacy of PIML in condition monitoring
applications. From the literature reviewed, the versatility and potential of PIML in condition monitoring may
be demonstrated. Novel PIML methods offer an innovative solution for addressing the complexities of condition
monitoring and associated challenges. This comprehensive survey helps form the foundation for future work
in the field. As the technology continues to advance, PIML is expected to play a crucial role in enhancing
maintenance strategies, system reliability, and overall operational efficiency in engineering systems.
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1. Introduction

Throughout the last decade, Machine learning (ML) algorithms have
witnessed rapid development in a variety of industries for their efficacy
and ability to extrapolate patterns from data. Purely through available
data, ML models are capable of accurately representing the relation
between a given set of inputs and outputs with minimal human in-
terference. This property made ML models ideal for the representation
of complex systems in which the relation and parameters governing
behaviour are not easily obtained. Despite their many advantages,
however, ML models are not without their drawbacks.

In general, ML algorithms are a data-driven process that seeks
to derive the relationship between a given input and its respective
output. This process is generally performed in accordance with some
defined optimization algorithm, in which predictions made by the
model are evaluated and continuously adjusted to better represent the
data given. As can be expected, the performance of ML models is
heavily reliant on the data upon which they are optimized. Indeed,
restrictions to data quality and availability are amongst the main
concerns when choosing to work with ML (L’heureux et al., 2017). For
many engineering applications, the collection of sufficient quantities of
data to build a reliable model may be challenging, costly, and/or not
feasible due to time and resource constraints. A considerable amount
of clean, representative, and non-sparse data is required to properly
formulate the model (L’heureux et al., 2017). Insufficient quantities
and/or non-representative data often lead to a skewed representation of
system behaviour that is inconsistent with the true underlying physical
relationship, ultimately resulting in misleading conclusions. Further-
more, ML models are considered to be ‘‘black box’’ models, in which
intermediary information between input and output is not relevant nor
required in producing a correlation between some input and output.
That is to say, the underlying mechanism of a system is often not
considered in the development of these models, and while effective in
representing a system, may not further contribute to our understanding
of said system (Rudin, 2019).

With respect to the representation of systems based on prior knowl-
edge, physics-based modelling has also been traditionally employed.
However, models developed purely on the understanding of the system
see limited use in modelling real-world systems, due to the many
challenges to its applicability. First and foremost, physical models are
often computationally expensive to model (Jia et al., 2019). Due to
the computational complexity of most real-world physical systems, and
the variety of governing equations involved for each specific physical
agent or phenomenon, the cost required to fully model said systems
is considerable. Furthermore, physical models often represent an im-
perfect interpretation of the system, due to a missing or incomplete
understanding of the system.

Naturally, researchers have come to the realization that the com-
bination of physical and data-driven models was the next step in
the prediction and modelling of system behaviour. This paradigm of
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by Lagaris et al. (1998), who first demonstrated the use of artificial
neural networks (ANN) for solving ordinary and partial differential
equations. Karpatne et al. (2017) formally introduced this paradigm
in their study of theory-guided data science, outlining various avenues
of integration between domain knowledge and data-driven solutions.
Through this unification, new physics-informed models are capable of
benefiting from both physics-based and data-driven methods concur-
rently. Since their publication, a plethora of studies regarding the PIML
paradigm have been conducted. Various authors, most notably (Raissi
et al., 2019), further advanced the integration between theory and data
science with the introduction of Physics-Informed Neural Networks
(PINNs), whereby physical laws in the form of governing equations are
encoded within the neural network (NNs). The NN architecture and
properties made it especially suitable in their use case, for approx-
imating the solutions of Partial Differential Equations (PDEs). Raissi
et al. (2019) made use of the NN architecture in their demonstration
of a systematic methodology for solving non-linear partial differential
equations. Karniadakis et al. (2021) reviewed popular methodologies
by which the integration of physics and data-driven techniques takes
place, as well as presented their insights on limitations and potential
applications of the technique. Meng et al. (2022) also surveyed a
variety of work in the area of PIML, and presented a summary of
core motivations behind their development, popular physical governing
equations employed in various applications, as well as methods of
integration. From the literature, it is evident that despite their novelty,
applications of PIML have been prominent in a variety of fields.

For this survey, the applications of PIML methods within the context
of condition monitoring (CM) in various engineering applications are
examined. CM is an essential aspect of the engineering industry as
it plays a vital role in ensuring the reliability, safety, and efficiency
of assets. Implementations of PIML in this area involve the continu-
ous monitoring of various parameters such as vibration, temperature,
pressure, and other critical factors that can indicate the health state
of the asset monitored. Through continuous sampling of these param-
eters, engineers may identify potential problems before they occur,
and take corrective actions to prevent costly and unplanned downtime,
equipment failure, or even catastrophic accidents (Surucu et al., 2023).
Recent developments in PIML and information capabilities have led to a
wide variety of innovative methodologies for the integration of physical
knowledge for applications in CM. In the survey by Xu et al. (2022), the
authors have already outlined extensively, the specific applications of
PIML with CM. As such, rather than focusing on the specific applica-
tions, this survey aims to provide readers with an overview of recent
methodologies of integration between the integration of physics-based
knowledge with ML methods. The overall objective of this paper is thus
to provide readers with a foundation for comprehending its specific
applications, and a deeper understanding of the underlying principles
and mechanisms of PIML.

As will be discussed in the body of this survey, PIML learning
approaches offer distinct advantages over conventional ML techniques
due to their ability to incorporate fundamental physical laws and

principles into the learning process. PIML effectively combines the



Y. Wu et al. Expert Systems With Applications 255 (2024) 124678 
interpretive capabilities of ML algorithms with the foundational under-
standing of physics, leveraging prior knowledge to guide the learning
process. Often, this learning process results in a more accurate and
interpretable model. Furthermore, PIML methods benefit from reduced
reliance on vast amounts of labelled training data, as physics-based
guidelines for optimization can constrain the solution space and pro-
vide insights, even in data-scarce scenarios. In all, physics-informed
methods enable better generalization, robustness, and interpretability,
making them superior to conventional ML approaches in many scien-
tific and engineering applications. Furthermore, these methods offer
better explainability to the end user in the context of explainable
artificial intelligence (xAI), which is a growing consideration for the
wide adoption of AI techniques.

The literature survey is organized as follows: Section 2 provides an
outline of the search methodology in determining articles for review.
Section 3 provides a detailed explanation of the methodologies by
which physics may be integrated into data-driven solutions. Further-
more, the section also details the background of popular architectures
within the ML community, as well as how authors in various fields
seek to incorporate prior physical knowledge within these models.
Section 4 provides a summary and interpretations of recent trends,
with a focus on discussion pertaining to the advantages and limitations
of the methodologies surveyed. Finally, the survey is concluded and
summarized in Section 5.

2. Literature review methodology

This survey reviewed recent developments for integration between
physics-based modelling and ML with applications in CM and anomaly
detection. A total of 107 papers published were selected after screening.
From works tabulated, is evident that the paradigm of PIML has been
rapidly gaining popularity within the research community. In this
survey, search methodologies involve filter keywords such as ‘‘physics-
informed’’, ‘‘physics guided’’, ‘‘physics-based’’, ‘‘Machine learning’’,
‘‘condition monitoring’’, ‘‘fault detection’’, ‘‘anomaly detection’’, et
cetera. Searches were performed on platforms such as Google Scholar,
IEEE Xplore, Science-Direct, and ACM Digital Library. Results were
filtered based on relevancy, year, and citations.

In recent research, a significant trend towards integrating PIML
techniques has emerged. Specifically, a substantial number of studies
have employed physics-based techniques to modify the input feature
space of ML models, introducing physical knowledge through obser-
vational biases. These alterations to the input space enable models to
learn physically consistent relationships, thereby restricting mappings
that do not adhere to physical principles. This approach has gained
popularity due to its simplicity and effectiveness in enhancing model
performance. Additionally, the survey highlights the use of physics-
informed regularization techniques, where models are penalized based
on their deviations from physical principles. This methodology has been
applied in various works, demonstrating its effectiveness in incorpo-
rating prior knowledge of physical principles within the optimization
process of NNs. Furthermore, the survey identifies studies that explore
the incorporation of hard constraints through the design of NN architec-
ture, enhancing interpretability by directly relating learned parameters
and model outputs to physical quantities. These innovations offer a
deeper understanding of how algorithms predict and ascertain results,
thus improving the overall reliability and performance of the models.
The upcoming sections will delve into these findings in more detail,
discussing the methodologies, applications, advantages, and limitations
of integrating physics-based modelling and ML.

3. Physics-informed machine learning

This section details the background of PIML models, as well as

introduces several methods by which physical meaning may be em-
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bedded within data-driven solutions. Implementation of PIML varies
greatly depending on the field of application, and a diverse set of
implementation methodologies exists. In general, integration between
physics-based modelling with ML is typically accomplished through the
following frameworks and may be summarized:

1. Physics Embedded in Feature Space
2. Data-Enhanced Refinement of Physical Models
3. Physics-Informed Regularization
4. Physics-Guided Design of Architectures

Details of these will be discussed in the following sections.

3.1. Physics embedded in feature space

Perhaps the most straightforward method of integration between
physical principles with ML methods is the development of the feature
space of an ML model with physical modelling. Augmentations or
alterations to the feature space do not directly affect model archi-
tecture, and the resultant model is still considered to be a black-box
model, that is, a model capable of producing relevant results without
revealing information regarding the mechanisms by which the results
are derived (Karniadakis et al., 2021). By leveraging the fundamen-
tal understanding of the underlying physics, however, these methods
shape the feature space of a ML algorithm in a manner consistent
with the physical laws. This integration offers several advantages over
traditional ML approaches and leads to a more robust, and data-
efficient framework. Through this integration, ML algorithms may be
designed to exploit prior knowledge of physical relationships to be
more accurately and efficiently applied to a variety of engineering
applications. As described by Karniadakis et al. (2021), this form of
integration primarily concerned with the introduction of observational
biases to enhance the performance of ML models. Here, observational
biases refer to the specific measurements or features that embody
the underlying physics or prior knowledge about the system under
consideration. Through the incorporation of prior knowledge, the in-
troduction of observational biases through various input augmentation
procedures serves as a guide in constraining algorithm predictions to be
physically plausible. Various studies have demonstrated that algorithms
are more capable of identifying relevant features in comparison to
purely data-driven methods, leading to improved modelling capabilities
and reduced data limitations (Deng et al., 2022; Gitzel et al., 2021;
Leturiondo et al., 2017). Within the context of applications in CM, it
is often critical to have engineered features within the ML model that
are sensitive to changes in the condition of the asset and are capable
of properly differentiating nominal operational conditions from fault
conditions. Several approaches to this incorporation may be seen in
the literature. For example, physically generated parameters and vari-
ables may be employed as additional inputs within the feature space.
The addition of physics-informed features may be done either directly
in the form of an additional augmented dataset parsed through the
ML pipeline, or indirectly through methods such as transfer learning,
whereby the features from a physics-informed source domain are cap-
tured via the ML algorithm and re-purposed. Subsequent subsections
will discuss these methods of feature manipulation, with examples.

3.1.1. Physics-guided input feature augmentation
The field of ML has experienced tremendous growth in recent

years, and this growth has been fuelled in part by the availability
of large datasets for the expressive and representative training of ML
models (L’heureux et al., 2017). However, in the context of complex
engineering tasks, collecting and labelling large quantities of data
may be expensive, time-consuming, and in some cases, impractical
or impossible. Moreover, due to the black-box nature of ML models,
it is difficult to adjust the behaviours of the ML model purely from
adjustments to datasets, even when information regarding the system

is known beforehand.
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A prevailing solution in literature has been to use synthetically
generated features from system models to supplement or replace real-
world data, with the main advantage being that it allows for the
creation of large datasets with a high degree of variability, while
simultaneously adhering to governing physical principles. This property
is valued in many such engineering applications, where small quantities
of observational data available may not accurately reflect the full range
of operating conditions of a system or piece of equipment (Gardner
et al., 2021; Hopwood et al., 2022). For example, observational data
regarding specific fault conditions are rare and impractical to curate
in many such applications. Furthermore, due to the rarity and imprac-
ticality of inducing specific system faults, available datasets are often
imbalanced and severely skewed (Hopwood et al., 2022). This poses
significant issues for available ML algorithms and their performance, as
standard classifiers tend to overly focus on larger classes. As such, the
synthesis of physically relevant features or data represents an effective
methodology for obtaining clean, balanced datasets in these scenarios.

Limitations that this approach encounters are often with respect
to the accurate replication of the complexity of real-world operating
conditions, and the risk that the generated data will not accurately
reflect the behaviour of the equipment or system in question due to
incomplete or false prior physics knowledge (Serre, 2019). Despite
this, many authors have nevertheless elected to resolve this issue
through the generation of physically consistent synthetic features or
data through known physics regarding the system. In this fashion, the
generative model forms or supplements existing feature space with
tailored observational biases. The overall objective of this integration
is the detection of potential issues with a higher degree of accuracy,
with lesser requirements with respect to real-world data collection,
and improved overall adherence to the expected behaviour of the
system with respect to physical principles. A summary of recent works
implementing this framework is provided in Table 1.

Physics-based models may be used to simulate a wide range of phys-
ical systems. Through augmentation of feature space from said models,
ML algorithms may be trained to accurately predict the behaviour of
these systems based on grounded, albeit potentially incomplete physical
principles. This approach is preferred due to the ease of generation of
large quantities of generally reliable data, as well as its capability to
circumvent many practical and ethical concerns (de Melo et al., 2021).
For example, additional features may be extracted or generated through
knowledge of the system itself, forming an augmented feature space
1(A). Alternatively, large quantities of labelled data may be obtained
from parsing unlabelled inputs through a physical or numerical simula-
tion model, for a physically generated output. Thereafter, the labels and
generated outputs may be used in the training process, as illustrated by
Fig. 1(B).

Subtractive feature engineering involves mainly feature selection:
a technique commonly employed in ML algorithms to select features
that are relevant and meaningful to the problem. Leveraging physics-
based constraints, a physics-informed feature selection strategy may
aim to identify and retain the most critical features for accurate and
interpretable predictions. In addition to the plethora of implementa-
tions mentioned above, the action of generating synthetic data has
also been semi-automated through deep learning structures known as
generative adversarial networks. In these structures, a generator and
a discriminator NN are trained simultaneously via physics-informed
regularization to produce physically consistent synthetic data. More
information regarding the networks in particular, as well as several ex-
amples of implementations in literature may be found in Section 3.4.5:
Generative Deep Learning Networks.

Prior to the popularization of the PIML paradigm, early studies
have already made use of the various aforementioned advantages and
properties of physics-guided synthetic data generation to generate phys-
ically consistent results on a large scale for use in the training process
of data-driven models. Rather than defining the data-driven model

from scratch, the a-priori parameters or variables defined in or by the
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physics-based models are used to full effect. For example, early works
by Tian et al. (2015) and Frank et al. (2016) made use of informed
data pre-processing techniques and physical models to generate or
supplement the input feature spaces of their respective ML models.
In the work of Tian et al. (2015), the authors explored an informed
strategy for feature extraction with applications in the monitoring and
diagnosing of bearing faults within electrical motors. Known frequency
domain fault features were extracted via spectral kurtosis, and were
subsequently utilized to train a semi-supervised K-Nearest Neighbour
(kNN) algorithm. Frank et al. (2016) proposed a hybrid model for
fault diagnostics and anomaly detection in building energy usage. The
authors employed a high-fidelity system model to supplement available
data for use in data-driven models. Data generated comprises of the
system in both the healthy and faulty state and serves to supplement
available historical data from a statistical model, and observed data. A
variety of classification algorithms, such as the Support Vector Machine
(SVM), and Random Forest (RF) are presented to classify anomalous
behaviours from data. In more recent times, Karandikar et al. (2021)
proposed a logistic classification scheme to model the degradation of
machine tools making use of known physical laws as constraints to
the model. In their study, the non-linear physical relationship between
cutting speed and tool life is embedded through a logarithmic manip-
ulation of the input parameters. Transforms of input variables such
as cutting speed and time are used as the input feature space for a
logistic classifier model to ensure physical consistency with the Taylor
tool life model, enforcing linearity in the logarithmic space. Following
this, the logistic classifier outputs the probability of degradation state
in the tool. Similarly, Li et al. (2020) proposed a deep CNN-based
surrogate model for tool wear monitoring. The model employs high-
fidelity information from sensors, informed via physics-based methods
such as vibration modal analysis or finite element analysis. Physics-
based methods are employed to not only optimize the data collection
procedure by determining sensor placements but also as a feature
engineering mechanism for the construction of health indicators. A ML
model is subsequently trained to learn the relationship between low-
fidelity signals and established health indicators. Hao et al. (2023)
introduced a framework for the estimation of notch fatigue degradation
in poly-crystalline alloys through the embedding of various physical
parameters in the input feature space. Employing a sensitivity analysis,
key parameters governing the behaviour are identified: Physics-driven
parameters introduced involve un-notched specimen reference life, de-
rived from the Basquin model, stress state and stress ratio at the
notch root, from Neuber’s rule, and energy-type damage parameter
from the Smith-Watson-Topper model. In all, the Latin hypercubic
sampling-based PIML model introduced was shown to have superior
generalizability and predictive capabilities.

A common theme in existing literature, for applications involving
solid structures such as structural health or machinery health moni-
toring, is to employ finite element models to generate physical data.
With their inherent versatile and robust nature in simulating com-
plex real-world systems, finite element models provide a systematic
approach for predicting and analysing various physical behaviours
through the discretization of complex geometries into smaller elements.
More specifically, each element is modelled using mathematical equa-
tions that describe the physics governing the behaviour of the particular
element. In this format, governing or constitutive equations represent-
ing the physics of the system may be embedded within the feature space
of the ML model itself; equations governing physical phenomena such
as the laws of conservation of mass, momentum, and energy, as well as
material properties and boundary conditions may be represented and
loosely enforced. A variety of studies establishes the physical model
through finite element simulations in which the physics of the system is
incorporated via mathematical formulations. For example, Seventekidis
et al. (2020) utilized the finite element model as a source of simulation

data to train an ML model for damage identification problems for
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Table 1
Literature compiled for feature formation or augmentation using physics-based or physics-informed means, for use in machine learning algorithms.

Article title Citation Description Application

Motor bearing fault detection using spectral
kurtosis-based feature extraction coupled
with k-nearest neighbour distance analysis

Tian et al.
(2015)

Feature engineering with spectral kurtosis, with classification using
the k-nearest neighbour algorithm

Machinery fault diagnosis with
bearings

Hybrid Model-Based and Data-Driven Fault
Detection and Diagnostics for Commercial
Buildings

Frank et al.
(2016)

Feature engineering using first principles and empirical analysis,
classification with variety of classical machine learning algorithms

Anomalous behaviour detection in
building energy consumption

Physics-guided logistic classification for tool
life modelling and process parameter
optimization in machining

Karandikar et al.
(2021)

Taylor tool life relation with cutting speed applied to form input
feature space through logarithmic transformations, in conjunction
with a linear logistic classifier

Remaining useful life estimation
and state of health monitoring for
machine tools

A physics-informed machine learning
approach for notch fatigue evaluation of
alloys used in aerospace

Hao et al.
(2023)

Physic-driven parameters for augmenting input feature space,
regression using Support Vector Regression, Random Forest, and
XGBoost

Fatigue life estimations in
poly-crystalline alloys

Structural Health Monitoring using deep
learning with optimal finite element model
generated data

Seventekidis
et al. (2020)

Finite element simulation generated structural data, using
classification with convolutional neural networks

Structural health monitoring

A hybrid physics-assisted
machine-learning-based damage detection
using Lamb wave

Rai and Mitra
(2021)

Finite element models to form input feature space comprised of
damage specific features, for training a neural network

Structural health monitoring

A personalized diagnosis method to detect
faults in gears using numerical simulation
and extreme learning machine

Liu et al. (2020) Finite element simulation generated fault data, for use with
Extreme Learning Machine classification

Machine Condition Monitoring for
gearboxes

Solving and learning nonlinear PDEs with
Gaussian processes

Chen et al.
(2021)

Unified framework utilizing Gaussian processes to solve nonlinear
PDEs and inverse problems, offering guaranteed convergence and
computational efficiency

Solution of inverse problems
involving parameter identification
in PDEs

Physics-informed CoKriging: A
Gaussian-process-regression-based
multifidelity method for data-model
convergence

Yang et al.
(2019)

Multifidelity method, CoPhIK, which combines physics-informed
Kriging with Gaussian process regression to reduce optimization
costs in estimating hyperparameters

Reconstructing partially observed
functions like the modified Branin
function, estimating the state of
steady-state heat transport from
sparse observations, and learning
tracer distributions from sparse
concentration measurements.

