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A CNN-based strategy to automate contour detection of the hip and proximal femur 
using DXA hip images from longitudinal databases (CLSA and CaMos)
Ali Ammara, Naseem Alsadib, Jonathan D. Adachic, Stephen A. Gadsdenb and Cheryl E. Quennevillea,b

aSchool of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; bDepartment of Mechanical Engineering, McMaster University, 
Hamilton, ON, Canada; cDepartment of Medicine, McMaster University, Hamilton, ON, Canada

ABSTRACT
Hip fractures contribute significantly to mortality in older adults. New methods to identify those at risk 
use dual-energy X-ray absorptiometry (DXA) images and advanced image processing. However, DXA 
images have an overlapping femur and pelvis and may contain boundary lines, making automation 
challenging. Herein, a 5-layer U-net convolutional neural network (CNN) was developed to segment the 
femur from hip DXA images. Images were used from the Canadian Longitudinal Study on Aging (CLSA, 
N=104) and Canadian Multicentre Osteoporosis Study (CaMos, N=105) databases for training, with 
manual contour drawing defining the ‘true output’ of each image. An algorithm was then developed to 
mask each hip image, and trained to predict subsequent masks. The CNN was tested with 44 additional 
CLSA images and 42 CaMos images. This proposed approach had an accuracy and intersection over 
union (IoU) of 97% and 0.57, and 93% and 0.51, for CaMos and CLSA scans, respectively. Furthermore, a 
series of augmentation techniques was applied to increase the data size, with accuracies of 96% and 
94%, and IoU of 0.53 and 0.50. Overall, our strategy automatically determined the contour of the 
proximal femur using various clinical DXA images, a key step to automate fracture risk assessment in 
clinical practice.    
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Introduction

Osteoporosis is a disease commonly associated with age that 
reduces bone mass and strength (Raisz 2005). Hip fractures are 
one of the leading causes of mortality in older adults 
(Abrahamsen et al. 2009). As such, identifying people at risk is 
crucial for clinicians to prevent fracture such that individualised 
interventions (e.g., pharmaceutical, mechanical) can be applied. 
Currently, osteoporosis (and corresponding hip fracture risk) is 
diagnosed based on T-score calculated from dual-energy X-ray 
absorptiometry (DXA) scans; however, this has been shown to be 
poorly correlated with actual fracture risk (Cranney et al. 2007).

New advances in technology offer the opportunity for 
greater diagnostic accuracy and ultimately better patient out
comes. One previously-developed fracture risk algorithm 
(Jazinizadeh and Quenneville 2020) uses a technique called 
statistical shape and appearance modelling (SSAM) to charac
terise the shape and distribution of mineral through the prox
imal femur, thus extracting more information from each clinical 
DXA scan than simply a single bone mineral density (BMD) 
measure. This technology uses logistic regression to improve 
the prediction of fracture risk and has shown substantial 
improvement over the clinical standard of T-score 
(Jazinizadeh et al. 2020).

This SSAM technique requires the manual application of 
landmarks to each image. In order to improve the overall 
accuracy of the SSAM algorithm, more data must be used in 

the training set. Hence, in order to expand the SSAM algorithm 
to larger longitudinal databases such as Canadian Multicentre 
Osteoporosis Study (CaMos; ~9400 baseline and follow-up DXA 
scans) and the Canadian Longitudinal Study on Aging (CLSA; 
~50,000 baseline and follow-up DXA scans) (Raina et al. 2009) 
a technique must be developed to automatically detect the 
contour of the hip and proximal femur. This is also a crucial step 
towards clinical implementation where manual landmarking is 
impractical. Therefore, it is important to develop an automated 
algorithm that accepts all types of clinical hip DXA images and 
extracts these contours. The main difference between hip DXA 
images from the CLSA and CaMos is that CLSA includes white 
boundary lines along the femur (Figure 1a), and CaMos does 
not (Figure 1b). In both databases, each DXA image comprised 
of both the pelvis and femur. Two primary challenges exist with 
automatically extracting the contour of the hip and proximal 
femur using pre-existing methods. These are 1) the overlap 
between the pelvis and femoral head and 2) the white bound
ary lines along the femur in some images. Therefore, other 
methods such as pixel thresholding and pre-built object detec
tion algorithms were tested and not successful due to the 
complexity of the DXA image.

The DXA images provided from the CaMos are clinical hip 
images; however, these images do not contain white boundary 
lines along the femur or anywhere on the image. However, hip 
DXA images provided from the CLSA contain white boundary 
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lines, which are primarily used for clinical assessments. Adding 
and removing the lines are options technicians can adjust on 
the DXA software (e.g., Hologic’s APEX System Software). The 
default hip DXA image is usually set with the white lines on the 
image. Hence, longitudinal databases such as CLSA keep the 
standard default hip DXA image, while in CaMos hip DXA scans 
they were removed before exporting.