Physics-informed machine learning model
for battery state of health prognostics using
partial charging segments

Kohtz et al.
(2022)

Finite element simulation of dominant degradation mode, Gaussian
process regression for learning relation between voltage curve and
solid electrolyte buildup

State of health monitoring and
remaining useful life estimation
for lithium-ion batteries

Physics-informed machine learning assisted
uncertainty quantification for the corrosion
of dissimilar material joints

Bansal et al.
(2022)

Finite element corrosion model to simulate the corrosion process,
generated data employed to train a Gaussian Process model

Structural health monitoring for
corrosion damage estimation

Hybrid deep fault detection and isolation:
Combining deep neural networks and
system performance models

Chao et al.
(2019)

Calibration-Based system performance models, informed feature
selection for variational autoencoder and artificial neural network
classification

Machinery fault diagnosis in
turbine engines

Fusing physics-based and deep learning
models for prognostics

Chao et al.
(2022)

Parameter estimation with physics-based models, classification with
artificial neural networks

Machinery fault diagnosis and
remaining useful life estimation
in turbine engines

Physics-informed neural networks for
electrode-level state estimation in
lithium-ion batteries

Li et al. (2021) Electrochemical-thermal model for the generation of synthetic data,
for use with an artificial neural network for estimation of
electrochemical state at different spatial positions

Remaining useful life estimation
and state of health monitoring of
lithium-ion batteries

A physics-informed machine learning model
for porosity analysis in laser powder bed
fusion additive manufacturing

Liu et al. (2021) Feature engineering with derivation of physical effects using
machine operating parameters, for use as feature space in a support
vector regressor

Monitoring for porosity buildup
in components during the
additive manufacturing process

Physics-informed Cyber-Attack Detection in
Wind Farms

Alotibi and
Tipper (2022)

Physics-based power inequalities as an indicator of deviations from
nominal operations, classification with the isolation forest algorithm

Anomalous behaviour detection
and monitoring of cyber–physical
assets

Physics-Based Method for Generating Fully
Synthetic IV Curve Training Datasets for
Machine Learning Classification of PV
Failures

Hopwood et al.
(2022)

Avalanche breakdown model simulations of string-level
current–voltage curves, detection with 1-dimensional convolutional
neural network

Fault detection and diagnosis in
photovoltaic cells

Hybrid model of a physics-based model and
machine learning for real-time estimation of
unmeasurable parts: Mapping from
measurable to unmeasurable variables

Kaneko et al.
(2022)

Multiple mass–spring–damper models for the generation of labelled
time series data, gated recurrent unit recurrent neural network for
the prediction of parameters

Estimation of parameters and
anomalous behaviour detection in
offshore drilling systems

Physics-informed deep learning for tracker
fault detection in photovoltaic power plants

Zgraggen et al.
(2022)

Generation of fault data through physics-informed corruption of
operational data, classification with a 1-dimensional convolutional
neural network

Fault detection and diagnosis in
photovoltaic power plants

A Combined Machine Learning and
Physics-Based Tool for Anomaly
Identification in Propulsion Systems

Darr et al.
(2023)

Automatic simulation of anomalies in fluid networks with real-time
fault detection and classification using long short-term memory
recurrent neural network

Anomalous behaviour detection in
propulsion systems, Automation
of Simulation of Anomalies

(continued on next page)
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Table 1 (continued).
Article title Citation Description Application

Physics-informed long short-term memory
networks for response prediction of a
wind-excited flexible structure

Tsai and Alipour
(2023)

Data generation through mathematical model optimized
aerodynamic and aeroelastic parameters for the response of the
structure, with a long short-term memory prediction framework

Structural Health Monitoring

A novel scalable method for machine
degradation assessment using deep
convolutional neural network

Li et al. (2020) Establishment of health indicators via high-fidelity physics-based
methods. Convolutional Neural Network employed to map
monitored low-fidelity data to established health indicators

Machinery degradation modelling
and remaining useful life
estimation

Real-Time Faulted Line Localization and
PMU Placement in Power Systems Through
Convolutional Neural Networks

Li et al. (2019a) Feature engineering based on substitution theory, convolutional
neural network based classifier for fault localization

Fault diagnosis and localization in
electrical grids

Comparative Study between
Physics-Informed CNN and PCA in Induction
Motor Broken Bars MCSA Detection

Boushaba et al.
(2022)

Extraction of fault correlated features in the frequency domain
through Fourier transforms and processing in the frequency domain
for physically relevant features, detection via convolutional neural
networks

Anomalous behaviour detection in
induction motors

Physics-informed machine learning for
sensor fault detection with flight test data

Silva et al.
(2020)

Dynamic mode decomposition with control to extract dominant
features, classifications with decision tree

Anomalous behaviour detection
for sensor faults in commercial
flight test data

Physics-Informed Machine Learning for
Degradation modelling of an
Electro-Hydrostatic Actuator System

Ma et al. (2023) Features and model hyperparameters selection through failure
mechanism of system, classification with a long short-term memory
network

State of health monitoring for an
electro-hydrostatic actuator
system

Roll Wear Prediction in Strip Cold Rolling
with Physics-Informed Autoencoder and
Counterfactual Explanations

Jakubowski
et al. (2022)

Generation of new physics-driven features correlated to physical
wear of asset, for use in training an autoencoder for wear prediction

Machinery health monitoring for
degradation prediction

Physics-Informed Feature Space Evaluation
for Diagnostic Power Monitoring

Green et al.
(2022)

Feature selection through evaluation of relevance through time,
feature separability check using geometric overlap with respect to
hyper-ellipsoidal regions, evaluated through SVM and neural
network.

Condition monitoring and power
monitoring om electro-mechanical
system
Fig. 1. General outline for the process of the generation of synthetic data via physics-based methods.
structural health monitoring applications, with the procedure employed
following the general scheme illustrated in Fig. 1 (B).

The health state classification model is trained solely on labelled
structural response vibrational data generated through a finite element
model in various loading conditions. The resultant CNN-based classifier
was applied to a benchmark linear beam structure with good accuracy
in determining damage states. Rai and Mitra (2021) employed an ANN
for damage localization and detection under the lamb wave response in
an aluminum sample. In their work, various finite element simulations
are employed for the construction of damage-specific features, in a
system which the authors have termed the damage parameter database.
Subsequently, the database is used as the input layer in the training
process of an ANN, whereby parameters are updated using the robust
Levenberg–Marquardt algorithm. Liu et al. (2020) similarly employed
finite element methods for the simulation of fault data. In their work,
the authors introduced a gearbox fault diagnostics pipeline whereby
finite element methods were employed to numerically simulate fault
samples during gearbox operations. Signals obtained are separated into
the time and time–frequency domains for use in the generation of fault
samples in training an extreme learning machine model. Bansal et al.
(2022) studied the effect of galvanic corrosion on joints comprised of
differing materials. The authors proposed a framework whereby feature
selection is performed based on results from physical simulation. More
specifically, a finite element model was employed to simulate material
loss due to galvanic corrosion, while taking into account environmental
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factors. Subsequently, based on the results of a sensitivity analysis,
parameters most correlated to material loss are selected as features for
use in PIML-based surrogate modelling of the joints.

In the realm of complex system modelling, Generalized Processes
(GPs) stand out as a type of Bayesian nonparametric model. GPs
offer inherent capabilities for uncertainty quantification (UQ), which
is suitable in modelling complex systems where predictive confidence
is required. The viability of GPs in PIML is well-demonstrated in recent
literature. Chen et al. (2021) showcases the application of GPs to solve
and learn from nonlinear PDEs in their work. This study highlights how
GPs can effectively leverage the structure of PDEs to guide the learning
process, enhancing both accuracy and interpretability. The authors
introduce a framework for solving nonlinear PDEs and inverse problems
involving parameter identification in PDEs using GPs. The proposed
approach provides a natural extension of collocation kernel methods
to nonlinear PDEs and inverse problems, ensuring guaranteed conver-
gence for a wide class of PDEs and enabling the computation of error
bounds for specific PDE approximations. It achieves this by reducing
the infinite-dimensional optimization problem to a finite-dimensional
one through the introduction of additional variables representing the
derivatives of the solution at collocation points. The resulting optimiza-
tion problem is efficiently solved using a variant of the Gauss–Newton
method, which interprets solving successive linearizations of the non-
linear PDE. Moreover, the computational complexity of the method
aligns with state-of-the-art solvers for dense kernel matrices, making it
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practically applicable. Unlike traditional approaches, the algorithm si-
multaneously solves for both parameter and PDE solution, enhancing its
efficiency. Experimental validation on various nonlinear problems, in-
cluding nonlinear elliptic PDEs, Burgers’ equation, regularized Eikonal
equation, and permeability identification in Darcy flow, demonstrates
the efficacy and versatility of the proposed framework. Furthermore,
the paper lays the groundwork for theoretical analysis, suggesting new
research directions for generalizing analysis techniques from linear re-
gression to the proposed collocation setting for solving nonlinear PDEs.
Future directions include addressing issues such as the uniqueness of
the solution and convergence rates, obtaining rigorous error estimates,
learning hierarchical kernel parameters, and connecting the framework
to Bayesian IPs with non-Gaussian priors. The key contributions of this
work include capturing the underlying physics of complex dynamical
systems and enabling accurate predictions with robust UQ. This ca-
pability is particularly valuable for simulations and modelling where
traditional methods may fall short due to computational constraints
or lack of analytical solutions. Another significant work is presented
by Yang et al. (2019). This work introduces a multi-fidelity modelling
approach that integrates high-fidelity and low-fidelity data with physi-
cal laws using CoKriging, an advanced form of the Gaussian Process.
The study underlines the importance of multi-fidelity modelling in
PIML, where different sources of information, such as experimental
data and simulations at various resolutions, can be fused in a princi-
pled manner to improve predictions and UQ. Yang et al. demonstrate
how physics-informed CoKriging can effectively assimilate disparate
data sources while maintaining compliance to physical laws, thereby
achieving efficient convergence between data and models. The paper
proposes a new method called physics-informed CoKriging (CoPhIK)
for multifidelity Gaussian process regression. CoPhIK combines high-
fidelity data (e.g., observations) with low-fidelity data (e.g., outputs
from a stochastic physical model) to improve accuracy. It constructs a
low-fidelity GP using physics-informed Kriging (PhIK) and models the
discrepancy between low- and high-fidelity data using another param-
eterized GP. This approach reduces the optimization cost for inferring
hyperparameters by incorporating partial physical knowledge. The pa-
per proves that the method satisfies physical constraints up to an error
bound. Additionally, CoPhIK is combined with a greedy active learning
algorithm to guide the selection of additional observation locations.
The efficiency and accuracy of CoPhIK are demonstrated in reconstruct-
ing functions, reconstructing the state of a heat transport problem, and
learning a tracer distribution from sparse measurements. This multi-
fidelity approach allows for the combination of detailed, high-accuracy
data with more readily available, lower-accuracy data, providing a
comprehensive understanding of the system being modelled. By doing
so, it enhances the model’s predictive capabilities while maintaining
computational efficiency. Kohtz et al. (2022) employed a Gaussian
process regression for prognostics and estimating the remaining useful
life of a lithium-ion battery. The effect of the dominant degradation
process, the build-up of solid electrolyte interface, is modelled from
a physical finite element simulation. Subsequently, results from the
physical model are used in combination with experimental data to train
a co-kriging-based multi-fidelity model. Through the model, an empiri-
cal relation between measured voltage curves and the state of health
of the lithium-ion battery is derived. In all, the probabilistic nature
of GPs provides a clear advantage The ability to quantify uncertainty
in predictions not only improves the reliability of the model but also
provides valuable insights into the confidence of the predictions. This
is particularly important in CM applications, where decisions based
on model predictions can have significant consequences. The ability
to assess and communicate the uncertainty associated with predictions
ensures that users can make informed decisions, taking into account the
potential risks and variability in outcomes.

Incorporation of synthetically generated data or features may prove
invaluable in systems where data collection remains a limiting factor.

PIML models are commonly employed to estimate difficult-to-observe
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variables in a variety of applications. Leveraging physical constraints,
models are capable of providing insights into the behaviour of complex
systems, even when direct measurements are limited or unavailable.
For instance, in the work of Chao et al. (2019), the authors explore
a hybrid approach for fault detection and isolation in engines. In
their study, a physical model of an engine is constructed and non-
observable process variables are inferred with the Unscented Kalman
Filter. Through this process, the authors effectively enhance the feature
space of the two data-driven diagnostics models explored, based on
ANNs and Variational Auto-Encoders (VAEs) respectively. Using this
study as a basis, the authors further expanded on this model with
their proposed hybrid framework for prognostics and Remaining Useful
Life (RUL) estimation in a fleet of engine systems. In another study
by the same author, a physical model of the system was employed
to estimate difficult-to-measure parameters of the system relating to
component health. In combination with observed data, the estimated
parameters are fed in as data to a NN, forming a physics-augmented
feature space (Chao et al., 2022). Further examples include the work
of Darr et al. (2023), who sought to detect and alleviate issues associ-
ated with anomalies in propulsion systems during launch. Darr et al.
(2023) proposed a novel data generation scheme that automates the
process of physical simulations for the creation of anomalous data.
The group utilized an LSTM network for the detection of anomalous
behaviours and events. Alotibi and Tipper (2022) created a framework
for the detection of false data injection attacks on the operation of wind
turbines. Monitored parameters such as power output from the physical
asset are parsed through a physics-based model, whereby based on
the law of kinetic energy, augments the available feature space for
ML. A physics-informed Isolation Forest is employed to perform the
anomaly detection. The algorithm combines historical temporal data
from measurements with feature augmentations from the physics-based
model to create an ensemble of Random Forests for anomaly detection.
The authors demonstrated the increase in anomaly detection accuracy
of the integration of physics in their proposed framework by applying
the framework to a real-world dataset.

Concerning monitoring the state of health in electrochemical ap-
plications, Li et al. (2021) employed a high-fidelity electrochemical-
thermal physical model for the generation of non-observable data
regarding the electrochemical states in batteries. Variables generated
such as lithium-ion concentrations and electric potentials were used in
the training process of a NN which learns the nonlinear relationship
between observable data and data which cannot be measured physi-
cally. In another study by Hopwood et al. (2022), the authors primarily
employed physical modelling to overcome cost issues associated with
the high-fidelity CM of photovoltaic arrays. Hopwood et al. (2022) pro-
posed a fully synthetic training dataset based on physical simulations of
photovoltaic arrays in the healthy state, partial soiling fault state, and
cell crack fault state, whereby the framework is illustrated in Fig. 2.
Data generated were employed to train a 1-dimensional CNN for the
classification of fault states, and the effectiveness of this approach was
validated with observational data. From experimentation, the accuracy
of the ML model trained on the synthetic dataset was identical to
that of the observed data. A similar strategy is employed by Zgraggen
et al. (2022), utilizing synthetically generated data to supplement avail-
able labelled fault data. Due to the scarcity of labelled data for fault
scenarios, the authors proposed a fault generation strategy via physics-
informed corruption of available normal operational data, based on
a model of the correlating irradiance and power produced given the
tilt angle of tracking sensors. Through the physical model, the group
augmented training data for a CNN model in diagnosing anomalous
conditions of tracking sensors in a fleet of solar panels in a photovoltaic
power plant.

Concerning applications in health monitoring in structural com-
ponents, Tsai and Alipour (2023) further automated the process of
data generation through their proposed LSTM for monitoring and re-

sponse prediction of a structure subjected to excitation by wind. The
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Fig. 2. Data augmentation was employed to incorporate simulated fault and operation data for the training process of a ML fault classification algorithm.
Source: Adapted from Hopwood et al. (2022).
Fig. 3. The hybrid model features physics-based modelling as a basis to map the observable parameters to unobservable parameters, for input to the ML algorithm.
uthors employed a mathematical model based on optimized aerody-
amic and aeroelastic parameters to generate synthetic data on the
esponse of the structure. To further facilitate data generation and
void the computational cost that is associated with the mathematical
odels, the mathematical model was employed to train an interme-
iary LSTM network to automate the generation of large quantities
f data while maintaining relative adherence to physical principles
f structural response. Data generated from the simulated response
as further employed to train an LSTM classifier, in conjunction with
onitoring data to predict structural response. Similarly, Kaneko et al.

2022) employed a physics-informed data generation scheme for the
stimation of non-observable parameters in offshore drilling systems.
nput data for the model are generated through a physical model of
he system, whereby various input parameters are fed into the system
o obtain the measurable data and identify the unmeasurable data. The
eneral process of which is illustrated in Fig. 3.

Subsequently, a Gated Recurrent Unit (GRU) type recurrent neural
etwork (RNN) is trained to derive the relation between the various
nputs, outputs, parameters, and measurable data from the physical
odel, and the unmeasurable data. Liu et al. (2021) proposed a novel

eneralizable physics-informed model for the monitoring and predic-
ion of porosity during the additive manufacturing process. Rather

han directly correlating machine operating parameters to porosity
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buildup within the part, the authors instead derived the direct phys-
ical effects of machine operating parameters such as energy density
and pressure distribution. Using physical interpretations as the input
feature rather than the machine parameters allows for a generaliz-
able, machine-independent diagnostics framework yielding superior
predictive capabilities.

In addition to augmenting the input feature space, physics-guided
methods have also been employed for feature selection and feature
engineering. Through the integration of physical constraints, equations,
or relationships into the feature selection algorithm, practitioners are
better capable of identifying essential features that align with under-
lying physical mechanisms, providing a more robust and interpretable
model for data analysis, prediction, and decision-making. In the work
by Li et al. (2019a), the authors proposed a feature vector with physical
interpretations based on the principles of substitution theorem for fault
localization in a power grid system. The feature vector was parsed
through a CNN to drastically lower the required network complexity
for effective fault localization. Another example of this is apparent in
the work of Boushaba et al. (2022), whereby the authors compared the
effectiveness of a physics-informed CNN approach for the detection of
faults within induction motors. Of note in their study, prior to classifi-
cation with the network devised, measurements from the motor current

signature analysis were pre-processed in the frequency domain through
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Fig. 4. Physics based pre-processing of input data.
Source: As adapted from Boushaba et al. (2022).
Fourier transforms to form the input to the network, as illustrated in
Fig. 4.

Here, the pre-processing step mainly serves as a method for fea-
ture selection, extracting certain sub-bands from the signal spectrum
correlating to faulty components. Silva et al. (2020) automated the
process of sensor fault detection in a system with multiple fault classes.
Due to the complexity and high dimensionality of the system, Dynamic
mode decomposition with control (DMDc), as defined by Proctor et al.
(2016), was employed to identify a linear time-invariant model of
sensor readings with respect to time. Although DMDc is data-driven, the
methodology itself allows practitioners to identify and extract underly-
ing coherent structures, or modes, from complex data. From this, DMDc
may reveal the dominant patterns of behaviour in a system and provide
insights into its underlying physics. The model is applied with a Kalman
observer, which provides an estimate of sensor measurement variables
of the healthy state in real time. For the classification of anomalies, fea-
tures are in part derived from the DMDc procedure. During validation,
features expected by the decision tree may be computed with the linear-
time invariant system, and measurement anomalies are classified. Ma
et al. (2023) investigated the degradation mechanism of an electro-
hydro-static Actuator system by employing a physics-informed Long
Short Term Memory (LSTM) network. Due to the complexity of the
degradation mechanism, the authors performed a physics-informed se-
lection of features, and model hyperparameters were performed based
on the failure mechanism of the system. In their study, the physical
state of the system is represented by a physical parameter indicator:
the rise time. Based on the physical state of the system, the monitoring
dataset is selected and split into a training and test dataset, which is em-
ployed to train and evaluate an LSTM network. Evaluation of network
performance with different hyperparameters is performed through the
selected dataset, and the parameters corresponding to the most accu-
rate predictions are selected. Finally, in the work of Jakubowski et al.
(2022), the authors proposed a physics-informed autoencoder model
for the estimation of roll wear in equipment during the process of
cold-rolling. Similar to the above cases, input space augmentation was
performed employing physics-based simulation models. In this case,
information for parameters relevant to wear from cold-rolling, such
as friction coefficients and forward slip, was generated with the prior
knowledge available. The roll wear prediction is performed with an
autoencoder, whereby data extracted from early stages of degradation,
in conjunction with physically derived features, were utilized to train
the autoencoder. Predictions for roll wear were performed based on
deviations from the established nominal state. Furthermore, through
counterfactual explanation methods, the authors sought to improve the
interpretability of predictions from the network.

Authors have also proposed methodologies for the selection of fea-
ture space subject to evolution over time. Green et al. (2022) presents a
strategy for a physics-informed feature space evaluation in the monitor-
ing of electro-mechanical loads. Features were curated based on a load
separability verification, in which the reliability of past training data
for future classifications is evaluated. The underlying physics of the
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deviation over time is represented via the geometry of hyper-ellipsoidal
regions generated by principle component analysis. Through this, the
authors addressed the issue of separability in a system under a multi-
load scenario subject to operational or degradation drift. The authors
have demonstrated the effectiveness of their approach through both
linear and non-linear classifiers, namely an SVM and a NN. Overall,
feature augmentation by means of previously known physical principles
represents an easy-to-implement approach to enforce soft constraints to
ML algorithms. By tailoring the feature space in which the algorithm
specifically is consistent with physics, the predictive capabilities of
the algorithms are more likely to fall within the domain of physical
feasibility. Conversely, while the models may be built upon physically
consistent training data, the method by which they arrive at their
predictions remains an enigma to practitioners. Furthermore, the loose
constraints to the feature space of the model, rather than the model
itself make these types of algorithms especially prone to occasional
predictions that are inconsistent with physical laws.

3.1.2. Transfer learning
Another method of integration for ML algorithms may be through

the Transfer learning (TL) procedure. TL is a technique commonly
employed in ML and deep learning applications, whereby a model
trained to perform a certain task is adapted to perform alternate tasks
sharing similarities to the original. It has become prominent due to its
ability to improve performance and reduce training requirements and
has seen a great deal of use in applications such as image analysis,
natural language processing, and speech recognition for its time and
data efficiency. With transfer learning, the pre-trained model effectively
acts as a vessel for feature extraction, leveraging learned features from
the source domain and re-purposing for the target domain. Through this
process, training time and resources required are drastically reduced,
making TL suitable for mitigating the cost of complex deep learning
architectures. A summary of compiled works may be found in Table 2.

According to the definition by Pan and Yang (2010), the transfer
learning framework operates on the source domain 𝐷 whereby 𝐷 =
{ , 𝑃 (𝑋)}, defined by input features space  and marginal probability
𝑃 (𝑋). Here, 𝑋 represents a sample data, comprised of vectors from the
feature space: 𝑋 = {𝑥1,… , 𝑥𝑛}, 𝑥𝑖 ∈  . Similarly, a label space may
be defined for the data as  . Thus, for a defined domain, a task 𝑇
may be defined as 𝑇 = { , 𝑃 (𝑌 |𝑋)} = { , 𝜂}, 𝑌 = {𝑦1,… , 𝑦𝑛}, 𝑦𝑖 ∈
 , whereby the predictive function 𝜂 is learned from labelled data
pairing of

(

𝑥𝑖, 𝑦𝑖
)

, such that 𝜂
(

𝑥𝑖
)

= 𝑦𝑖. For a given target domain
𝐷𝑡 and unknown learning task 𝑇𝑡, the objective of a transfer learning
framework is to employ a learned predictive function 𝜂 based on latent
knowledge gained from source domain 𝐷𝑠 and known learning task 𝑇𝑡.
Currently, TL frameworks have been used extensively in deep learning
applications. Due to the universal approximation capabilities of NNs,
the predictive function may easily be approximated by the non-linear
feed-forward function. A general scheme of the operations in a typical
TL framework may be seen in Fig. 5.

In literature, there are two main methodologies by which transfer
learning may be incorporated into the PIML framework: Leveraging
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Table 2
Literature compiled for studies employing transfer learning algorithms to learn physically relevant features.