A convolutional neural network (CNN) is a technique that is 
widely used for object detection and image segmentation. 
More specifically, a U-net architecture has been found to be 
an effective approach for biomedical segmentation applica
tions, achieving high accuracy when used for various biomedi
cal applications (Ronneberger 2017). Furthermore, U-net has 
been immensely applied to medical imaging segmentation and 
has previously been widely used due to its accuracy (Lu et al. 
2022; Yin et al. 2022). Deep neural networks have been devel
oped to automate femur segmentation from Computed 
Tomography (CT) and magnetic resonance (MR) images, with 
high accuracy and efficiency (Deniz et al. 2018; Bjornsson et al. 
2021). Based on the high dice similarity scores in these previous 
studies, CNN is considered to have great potential to be used 
for management of osteoporosis and fracture risk. The purpose 
of our study was to propose a technique to automate the 
detection of the hip and proximal femur’s contour for DXA 
scans with an overlapping femur and pelvis, and the potential 

presence of boundary lines. This will allow researchers and 
medical practitioners to automatically determine the contour 
of the hip and proximal femur using all types of clinical DXA 
images, constituting a key step forward towards a clinical 
implementation of a fully automated fracture risk assessment 
tool.

Methods

Images were obtained from CLSA and CaMos (Figure 1). Due to 
the complexity of the images, a 2-dimensional (2D) CNN was 
designed to accept both types of standard clinical images and 
extract the hip and proximal femur’s contour (Figure 2). This 
model was built entirely using Python TensorFlow v2, using the 
Keras API (application programming interface) on Google 
Colaboratory (Colab). Google Colab provides free of charge 
access to computer resources such as Graphics Processing 
Units (GPU) and Tensor Processing Units (TPU) (Bisong 2019). 
A U-net architecture was used.

Pre-processing & data preparation

Due to the availability of time and DXA scans, both the CLSA 
data and CaMos data were divided to have 70% of the data 
in the training set (104 and 105 images, respectively). To 

a b 
Figure 1. Standard clinical hip DXA images. (a) hip DXA image from the CLSA, with the white boundary lines (b) hip DXA image from the CaMos, with no white 
boundary lines.

Figure 2. Proposed CNN strategy to automatically detect the contour. First, the input images are applied to the proposed U-net architecture, which will output the 
predicted masks of each image. Then by applying thresholding, the contour is extracted and is then overlayed on the original input image.
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allow a supervised approach to be used, every input image 
had an associated ‘true output’ image that was created by 
manually drawing the correct contour along the edge of the 
femur (Figure 3a,b), which was performed by the same 
author.

A mask generator was also developed where each true out
put image (Figure 4a) was inputted, and a binary mask was 
created based on pixel intensities (Figure 4b). A pixel intensity 
value corresponding to the manual line was used to binarize 
the image, where the femur was subsequently filled (Figure 4c).

Contour detection of the femur and U-net model

The U-net model consisted of two main paths, the contracting 
(downsampling) path and the expanding (upsampling) path. 
These are respectively known as the encoder and decoder, 
which encapsulates a five-layer model (Figure 5). The input 
image was downsampled in the contracting path, which 
increased the number of channels. This allowed for the 

extraction of more complex features; in this case this model 
had three main channels with an input image size of 160 × 160 
pixels.

The encoder was built using MobileNetV2, which comprised 
of depthwise convolution to separate features, linear bottle
necks between layers and shortcut connections between bot
tlenecks (Sandler et al., 2018). Using MobileNetV2 allows for 
image segmentation, classification and object recognition 
while maintaining low computational time and high efficiency. 
Although there are other existing pretrained models that 
achieve superior results, MobileNetV2 was chosen due to its 
simpler architecture, lower complexity, faster computation, and 
needing minimal computation resources, in comparison to 
others (e.g., ResNet (Sunnetci et al. 2022)). The MobileNetV2 
applied a deep convolution filter with a 1 × 1 pixel resolution 
followed by a 3 × 3 depthwise separable convolution filter and 
then a 1 × 1 convolution (Sandler et al., 2018; Toğaçar et al. 
2021). When convolving the image with a 3 × 3 filter, this 
causes the image to get smaller. As such, at the end of each 
layer zero padding was done to preserve the original size of the 

a b 
Figure 3. (a) corresponding ‘true output’ of the input image (Figure 1a) and (b) corresponding ‘true output’ of the input image (Figure 1b).

a b c 

Figure 4. (a) the ‘true output’ image manually drawn. (b) the image was binarized based on the pixel intensity. (c) the binary outline was subsequently filled to 
represent the region of the hip and proximal femur.
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input. In addition, this model used both batch normalisation 
and ReLU6 activation function. In MobileNetV2, batch normal
isation is added behind every convolutional layer that is done.