Article title Citation Description Application

Fault Cause Assignment with Physics Informed
Transfer Learning

Guc and Chen
(2021)

Dynamic mode decomposition with control extracts
features representing physics of dynamics,
continuous wavelet transforms represents modes in
the time–frequency domain, classification with
pre-trained GoogLeNet CNN

Fault diagnosis in fault source separation in
sensor-actuator system

Sensor Fault Diagnostics Using Physics-Informed
Transfer Learning Framework

Guc and Chen
(2022)

Dynamic Mode Decomposition with control
extracts features representing physics of dynamics,
Continuous Wavelet Transforms represents modes
in the time–frequency domain, classification with
pre-trained GoogLeNet CNN

Fault diagnosis and fault source separation
in sensor-actuator system

A physics-informed transfer learning approach for
anomaly detection of aerospace cmg with limited
telemetry data

Gong et al. (2021) Neural network established to represent the system
in the healthy state, based on power balance
equations, parameters of the network defined as
degradation features fixed for a healthy state, with
fine-tuning to account for degradation conditions.
Anomaly detection via kernel density estimation

Anomalous behaviour detection in
aerospace control

Physics-guided, data-refined modelling of granular
material-filled particle dampers by deep transfer
learning

Ye et al. (2022) Artificial neural network trained on physical model
based on governing and constitutive equations of
particle dampers, re-calibrated on high-fidelity
observational data

State of health monitoring for particle
dampers

Using Transfer Learning to Build Physics-Informed
Machine Learning Models for Improved Wind Farm
Monitoring

Schröder et al.
(2022)

Artificial neural network pre-trained on
Monte-Carlo simulation database of turbines
operation data, re-calibration with available data

Anomalous behaviour detection in wind
turbine sensor data

Multi-fidelity physics-informed machine learning
for probabilistic damage diagnosis

Miele et al. (2023) Artificial neural network trained on low-fidelity
finite element simulation, transference of low
fidelity trained layers and re-calibration with
high-fidelity finite element simulation data

Structural health monitoring in concrete
structures

Intelligent fault diagnosis of machinery using
digital twin-assisted deep transfer learning

Xia et al. (2021) Sparse de-noising autoencoder trained on fault
conditions produced by a digital twin of asset

Fault detection and diagnosis in pump
system

Digital-twin assisted: Fault diagnosis using deep
transfer learning for machining tool condition

Deebak and
Al-Turjman (2022)

Stacked sparse autoencoder trained on simulated
dataset

Condition monitoring for machine tools

Structural damage detection based on transfer
learning strategy using digital twins of bridges

Teng et al. (2023) Convolutional neural network trained on a digital
twin of asset

Structural health monitoring of bridge
Structures

Digital twin-driven intelligent assessment of gear
surface degradation

Feng et al. (2023) Convolutional neural network trained on digital
twin of asset

Condition monitoring for gear surface
degradation
Fig. 5. Illustration depicting the principles and functioning of Transfer Learning, a technique in ML that leverages knowledge gained from one task to improve performance on
another related task.
the source domain, the trained model may be transferred to the target
domain in various engineering applications. Source domains may be
modelled based on physical models, or are defined such that the
model is physically sound and consistent with physical principles. In
traditional ML approaches, models are trained from scratch on large
10 
datasets, which may be a resource-intensive and time-consuming pro-
cess. Physics-based models can provide a more accurate representation
of the underlying system dynamics than purely data-driven models,
which can be limited by the quality and quantity of available training
data. By incorporating prior knowledge regarding underlying system
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dynamics in the form of physics-based models, transfer learning can
reduce the computational complexity of the model and enable more
efficient training and inference (Torrey & Shavlik, 2010; Zhuang et al.,
2020). Alternatively, physics-based or physics-informed data may be
parsed as the target domain training data. The model is fine-tuned using
a smaller dataset specific to the target problem, containing features
related to the target problem in the physics domain. By initializing
the model with the pre-trained parameters, the model already has
a degree of knowledge regarding features to be learned, enabling
faster convergence during fine-tuning. Fine-tuning allows the model
to adapt its representations to the specific features of the target prob-
lem, thus customizing the pre-trained model for the new task. In this
approach, the source domain acts more as a supporting library of
learned features, allowing the TL framework to leverage said features
to significantly relax target domain data requirements and expedite the
training process.

Examples of the TL methodology may be seen in the work of Guc
and Chen (2021), who proposed a method of fault source identification
of complex and dynamic systems through their physics-informed CNN.
Through dynamic mode decomposition, a physical representation of
the system may be constructed in the form of linear reduced-order
spatial–temporal modes. Dynamic mode decomposition modes are then
formulated into images in the time–frequency domain by means of
continuous wavelet transforms. Fault conditions are classified via a
CNN image classifier, leveraging a pre-trained network structure known
as GoogLeNet (Szegedy et al., 2015) to take advantage of learned
features from other domains. The Googlenet architecture is composed
of 22 main layers and employs the inception architecture with weighted
Gabor filters. The authors later extended this proposed framework to
perform diagnostics on the various faults that are prevalent in sensors.
The effectiveness of their proposed framework is demonstrated experi-
mentally with the real-time velocity control of the target system (Guc
& Chen, 2022).

Through pre-trained models that have already learned relevant
features, transfer learning can reduce the amount of labelled data
required for training. Instead of training a model from scratch on the
new dataset, the pre-trained model can be adapted to the new task
by updating select layers in the network. Specific to the field of CM
and anomaly detection, physics-based models have been employed to
alleviate the issue of limited labelled data. In many cases, labelled
data for a specific machine or failure mode may be scarce, making
it challenging to train accurate models. By generating synthetic data
using physics-based models, practitioners can augment the training
dataset and improve the model’s ability to generalize to new data.
For instance, Gong et al. (2021) facilitated the process of anomaly
detection on an aerospace control moment gyro through a physics-
informed transfer learning NN. Through this framework, they were
able to overcome the limitations in data with regard to the telemetry
signals monitored. The non-linear relationships between telemetry sig-
nals are captured with an ANN approximating the power consumption
behaviour. Subsequently, the degradation of the system is captured
through a transfer learning approach, whereby the last layer of the
NN model for the healthy state is fine-tuned to represent the new
degradation state. A performance index was constructed based on the
Mahalanobis distance, and anomaly detection was performed with
the kernel density estimation approach. Similarly, Ye et al. (2022)
employed a multi-fidelity framework, physics-based low-fidelity data
generated is employed to pre-train a NN, such that when used with the
limited amount of high-fidelity experimental data available, the net-
work demonstrated robust characterization of granular material-filled
particle dampers. Schröder et al. (2022) applied the transfer learning
paradigm for anomaly detection based on the operating behaviour of a
wind turbine through a physics-constrained ANN. The network was pre-
trained on data generated by a physics-based Monte-Carlo simulation,
and the transfer learning of data from the physical simulation was

validated in the detection of anomalies in turbine blade angles through
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monitoring data. With limited data, the model demonstrated superior
capabilities in both prediction accuracy and robustness due to the
incorporation of physical constraints from the pre-trained network.
More recently, Miele et al. (2023) proposed a transfer learning-inspired
NN framework for structural health monitoring applications. Due to
computational restrictions of high-fidelity models, the authors elected
to train the network initially on a low-fidelity physical model derived
from a 2-dimensional finite element simulation. Model weights are
held constant, and an additional layer is added to the NN structure
to re-calibrate the model with high-fidelity 3-dimensional finite ele-
ment simulation. The resultant model is validated in producing the
probabilistic classification in a sample concrete specimen.

A common form of physically constrained data of the source domain
comes from digital twins (DTs). DTs are virtual replicas of physical
systems or processes that mimic their real-world behaviour in a digital
environment. They are created by using a combination of sensor data,
physics-based models, and ML algorithms to create a digital represen-
tation of the system or asset. DTs have been extensively utilized in
applications such as predictive maintenance and CM, and have gained
significant attention in recent years due to their ability to improve
the efficiency and effectiveness of various engineering tasks (Liu et al.,
2022). A generalized formulation for employing the DT framework in
conjunction with ML may be seen in Fig. 6.

One of the key benefits of DTs is that they allow for real-time
monitoring, analysis, and optimization of physical systems, enabling
users to identify potential problems and make informed decisions to
improve performance and efficiency. In literature, there has been grow-
ing interest in using DTs in conjunction with ML algorithms to create
PIML frameworks. The idea behind this approach is to use data from
DTs to train ML models that can then be applied to real-world systems
to predict their behaviour and optimize their performance. TL presents
a valuable strategy for optimizing the computational resources required
in deploying DTs for CM. While it facilitates domain adaptation by
leveraging knowledge from pre-existing models or domains, thereby
improving efficiency and accuracy, it does not entirely alleviate the
computational burden inherent in developing and deploying digital
twins. Instead, TL streamlines the process by accelerating convergence
and reducing data requirements for training the ML model, enabling
more efficient utilization of available resources. In the context of DTs
for CM, transfer learning can be used to build a framework that lever-
ages pre-existing DTs models to accelerate the development of PIML
models. In general, the framework for deploying DTs in conjunction
with TL is as follows:

1. A high-fidelity digital twin model of the physical system or pro-
cess of interest is developed, capable of simulating the system’s
behaviour under various conditions.

2. Through the DT model, a large dataset of simulated data may
be generated by varying the system’s input parameters and
monitoring the system’s output variables.

3. This dataset is then used to train an ML model to predict the
system’s behaviour. Knowledge is transferred from the source
domain, the DT model, to the target domain of a specific CM
task with transfer learning.

4. Subsequently, models are fine-tuned on a smaller amount of
real-world data to improve their performance on the target
system.

Real-world data is used to adjust the model’s parameters to better
fit the specific system’s behaviour. Once trained, the adapted ML model
may be deployed to predict the system’s behaviour and or to detect
anomalies or deviations from normal operation. Several examples of
the above framework have been utilized for various engineering tasks,
for example: Xia et al. (2021) proposed a transfer learning framework
for diagnosing faults of a triplex pump system. A Digital twin of the

physical asset was constructed to generate data that is consistent with
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Fig. 6. Representation of the application of Transfer Learning in the context of Digital Twins, a virtual representation of a physical entity or system, showcasing the transfer of
knowledge from a pre-existing Digital Twin.
underlying physical constraints on the system. Along with this, the
authors also proposed a novel deep de-noising auto-encoder. In con-
junction with the healthy state data generated by the digital twin, the
autoencoder is pre-trained. Subsequently, the architecture may then be
employed for anomaly detection in the physical machine. On the same
topic, Deebak and Al-Turjman (2022) proposed a similar transfer learn-
ing framework featuring DT-assisted fault diagnosis, focusing mainly
on CM for machine tools and equipment. The authors resolved the
issue with the lack of real-world data through their proposed stacked
sparse autoencoder structure, reducing the amount of physical data
required for accurate predictions by the network, and improving the
overall robustness of the model. Teng et al. (2023) applied a digital
twin for the diagnosis of structural fault in bridges, whereby generated
data is employed in the training process of a CNN. Knowledge transfer
from the simulated results was proven to be effective, as the model
demonstrated a superior convergence rate and accuracy, in comparison
to physically naive transfer learning classification techniques. Feng
et al. (2023) applied the framework to gear surface degradation moni-
toring for predictive maintenance. Digital twin models were developed
and fine-tuned based on the governing equations for the dynamic
and degradation behaviour of their spur gearbox system. A CNN is
established and trained on data from the DT model to assess surface
pitting and tooth profile change.

Through the effective transfer of domain knowledge, the TL algo-
rithms discussed above were capable of effectively utilizing physically
relevant knowledge to aid in the predictive capabilities of automated
learning. Through this process, several advantages present themselves.
In addition to the reduced training time and data requirements dis-
cussed above, TL algorithms are also capable of improved general-
ization to data, dependent on the training dataset employed. Fur-
thermore, the pre-trained model allows for improved interpretability
within the overall predictive process of the model, through insights
into the learned representations and the features that influence the
model’s decision. By their nature, TL algorithms are also designed
with a particular aim to be fine-tuned to adapt to specific tasks. This
property allows practitioners an added layer of flexibility in devising
the final learning pipeline and its constituent components, whether
those components are more physically derived, or data-driven.
12 
3.2. Data-enhanced refinement of physical models

Another archetype common in literature is the use of ML models
as correctional mechanisms for known inaccuracies or deficiencies
between predicted and observed data. In current applications, physical
models are based on simplifications and assumptions that may not ac-
curately capture the complexity of real-world phenomena. As a result,
physical models produce errors or inaccuracies in their predictions.
Several works of literature focus on developing data-driven models to
address these errors by learning to account for observed deviations,
and subsequently, using physics-based and ML models in conjunction
for the resultant predictions. In the works discussed in this section,
ML models have been shown to work concurrently with physics-based
models to fine-tune results based on outputs from both models. A
summary of compiled works employing this strategy of integration is
presented in Table 3.

In this approach, a physical model is used to generate initial predic-
tions, which are adjusted in tandem employing the predictive capabil-
ities of an ML algorithm. The algorithm learns from the set of training
data that includes both the input features used by the physical model
and the corresponding ground-truth outcomes and applies this learning
to generate corrections to the physical model’s predictions. In literature,
this strategy has often been referred to as hybrid modelling or residual
modelling. The general process by which this integration takes place is
illustrated in Fig. 7.

Examples of this implementation are illustrated in various works,
such as Shi et al. (2022) combined a physics-based degradation model
with a deep learning network to estimate the state of health in lithium-
ion batteries. The physics-informed deep learning model is a combina-
tion of the physics-based calendar and cycle aging model and a Long
Short-Term Memory (LSTM) model. Through parameters governing
stress during operation, an initial estimate of calendar aging and cyclic
aging of the battery is calculated. Thereafter, the LSTM learns the devi-
ation between observed conditions and the predictions of the physics-
based aging model over time. In conjunction, the physics-informed
LSTM model was capable of accurately capturing the overall degrada-
tion trend of the asset. Subramanian and Mahadevan (2023) proposed a
data-driven correction mechanism for a structure subjected to dynamic
loading. Error resulting from the physics-based model were determined
via Bayesian state estimation, whereby a probabilistic ML structure
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Table 3
Literature compiled leveraging data-driven models working in tandem with physics-based models.

Article title Citation Description Application

Battery health management using physics-informed
machine learning: Online degradation modelling
and remaining useful life prediction

Shi et al. (2022) Recurrent neural network to model the deviation
from physics-based aging model and observed
aging

State of health monitoring and degradation
modelling for batteries

Probabilistic physics-informed machine learning for
dynamic systems

Subramanian and
Mahadevan (2023)

Augmentation of physics-based model with a
machine learning model, Bayesian state estimation
of model form error is learned by probabilistic ML
structure

Prognosis and structural response prediction
under dynamic loads

Fusing physics-inferred information from stochastic
model with machine learning approaches for
degradation prediction

Li et al. (2023) Bi-directional LSTM to model residual between
observed and stochastic degradation model

Structural health monitoring
Fig. 7. General outline of correction to physics-based modelling via data-driven solutions.
earns the discrepancies. In conjunction, the combined pipeline demon-
trated robust predictions for linear and nonlinear systems with both
aussian and non-Gaussian noise. Finally, Li et al. (2023) employed
Bi-directional LSTM to estimate the residuals between the observed

egradation behaviour and the degradation tendency from a two-stage
tochastic degradation model. The estimated residual is used in con-
unction with the outputs of the physics-driven stochastic degradation
odel to predict degradation in a bridge deck rebar structure.

Though the introduction of residual learners has seen success in the
bove cases, limitations incurred by this architecture render it difficult
o provide insightful and interpretive predictions. As the ML model
earns to model the discrepancy, rather than the system itself. While
tudies discussed above have had success in utilizing this combination
f physics-based modelling and ML, this key drawback severely lim-
ts its use cases, as well as its explainability and interpretability, in
omparison to other architectures.

.3. Physics-informed regularization

Regularization techniques have been fundamental in training ML
odels since their inception. Conventional regularization, such as Lasso

L1) or Ridge (L2) regularizations, incorporates an additional penalty
erm to reduce the model’s capacity to overfit data that may not be
eflective of the general behaviour of the system, resulting in simpler
nd more robust solutions. While this has been used extensively, a new
rend involves the usage of physics-based regularization with ML. This
pproach seeks to combine the advantages of physics-based models to
nhance the accuracy, interpretability, and robustness of conventional
ata-driven solutions. Prior knowledge regarding the physical system is
ntegrated as a part of the learning process, either as constraints or reg-
larizers, effectively encoding the physical constraints to aid in guiding
he optimization process in producing physically meaningful solutions.

ast implementations of physics-based regularization involved solving
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the physical equations and incorporating them as constraints in the op-
timization problem (Oware et al., 2013; Ruhnau et al., 2007). However,
this approach is computationally expensive and limited to physical
systems that are mostly well-understood. With the recent advancements
in deep learning and the availability of large amounts of data, new
techniques have been developed that combine physics-based modelling
and ML to be more efficient and scalable. For instance, in recent studies
such as the work of Raissi et al. (2019), a novel regularization approach
was proposed that leverages the structure of the physical system to
learn more efficient representations. The proposed method, termed
PINNs, incorporates the governing equations of the physical system
as regularizers in the loss function. A summary of compiled literature
employing this technique is provided in Table 4.

Physics-guided regularizations consist primarily of tailoring con-
straints that directly alter the data-driven model in the training phase
to favour predictions that are consistent with underlying physics. Con-
straints of this type are also known as learning biases, as character-
ized by Karniadakis et al. (2021), and implemented through physics-
informed loss functions. These loss functions penalize deviations from
physical laws, making the model more likely to produce physically
plausible solutions. Conventionally, the loss function employed in ML
algorithms is a measure of the empirical difference between the model
prediction and ground truth, with the objective of minimizing the
loss function through an iterative process. Model loss is optimized
by adjusting the parameters of the model to reduce the aforemen-
tioned difference in model predictive capabilities versus ground truth.
In contrast, a physics-informed loss function incorporates additional
information about the system being modelled, such as physical con-
straints, conservation laws, and other known properties of the system in
tandem with the penalization of deviations from ground-truth observa-
tions. Through this framework, the ML algorithm may more effectively
constrain the prediction space to avoid violations of physical principles.

Algorithms introduced in this format aim to simultaneously mini-

mize errors to both the labelled data and physical constraints. This is
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Table 4
Literature Compiled for physics-guided or physics-informed regularization techniques employed.

Article title Citation Description Application

Microcrack Defect Quantification Using a
Focusing High-Order SH Guided Wave
EMAT: The Physics-Informed Deep Neural
Network GuwNet

Sun et al. (2021) Quantification of microcrack defects with hybrid physics-informed
architecture design based on various deep learning frameworks,
regularized via network structure and hybrid feed-forward and
back-propagation loss

structural health monitoring
for detection of micro-crack
defects

Physics-informed turbulence intensity
infusion: A new hybrid approach for marine
current turbine rotor blade fault detection

Freeman et al.
(2022)

Feature extraction via continuous wavelet transform from vibrational
data. The classification was performed with a neural network, with
physics-informed loss function to obtain turbulence intensity features

Anomalous behaviour
detection and fault diagnosis
in turbine rotor blades

A physics-informed neural network for
creep-fatigue life prediction of components
at elevated temperatures

Zhang et al.
(2021)

Neural network regularized via physics-informed loss function,
penalizing the model for unrealistic predictions (negative or extreme
values) of fatigue life

Structural health monitoring
for creep-fatigue life in steel
specimen

Data-driven prognostics with low-fidelity
physical information for digital twin:
physics-informed neural network

Kim et al.
(2022a)

Physics-informed loss function penalizing deviations from expected
values, determined by low-fidelity physical model

Structural health monitoring
for crack propagation

Long-term fatigue estimation on offshore
wind turbines interface loads through loss
function physics-guided learning of neural
networks

Santos et al.
(2023)

Features selected through recursive feature elimination from sensors
and monitoring data. Estimation of fatigue via neural network
regularized by novel physics-informed loss function, reflective of
priority given to long-term estimation

Structural health monitoring
for wind turbines fatigue life

Physics-informed meta-learning for
machining tool wear prediction

Li et al. (2022) Parameters of dynamic relationships governing tool wear used to
establish input space for individual models at different stages of
degradation via cross physics-data fusion. Meta-learning model is
employed to learn the experiences of ML models and optimized via
physics-informed loss

Tool life predictions

A physics-informed deep learning
framework for inversion and surrogate
modelling in solid mechanics

Haghighat et al.
(2021)

Physics-informed neural network for solving differential equations
governing linear elasticity and non-linear von Mises elastoplasticity

Elastostatics modelling in solid
mechanics

Identification of Material Parameters from
Full-Field Displacement Data Using
Physics-Informed Neural Networks

Anton and
Wessels (2021)

Material parameter estimation via the solution of momentum equation
and governing equations of linear elasticity

Structural health monitoring

Inferring vortex-induced vibrations of
flexible cylinders using physics-informed
neural networks

Kharazmi et al.
(2021)

Approximation of the linear beam-string equations via PINN for
simulation of a cylindrical structure in uniform flow

Structural health monitoring

Physics-Informed Machine Learning and
Uncertainty Quantification for Mechanics of
Heterogeneous Materials

Bharadwaja
et al. (2022)

Solution of PDE governing momentum balance and constitutive
equations of elasticity, optimized via physics-informed loss function
penalizing deviations from PDE and boundary conditions

Surrogate modelling of elastic
deformations

Simulation of guided waves for structural
health monitoring using physics-informed
neural networks

(Rautela et al.,
2021)

Solving PDEs governing wave propagation with PINNs, regularized by
physics-informed loss function based on deviations from PDEs and
boundary conditions

Structural health monitoring
in aerospace structures

A physically consistent framework for
fatigue life prediction using probabilistic
physics-informed neural network

Zhou et al.
(2023b)

Probabilistic PINN optimized via hybrid loss function based on fatigue
life distributions with respect to the stress experienced

State of health monitoring and
fatigue life estimation

A robust physics-informed neural network
approach for predicting structural instability

Mai et al. (2023) Feed-forward PINN optimized based on deviation from data, instability
information, and boundary conditions

Structural health monitoring
via estimation of structural
instability

Machine Fault Classification using
Hamiltonian Neural Networks

Shen et al.
(2023)

PINN encoding the laws of Hamiltonian mechanics to learn the
operating state of the system from vibrational data, machinery state
identification using network parameters as features

Machinery fault diagnosis for
rotating machinery

Physics-informed machine learning for
surrogate modelling of wind pressure and
optimization of pressure sensor placement

Zhu et al.
(2022a)

Finite element based computational fluid dynamics model for the
generation of input features, PINN employed for the solution to
Navier–Stokes equations of incompressible flows, with Dirichlet and
Neumann boundary conditions

Structural health monitoring
in buildings

Physics informed neural network for health
monitoring of an air preheater

Jadhav et al.
(2022)

Stacked PINNs for solving non-denationalized governing equations for
heat transfer between the fluids and metal interface, regularized by
physics-informed loss function based on deviation from PDEs, boundary
and interface conditions

Condition monitoring and
health monitoring in air
heating system

Robust Regression with Highly Corrupted
Data via Physics Informed Neural Networks

Peng et al.
(2022)

Feed-forward PINN based on the least absolute deviation method to
reconstruct PDE solutions and parameters from highly corrupt sensor
data

Corrupt data and parameter
reconstruction

A generic physics-informed neural
network-based framework for reliability
assessment of multi-state systems

Zhou et al.
(2023c)

Feed-Forward PINN regularized by deviations from ODE of system state
transition and initial conditions. An individual element of the loss
parse through projecting conflicting gradients to establish a continuous
latent function for reliability assessment

Reliability assessment

Physics-guided convolutional neural
network (PhyCNN) for data-driven seismic
response modelling

Zhang et al.
(2020)

Physics-Informed Loss (Dynamic System with Ground Excitation) Structural Health Monitoring

A physics-informed deep learning approach
for bearing fault detection

Shen et al.
(2021)

Physics-Informed Loss (Deviation from Physics-Based Threshold Model
Penalized)

Machinery fault detection and
diagnosis in bearings

(continued on next page)
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Table 4 (continued).
Article title Citation Description Application

Physics-guided deep neural network for
structural damage identification

Huang et al.
(2022)

CNN employed as feature extraction for both the physics and data
domain. The network was regularized in accordance with labelled data
as well as the objective of minimizing feature discrepancy between
domains

Structural health monitoring
in bridge structures

Bridge damage identification under the
moving vehicle loads based on the method
of physics-guided deep neural networks

Yin et al. (2023) Physics-informed loss function for feature fusion between the
physics-based numerical model and data-driven model

Structural health monitoring
in bridge structures

A physics-informed convolutional neural
network with custom loss functions for
porosity prediction in laser metal deposition

McGowan et al.
(2022)

Physics-informed CNN with loss function penalizing deviations from
ideal simulated parameters

Process monitoring in additive
manufacturing for porosity
buildup

Physics-Informed Learning for High
Impedance Faults Detection

Li and Deka
(2021a)

Physics-informed convolutional autoencoder, with physics-informed
regularization based on elliptical relation characteristics of voltage and
current plots

Fault detection in power grids

Physics-informed deep learning for signal
compression and reconstruction of big data
in industrial condition monitoring

(Russell & Wang,
2022)

Physics-informed convolutional autoencoder, featuring loss term
incorporating auto-correlation and Fast Fourier Transform metrics

Data compression for collected
monitoring signatures in
machinery fault detection and
diagnosis

Physics guided neural network for
machining tool wear prediction

Wang et al.
(2020)

Cross physics-data fusion for the integration of physical parameters
within model input. Physics-informed loss function employed to enforce
the relationship between tool degradation with respect to operation
progress

Condition monitoring for tool
wear

A Novel Physics-Informed Framework for
Real-Time Adaptive Monitoring of Offshore
Structures

Liu et al. (2023) Employed a physics-informed RNN for the solution to governing
equations of eigensystem, representative of the modal identification
process

Structural health monitoring

Physics-Informed LSTM hyperparameters
selection for gearbox fault detection

Chen et al.
(2022b)

Maximization of Mahalanobis distance between healthy state and
established physics-informed fault state for LSTM optimization process

Machinery fault diagnosis in
gear boxes
reflected in the structure of the loss functions implemented, whereby
the physics-informed loss function is comprised of a data-driven loss
term and a physics-based loss term. The data-driven loss term mea-
sures the error between the predicted output of the model and the
ground truth, or observational data. In contrast, the physics-based
loss term ensures that the solution satisfies the underlying physics of
the problem through adherence to governing equations specific to the
problem. Conventionally, compliance with observed data (data-driven
loss) is achieved by minimizing the residual between predictions of the
network and true state and is performed with a variety of distance
evaluators such as the mean squared error (MSE) or cross-entropy
error (CSE). Compliance with known physical laws is case-specific
and varies in implementation, however, the aforementioned methods
for evaluation have seen many implementations in the literature. The
general form of the loss function then, may be represented as:

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑜𝑠𝑠𝑒𝑚𝑝𝑖𝑟𝑖𝑐𝑎𝑙(𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛, 𝑌𝑡𝑎𝑟𝑔𝑒𝑡) + 𝜆2𝐿𝑜𝑠𝑠𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙(𝑌𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛) (1)

Where the parameters 𝜆1 and 𝜆2 are the regularization factors to
djust loss terms to best-fit system characteristics. Thus in this for-
at, authors have introduced a methodology for the incorporation of

overning equations to influence the direction of loss minimization in
etworks. In literature, physics-informed regularization has been em-
loyed to incorporate knowledge of the expected fault signatures of the
ystem under different failure modes, to ensure that the model is able
o accurately detect and classify faults, even in the presence of noise
r other confounding factors. For instance: Sun et al. (2021) proposed
methodology for the non-destructive detection and quantification of
icro-crack defects, a framework based on the electromagnetic acoustic

ransducer, which functions by exciting guided waves for crack detec-
ion. Sun et al. (2021) developed a novel physics-informed architecture
hat they have termed GuwNet. The proposed network seeks to employ
arious deep learning modules such as convolutional layers, dense
ayers, and GRU layers in conjunction with the introduction of physical
arameters for the approximation of variables of crack propagation.
he physical process is represented through various connections within
he data-driven and physics-based layers and parameters within the net-
ork. The network is optimized by hybrid feed-forward and feedback

oss functions, comprised of empirical and physics-informed error terms

o integrate the physics of ultrasonic wave testing into the training
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process of the network. Physics-informed terms are derived from the re-
lationship of defect depth, and quantified by transmitted wave intensity
and reflected wave intensity of the ultrasonic guided wave nondestruc-
tive testing method. The method demonstrated great promise in the
detection of length, depth, and direction of crack propagation, and was
shown to have significant improvements in accuracy in comparison to
conventional deep learning approaches. Freeman et al. (2022) proposed
a hybrid approach for anomaly and fault detection in turbine rotor
blades, whereby fault features acquired from turbine power signals are
combined with environmental data to ensure conformity to the dy-
namics of the hydro-kinematic rotor. The framework extracts statistical
features by means of continuous wavelet transforms, and categorized
via multi-nomial regression. The time domain features selected were
proven by the authors to be physically significant, accurately reflecting
the high-frequency fluctuation behaviour in signals with respect to
turbulence intensity. Turbulence intensity is classified with a NN, based
on time-domain features extracted from the reduced feature space
and physically constrained through a hybrid loss function, whereby
deviation from the dynamics of turbulence intensity is penalized.

Regularization has also been applied with respect to applications
in fatigue stress and life monitoring. Zhang et al. (2021) constrained
the process of creep-fatigue life estimation in a stainless steel specimen
with physics-augmented feature engineering and physics-informed reg-
ularization. The developed feed-forward model introduces two physics-
informed loss terms that take into account and penalize physical vi-
olations with regard to fatigue life. From the expected behaviour of
creep-fatigue in the specimen, the authors added physical constraints in
the form of penalization for negative values, as well as extreme values
of creep-fatigue life within the loss function. The model constructed
boasted superior performance when compared with benchmark em-
pirical and purely data-driven methods. Kim et al. (2022a) adopted
a data-driven prognostics model that incorporates low-fidelity phys-
ical features in the optimization process. The authors presented an
innovative methodology for obtaining training parameters for unla-
belled extrapolation data. In general, the process for obtaining the
extrapolated region, that is, the target of the prognostics framework,
involves the physics-based regularization term that penalizes devia-
tion from the low-fidelity physical model. To this effect, the model

is optimized to minimize interpolation error with available data, as
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well as extrapolation error, from the embedded physical model. The
authors validated their approach with their verification of fatigue crack
growth with respect to Paris’s law. Santos et al. (2023) built upon
conventional frameworks for monitoring the progression of fatigue
on off-shore wind turbines by extending the monitoring time period.
Conventional evaluation of damage monitoring models is based upon
the model’s ability in ten-minute fatigue damage estimations, whereas
Santos et al. have extended this methodology for monitoring long-term
fatigue accumulation. The PINN model proposed focuses on minimizing
the Minkowski logarithmic error, providing a more conservative esti-
mation of fatigue damage in the form of damage estimation moments.
The loss function was derived such that accuracy between the model’s
ability to predict short-term and long-term damage is not compromised.

Li et al. (2022) further extended the physics-informed loss function
to meta-learning, in their proposed strategy for estimating tool wear.
The method integrates both physically derived model inputs, as well as
physics-informed loss terms with data-driven models over a series of ML
models for the purposes of meta-learning. Meta-learning is defined as
the systematic observation and learning of learning from meta-data or
the observed experience accrued by ML models and their performance
on various tasks. Meta-learning may be classified as a sub-field of
ML, whereby artificial intelligence models are trained to automatically
solve tasks or problems more efficiently and effectively. In their work,
the inherent principles of tool wear are learned for applications in
tool wear predictions under varying tool wear rates. Through the
various parameters derived from the dynamic relationships governing
tool wear, the authors derived the input feature space of the various
deep learning and ML algorithms tested, for enhanced interpretability
and robustness. Individual ML models are constructed on the basis of
physics-informed data-driven modelling with cross physics-data fusion.
Initially conceptualized by Wang et al. (2020), the model represents
a methodology to fuse data from both the physics and data-driven
features. The meta-learning model is employed to learn the experiences
of three ML models and their predictions of the degradation state of the
asset at different stages of wear. The algorithms tested were optimized
via the physics-informed loss function, whereby constraints to the tool
wear rate are imposed based on inherent attributes of tool wear and
relations governing tool wear and cutting force.

3.3.1. Physics-informed neural networks
PINNs are a rapidly growing field that leverages the power of

neural networks to learn complex patterns and relationships from data,
while also incorporating the underlying physical principles such as
partial differential equations (PDEs) or ordinary differential equations
(ODEs) that govern the system. This specific implementation of physics-
informed regularization enables the development of predictive models
that can not only make accurate predictions but also provide phys-
ical insights into the system’s behaviour. PINNs are referred to as
physics-informed in that they incorporate physics-based knowledge
or constraints into the model training process, whereby the NN is
employed to make predictions on the solutions space of governing
PDEs. Through the introduction of learning biases, PINN significantly
relaxes restrictions in terms of the quantity of data required to properly
train deep learning algorithms (Xu et al., 2023). PINNs are known for
their ability to generate accurate predictions with small amounts of
data, which is especially important in cases where data acquisition is
expensive or challenging. Furthermore, PINNs are designed in accor-
dance with the physical laws and constraints of the system and produce
predictions that boast superior accuracy and are physically meaningful.
These factors make PINNs particularly well-suited for applications in
which the underlying physics of the system is well-understood.

The concept of leveraging the computational capabilities of NNs for
solutions to differential equations was initially presented by Lagaris
et al. (1998). More recently, Raissi et al. (2019) popularized the concept
through their study, where they demonstrated the effectiveness of

PINNs in solving forward and inverse problems pertaining to governing
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differential equations of a physical system. The effectiveness of PINNs,
as defined in the work of Raissi et al. (2019), is derived, in part, from
their usage of the universal approximation capability of NNs (Hornik
et al., 1989), which states that a NN with a single-layered feed-forward
network with an activation function may approximate any function,
provided that it is comprised of a sufficient number of neurons. Nat-
urally, researchers have extended this property to the solution com
complex, non-linear differential equations, in which numerical or em-
pirical solutions are difficult or impossible. In these scenarios, PINNs
have been leveraged to learn the mapping between the input data and
the output variables while enforcing the physical constraints of the sys-
tem. In addition to their ability to incorporate prior knowledge, PINNs
are capable of learning the solution to ODES or PDEs from incomplete
data or data with noise, while simultaneously satisfying the governing
equations of the system, making them particularly useful for applica-
tions in which data is scarce or expensive to collect (Raissi et al., 2019).
Through this framework, researchers can build accurate models that
provide insights into the underlying physical processes, making them a
valuable tool in many scientific and engineering applications (Raymond
& Camarillo, 2021).

The original PINN architecture by Raissi et al. (2019) is based on
the feed-forward structure, and employed to solve the first-order non-
linear PDE. Various names exist for this structure in literature such
as Feed-Forward NNs, ANNs, Multi-layer Perceptron Neural Networks,
and Deep Neural Networks. The feed-forward neural network consists
of multiple layers of interconnected nodes, or neurons, that transmit
information through weighted connections. In the context of PINNs, the
input layer of the network corresponds to the physical domain, while
the output layer represents the solution to the problem of interest. The
intermediate layers, also known as hidden layers, provide the necessary
computational power to map the input to the output.

An ANN may be described as a series of non-linear transformations.
In terms of a mathematical definition of the network: For a given input
layer of 𝑁 neurons, and may be denoted as 𝑋 = {𝑥1,… , 𝑥𝑛], whereby
𝑖 represents a feature within the input space 𝑋. The network may
e defined to host 𝐻 hidden layers, with each layer containing 𝑀
eurons. From this, the output of the 𝐼th hidden layer, 𝑖 ∈ [1,𝐻] may be
epresented as 𝐴𝐼 = {𝑎𝐼1 ,… , 𝑎𝐼𝑚}, where 𝑎𝐼𝑗 represents the 𝑗th neuron in
he 𝐼th hidden layer. For each hidden layer, the output 𝐴𝐼 is computed
hrough an element-wise application of non-linear activation function
𝑖 to the weighted sum of inputs from the prior layer 𝐼 −1, which may
e written as:
𝐼
𝑗 =

∑

(

𝑤𝐼
𝑗𝑖 ∗ 𝑎𝐼−1𝑖

)

+ 𝑏𝑙𝑗 (2)

Where 𝑤𝑗𝑖 represents the weight connecting the 𝑖th neuron in the
rior layer 𝐼−1 to the 𝑗th neuron in the current layer 𝐼 , 𝑎𝐼−1𝑖 represents
he output of the 𝑖th neuron in the prior layer, and 𝐵𝑖 represents the
ias term associated with the 𝑗th neuron in the 𝐼th hidden layer. The
utput of the 𝑖th hidden layer is computed as:
𝐼
𝑗 = 𝛩𝐼

(

𝑧𝐼𝑗
)

(3)

The output layer is comprised of 𝐾 neurons, with predicted output
enoted as 𝑌 = {𝑦1,… , 𝑦𝑘). Thus, the output of the NN may be
omputed as:
𝐻+1
𝑗 =

∑

(𝑤𝐻+1
𝑗𝑖 ∗ 𝑎𝐻𝑖 ) + 𝑏𝐻+1

𝑗 (4)

Where 𝑤𝐻+1
𝑗𝑖 represents the weight connecting the 𝑖th neuron in the

-th hidden layer to the 𝑗th neuron in the output layer, 𝑎𝐻𝑖 is the output
of the 𝑖th neuron in the 𝐻th hidden layer, and 𝑏𝐻+1

𝑗 is the bias term
ssociated with the 𝑗th neuron in the output layer. Collectively, this

may be referred to as:

𝐳𝐻+1 = 𝐰𝐻+1 ∗ 𝐚𝐻 + 𝐛𝐻+1 (5)

The PINN employs this existing framework to be an approximator

of the solution to the PDE. In the general case, the non-linear PDE
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parameterized by 𝛾, as well as its initial and boundary conditions may
e represented by the form:

(

𝑥, 𝑡, 𝑢,∇𝑢,…; 𝛿𝑢
𝛿𝑡

...; 𝛾
)

= 0, 𝑥 ∈ 𝛺, 𝑡 ∈ [0, 𝑡] (6)

(𝑥, 𝑡 = 𝑡0) = 𝑔(𝑥), 𝑥 ∈ 𝛺 (7)

(𝑥, 𝑡) = ℎ(𝑥, 𝑡), 𝑥 ∈ 𝛿𝛺, 𝑡 ∈ [0, 𝑡] (8)

Defined in the domain 𝛺, where 𝛺 ∈ 𝑅𝑑 with boundaries 𝛿𝛺. 
epresents the non-linear function that defines the relationship between
nknown function 𝑢, its derivatives, and its parameters. The PDE
efined has hidden solution 𝑢

(

𝑥1...𝑥𝑛, 𝑡
)

, with input space that may be
omposed of spatial variables 𝑥 and temporal variables 𝑡. For some
ubsequent literary works discussed, the system in question may be
ime-independent, therefore, terms in the above equations pertaining
o time would not be relevant. The PDE has initial conditions 𝑔 and
oundary conditions ℎ. The NN seeks to make a computational approx-
mation of the solution 𝑢𝑁𝑁 from input space (Karandikar et al., 2021;
aissi et al., 2019). The approximation of solution space by the NN is
enoted as:

𝑁𝑁
(

𝑥1...𝑥𝑛, 𝑡
)

≈ 𝐳𝐻+1 (9)

The derivatives of this approximation may then be calculated by
utomatic differentiation, employing the chain rule of calculus to com-
ute the exact derivatives of a function with respect to its input
ariables (Baydin et al., 2018). Utilizing the predicted solution 𝑢𝑁𝑁 and
ts derivatives, it is possible to then reconstruct the PDE and its initial
nd boundary conditions. This reconstruction is then evaluated with
espect to any labelled data provided, the residual to the differential
quation itself, and any boundary or initial condition provided for
eviations to any of the aforementioned terms, represented as:

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑜𝑠𝑠𝐷𝑎𝑡𝑎 + 𝜆2𝐿𝑜𝑠𝑠𝑃𝐷𝐸 + 𝜆3𝐿𝑜𝑠𝑠𝐵𝐶 + 𝜆4𝐿𝑜𝑠𝑠𝐼𝐶 (10)

With parameters 𝜆1, 𝜆2, 𝜆3, 𝜆4 representing weights for the adjust-
ent of each loss term. Deviations, typically evaluated as mean squared

rror (MSE) are minimized during the back-propagation process, whereb
N parameters, such as weight and biases, are adjusted accordingly in
ccordance with the governing equations, as represented in 18. Min-
mization of the total deviation through the optimization algorithms
uch as gradient descent allows the network to learn the mapping
etween the input and output space, while simultaneously complying
ith known physical laws and constraints (see Fig. 8).

In the context of CM, PINNs allow for accurate predictions by in-
orporating both data-driven and physics-based approaches. PINNs can
andle sparse and noisy data, extrapolate beyond training data (Kim
t al., 2022a), and provide interpretable results. They also enable
arly fault detection, reduce false alarms, and can be used for online
onitoring. Since their initial popularization by Raissi et al. (2019), a
lethora of subsequent implementations that followed their publication
ave employed the same feed-forward architecture. However, experi-
entation with other popular deep learning architectures, such as the
NN, RNN and its variants, encoder and decoder networks, as well as
raph NNs have been deployed in literature. The following sections will
etail the integration of physics-based regularization with a variety of
N architectures.

.3.2. Data-driven solutions to differential equations
Various current applications of the PINN framework have remained

aithful to the initial PINN architecture, via the solution to governing
ifferential equations of physical systems. Applications of such methods
ary greatly across industries, and have been applied to numerous
reas in which governing differential equations are known beforehand.
or instance, within the domain of solid mechanics, PDEs of physical
arameters such as elasticity, deformation, and structural response are
etermined with the purpose of continued structural health monitoring.
 o

17 
ne such example is evident in the work of Haghighat et al. (2021),
ho developed a method for surrogate modelling and model inversion
ith respect to behaviour in structures defined by the principles of

inear elasticity. This is performed through the incorporation of govern-
ng PDEs and various constitutive equations into a PINN for parameter
stimations. Through their experimentation, the authors demonstrated
he proof of concept through a model of the displacement field under
lastic plane-strain conditions. For their use case, the authors compared
he effects of a collective network with shared hidden layers 9 (A),
s opposed to utilizing the PINN framework to solve for individual
utputs irrespective of the others 9 (B), with each output being solved
y a PINN drawing data from a collective input space. The authors
ave concluded that, while in principle, a wider network will allow
ndividual associations to be made between sections of the network
nd output, it was more effective for each variable of the solution to
e calculated separately. The authors attributed this to the hyperbolic
angent activation function used, being incapable of accurately rep-
esenting the cross-dependencies of the network outputs in a manner
aithful to kinematic relations.

Anton and Wessels (2021) applied the PINN framework for material
arameter estimation with inputs in the form of full-field displace-
ent data. With respect to structural health monitoring on existing

nfrastructure, the estimation of material parameters of structural com-
onents may be a method of evaluation of degradation. To that effect,
he authors derived the solutions to the momentum balance equa-
ion, as well as the constitutive equations for linear-elastic materials
ith the classic PINN architecture. Physical regularization was imple-
ented with respect to the PDE established, as well as labelled data

vailable for boundary conditions and observed deformation. Simi-
arly, Kharazmi et al. (2021) estimated the structural parameters of a
lexible cylinder structure subjected to vortex-induced vibrations from
he hydrodynamic force, with the objective of evaluating structural
amage due to fatigue. Utilizing the PINN framework, the authors
olved the linear beam-string equation, which governs the motion of
he cylindrical structure in question. Bharadwaja et al. (2022) utilizes
PINN to model and quantify uncertainty in the elastic deformation

f heterogeneous solids. More specifically, isotropic linear elastic be-
aviour is assumed to solve the governing differential equation for
he approximation of momentum balance and constitutive equations
overning elasticity. The proposed PINN is optimized via the physics-
ased loss function, representing model error to governing differential
quation, as well as the Dirichlet, Neumann boundary conditions, the
oundary conditions associated with fibers and voids, and initial condi-
ions. From their analysis, the proposed physics-informed methodology
eturned results that are similar to that of the Monte Carlo finite
lement simulation model, designated as the benchmark model in this
cenario. As another example: Rautela et al. (2021) simulated guided
aves for monitoring structural health with applications in aerospace
pplications. The framework revolves around using a PINN to solve
overning PDEs associated with wave propagation. In their study, the
ne-dimensional wave equation with Dirichlet boundary conditions is
ormulated as the target of the loss function, and predictions by the
INN are continuously optimized by the loss function to more accu-
ately reflect the physical governing PDE. Zhou et al. (2023b) proposed
methodology for fatigue life estimation, physically constrained by a

ybrid loss function within a probabilistic PINN framework. Through
he feed-forward model, the stress-life relationship is approximated.
hysical violations are determined through the evaluation of select
ollocation points, whereby the ground truths are approximated by
he probability distribution out-putted by the feed-forward model. Fi-
ally, Mai et al. (2023) employed the PINN architecture in predicting
tructural instability in truss structures. The network outlined is a
epresentation of the displacement field of the structure, and analysis of
arameters allows for the location of critical points susceptible, given
he input load factors. Optimization is performed via the minimization

f the physics-informed loss function, which represents, physically,
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Fig. 8. Physics-informed Neural Network structure.
Fig. 9. Neural network architectures for the solutions of unknown variables (A) for a unified neural network, (B) for independent networks.
the residual load and stiffness characteristics of the structure. In all,
the method yields superior accuracy through the various example
validations on several truss structures.

With applications to machinery fault detection and classification,
Shen et al. (2023) proposed a novel machine fault classification frame-
work employing a unique PINN framework based on Hamiltonian
mechanics, whereby the model is trained to represent the energy con-
servation of the system in healthy and abnormal states. Hamiltonian
systems are those that obey Hamilton’s equations of motion, which
describe the time evolution of a system’s state variables in terms of its
energy. Based on the principle of Hamiltonian mechanics, the evolution
of a physical system is described via the energy of the system as a func-
tion of its position and momentum. This network is termed Hamiltonian
Neural Network (HNN) and may be considered a class PINNs specifi-
cally tailored towards the modelling dynamical systems governed by
Hamiltonian equations. This incorporation allows networks to predict
the evolution of a system over time (Greydanus et al., 2019). In their
work, Shen et al. (2023) applied this concept for the classification of
faults in rotating machinery. Estimations of system energy signatures
are derived from observed sensor measurements through the HNN.
Subsequently, parameters of the HNN are extracted to form the total
energy function, which is used as the input features for the classification
algorithm based on the conventional RF algorithm.
18 
An abundance of studies has also been performed in optimizing or
complementing the available data from sensors for monitoring appli-
cations. Through optimization, the objective of designed systems is to
maximize the relevant and informative data for monitoring the system.
An example of this optimization process with PINNs may be seen in the
work of Zhu et al. (2022a), who optimized sensor placement locations
for the monitoring of low-rise buildings in response to wind pressure.
The ML model is trained on data generated from a physical simulation
by means of a high-fidelity finite element computational fluid dynamics
model. From the data provided, the ML model seeks to construct a
surrogate model of pressure-field in real-time. This surrogate model is
further embedded within a NN for the optimization of sensor placement
locations. For inference of non-observable sensor data, Jadhav et al.
(2022) performed CM of fouling conditions on system health with
respect to an air pre-heating system in thermal power plants. Issues
arising from the lack of available sensors on the interior of the system
are resolved with the proposed PINN architecture based on the non-
dimensionalized governing equations for heat transfer for fluid and
metal interfaces. The authors employed a series of multiple PINNs in
parallel, operating from the same set of input features to resolve a
plethora of equations governing heat transfer. PINNs are regularized
via the physics-informed loss function, composed of the loss compo-
nents of the governing equations, boundary conditions, and interface



Y. Wu et al.

d

Expert Systems With Applications 255 (2024) 124678 
conditions. From the various applications listed, the accuracy of sensor
data is critical for the collection of data faithful to the system. Decisions
based on inaccurate or incomplete information may lead to sub-optimal
outcomes or catastrophic consequences, and as such, one direction of
this architecture has been the reconstruction of corrupt sensory data
to allow users a holistic view of system operations. In particular, in
the work by Peng et al. (2022), the authors proposed a PINN structure
to reconstruct data with significant corruption from sensor errors. The
networks proposed are based upon the Least Absolute Deviation and
median absolute deviation, whereby the PINN architecture is con-
tinuously optimized by minimizing the residual between data-driven
and physical models. The design of the architecture was validated
on several classical problems involving PDEs, such as the Navier–
Stokes equation, Poisson’s equation, and wave equations, whereby the
algorithm was capable of accurately recovering governing equations
from corrupted observation data.

In other avenues of research, PINNs have been applied for the mod-
elling of dynamic systems, as demonstrated in the work of Zhou et al.
(2023c). The authors applied the PINN framework for the evaluation
of reliability in multi-state systems. Given that the governing equa-
tions for Markov processes take the form of differential equations, the
computational efficiency of PINNs is leveraged. The group utilized the
gradient surgery method for multi-task learning as outlined by Yu et al.
(2020) to improve the PINN’s precision in approximating solutions to
differential equations by alleviating issues with imbalanced gradients
during training phases. For multi-state system reliability evaluation,
the PINN solves for the state estimates of systems with the input of
time instant. As with the traditional PINN, the network is penalized
based on loss with respect to boundary conditions, and with respect to
approximation of governing equations.

3.3.3. Physics-informed regularization in tandem with other deep learning
architectures

A plethora of literary works employ the inherent symmetries and in-
variances encoded by various conventional deep-learning architectures
in compliance with the philosophy of physics-guided regularizations.
Literary works presented in this section mainly utilize physics-informed
regularizations as the primary methodology to encode physical knowl-
edge into the system. Leveraging the unique computational efficacy and
efficiency of certain architectures for specific data types, researchers
have drastically innovated upon the structure of the original PINN and
employed the framework in their own fields of specialization.

For instance, with respect to the CNN architecture, their unique
convolutional layers are valued for their capabilities in automatically
extracting features without the need for manual feature engineering,
making them invaluable in complex applications whereby the relevant
features are difficult to understand or quantify. Studies employing the
CNN architecture can be seen in the works of McGowan et al. (2022),
who monitored the porosity during the additive manufacturing process
with their introduction of a set of loss functions. The regularization
of the network comprises standard cross-entropy data loss, as well as
losses informed by physical parameters that penalize deviations from
ideal simulated melt pool temperature and length-to-width ratio and
relative error prior to normalization. As another example: Zhang et al.
(2020) established a surrogate model for the estimation of structural
seismic response, informed via equations of motion representing a
dynamic system subjected to ground excitation.

Several instances of literature attempt to employ the physics-informe
loss function as a methodology to minimize deviations between es-
tablished physical and data-driven domains. For example: Shen et al.
(2021) adopted a hybrid approach in their development of a physics-
informed CNN model for fault detection in bearings under varying
rotational speeds. The proposed CNN model and the physics-based
threshold model operated co-currently to evaluate the health class of
bearings. The threshold model is established based on known limits

with regard to the amplitude of envelope spectra of healthy and

19 
damaged bearings. Subsequently, a customized physics-informed loss
function is implemented, which serves to penalize the model for predic-
tions that deviates from known physics, as represented by the threshold
model. Through this format, however, the authors have made the
simplifying assumption that predictions of physics-based models are
correct, or rather the probability of predictions being correct is very
high, due to the extreme thresholds set. Huang et al. (2022) explored a
similar approach for the combination of the physical and data domains.
The authors trained a CNN employing a finite element model for
applications in structural health monitoring. Through their designed
framework, the authors sought to incorporate predictions from both
the physics-based finite element model and data-driven methods. The
CNN proposed functions as a set of feature extractors that operates
simultaneously based on inputs from the finite element model-driven
physics domain, and the data domain. Physical constraints are encoded
in a classifier through a novel cross-physics-data domain loss function,
whereby predictions of the classifier are evaluated with respect to the
labelled data, as well as the discrepancy of features between the phys-
ical domain and the data domain. On a similar note, Yin et al. (2023)
monitored structural damage localization in bridge structures due to
loads applied by vehicles. The authors developed a numerical simu-
lation of the structure and, using the physics-informed loss function
sought to fuse features from the physics and data domains. Processed
data from both domains are fed through the Visual Geometry Group 16
architecture (Simonyan & Zisserman, 2014), whereby damage features
are extracted from the time–frequency map of acceleration signals. The
optimization was carried out with a hybrid loss function comprised
of data-driven cross-entropy loss and physics-informed loss penalizing
deviations from the physical domain established via numerical simula-
tions. Effectively, the network seeks to minimize discrepancies between
the physical and numerical models (see Fig. 10).

Another implementation of physics-informed regularization is with
structures involving the encoder–decoder style networks, or autoen-
coders. The structure of networks of this style may be described as
two components working in tandem: an encoder and a decoder net-
work. Through the encoder network, input data is compressed through
multiple transformations to a low-dimensional representation. This
representation is subsequently decompressed and transformed back into
the original representation through various transforms in the decoder,
with the objective of accurate reconstruction of input data. Interme-
diate layers typically consist of lower quantities of neurons, which
in effect force the network to learn a compressed representation. In
general, AEs are particularly well-suited for CM tasks as they are
able to learn the representations of the normal operating state of a
system and detect anomalies or deviations from that state (Zhou &
Paffenroth, 2017). Implementations of the autoencoder learn to identify
these changes by encoding the normal behaviour of the system into
a lower-dimensional representation, and then detecting anomalies in
the reconstruction error when the system deviates from this normal
behaviour. This strategy has been employed in subsequent literary
works for the effective detection of deviant behaviour without the need
for additional labelled data. For example; Li and Deka (2021a) designed
a physics-informed convolutional autoencoder for the detection of high
impedance faults in power distribution grids to overcome the issue of
the lack of labelled data from conventional approaches. The physics
hybrid physics-informed loss term featured in the network serves to
regularize the prediction of voltage, taking advantage of the physical
relationship, the elliptical trajectory between measured voltage and
current. As another example: Russell and Wang (2022) proposed a
framework for signal compression and reconstruction of large quanti-
ties of data in the setting of industrial CM through a physics-informed
deep convolutional autoencoder. A hybrid loss function was developed
comprised of the traditional MSE, Pearson’s correlation coefficient loss,
and a physics-informed loss term. As the primary objective of an au-
toencoder is to reconstruct a given signal, dominant frequencies in the

signals must be preserved post-reconstruction. This fact is leveraged by
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Fig. 10. Integration of physics-based and data-driven domains through feature fusion: The CNN architecture is employed as a feature extractor.
Source: Adapted from Huang et al. (2022) and Yin et al. (2023).
Fig. 11. Cross Data-Physics Fusion, as presented by Wang et al. (2020) predictions based on information from both the data domain (comprised of features derived from labelled
monitoring data), and physics domain (comprised of features derived from unlabelled data) are simultaneously mapped to a shared space, and concatenated. Both are processed
through a regression layer for the final prediction.
the authors to impose a physical constraint on the data-driven solution
through a loss term sensitive to frequency. The authors also selected
to learn latent representations of operating conditions individually,
effectively isolating the compressed representations, with the objective
of optimal representation for individual faults (see Fig. 11).

Several examples in literature also take advantage of the RNNs’
ability to extract temporally invariant data, for use in applications
involving time-domain monitoring. For example, Wang et al. (2020)
fused features from the data-driven and physics domain through their
applications of the cross physics-data fusion, with application in mod-
elling damage accumulation in tools. Features from the data domain
and physics domain are extracted separately, and subsequently mapped
to a shared feature space, representing tool wear. Predictions from
both domains are concatenated, and evaluated in the final regres-
sion layer of the network whereby a physics-informed loss function
is employed to minimize discrepancies between the data-driven Bi-
directional Gated Recurrent Unit model and empirical equations. Liu
20 
et al. (2023) proposed a physics-informed RNN for offshore structural
monitoring. The methodology proposed employs an optimal singular
value decomposition procedure for modal identification of the struc-
ture. Through their study, the authors formulated the physics-informed
modal identification process into an eigensystem and employed an RNN
for the solution of the governing differential equations of the eigensys-
tem. Through their proposed framework, the authors improved upon
conventional monitoring methods to devise an efficient strategy for
modal identification and monitoring in real-time, and under dynamic
environmental conditions.

Researchers have also innovated upon the methodology by which
the loss is evaluated. Traditionally, the vast majority of literature
explores the minimization of deviations from a target value. Chen et al.
(2022b) instead proposed an LSTM differentiation strategy for the state
of health focusing on maximizing deviations between known states.
In their developed strategy for the selection of LSTM hyperparame-
ters in the detection of gearbox faults, rather than the conventional
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minimization of mean squared error of the labelled data, the selection
strategy proposed maximizes the discrepancy, in this case, evaluated by
the Mahalanobis distance, between healthy and physics-informed faulty
states. Data of vibration signatures correlating to the fault state are
generated based on prior knowledge of the system and used to establish
the target of evaluation.

In all, physics-informed regularization techniques represent a pow-
erful tool for the introduction of constraints within the training process
of deep learning networks. Unlike the previously detailed models,
physics-informed regularization presents a guided process by which
the algorithm is able to acclimate to the domain of physical feasibil-
ity, as illustrated in the numerous works discussed in this particular
section. Though effective, the main limitations of this approach are
primarily regarding the increased complexity of the loss landscape, and
difficulties in achieving generalization. Various authors have devised
methodologies to circumvent this issue, with several further exploring
the idea of physical constraints to network optimization, through var-
ious alterations to the architecture itself, as will be discussed in the
following section.

3.4. Physics-guided design of architectures

In addition to the loss function, the architecture of the ML algorithm
itself can be designed to incorporate physics-based constraints. From
the literature, this area of development primarily focuses on the design
of appropriate NN architectures that can efficiently encode biases and
learn the underlying physics of a system. A number of specialized NN
architectures have been proposed to tackle the unique challenges in
engineering applications.

One such approach is to leverage the information available to
encode some physical meaning to hidden values within the black-
box structure. Particularly with deep learning architectures, physical
meaning may be assigned to intermediary nodes or outputs to facilitate
physically-guided and interpretable information flow throughout the
network. Depending on the application, through specialized opera-
tions and/or transformations of data retained in intermediary nodes
in the form of network layers and connections, the physical relevance
of the node may be propagated. Another approach commonly em-
ployed is to ascribe physical significance to the connections between
nodes. Through this node connection, a fixed physical operation or
transformation may be specified between layers of the network, also
accomplishing the task of the preservation of physical principles within
information flow, albeit with a different methodology.

Subsequent subsections will detail some applications of the afore-
mentioned architecture design, with respect to a selection of popular
deep learning frameworks. In addition, this section will detail the
workings of conventional deep learning architectures within the frame
of physics-informed architecture design, with details regarding their
architecture and their suitability for specific applications pertaining to
data type and physics encoded.

3.4.1. Feed-forward neural networks
Various examples of this adjustment to architecture exist in lit-

erature. As the feed-forward structure has already been discussed in
Section 3.3.1: Physics-Informed Neural Networks, this section will not
feature the description of the network itself. Despite recent innovations
in architectures, feed-forward NNs are still commonly employed for
their simplicity, relatively efficient computation, and capabilities for
universal approximation of continuous functions. Their structure itself
makes feed-forward networks comparatively easier to analyse, and
subsequently encode physical relevance to sections of the network. As
such many authors have taken to the development of interpretable and
physics-informed architectures based on the feed-forward structure.
Table 5 provides a brief summary of literary works compiled for the

embedding of physics within the feed-forward architecture:

21 
Much of the literature developed in this section sought to provide
interpretability and explainability to the NN model by imposing physi-
cal constraints on the feed-forward and back-propagation process of the
NN itself. One such example of assigning physical parameters as nodes
to enforce information flow consistent with underlying physics may be
found in the work of Chen and Liu (2021), who proposed a probabilistic
approach, whereby a feed-forward model is employed to learn the
mean and standard deviations for stress to fatigue life distribution
relation. Prior knowledge is imposed through a constrained optimiza-
tion process, whereby physical parameters such as the fatigue stress
applied, fatigue life, and an index indicating if the sample failed or is
sustained through the trial are assigned as input nodes. Output nodes
involve parameters to define the probabilistic distribution of fatigue
life, with mean and standard deviation. The network is constrained via
its weights and/or bias restrictions based on known physical relations
between parameters, enforcing the intermediary values to be consistent
in terms of the sign. As another example Yan et al. (2022) employed
physics-based signal processing techniques in conjunction with physics-
informed regularization for a fully architecturally interpretable NN.
The resultant feed-forward NN developed was designed with three
hidden layers, representative of a data-driven formulation of signal
processing techniques such as the Hilbert transform, squared envelope,
and Fourier transform respectively. The network was regularized by
a hybrid loss function, whereby desired characteristics of the health
indicator constructed, such as the sensitivity of early fault detection,
are optimized. The authors applied this framework to directly con-
struct health indicators from vibrational signals for applications in
degradation modelling in machines.

Similar to the above work, Wang et al. (2022) developed an in-
terpretable framework through the assignment of appropriate physical
meanings to layers within the network. The authors applied their pro-
posed extreme learning machine framework for applications in machine
health monitoring. Extreme learning machines may be defined as a
subset of conventional NNs that emphasizes the use of simple models
to enable efficient and scalable learning. Initially introduced by Huang
et al. (2006), rather than the multiple hidden layers of conventional
NNs, an extreme learning machine framework is typically composed
of a single hidden layer that maps inputs to outputs based on a set of
fixed weights. These models are much easier to train and require much
less data and computational resources than standard neural nets. To
compensate for the simplicity of the models, extreme learning machines
emphasize the use of advanced techniques for feature extraction, data
pre-processing, and data fusion to enable the models to learn complex
patterns in the data. Such is the case in this study, whereby the authors
employed additional feed-forward layers for the purposes of applying
the wavelet transform, square envelope and Fourier transform to the
sampled input features as illustrated in 12, similar to the work of Yan
et al. (2022). Traditionally, hidden nodes within the extreme learning
machines are randomly initialized, with random input weights and
random biases. Due to this structure, extreme learning machine models
only require the accurate learning of the output layer, thereby directly
bypassing much of the time and computational required in compar-
ison to a traditional back-propagation optimization approach. Wang
et al. (2022) further innovated upon this structure by introducing
specific sparsity measures as a replacement for the randomly initialized
hidden layers, greatly increasing the interpretability of the network.
Novel transformations and indices of evaluation employed by the au-
thors include the Gini index, kurtosis, smoothness index, and negative
entropy.

In contrast to the above works, Chen et al. (2023) proposed an
alternate approach in the integration of physics through architecture,
with applications in fatigue life estimation. The author employed a
multi-fidelity model, whereby physics governing fatigue life is embed-
ded in the system through a combination of data-driven and novel
physics-informed neurons. Interestingly, the authors chose to apply

physics-based activation functions to certain nodes within the model,
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Table 5
A summary of literature compiled for the design of physics-informed architecture, with innovations to the feed-forward NN architecture primarily.

Article title Citation Description Application

Probabilistic physics-guided machine learning for
fatigue data analysis

Chen and Liu
(2021)

Probabilistic feed-forward neural network with
physically constrained weights and or bias
optimization to model fatigue life curve

Condition monitoring and fatigue life
estimation

Integration of a novel knowledge-guided loss
function with an architecturally explainable
network for machine degradation modelling

Yan et al. (2022) feed-forward network with physically interpretable
layers based on signal processing techniques,
optimized via knowledge-guided loss function

Machine condition monitoring for bearings

Fully interpretable neural network for locating
resonance frequency bands for machine condition
monitoring

Wang et al. (2022) Extreme learning machines, with physically
interpretable signal processing algorithms and
physical feature extraction encoded as additional
layers in the network

Machine condition monitoring

A physics-informed neural network approach to
fatigue life prediction using small quantity of
samples

Chen et al. (2023) Feed-forward network, with physical meaning
ascribed to certain nodes, enforced by
physics-based activation functions based on the
Walker mean stress model and Basquin relation
model

Fatigue Life Estimation
Fig. 12. Incorporation of physically interpretable feature extraction for use in conjunction with the Extreme Learning Machine.
Source: Adapted from Wang et al. (2022).
based on purely physical models such as the Walker mean stress model
and Basquin relation model. The resultant model structure features
certain physical neurons operating in conjunction with data-driven
neurons, as illustrated in 13. This, in effect, enforces the physical
relevance of the node itself via its relations with other nodes in the
network.

Due to their simplicity, there exists a wide variety of research avail-
able for the application of this particular architecture. Feed-forward
NNs have been employed to great effect in a variety of novel alterations,
as seen in the works discussed above. In the past years however,
numerous research in this area have improved upon the base NN
structure to be more suitable and specialized for the specific data types
and structures, which will be detailed in the following sections.

3.4.2. Convolutional neural networks
In addition to direct feed-forward models, CNNs have also enjoyed

great popularity in the research community. Through their innate
architecture, CNNs have the ability to encode certain invariances or
symmetries that are inherent in the data they are trained on, making
them useful in encoding certain biases based on prior knowledge. By
design, CNNs innately take into account spatial invariance through
22 
their use of convolutional layers and pooling layers. The unique convo-
lutional layers of the CNN offer an effective and automatic methodology
for the extraction of physical meaning from data. These layers serve to
extract spatial features from input data and are employed in tandem
with physics-informed layers, which impose physical constraints on the
predictions.

More specifically, regarding the working of the convolutional layer:
Within the convolutional layer, the network applies a set of filters to
the input data, with each filter detecting a particular feature or pattern
in the input, thereby allowing the network to detect local patterns in
different regions of the input regardless of their location in data. In
each convolutional layer, the filter is convolved across the entire range
of input data in accordance with stride size. The output of this action is
known as feature maps, tensors of locally weighted sum. For a typical
2-D convolution operation, the action may be given mathematically as:

𝑆 (𝑖, 𝑗) = (𝐼 ∗ 𝐾) (𝑖, 𝑗) =
∑

𝑚

∑

𝑛
𝐼 (𝑚, 𝑛)𝐾 (𝑖 − 𝑚, 𝑘 − 𝑛) (11)

Whereby the input data 𝐼 is convolved with filter kernel 𝐾. From
this convolution action, the CNN is capable of accounting for local
connectivity, allowing for the capability to detect features invariant of
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Fig. 13. Integration of physics-based and conventional sigmoid activation functions in NNs.
Source: Adapted from Chen et al. (2023).
location (LeCun et al., 2015, 1998). A nonlinear activation function
is typically applied after convolutions to introduce non-linearities to
the system. Pooling layers are generally inserted between convolutional
layers to reduce dimensionality while maintaining descriptions of fea-
tures. In the pooling layer, a sub-sample of each region in the resultant
feature map is taken, Instead of the precise feature locations outputted
by the convolutional layer, subsequent operations are performed on the
summarized features from the pooling layer, allowing for the network
to be more robust to variations in feature locations. Pooling layers
also help to introduce spatial invariance into the network by reducing
the spatial resolution of the input, typically by taking the maximum
or average value in each local region. This has the effect of making
the network more robust to small variations in the input, such as
translations or distortions. Other invariances that may be represented
may be rotational, scale, or permutation invariances, depending on the
application. This property makes CNN an important asset in CM tasks
where fault signatures may vary. A summary of compiled studies using
the physics-informed CNN framework is presented in Table 6.

The use of specially designed layers or architectures enables the
networks to capture the underlying physics while still leveraging the
power of deep learning to make accurate predictions. A common ap-
proach employed in current literature is to incorporate physics-inspired
layers such as Fourier features, tailored to the physical problem being
addressed, with the overall architecture of the CNN itself (Jing et al.,
2017). The fundamental concept behind the network design is to in-
tegrate physics-based techniques such as signal processing within the
network layers, allowing for the visualization of fault features related to
physics, and providing a physical perspective on the impact of physics-
based, interpretable features in the decision-making process. In many
such studies, Kim et al. (2022b), Li et al. (2021), Lu et al. (2023, 2019),
layers within a physics-informed CNN can be specifically designed to
prompt the network to extract features that are related to the specific
fault types of interest. These layers produce a physically relevant fea-
ture, map which may then be propagated through various abstractions
within the CNN architecture. Through this constraint, subsequent layers
are more capable of focusing on more complex feature extraction and
classification, improving the accuracy and robustness of the monitoring
23 
system, as demonstrated in the works of Wang et al. (2022b) and Li
et al. (2019b).

Physics-informed CNN architectures have seen prominent use in
analysing time–frequency type data due to their inherent structure and
the symmetries and invariances encoded. In many such applications,
the metric by which the state of the system is evaluated is often
the vibrations of the asset in operation. Deviations from the standard
operation may be determined based on the evaluation of processed
operational vibration signals through either one-dimensional CNN for
vibration signals or two-dimensional CNN for images mapped in the
time–frequency domain. Authors such as Sadoughi and Hu (2019)
have also taken to representing physical processes within the CNN
through modifications to convolutional filters, or kernels. In their work,
a physics-informed CNN framework is established for the diagnostics
of faults in rolling element bearings. To process signals from the
frequency domain, the authors modified the conventional CNN classi-
fication scheme, whereby additional processes are included to enhance
fault features. Additional layers consist of a spectral kurtosis layer, an
envelope analysis layer for pre-processing information, as well as a
Fast Fourier Transform layer for the post-processing transformation of
the predicted feature map to the frequency domain. For the network
itself, the kernels convolved are generated with reference to the shaft
rotation speed and characteristic frequencies of the bearing. The archi-
tecture may be seen in Fig. 14 (A). The authors noted the efficacy of
this approach, which may be attributed to its non-reliance on hyper-
parameters due to the physics-based nature of kernels. Through this
methodology, the authors have shown that the framework is capa-
ble of constraining the faults consistently with higher accuracy than
conventional deep learning approaches. Further examples involving
the use of signal processing techniques embedded within layers of
the network are apparent in the work of Li et al. (2021), who in-
troduced a novel physics-informed CNN architecture that they have
termed WaveletKernelNet, as illustrated in Fig. 14 (B). The authors
presented modification to the conventional CNN architecture through
a novel continuous wavelet convolutional layer, allowing the network
to more effectively extract impulses embedded in vibrational signals
representing bearing faults. Similarly, A similar approach was taken
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Table 6
A summary of literature compiled for the design of physics-informed architecture, with innovations to the CNN architecture primarily.

Article title Citation Description Application

Physics-based convolutional neural network for
fault diagnosis of rolling element bearings

Sadoughi and Hu
(2019)

Spectral kurtosis and envelope analysis embedded
within layers of CNN for informed feature
extraction

Machinery fault detection and diagnosis in
bearings

WaveletKernelNet: An interpretable deep neural
network for industrial intelligent diagnosis

Li et al. (2021) Continuous wavelet convolutional layer as the
initial layer for effective extraction of bearing fault
features

Machinery fault detection and diagnosis in
bearings

A health-adaptive time-scale representation (HTSR)
embedded convolutional neural network for
gearbox fault diagnostics

Kim et al. (2022b) Input signals mapped to health adaptive time scale
representation as initial feature map of CNN

Machinery fault detection and diagnosis in
gearboxes

Fault Diagnosis of Rolling Element Bearings on
Low-Cost and Scalable IIoT Platform

Lu et al. (2019) Physics-based feature weighting based on fault
characteristic frequencies for evaluation of fault
information carried by features

Machinery fault diagnosis in bearings

A physics-informed feature weighting method for
bearing fault diagnostics

Lu et al. (2023) Feature weighing layer for evaluation of
discrepancy between monitored signals and physics
of fault, for construction of input feature map of
CNN classifier

Machinery fault diagnosis in bearings

Fleet-based early fault detection of wind turbine
gearboxes using physics-informed deep learning
based on cyclic spectral coherence

Perez-Sanjines et al.
(2023)

Spectral coherence map established based on
vibration signals. Convolutional autoencoder
employed for fault detection based on spectral
coherence maps of fault conditions

Machinery fault detection and diagnosis in
gearboxes

Physics-informed lightweight Temporal
Convolution Networks for fault prognostics
associated to bearing stiffness degradation

Deng et al. (2022) Developed temporal CNN based on the relationship
between stiffness and vibration amplitudes to
construct physics-informed health indicator

State of health monitoring for bearing
stiffness

Traffic-induced bridge displacement reconstruction
using a physics-informed convolutional neural
network

Ni et al. (2022) Branched network design based on separate
analysis from acceleration-based and strain-based
methods, optimized via physics-informed-loss
function

Prediction of displacement in infrastructure
for structural health monitoring

On-line chatter detection in milling with hybrid
machine learning and physics-based model

Rahimi et al. (2021) Energy-based chatter detection model,
supplemented by data-driven estimation of the
operational state of machine

anomaly detection during process
monitoring for milling
Fig. 14. Design of Physics-Informed layers for CNN networks, including example architectures adapted from: (A) Sadoughi and Hu (2019) who employed a physics-based kernel
generation scheme to generate convolved filters for physics-informed convolutions, (B) Li et al. (2021) utilizing a convolutional layer to process Continuous Wavelet Transform.
(C) Lu et al. (2023) employing a physics-informed feature selection layer.
24 
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by Kim et al. (2022b), who developed a health-adaptive time-scale
representation model, physically informed by characteristic time and
frequency domain fault signatures, and embedded within a CNN for
analysis of time–frequency images. The authors adapted the physics-
informed CNN framework introduced for the monitoring of gearbox
faults from vibrational signals with a similar structure as specified in
the above work, employing a health-adaptive time-scale representative
module for the generation of indicators.

As an extension of Sadoughi and Hu (2019)’s work, Lu et al.
(2019) constructed a physics-informed CNN based on their proposed
physics-based feature weighting mechanism, whereby prior knowledge
regarding characteristic fault frequencies are employed in weighing
vibrational features of rolling element bearings, as seen in Fig. 14
(C). Inspired by the above works, in Lu et al. (2023), the authors
further built upon their initial model with the introduction of a physics-
informed CNN framework, whereby prior to classification with the
CNN, the features are pre-processed in accordance to an initial fea-
ture weighing layer and signal processing layers. The proposed layers
function to assign greater importance to features with minimal dis-
crepancy to the bearing fault characteristic frequencies. In comparison
to Sadoughi and Hu (2019)’s work, Lu et al. (2023) has elected to
directly operate in the frequency domain when constructing the input
space of the CNN classifier, with notably lower requirements in terms
of computational complexity and similar accuracy. Perez-Sanjines et al.
(2023) presented an alternate method for vibrational signal processing
based on cyclo-stationary analysis. Physical information from vibration
signals obtained via a 2-dimensional cyclic spectral coherence map is
incorporated with ML for anomaly detection. Through the cyclic spec-
tral coherence maps, physical insights are indirectly integrated through
the assumption of the vibration model. A convolutional autoencoder is
leveraged for its ability to process spatial data, and employed to recon-
struct cyclic spectral coherence maps based on machine data collected
in the healthy state. Evaluation of anomalies is performed on physical
components subject to rotary motion, with the evaluation creation
being the motion producing or exacerbating the cyclo-stationary signal
if deviating from nominal operation behaviours. Another implementa-
tion of physically relevant layers is demonstrated in the work of Deng
et al. (2022), who proposed a series of physics-informed temporal CNN
for the estimation of bearing stiffness degradation. The authors have
presented several frameworks implementing the CNN with physics-
informed integration, as discussed in prior sections. These strategies
involve a physics-augmented input feature space, a physics-informed
loss function, and network architecture design based on physical prin-
ciples. Of note, the authors sought to emulate the mapping between the
remaining useful life of the bearing with respect to features extracted
from vibrational signals through a custom physics-informed layer in
the network. The layer is designed to ensure that the process of NN
computations adheres to that dictated by prior physical knowledge.

An alternate implementation of physically inspired architecture de-
sign is demonstrated in the work of Ni et al. (2022), who implemented
a multi-branch structure of the CNN for the monitoring of deflec-
tion in bridge structures. Through the architecture illustrated in 15,
the authors fuse analysis approaches for displacement reconstruction
with respect to strain-based and acceleration-based methods. Due to
the shortcomings of each method: in that acceleration-based methods
are less capable of reconstructing quasi-static displacement, and pure
strain-based methods are inaccurate with respect to the reconstruc-
tion of dynamic components in displacement, the authors proposed a
two-branch CNN to construct individual components of the expected
displacements. In this fashion, relations between each component with
respect to displacement may be learned independently of the other.
Similar to the feed-forward network proposed by Haghighat et al.
(2021), the individualistic modelling of physical parameters within
the network is more efficient with regard to optimization. Feature
maps, in this scenario, are also independent of each other, allowing

for each branch of the network to exclusively focus on defining features a

25 
characteristic of quasi-static, or dynamic response, with minimal ‘‘false’’
or spurious interference from feature maps depicting another type of
behaviour. A further residual encoder–decoder block was employed
following convolution layers for enhanced information transmission.
Components are aggregated, and further processed through convolu-
tion layers and residual encoder–decoder layers for enhanced accu-
racy and robustness to noise. The process is also supervised by a
physics-informed loss function based on the minimization of the resid-
ual between predicted displacements through time states, formulated as
acceleration term from calculus, and observed acceleration. A similar
idea is illustrated by Rahimi et al. (2021), who introduced a decision-
making algorithm capable of alerting operators to abnormal conditions
such as chatter in the milling process. The framework combines results
from a physics-based vibration analysis, as well as spectral features
from a CNN to determine probabilistically, the presence of chatter
during operations. Through this design, the authors circumvented the
issues with existing physics-based monitoring methods, in which false
alarms are often produced due to the transient vibrations from the
excitation of the machine under dynamic operating conditions. Based
on the energy-based chatter detection model, the hybrid framework
trains a CNN in parallel during the machining process to ascertain
the specific state of operation, with assistance from the physics-based
model. In conjunction with the physics-based model, the probability of
chatter is updated with the operating state for an accurate and robust
prediction.

3.4.3. Recurrent neural networks
Another popular deep-learning architecture popular within the com-

munity is the RNN. RNNs have been prevalent since their inception due
to their capabilities in processing sequential data: taking into account
the context of the previous inputs in a sequence. Information from the
previous time state is parsed as the inputs to a new time state, along
with the conventional input data, allowing the network to incorporate
information from previous inputs into its current processing. As a direct
result, RNNs are inherently designed to encode temporal invariance and
have been proven to be invaluable in tasks that involve understanding
temporal dynamics and relationships.

Conventional RNNs map some input 𝑥(𝑡) at time 𝑡 to an output 𝑦(𝑡)

through possessing information from both the input space 𝑥(𝑡) and prior
ime state ℎ(𝑡−1), also known as the hidden state. An illustration of the
NN architecture may be seen in Fig. 16 (A).

The mathematical representation of an RNN may be written as
ollows, for the given input and prior hidden state, the hidden state
f a cell may be represented as:
(𝑡) = 𝑊ℎℎℎ(

𝑡−1) +𝑊ℎ𝑥𝑥(
𝑡) + 𝑏ℎ (12)

here 𝑊ℎℎ and 𝑊ℎ𝑥 represent the weight matrix associated with the
rior temporal state, and current input state respectively, and 𝑏ℎ rep-
esents the associated bias for the current hidden state. A non-linear
ctivation function 𝑔 (.) is applied element-wise to produce the hidden
tate of the cell:
(𝑡) = 𝑔

(

𝑧(𝑡)
)

(13)

ollowing this, the output at time 𝑡, 𝑦(𝑡), may be represented as:
(𝑡) = 𝑔(𝑊ℎ𝑦ℎ(

𝑡) + 𝑏𝑦) (14)

hereby 𝑊ℎ𝑦 and 𝑏𝑦 represents the associated weights and biases
espectively. The activation function 𝑔 (.), typically the soft-max or
igmoid function, is applied to a linear transformation of the hidden cell
tate to produce the final cell state output. The above computational
rocess is visually represented in Fig. 16 (B). From their feedback
onnections, RNNs are capable of maintaining hidden cell states that
apture the information from prior time states, granting the ability to
rocess sequential data and capture temporal dependencies. Addition-

lly, unlike other structures like the CNN, RNNs and their variants
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Fig. 15. Design of a multi-branch CNN, for individual modelling of displacement form strain and acceleration measurements respectively.
Source: Adapted from Ni et al. (2022).
Fig. 16. An illustration of (A) the general Recurrent Neural Network architecture, and (B) the inner computational processes within each RNN cell.
have the flexibility in processing and outputting sequences of vary-
ing lengths, allowing them to be applied to processes involving data
with dynamic lengths, a common property in real-world monitoring
applications.

Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU)
are two popular variants of RNNs developed to address the problem
of vanishing gradients, a prevalent issue in the training process of
traditional RNNs. LSTMs and GRUs both use gating mechanisms to
selectively store or discard information within the internal memory.
26 
These mechanisms enable LSTMs and GRUs to capture long-term de-
pendencies in the data, while simultaneously alleviating the issue of
vanishing gradients. LSTMs, introduced in the work of Hochreiter and
Schmidhuber (1997), have since become one of the most widely used
variants of RNNs. LSTMs maintain an additional internal cell state
representing long-term memory and employ three gating mechanisms
to regulate the flow of information. The input gate selectively updates
the memory cell with new information from the input of the cell net-
work, while preventing irrelevant information from being added to the
existing memory state. The forget gate allows for the selective removal
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Fig. 17. Incorporation of physics within an RNN cell, via physics-informed Deep Residual Recurrent Neural Network.
Source: Adapted from Yu et al. (2020b).
of irrelevant information from the memory cell. Finally, the output gate
selectively passes relevant information from the memory to the next
hidden state and output, effectively controlling the flow of information
through the network. A more recent variant of the RNN, the GRU, was
introduced in the work of Chung et al. (2014), and is a simpler variant
of LSTMs that use two gating mechanisms: the update gate and the reset
gate. The update gate determines how much of the new input should be
stored in the memory cell, while the reset gate determines how much of
the previous memory should be discarded. In addition to these variants,
the introduction of bi-directionality in the RNN architecture has also
been well-studied, whereby at the cost of increased computational
resources, the hidden states of two RNNs processing information in
forward and backward time steps are combined, allowing the network
to capture information from both past and future contexts.

In spite of their popularity, RNNs and variants of the RNN model
have major limitations in terms of their computational efficiency. This
limitation arises due to the sequential nature of the RNN computa-
tion (Kolen & Kremer, 2001). For sequential data processing tasks,
the inefficiency of RNNs for parallel computation may be a major
limitation, especially when dealing with large-scale datasets. Due to
the nature of their computations involving sequential dependencies
and hidden states, RNNs require a significant amount of time and
computational resources to process each data point, especially for long
sequences or deep architecture. This sequential dependency also makes
it challenging to parallelize the computations across time steps, as the
hidden states need to be computed in a sequential manner, severely
limiting the ability of RNNs to take advantage of parallel processing
architectures, such as GPUs or TPUs, and leading to further delays and
inefficiencies in the monitoring process. In Table 7, an overview of the
literature reviewed is provided.

An approach prevalent in literature is the incorporation of physics-
based constraints directly into the RNN architecture, whereby the NN
architecture is designed to incorporate physical models as an inte-
gral part of the model’s architecture. This can be achieved by in-
cluding physical equations or constraints as additional layers in the
NN, which are trained alongside the traditional NN layers. For exam-
ple, Yu et al. (2020b) augmented the structure of RNNs by embedding
physics-informed residual blocks within certain RNN cells for struc-
tural dynamic simulation. Residual values represent the deviation of
predictions with the known physics. Within the context of their work,
the residual block seeks to model exactly the inconsistencies in the
dynamic system between each time state and is iteratively minimized

through the proposed RNN, as illustrated in 17. Chen et al. (2022a)

27 
proposed an architecture involving the LSTM for the detection of faults
and prognosis for bearings. The proposed method has been referenced
as a degradation-consistent RNN. The network is physically informed
through the integration of the monotonic degradation behaviour of
mechanical components. The authors enforce the irreversible nature of
the degradation behaviour of bearings through the introduction of an
intermediary variable within the network. The variable is a represen-
tation of degradation in time and is embedded within the cell of an
LSTM network. The authors also implemented a physics-informed loss
function whereby the performance of the training phase is evaluated
against labelled data. A physics-informed term evaluates the observed
degradation at any state, with the intermediary variable representing
degradation, further re-enforcing the underlying physics represented by
the LSTM.

A recent popular methodology in literature comes in the form
of cumulative damage modelling based on RNN. Initially employed
by Nascimento and Viana (2019), an RNN model was employed to
capture the temporal dynamics of a machine fleet. The authors incor-
porated domain knowledge regarding the physics of the machines in
question into the model through the inclusion of physics-based model
elements directly within the RNN architecture in a format that they
have termed the Euler Integration Cell, as seen in Fig. 18. Employing
Euler’s forward method, the authors formulated the discretized system
state as a function of the previous system state and the input vector.
In this particular instance, based on Paris’ law governing crack growth,
a novel RNN architecture was developed whereby a physics-informed
layer was incorporated within the cell of a conventional RNN architec-
ture to model mechanical factors affecting crack propagation. Working
in tandem with the physics-based model, the traditional data-driven
model estimates the stress intensity factor range. The combination of
these two models with the RNN cell yields an accurate estimation of
temporal dynamics and cumulative damage in the specimen.

Following this publication, the authors also employed the same
model to estimate fatigue crack length growth in aircraft with lim-
ited observations (Nascimento & Viana, 2020). Subsequent works by
other authors are based upon the modification and tailoring of the
framework in alternative applications. For instance, studies by Yucesan
and Viana (2019, 2021a, 2022) applied a modified version of this
framework to model bearing fatigue in wind turbines, whereby the
data-driven model was employed in combination with known physics
to estimate the unknown effects of lubrication on failure. Through
a combination of data-driven elements within the cell, as well as

physics-based layers such as the Palmgren–Miner’s rule, the authors
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Table 7
A summary of literature compiled for the design of physics-informed architecture, with innovations to the recurrent neural network architecture and its variants.

Article title Citation Description Application

Structural dynamics simulation using a
novel physics-guided machine learning
method

Yu et al. (2020b) Embedded residual block within RNN cell as a representation of
prediction consistency with physics, iteratively optimized
through a deep residual-based RNN

Structural health monitoring
through dynamic simulations

Physics-Informed Deep Neural Network for
Bearing Prognosis with Multisensory Signals

Chen et al.
(2022a)

Physical knowledge regarding monotonic degradation behaviour
integrated within LSTM cell, regularized by physics-informed
loss function based on observed degradation

Prognosis and remaining useful
life estimation in bearings

Fleet prognosis with physics-informed
recurrent neural networks

Nascimento and
Viana (2019)

Paris’ law governing crack growth embedded within RNN cell as
a physics-based module to capture cumulative damage
employing the RNN architecture

Prognosis with respect to fatigue
crack propagation in aircraft

Cumulative damage modelling with
recurrent neural networks

Nascimento and
Viana (2020)

Paris’ law governing crack growth embedded within RNN cell as
a physics-based module to capture cumulative damage
employing the RNN architecture

Prognosis with respect to fatigue
crack propagation in aircraft

Wind Turbine Main Bearing Fatigue Life
Estimation with Physics informed Neural
Networks

Yucesan and
Viana (2019)

Data driven method to evaluate grease degradation. Utilizing
parameters of characterized grease degradation, as well as
physical modelling to characterize bearing fatigue, embedded
within RNN cell

Prognosis with respect to bearing
under fatigue and grease
degradation

A hybrid model for main bearing fatigue
prognosis based on physics and machine
learning

Yucesan and
Viana (2021a)

Modified RNN cell for evaluation of grease degradation and
bearing fatigue simultaneously

Prognosis with respect to bearing
under fatigue and grease
degradation

A hybrid physics-informed neural network
for main bearing fatigue prognosis under
grease quality variation

Yucesan and
Viana (2022)

Physics of degradation embedded within RNN cell, with focus
on a probabilistic methodology for the identification of grease
quality and variation

Prognosis with respect to bearing
under fatigue and grease
degradation

Hybrid physics-informed neural networks
for main bearing fatigue prognosis with
visual grease inspection

Yucesan and
Viana (2020a)

Modified RNN cell for evaluation of grease degradation and
bearing fatigue simultaneously. A novel ordinal classifier that
aids in calibrating model for grease degradation

Prognosis with respect to bearing
under fatigue and grease
degradation

A Hybrid Model for Wind Turbine Main
Bearing Fatigue with Uncertainty in Grease
Observations

Yucesan and
Viana (2020b)

Modified RNN cell for evaluation of grease degradation and
bearing fatigue simultaneously. A novel ordinal classifier that
aids in calibrating model for grease degradation

Prognosis with respect to bearing
under fatigue and grease
degradation

A Probabilistic Hybrid Model for Main
Bearing Fatigue Considering Uncertainty in
Grease Quality

Yucesan and
Viana (2021b)

Graph implementation of physics-informed and data-driven
components within RNN cell, for estimation of fatigue damage
accumulation with consideration to bearing fatigue and grease
degradation.

Prognosis with respect to bearing
under fatigue and grease
degradation

Estimating model inadequacy in ordinary
differential equations with physics-informed
neural networks

Viana et al.
(2021)

Utilized physics-based RNN as a method of numerical
integration for the solution of ordinate differential equations. A
data-driven term is introduced to correct for discrepancies in
physics through embedding within the physics-based RNN

Prognosis in various models
subject to complex degradation
mechanism

Physics-Informed Neural Networks for
Corrosion-Fatigue Prognosis

Dourado and
Viana (2019)

Integration of Walker’s equation governing fatigue crack growth
within RNN cell architecture to model corrosion fatigue stress.
Parameters of the equation are solved via data-driven or
physics-based components within the RNN cell.

Prognosis with respect to
corrosion damage and fatigue in
aircraft

Physics-informed neural networks for bias
compensation in corrosion-fatigue

Dourado and
Viana (2020)

RNN with modified physics-based layers incorporates Walker’s
mean stress model for fatigue crack propagation. Employed
data-driven layers to compensate for additional corrosion
degradation

Prognosis with respect to
corrosion damage and fatigue in
aircraft

Hybrid physics-informed neural networks for
lithium-ion battery modelling and prognosis

Nascimento
et al. (2021a)

Integration of the Nernst and Butler–Volmer equations within
RNN cell to represent battery discharge at each time state.
Data-driven neural network module within RNN compensates
between known physics and observed degradation behaviour

Prognosis of degradation of
charge and aging within batteries

Li-ion Battery Aging with Hybrid
Physics-Informed Neural Networks and
Fleet-wide Data

Nascimento
et al. (2021b)

Fleet-wide prognosis with modified RNN cell structure, based on
physical degradation behaviour governed by the Nernst and
Butler–Volmer equations

Prognosis of degradation of
charge and aging within batteries

Novel informed deep learning-based
prognostics framework for on-board health
monitoring of lithium-ion batteries

Giorgiani do
Nascimento
et al. (2023)

Cumulative damage model via modifications to the RNN cell,
comprised of physics-informed modules and data-driven neural
network module, for prediction of charge state. Neural network
embedded further regularized via Monte-Carlo dropout

State of Heath Monitoring and
prognosis of degradation of
charge and aging within batteries

Novel informed deep learning-based
prognostics framework for on-board health
monitoring of lithium-ion batteries

Kim et al.
(2022c)

Cumulative damage model via modifications to the RNN cell,
comprised of physics-informed modules and data-driven neural
network module, for prediction of charge state. Neural network
embedded further regularized via Monte-Carlo dropout

State of Heath Monitoring and
prognosis of degradation of
charge and aging within batteries
sought to characterize the relationship between bearing fatigue and
grease degradation through the combined network. To this effect, the
structure of the network was designed to take into account param-
eters from both degradation behaviours, and accurately characterize
each form of degradation with respect to the other. The authors fur-
ther innovated on this model by extending its applications to used
cases whereby elements of uncertainty are introduced to the grease

degradation process (Yucesan & Viana, 2020a, 2020b, 2021b).

28 
Viana et al. (2021) presented a method for estimation of missing
physics utilizing the model, whereby a data-driven layer is employed
to approximate the uncertain behaviour of the physical model. Inter-
estingly, Viana et al. (2021) chooses to employ the RNN architecture
as a purely physics-based solution to ordinary differential equations,
with the addition of a data-driven node to quantify the discrepancy
between known physics and observed results. The authors have veri-

fied the approach with various case studies such as the modelling of
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Fig. 18. Incorporation of physics within a RNN cell via Euler integration.
Source: Adapted from Viana et al. (2021).
atigue governed by established physics-based models such as Paris’
aw for fatigue crack propagation, Walker’s equation for fatigue crack
ropagation, and Palmgern–Miner’s rule for fatigue life estimation.

Another avenue for the application of this hybrid RNN architecture
as explored by Dourado and Viana (2019) who employed a similar

ramework for the estimation of corrosion effects system cumulative
amage. In their work, the structure of the RNN was designed to
epresent Paris’s equation, with stress intensity factors being deter-
ined physically, and the rest of the parameters being determined by
ata-driven feed-forward modules within the cell. The authors later
xpanded on their work with the introduction of a data-driven com-
ensator to correct for Walker’s model for crack propagation, whereby
ata-driven layers are employed to model the bias in damage accumula-
ion as a result of corrosion (Dourado & Viana, 2020). The cumulative
amage model has also seen much use in modelling degradation be-
aviours in lithium-ion batteries: for instance, based on their previous
ork, Nascimento et al. (2021a) modified the existing framework to be

onsistent with the Nernst and Butler–Volmer equations, with a multi-
ayer perceptron module within the cell to characterize the model-form
ncertainty. The approach focuses on building a reduced-order model
ased on Nernst and Butler–Volmer equations. Following a similar
dea as Viana et al. (2021), the authors employed multiple data-driven
odules within their modified RNN cell structure to compensate for
eviations between known physics, and observed degradation in the
sset. The authors further expanded upon their work to extend the
ange of applications. In the work: Nascimento et al. (2021b) to a
leet-wide dataset, allowing for the identification of assets deviating
rom fleet norms established. While in Giorgiani do Nascimento et al.
2023), the authors further extended the model for use with incomplete
istorical usage of assets through a Bayesian update strategy of revising
he probability of a hypothesis or belief based on new evidence or infor-
ation. Kim et al. (2022c) applied the cumulative damage framework

o the estimation of lithium-ion battery state in a model that they have
ermed the knowledge-infused RNN. In their model, the recurrent cell
s further modified via the addition of physics-informed modules based
n a double-exponential model of battery capacity. Furthermore, the
uthors also introduce a Monte-Carlo dropout within the data-driven
eed-forward network embedded within the RNN cell to secure robust
nd reliable probabilistic estimations of performance.

.4.4. Graph neural networks
Another example of physics-informed architecture comes from the

tructural composition of Graph Neural Networks (GNNs). GNNs are a
29 
class of deep learning models capable of processing graph-structured
data, initially conceptualized by Scarselli et al. (2008). GNNs are
comprised of nodes and edges, as defined in the work of Scarselli
et al. (2008). In this representation, nodes within the network represent
entities and edges represent the connection or relation between entities.
An illustration of this architecture is shown in Fig. 19.

For graph 𝐺 = (𝑉 ,𝐸) with nodes (also known as vertices) 𝑉
and edges 𝐸, each node may be represented as 𝑣 ∈ 𝑉 with feature
vector ℎ𝑣. The operation of the GNNs may then be defined as the
iterative process of updating the node feature vector representations by
aggregating information from their neighbouring nodes and then using
these updated representations to make predictions or classifications.
Employing a message-passing mechanism, nodes exchange information
with neighbouring nodes, enabling them to update the feature vector
based on the information received. This operation is reminiscent of the
convolution operation applied for CNNs, in the sense that both opera-
tions effectively aggregate and process neighbouring entities to update
the value of the entity in question. Each node aggregates information
from its neighbours using a learnable function that takes into account
both the node features and the edge weights. This information is then
passed to each node’s neighbours. This may be understood as follows:
for each node 𝑣, compute the message vector 𝑚𝑙

𝑣 through aggregating
information from its neighbours 𝑁 (𝑣) using a learnable function 𝑓𝑒:

𝑚𝑙
𝑣 =

∑

𝑢∈𝑁(𝑣)
𝑓 𝑙
𝑒 (ℎ

𝑙−1
𝑣 , ℎ𝑙−1𝑢 , 𝑒𝑙𝑣,𝑢) (15)

Where 𝑒𝑙𝑣,𝑢 is the edge feature vector between nodes 𝑣 and 𝑢, 𝑓 (𝑙)
𝑒 is

the learnable function that maps the features inputted of prior layer
𝑙 − 1 to the resultant message at layer 𝑙. Subsequently, each node
updates its representation through the combination of information it
received from its neighbours in the prior procedure, with its own
original representation. This may be represented as the computation of
the new feature vector ℎ𝑙𝑣 for each node 𝑣 by combining the previous
feature vector with the aggregated messages:

ℎ𝑡+1𝑣 = 𝑓 𝑙
𝑛(ℎ

𝑙
𝑣, 𝑚

𝑙
𝑣) (16)

The message passing and updating steps outlined above are repeated
for a fixed number of layers until a final representation is obtained for
each node in the graph. The final node features can then be used for
downstream tasks such as node classification or link prediction. The
functions 𝑓𝑒 and 𝑓𝑛 can be any differentiable functions and vary with
respect to the application. Typically in a GNN, this is approximated
with a deep learning structure such as the feed-forward NN, or graph
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Fig. 19. A depiction of a graph neural network (GNN) architecture, showcasing its key components and information flow: GNNs operate on graph-structured data, enabling effective
analysis, inference, and learning tasks within complex relational datasets.
Table 8
A summary of literature compiled for the applications of the physics-informed GNN architecture.

Article title Citation Description Application

Physics-informed geometric deep learning for
inference tasks in power systems

de Jongh et al.
(2022)

GNN with physics-informed loss function based on
power flow

State estimation and anomalous behaviour
detection power systems

PPGN: Physics-Preserved Graph Networks for
Real-Time Fault Location in Distribution Systems
with Limited Observation and Labels

Li and Deka
(2021b)

Physics of power grid embedded in graph structure
to train a GNN

Fault detection and localization in power
systems

Data-Driven Transmission Line Fault Location with
Single-Ended Measurements and Knowledge-Aware
Graph Neural Network

Xing et al. (2022) Inherent relationship between observable
parameters and fault location embedded in graph
structure

Fault detection and localization in power
systems
convolutional networks, and can be learned through back-propagation
during training. Through this connected architecture, GNNs are capable
of capturing complex relationships between entities in the graph, such
as the local and global structure of the graph, enabling them to make
accurate predictions and perform various tasks on graph-structured
data. A summary of the literature compiled is presented in Table 8.

The inherent structure of GNNs, which allows them to operate
on graph-structured data, makes them suitable for applications with
various real-world systems, in which the behaviour of the system is
determined by complex interactions between various components and
can be naturally represented as a graph. In particular, GNNs have
emerged as a powerful approach in modelling power systems, for
applications such as power system state estimation, load forecasting,
fault detection and diagnosis, and optimal power flow estimation (Gao
et al., 2020; Liao et al., 2021; Yu et al., 2022; Zhu et al., 2022b).
The popularity of GNNs in modelling power systems may be attributed
to the structure of power systems being inherently graph-like as well,
consisting of interconnected nodes (such as power generators, trans-
formers, and loads) and edges (such as transmission lines and cables)
that represent the flow of power and information. For example, through
a physics-informed GNN, de Jongh et al. (2022) monitored and per-
formed state estimations in their study. Power systems exhibit an
underlying, irregular structure in the form of grid topology, which
can be represented mathematically as a graph. Due to this struc-
ture, geometric deep learning methods such as GNNs are suitable
due to their inherent structure. de Jongh et al. (2022) proposed a
generic framework that uses geometric deep learning techniques and a
physics-informed loss function to solve power flow calculation and state
estimation tasks in power systems. The framework is shown to perform
well on simulated medium voltage grid topologies with various sensor
penetrations. Li and Deka (2021b) further proposed a physics-preserved
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graph network for the estimation of the location of faults in a power
grid system. The two-stage framework provided an accurate estimation
of node fault location with limited data. Through a novel adjustable
adjacency matrix by which sparse fault currents are aggregated, the
first stage of the framework approximates the topology of the structure.
Whereas the second stage of the framework learns the correlation
between observed, and non-observable data samples. Finally, Xing et al.
(2022) adapted the physics-informed GNN framework to improve fault
location in transmission lines. The authors incorporated prior physical
knowledge through their establishment of a graph structure of known
fault types, whereby the inherent relation between fault types and
locations is incorporated within measured mode voltages and measured
mode currents.

3.4.5. Generative deep learning networks
Generative adversarial networks (GANs) are a class of ML models

designed to automatically discover and learn regularities from training
data, such that the model may be able to generate realistic samples
of data that plausibly could have belonged to the dataset provided.
GANs consist of two NNs that are trained collectively in a competitive
setting. A generator network primarily learns to generate samples that
resemble the training data provided, and a discriminator network learns
to distinguish between the generated samples and the real training
data (Wang et al., 2017). The generator network takes random noise
or a latent vector as input and generates synthetic data samples. As
the process of training progresses, the generator network learns to
generate increasingly realistic samples that resemble the training data
distribution. The discriminator is represented as a binary classifier that
seeks to distinguish between real and synthetic sample data, with inputs
from both real data samples from the training set and synthetic sam-
ples from the generator. As the generator network learns to generate



Y. Wu et al. Expert Systems With Applications 255 (2024) 124678 
Table 9
A summary of literature compiled for the applications of the physics-informed GAN architectures.

Article title Citation Description Application

PhyMDAN: Physics-informed knowledge transfer
between buildings for seismic damage diagnosis
through adversarial learning

Xu and Noh (2021) Multiple source domain adaptation framework,
with physics-guided loss function based on
similarities in domains

Structural health monitoring in buildings

A new cyclical generative adversarial
network-based data augmentation method for
multi-axial fatigue life prediction

Sun et al. (2022) Dynamic Time Warping equation to eliminate
generated samples inconsistent with physical
knowledge

Fatigue life estimation for specimen under
multi-axial loading

Deep convolutional generative adversarial network
with semi-supervised learning enabled physics
elucidation for extended gear fault diagnosis under
data limitations

Zhou et al. (2023a) Deep Convolutional Generative Adversarial
Network to establish implicit physical correlation
between known and new faults

Machinery health monitoring in gear
transmissions

Adversarial uncertainty quantification in
physics-informed neural networks

Yang and Perdikaris
(2019)

Generative adversarial network for construction of
surrogate models to physical systems, regularized
via physics-informed loss function

Uncertainty quantification and propagation
in non-linear systems

Physics-informed deep learning: A promising
technique for system reliability assessment

Zhou et al. (2022) Generator network constrained by domain
knowledge via physics-informed loss function,
trained in an adversarial setting with discriminator
to produce probabilistic estimates of system state
and reliability for Markovian systems

Reliability assessment and degradation
monitoring
more realistic samples, the discriminator network becomes better at
distinguishing between the generated and real data and thus provides
more informative feedback to the generator network. The training
objective of GANs can be framed as a min–max game between the
generator and the discriminator. The generator aims to minimize the
discriminator’s ability to distinguish between real and fake samples,
while the discriminator aims to maximize its discriminative accuracy.
This objective is typically expressed as the minimization of the Jensen–
Shannon divergence or the Wasserstein distance between the real and
generated data distributions. This iterative process continues until the
generator network is able to produce samples that are indistinguishable
from the real training data (Goodfellow et al., 2020). A summary of
compiled literature is provided in Table 9.

Leveraging the underlying physics of the system, physics-informed
GANs have been employed to generate synthetic data that may be
used to supplement the available observational or measured data,
thus enabling more accurate modelling and prediction. Core to its
functionality, physics-informed GANs constrain the generated samples
through the application of physical laws. Some instances of this exist
in works by Xu and Noh (2021), who introduced a framework that
they have termed Physics-Informed Multi-source Domain Adversarial
Networks for the unsupervised identification of structural damage in
buildings. The proposed method employs a multiple-source domain
adaptation framework that seeks to extract domain-invariant features
from a variety of source domains. The authors proposed a novel loss
function whereby additional consideration is given to similarities be-
tween source and target domains, and the knowledge transfer from
similar source domains are prioritized. Similarly, Sun et al. (2022) pre-
sented a cyclical GAN model that embeds the physics of the hysteretic
behaviour within the network for the augmentation of available data.
More specifically, the authors aimed to capture the relation between
cyclic hysteresis loops of the half-life cycle of a specimen under multi-
axial loading and corresponding fatigue life. The authors enabled the
generation of synthetic data that obeys the distribution characteristics
of real fatigue behaviour, constrained by physical laws through various
Fourier transforms and semi-empirical equations. Through the Dynamic
Time Warping algorithm and various semi-empirical equations repre-
senting the relation between fatigue life and loading, strain loading,
and stress response, samples with deviations from physical principles
are eliminated. With the augmentation, multi-axial fatigue life data of
a test specimen was employed to train several well-known ML models,
including feed-forward networks, Random Forest, SVMs, and extreme
gradient boosting algorithms, demonstrating a significant improvement
in accuracy. Similarly, for applications in gear fault diagnosis, Zhou
et al. (2023a) proposed a convolutional GAN model to extend available
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training data in the gear fault diagnosis process, due to the high-cost
limitations of labelled fault data for specific gear fault failure modes.
Through this framework, the authors leveraged fault features from large
quantities of unlabelled training data to be representative of new fault
data, with respect to labelled training data, effectively extending the
prediction space of the deep convolutional GAN. Through this process,
the physical correlation between known and unseen faults may be
derived.

Various authors have also employed the framework for UQ. This
is typically performed by training the networks on data with known
uncertainties, effectively allowing GANs to effectively generate syn-
thetic data samples with associated uncertainties. The generated sample
may be used to estimate and quantify the uncertainty in predictions
made by ML models. GANs can also be used to generate diverse data
samples that span the entire range of possible uncertainties, helping to
improve the robustness and reliability of UQ methods. Applications of
the GAN architecture may be seen in works such as Yang and Perdikaris
(2019), which employed the framework for the quantification and
propagation of uncertainty pertaining to the non-linear PDEs in PINNs.
Due to limitations in data acquisition, the authors sought to produce
a method of uncertainty propagation based on a-priori knowledge by
means of governing differential equations. Through latent variable
models, the probabilistic representations of the system states were
procured. In a latent variable model, the observed variables are typ-
ically considered to be influenced by one or more latent variables.
These latent variables are not directly observed or measured but are
assumed to underlie the relationships among the observed variables.
The objective of the latent variable model is to estimate the values
of the latent variables and understand their impact on the observed
variables. An adversarial inference procedure was proposed for the
training of models with respect to available data. The incorporation of
physical constraints in the form of the physics-informed loss function
during optimization phases of the deep adversarial generative network
allows for training utilizing smaller datasets. Approximation of the
solution was performed by the minimization of error with respect to
minimizing the reverse Kullback–Leibler divergence. In this fashion,
predictions are constrained to be consistent with known physics. Em-
ploying the physics-informed constraints as regularization mechanisms,
the authors trained a deep generative model for the generation of sur-
rogates for physical systems, effectively circumventing the issue with
data acquisition through the characterization of uncertainty within
the physical system outputs. This methodology has been validated
with a series of experiments demonstrating uncertainty propagation
in systems governed by non-linear PDEs. As another example, Zhou
et al. (2022) incorporated physics-informed GAN in their framework
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for system reliability analysis. The network configuration is modelled
based on system state probability and encodes the governing equations
of the reliability evolution model. The authors characterized the system
performance at each time state problematically via derivations from the
forward Kolmogorov equations, and subsequently, the system reliability
as an aggregate of state probability where the system is considered to be
functional. The authors further proposed a GAN network for UQ with
respect to reliability assessment, whereby the generator seeks to pro-
duce synthetic data based on the derivative of system state probability,
or state transition defined. The generator model is also constrained by
any observed data from initial conditions or the continued operation
of the system, whereas the discriminator seeks to produce confidence
estimates of the data. The two are regularized by competing loss func-
tions and trained in an adversarial setting. In particular, physics-based
regularization is employed for the generator as an additional loss term,
in accordance with domain knowledge. The authors demonstrated the
effectiveness of the proposed methodology with a variety of numerical
examples. In all, the proposed method yielded similar results to that of
conventional Runge–Kutta and Monte Carlo simulations.

4. Discussion

In total, a sample size of 107 literary works was explored in the
survey, with the overall objective of discussing and summarizing pop-
ular implementations of PIML learning frameworks, with applications
to the monitoring of assets for anomalous behaviour and or operating
conditions. Of the works of literature surveyed, the methods of inte-
gration between physics-based methods and data-driven models were
subdivided into four distinct categories, as discussed in Section 3.

4.1. Interpretations and outlook

An illustration of the distribution of literature reviewed may be
seen in Fig. 20. The pie chart illustrates the distribution of publications
reviewed, highlighting the different areas within the field of PIML for
CM.

Of the literature surveyed, a large sample of works (36) identified
employed physics-based techniques to modify the input feature space of
the ML model, introducing physical knowledge through observational
biases. Alterations to the input space indirectly allow models to learn
physically consistent relationships through restricting mappings that
are not adherent to physical principles. This implementation has wit-
nessed great popularity which may be attributed to its simplicity and
ease of implementation.

From literature, this type of integration dealt primarily with direct
physical-model-driven generation of input data or augmentation of fea-
ture space: with (21) studies reviewed aiming to generate synthetic data
or used physics-based methods to create new physics-based features,
and (5) studies using physics-based methods to select discriminat-
ing features. Despite the varied approaches, a commonality with the
methods mentioned above is with respect to the custom tailoring of
feature space for use with conventional ML and deep learning models.
Incorporation of physics within the feature space of ML has also been
performed in several works (10), utilizing the philosophy of transfer
learning, whereby the model is pre-trained on a known source domain,
and subsequently re-calibrated for a target domain. Almost all works
in this area have designated the source domain as the known physical
domain, and employed knowledge transfer to capture known physics to
be re-purposed; Exceptions to this trend were with the work of Guc and
Chen (2021, 2022) who instead relied on the pre-trained features of the
source domain, and incorporated physics through the fine-tuning phase.
Various authors have employed this framework for the supplementation
of available data and enhancement of ML learning space for improved
performance and robustness.

With respect to the limitations of this technique, despite the ease
of implementation and apparent efficacy, this type of implementa-
tion does not directly incorporate any physical constraints during the
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learning process, resulting in a naive black-box model, with minimal
interpretability. While feature engineering may indirectly restrict the
model’s capabilities for physical violations, no constraints are enforced
during the learning process. Furthermore, there exists a degree of
dependency on the completeness and reliability of the physical model
for a true-to-life or authentic generation of features. While incorpo-
rating physics-based constraints can refine the learning space, it also
introduces a predisposition towards patterns aligned with the specific
physics equations employed. Consequently, there is a potential for
overlooking alternative, yet valid, solutions that might deviate from
the preconceived physics framework. This observational bias can inad-
vertently restrict the algorithm’s adaptability and generalization across
diverse datasets or scenarios where the underlying physics may vary or
be poorly understood. Moreover, reliance on physics-based principles
might inadvertently perpetuate existing biases or assumptions embed-
ded within the chosen physics models, thereby limiting the algorithm’s
capacity to explore novel phenomena or unconventional data patterns.
As such, the outlined approach may not be suitable for complex systems
where the underlying physics is not well understood, due to the difficul-
ties in capturing the intricacies and nuances of real-world phenomena
in a set of predefined features.

Another formula for the incorporation of physical knowledge within
ML models is the applications of data-driven modules in tandem with
physics-based models, such that the data-driven model acts as a cor-
rectional mechanism to complement the decisions made based solely on
physical principles. (3) of the works sampled have employed this format
for their applications. While the technique has demonstrated some
success as demonstrated in the above literature, the action of utilizing
ML as a correction mechanism for physical models is not without
limitations. As with most purely data-driven models, a major limitation
in this strategy is its inability to capture behaviours not present in the
domain on which they are trained. In this format, ML models operate
independently from the physics-based models, and as a direct result,
in the case that the training data does not accurately capture the true
physics of the system as is characteristic of the error of the physical
system, the ML algorithm may learn to correct the errors in the physical
model, but may not be able to accurately capture the underlying
physical phenomena. With respect to the integration of physics with
data-driven models, another major limitation results from the target
learning space of the ML model. Due to the ML model learning the
error of the system, rather than the system itself, it is difficult to ensure
that the resulting corrections are physically meaningful. In some cases,
ML algorithms may identify patterns or relationships in data provided
that are not related to the underlying physics, leading to incorrect or
spurious corrections.

More recently, through several defining contributions, physical
knowledge of this system has been employed in conjunction with the
powerful approximative capabilities of NNs. Traditional methods in
training a NN involve an initial prediction made by the NN, and its
subsequent optimization in accordance with some form of distance
evaluation of predictions of the NN and prior knowledge, in the form of
a loss function. Optimization in supervised learning methods has been
carried out with respect to labelled data; the established methodology
has remained unchanged since its inception. Recently, several authors
have made innovations to this process through the introduction of
physics-informed regularizations. Conventional regularization such as
L1 or L2 regularization has been used extensively with ML models as
a methodology for ML and statistical modelling to address overfitting
and improve the generalization capability of the model. This effectively
balances the trade-off between fitting the training data well and lim-
iting the model complexity with additional penalty terms in the loss
function.

With physics-informed regularization, rather than limiting model
complexity, models are penalized based on their deviations from phys-
ical principles through the introduction of a physics-based loss term.

(38) sampled works applied this format of regularization for their
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Fig. 20. Distribution of publications reviewed on PIML for CM.
proposed methodologies. As characterized by Karniadakis et al. (2021),
physics-based regularizations have been known to introduce knowledge
of the underlying physical system through learning biases. Predictions
from deep learning architectures a be iteratively guided via the loss
functions over several optimization cycles to be consistent with known
physics. In addition, (32) of the studies employing this methodology
employ physics-based regularizations for the solution of governing or-
dinary or partial differential equations. Through independent variable
inputs, the NN seeks to predict the unknown variable. Leveraging
automatic differentiation, the predictions of variables from the base NN
may be employed to reconstruct the differential equations, as well as
initial or boundary conditions. These reconstructions are subsequently
evaluated in the form of the loss function, with some studies electing
to include loss with respect to labelled data as well. Initial works in
this area by the likes of Raissi et al. (2019) made use of conventional
feed-forward networks, although the general framework of physics-
based regularization has been quickly expanded to leverage other deep
learning architectures as well as demonstrated in a sample of (6)
works. Architectures such as CNNs and RNNs have been employed for
their capabilities in capturing spatial and temporally invariant features
respectively, and autoencoders for their unsupervised learning capabili-
ties. Several advantages of this approach are apparent, as demonstrated
by the above works.

The popularization of this format represents an effective method-
ology for the incorporation of prior knowledge of physical principles
within the optimization process of NNs, and its superiority over con-
ventional ‘‘naive’’ methods has been demonstrated in various works
(Haghighat et al., 2021; Raissi et al., 2019). Models constructed are also
33 
reliant to a lesser degree, on the available data for learning, enabling
authors to reduce data requirements to train a deep learning archi-
tecture and improve the robustness of models to noisy or incomplete
data. In fact, some studies (8) have employed purely physical loss
terms in the optimization process. Training a model in this format
may prove advantageous when limited data is available. In addition,
it reduces sensitivity to noisy or inaccurate data due to the absence
of dependence. In general, a data-driven loss term may also increase
convergence and stability, as well as generalization to unseen data
via additional guidance during training. Concerning limitations of this
methodology, the computational cost associated with PINNs, particu-
larly those employing deep-learning structures, can be substantial due
to the complexity of the NN architecture and the high-dimensional
parameter space involved in training. Despite their potential, PINNs
may not consistently outperform traditional numerical analysis meth-
ods such as Finite Elements and time-marching algorithms, especially
for well-established problems where these conventional methods have
been extensively optimized. The curse of dimensionality poses another
challenge for PINNs, particularly in high-dimensional systems, as the
computational cost of training increases exponentially with the number
of input dimensions. Moreover, PINNs may struggle to achieve high
numerical accuracy, especially in scenarios where exact boundary con-
ditions are crucial, partly due to the lack of appropriate regularization
techniques. In complex systems where the form of PDEs is not readily
available or their existence is uncertain, PINNs may introduce biases
in the numerical analysis, potentially leading to erroneous results and
faulty conclusions. While PINNs offer a quick and pragmatic approach
to learning dynamics from high-fidelity simulators that are expensive to
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run, this expedited learning process may compromise accuracy for com-
putational efficiency. Additionally, PINNs may encounter challenges in
effectively capturing model uncertainty, particularly in scenarios with
limited data or noisy observations. Despite these limitations, ongoing
research efforts are focused on addressing these challenges and enhanc-
ing the robustness and scalability of PINNs through the integration of
domain knowledge, exploration of novel regularization techniques, and
hybridization with traditional numerical methods.

Furthermore, it is noted that the curse of dimensionality signifi-
cantly impacts PINNs and conventional machine learning algorithms
such as GPs, posing severe challenges to their computational efficiency
and accuracy, particularly in high-dimensional spaces. For PINNs, the
complexity of deep learning models increases exponentially with the
number of dimensions, drastically inflating the number of parameters
and, consequently, the computational cost and data needed for training.
High-dimensional PDEs exacerbate these difficulties, as the network
depth and architecture complexity must scale appropriately, leading to
longer training times and increased risk of overfitting or underfitting.
The addition of a physical regularizer, depending on the problem being
solved, may introduce additional degrees of complexity to the loss func-
tion overall. Current methods of optimization rely primarily on gradient
descent and its variants, in which the network adjusts its parameters in
steps towards the direction of minimal error with respect to loss. The
increased complexity of the loss function landscape may further compli-
cate or hinder the process of optimizations through the introduction of
local minima, for example. This aspect of physics-based regularization
has been noted in the work of Krishnapriyan et al. (2021), whereby
the characteristic increase in model complexity has been noted with
the introduction of soft regularization terms. This complexity hampers
the practical application of PINNs in many high-dimensional scenarios.
The aforementioned study by Yang et al. (2020) implemented PI-GANSs
as a promising approach to address the challenges associated with
high dimensionality in solving stochastic differential equations. Their
work demonstrated accuracy and effectiveness in managing problems
up to 30 dimensions, suggesting that such innovations could potentially
mitigate the curse of dimensionality in PINNs too. This study highlights
that while traditional PINNs struggle with high-dimensional spaces,
integrating adversarial training methods can help in managing the
complexity and computational load, thereby improving the scalability
and applicability of PINNs in high-dimensional problems. In a similar
vein, many classical ML algorithms such as GPs faces similar issues
with computation of highly complex PDEs native to physics-based
problems. For GPs, the curse of dimensionality primarily manifests
through the need to invert covariance matrices, a process with cubic
complexity relative to the number of data points. As the dimensionality
increases, the computational costs and memory requirements become
prohibitive, rendering GPs impractical for many large-scale or high-
dimensional applications. This scalability issue is a major bottleneck,
limiting the use of GPs in real-world CM applications where high-
dimensional inputs are common. Furthermore, exploring methods such
as those presented by Zhou and Zhang (2021) in their work on using
quantum TSA methods for data-driven transient stability prediction in
power systems (2022) shows that innovative computational approaches
can offer scalable and efficient solutions to the challenges posed by
high dimensionality. Although this is not directly related, it suggests
a potential pathway to addressing similar high-dimensional challenges
in these areas.

With respect to numerical accuracy, while PINNs are flexible in
incorporating physical laws directly into the learning process, their
approximation of boundary conditions and solutions to PDEs may not
always achieve the desired numerical accuracy. In numerous complex
systems, the precise form of partial differential equations PDEs may be
unknown and or, does not exist. Under these circumstances, PINNs may
introduce significant biases in numerical analysis, potentially compro-
mising the accuracy of predictions. The approximation quality heavily

depends on the network architecture, the optimization process, and the
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way boundary conditions are enforced, which may result in inaccura-
cies, especially at the boundaries or for complex boundary conditions.
Numerical accuracy and the enforcement of boundary conditions pose
additional challenges. In the case of PINNs, while the integration of
physical laws into the learning process is advantageous, it does not
guarantee precise numerical accuracy, especially for complex bound-
ary conditions. This limitation can lead to significant errors in the
modelling and prediction of physical systems. For Gaussian Processes,
numerical accuracy issues manifest differently. GPs generally provide
smooth and continuous predictions, which can struggle with exact
boundary conditions and sharp discontinuities or singularities within
the domain. The selection of appropriate kernel and mean functions
can mitigate some of these issues, but achieving precise adherence to
complicated or non-linear boundary conditions remains challenging.
This limitation can hinder the application of GPs in fields requiring high
accuracy and fidelity in boundary condition modelling.

In addition, through the physics-informed loss functions, physics-
based loss terms act as a penalization for the network in the case of
violations, however, they are not enforced as hard constraints. This
may prove an issue in hybrid loss functions involving penalization
terms with respect to labelled data in particular, as inaccuracies in
the data may cause the corresponding loss term to dominate within
the hybrid loss function. To a lesser extent, with respect to physics-
based regularization and PINNs in general, as the physical loss is
not strictly enforced, physical violations or deviations from expected
physical behaviours may still be produced by the network.

In the exploration of PINNs coupled with Random Projections, while
there is notable enthusiasm for combining these methodologies to
improve computational efficiency, the direct examples within the re-
cent literature specifically highlighting PINNs integrated with Random
Projections are sparse. However, the concept of Random Projections
itself is well-established in the field of dimensional reduction and has
been recognized for its potential to enhance computational efficiency
when dealing with high-dimensional data. One of the foundational
principles behind the integration of Random Projections with PINNs
is the theoretical and practical reduction in computational complexity
that Random Projections can offer. The idea is rooted in leveraging
the efficiency of Random Projections to manage the high dimension-
ality of data that PINNs typically operate with. This is particularly
relevant for complex physical systems modelled by partial differential
equations (PDEs) where high-dimensional input spaces are common.
The sparse random projections technique discussed by Li et al. (2006)
and colleagues in their work showcases the broader potential benefits
of random projections in processing high-dimensional data with signif-
icant computational efficiency and minimal loss of information. This
concept applied alongside PINNs suggests a promising direction for fu-
ture research where the strengths of both methodologies. A study in this
area by Fabiani et al. (2023) introduces a PIML scheme for solving ini-
tial value problems of nonlinear ordinary differential equations (ODEs)
and index-1 differential–algebraic equations. This approach leverages
random projections and focuses on estimating the weights from the
hidden to the output layer using Newton iterations. To address the
ill-posed nature of the least-squares problem, the scheme employs sin-
gular value decomposition for low-dimensional systems and sparse QR
factorization with regularization for large-dimensional systems, such
as those arising from the spatial discretization of PDEs. The selection
of hyper-parameters, including the bounds of the uniform distribution
for Gaussian kernel shape parameters and the interval of integration,
is guided by the bias–variance trade-off concept, complemented by a
variable step size scheme based on local error control algorithms. The
efficacy of this scheme has been evaluated against seven benchmark
problems, including the Robertson model, various non-autonomous
index-1 DAE problems, and phase-field and PDE models like the Allen–
Cahn and Kuramoto–Sivashinsky equations. Comparative analyses with
traditional MATLAB solvers (ode15s, ode23s, and ode23t) demonstrate

the scheme’s potential as a viable alternative (Fabiani et al., 2023).
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Another promising avenue for addressing complexity, particularly
when uncertainty surrounds the form and presence of governing PDEs
could lie in the principles outlined by the equation-free approach.
Equation-free modelling is a computational approach used in complex
systems analysis where traditional equations describing the system’s
behaviour are difficult or impossible to derive. Instead of relying on
explicit mathematical equations, this method leverages simulation data
and numerical algorithms to study the system’s dynamics. The core
idea is to use short bursts of detailed simulation to gather information
about the system’s state and then apply this information to guide the
overall analysis and prediction. This methodology allows for direct
macroscopic interventions on models built from fine-scale interactions,
effectively bypassing the derivation of detailed macroscopic descrip-
tions (Kevrekidis et al., 2004; Kevrekidis & Samaey, 2009). It utilizes
computational experiments and matrix-free numerical analysis to ex-
plore system behaviour on a macroscopic scale, making it suitable for
systems where the governing dynamics are not well-understood or too
complex for traditional PDE formulations.

In addition, manifold learning techniques, when coupled with multi-
scale analysis, offer a promising direction for understanding the dynam-
ics of systems beyond the reach of classical PDE-based models. These
techniques focus on identifying the underlying geometric structures
within high-dimensional data, facilitating the reduction of complex
dynamics into more manageable, lower-dimensional representations, as
discussed in a variety of works. For example: Concerning the discovery
of features in latent spaces, various authors have attempted to integrate
manifold learning. Manifold learning is an approach used for under-
standing the underlying structure of complex, high-dimensional data.
Unlike traditional methods that assume linearity or impose specific
structures, manifold learning seeks to capture the intrinsic geometry of
the data, often represented as a lower-dimensional manifold embedded
within the higher-dimensional space. By uncovering this manifold,
manifold learning techniques enable visualization, dimensionality re-
duction, and feature extraction, crucial for tasks like pattern recogni-
tion, clustering, and data exploration. Authors such as Galaris et al.
(2022) integrate PIML with manifold learning in the context of lattice
Boltzmann model simulations for PDEs. Specifically, the study employs
a novel approach using manifold learning techniques, notably parsimo-
nious Diffusion Maps, coupled with leave-one-out cross-validation to
identify the intrinsic dimension of the manifold. This method is crucial
for feature selection over the parameter space, providing a streamlined
and effective way to analyse numerical bifurcations in PDEs from
lattice Boltzmann simulations (Galaris et al., 2022). This approach
demonstrates the potential of combining advanced machine-learning
techniques with computational physics to enhance the understanding
and analysis of complex systems. In other works, Burbulla (2023) intro-
duced a method that integrates geometric transformations within PINNs
by incorporating a diffeomorphism, which is a mapping of a reference
domain allowing for the robust adaptation to geometric variations in-
cluding those on lower-dimensional manifolds. The effectiveness of this
approach is demonstrated across various problems, including solving
the Eikonal equation on an Archimedean spiral, addressing the Pois-
son problem on a surface manifold, simulating incompressible Stokes
flow in a deformed tube, and performing shape optimization with
the Laplace operator. Vaquero et al. (2024) extends this approach by
viewing the Hamilton–Jacobi PDE as an optimization problem, with
solutions approximated using ML techniques. The authors introduce
a method for constructing Poisson integrators that preserve Poisson
geometry on integrable Poisson manifolds. The approach relies on
a correspondence between Poisson diffeomorphisms and Lagrangian
bisections, reformulating Poisson integrator design as solutions to the
above-mentioned PDEs. Gracyk (2024) discusses a manifold-based au-
toencoder method where the manifold latent space evolves based on
the Ricci flow in a physics-informed setting for learning nonlinear dy-
namics in time, particularly PDEs. Finally Krishnanunni and Bui-Thanh

(2022) introduced a manifold-regularized layerwise sparsifying training
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approach in the neural architecture adaptation domain, showcasing the
method’s efficacy in learning and iterating over models.

The harmonization of manifold learning with multiscale numerical
analysis methods presents a potential framework for modelling systems
where classical PDEs fall short. This synergy is aptly demonstrated
through the work of Roberts et al. (2022) Equation-Free Patch Scheme,
which enables large-scale simulations to be conducted through com-
putations on small, distinct microscale patches. Such an approach is
adeptly applied in studies like simulating a heterogeneous elastic beam,
showcasing the potential for accurate and efficient multiscale simula-
tion without the necessity for detailed macroscopic equations (Roberts
et al., 2022). The exploration and application of these methodologies
underscore a pivotal shift in how complex systems are analysed and
understood. By bridging the gap between manifold learning and mul-
tiscale numerical analysis, these approaches offer a powerful toolbox
for tackling the inherent challenges posed by systems where traditional
PDE-based models may not be applicable or available.

Alternatively, authors have also attempted to incorporate hard con-
straints through the design of NN architecture. A total of (34) of the
works sampled provided innovative solutions to incorporate physical
principles as part of the computational processes of deep learning ar-
chitectures itself. Overall, this format offers improved interpretability,
as the computation process is designed within the framework of deep
learning networks. The learned parameters and model outputs can be
directly related to physical quantities, making it easier to understand
and validate the predictions, allowing practitioners a deeper under-
standing of the process by which algorithms predict and ascertain a
predicted result. Innovations have been made with respect to several
popular network architectures such as the conventional feed-forward
NN (4), the CNN (9), RNN (17), GNN (3), and GANs (5). With respect
to architecture design, the majority of studies examined either assigned
physical meaning with respect to intermediary nodes or layers or
alternatively, to the connections between nodes themselves in the form
of constrained optimization (Chen & Liu, 2021). Of which, in addition
to employing physics-informed layers, many such studies also employ a
physics-informed regularization as well, for additional guidance during
the optimization process. Some studies, such as the work of Chen et al.
(2023), alternatively employed informed activation functions for each
node within the network. With respect to the feed-forward networks,
several authors have proposed interpretable layers within the networks
to elucidate the computational processes of data-driven models, with
physical meaning being assigned to layers. This methodology represents
an alternate form of physics-based feature extraction. With regards to
applications with vibrational data from structural and machinery health
monitoring specifically, conventional signal processing techniques such
as Fourier transforms, envelope analysis, and wavelet transforms are
embedded within NN layers as a form of physics-informed feature
extraction and processing. A similar technique is employed with CNNs,
whereby layers within CNNs perform advanced feature selection or ex-
traction with regard to a defined computational process that is adherent
to known physics.

While the framework outlined above shares many similarities to
simply tailoring the input feature space, as discussed in Section 3.1,
there exist several key advantages of incorporating the pre-processing
stage within the network itself. For one, the framework outlined is ef-
fectively an end-to-end learning pipeline, whereby the entire network,
including the pre-processing stage, is incorporated within the learning
process. The advantages of this design lie in the fact that the network
can adapt and optimize both the pre-processing and subsequent feature
extractions simultaneously and eliminates the need for manual feature
engineering. In addition, the resultant network architecture embeds
physical knowledge, and is therefore more interpretable, due to the
network’s behaviour being enforced to align with known physical prin-
ciples. By explicitly modelling and accounting for factors that may be

physically modelled during the feature extraction process, the network
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can learn to extract more reliable and invariant features, resulting in
improved performance under challenging conditions.

The design of the network layout has also been explored, as tabu-
lated in the work of Ni et al. (2022), whereby the branched network
was introduced to solve for multiple pre-determinate physics-based
relations independent of each other. As noted in both Ni et al. (2022)
and Haghighat et al. (2021), while technically possible to solve for
multiple physical variables with a wide enough network layer, in the
case where the relations may be modelled independent of the other,
it is often more efficient in terms of computational resources, and
more accurate to model each variable individually through separate
branch networks. Several studies also focus on the RNN structure,
with the primary form of physical information being embedded in
computational procedures within the RNN cell. Key contributors within
this area include the works of Nascimento and Viana (2019), who
initially made use of the Euler Integration cell to embed the physics
of crack propagation within the RNN cell, as a representation of cumu-
lative damage modelling. This model is later extended to various other
applications in modelling the propagation of damage through time, as
well as model form uncertainty (Viana et al., 2021; Yucesan & Viana,
2020b, 2021b). Of the works covered, (14) made use of this format
of integration. Other works such as the study by Yu et al. (2020b)
also made alterations through the incorporation of the Deep Residual
Recurrent Neural Network, as initially proposed by Kani and Elsheikh
(2017). Utilizing the embedded physical dynamics of the system, prac-
titioners were able to better capture dependencies and improve the
model’s ability to make accurate predictions over longer time horizons.
(3) studies employed the GNN, in which the inherent structure of the
network is leveraged to better model and process graph-structured data,
with extensive applications in power systems. In contrast to conven-
tional NNs, GNNs are capable of handling non-Euclidean data via graph
representations, whereby nodes in the graph structure represent entities
and connections represent the relationships between them. Unique to
their structure, GNNs do not assume spatial locality. This assumption
is commonly used in CNNs, which are designed to operate on grid-like
data, such as images. This property of GNNs allows for operation on
data structures of arbitrary sizes and complex topologies. (5) samples
of literature reviewed dealt mainly with the optimization of GANs, of
which, (2) studies implement the network as an automatic framework
for the synthetic generation of physically plausible data, while the
remainder (3) employed the network to characterize and quantify the
uncertainty in predictions made by ML models.

In all, through the embedding of physical models within network ar-
chitecture, physical principles are enforced, leading to theory-adherent
communication through the architecture itself. However, as with all
learning algorithms, there exists a trade-off between the detail in
which the model is designed to interpret, and the computational de-
mands of the model. In addition to the domain knowledge required,
integrating physical principles within deep learning models increases
their complexity. Depending on the implementation, physics-informed
architectures may require more computational resources than conven-
tional deep learning models, which could be a limiting factor in some
applications in which computational speed is a requirement. Viana
et al. (2021) has also noted this limitation in their study, wherein
the complexity of the physical models embedded may prove unwieldy.
By extension, an avenue of potential further research may be the
adaptation of said complex models through guided simplifications or
reduced-order models. The introduction of inductive biases through
this format may also restrict the learning model, as it imposes strong
assumptions on the data and learning process. While rigid constraints
imposed by biases may be able to enhance efficiency through explicit
guidance to the model, they may also serve to limit the model’s flexibil-
ity to capture the underlying complexity of the data and the ability to
generalize. Thus, the suitability design of the architecture with respect
to its application must be carefully evaluated and tailored to ensure the

efficacy of the algorithm.
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Through a combination of hard and soft constraints, researchers
have been able to tailor current ML algorithms to suit the needs
of several real-world CM applications. Current studies have already
demonstrated great promise with regard to evaluation metrics such
as accuracy, reliance on data, and robustness to noise and or in-
complete data. With ongoing advancements in computational power,
researchers can tackle more complex and realistic physical problems.
The increased computational resources enable the exploration of larger
and more comprehensive datasets, facilitating the discovery of intricate
relationships and patterns that might have otherwise remained hidden.
Additionally, higher computational capabilities allow for more sophis-
ticated modelling techniques, enabling the consideration of complex
physical phenomena and nonlinear dynamics that were previously
challenging to capture accurately.

4.2. Limitations of literature review

A limitation of the findings in this survey was with regard to the
sample size of literary works examined. Although the paradigm of PIML
has been rapidly expanding since its inception, instances of literature
implementing the PIML for applications within CM systems remain
relatively low in comparison to other areas of development. Trends and
literature outlined by this survey may be skewed towards authors or
methodologies, and may not accurately capture the underlying trend
of the technology, with respect to CM applications.

5. Concluding remarks

PIML methods offer a promising avenue for improving predictive
modelling in physical systems, whereby the underlying physics-based
constraints can be leveraged to further enhance conventional data-
driven methods. By integrating the governing laws of physics into
the learning algorithm, PIML is capable of effectively determining a
non-naive, physically consistent representation of the system, thereby
enabling accurate predictions and extrapolations beyond the training
data. Furthermore, PIML methods facilitate data-efficient learning by
guiding the learning algorithm to prioritize regions of interest and
reduce the need for large training datasets. The incorporation of physics
also enhances generalization capability, as the models can naturally
handle extrapolation and capture the behaviour under different con-
ditions or perturbations. This work serves to provide an overview
of such methods, with a focus on the methodology by which physi-
cal knowledge is integrated into conventional machine naive learning
frameworks to formulate predictive models with a higher level of
understanding and sophistication in relation to the underlying physical
principles of the system. A total of 107 literary works have been
sampled, with applications of PIML for CM in various fields of en-
gineering. In the context of CM and fault detection, PIML methods
leverage underlying known physical principles and domain knowledge
to develop models capable of accurately predicting system behaviour,
detecting anomalies, and assessing the health status of critical compo-
nents. Through this incorporation, models are able to more effectively
capture the complex interactions between various system variables, en-
abling the identification of incipient faults and abnormalities with high
sensitivity and specificity. A detailed exploration of current methodolo-
gies for the integration of known physics with ML methods is provided
in this context, which is classified into primary categories with respect
to the methodology by which physical knowledge of the system is
integrated. Furthermore, this survey provides a generalized overview
of some of the most popular deep learning algorithms employed, with
brief explanations regarding their workings, their inherent advantages
as well as limitations. Leveraging the initial understanding provided,
the work seeks to detail recent innovations in the incorporation of
physical knowledge by various authors in their respective studies. In all,
several avenues of research were identified, including physics-guided

augmentation or feature space, data-driven correctional mechanism,
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physics-informed regularization, and finally, physic-guided design of
deep learning architectures. An interpretation of the various strengths,
weaknesses, and limitations of each avenue of research is provided, and
recommendations are made regarding nurturing areas of research with
respect to the integration of the PIML paradigm with applications to
CM of assets.
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