In the decoder path, Pix2Pix upsampling was used. This 
required an inverse operation of the pooling layer known 
as a transposed convolution layer. By upsampling the 
input, this technique learned the complete details of the 
image. Every step learned the mapping from the input 
image to output image. The skip connections were also 
used to pass features from the downsampling path to the 
upsampling path in order to retrieve spatial information 
that was lost during downsampling (Bjornsson et al. 2021).

The dataset was split into four batches; therefore, each batch 
had 25 and 26 images for CaMos and CLSA datasets, respectively. 
For the CLSA images the model was trained and validated using 
170 epochs; for the CaMos 150 epochs were used (determined 
based on the maximum before overfitting, defined as the train
ing loss value reaching zero). The epoch sizes were selected by 
training the model through a series of epochs from zero to 200. 
The loss and accuracy were examined to determine the optimal 
epoch size that minimised error while increasing the accuracy. 
Overfitting is a common problem with training the model with 
too many epochs, hence epochs sizes over 170 and 150, for CLSA 
and CaMos, respectively were not chosen. Overfitting was 
avoided by ensuring that the accuracy did not fully saturate to 
100% while keeping the loss low, the more epochs the model 
runs the longer the model is trained. The U-net model for both 
CLSA and CaMos images was evaluated using the Sparse 
Categorical Cross-entropy loss function and the Adam optimiser 
with a learning rate of 1 × 10−4 to test the overall performance of 
the model.

The CNN was evaluated for each image type using 30% of 
the data for testing from CLSA and CaMos (44 and 42 images, 
respectively) (testing data for both databases were not 
included in the training data). Dataset splits of 70:30 for both 
CLSA and CaMos were used as this ratio is commonly adopted 
in CNN models (El Saleh et al. 2019). The ‘true output’ was 
defined based on manual identification, as in the training set, 

and was then compared to the predicted output from the 
model. Both the input images and the mask were used to 
determine the predicted output, thus assessing the overall 
accuracy of the model. The accuracy metric that was used in 
Keras was Sparse Categorical Accuracy, which was calculated 
based on the percentage of predicted values (output) that 
match with the actual ‘true output’ pixel value labels. 
Furthermore, intersection over union (IoU) was measured, 
which reports the overlap between two bounding boxes (true 
output and predicted output) on a scale from 0 to 1 (where 1 
indicates a perfect overlap between the two boxes and 0 
indicates no overlap between the boxes).

The final contour output used the predicted mask and 
applied a technique called thresholding (Ma et al. 2010), 
which was used to determine the edge of the hip and proximal 
femur (i.e., the contour) by examining the nearby pixels along 
the object. Finally, the extracted contour was overlayed on top 
of the original input image.

Data augmentation

The most common solution for having limited data to build and 
train machine learning models is data augmentation. Due to 
limited availability of data, augmentation of both data sets 
(CLSA and CaMos) was applied. A series of augmentation tech
niques were applied to the images of both training sets, which 
were 1) flipping the images vertically, 2) sharpening each image 
by randomly varying the value between zero (no sharpening) 
and one (full sharpening), and 3) rotating the image by −45 to 
45 degrees. In addition, Gaussian noise was added within 
a maximum of 10% of the maximum pixel value. Gaussian 
noise is noise sampled using a Gaussian distribution with 
a mean of zero and standard deviation of the value of the 
‘added Gaussian noise’. The final augmentation technique 
that was applied was resizing, which scaled the image from 
50% to 150%. For both datasets separately, these techniques 
were applied to their respective training sets and augmented 
5-fold the original amount, referred to as offline augmentation. 

Figure 5. Proposed U-net architecture. (a) contracting path, (b) expanding path.
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This technique is when the final dataset size changes by a factor 
equal to the number of augmentation techniques applied 
(Shorten & Khoshgoftaar, 2019). The CLSA and CaMos models 
were trained and validated using 170 epochs and 150 epochs, 
respectively. The resulting augmented model was then evalu
ated using the same testing as previously described.

Results

U-Net CNN model

CaMos (No white boundary lines)
This model was trained and validated using 150 epochs. The 
loss and accuracy for the training data were 2.89 × 10−4 and 
0.99 (i.e., 99%), respectively (Figure 6a). For the validation data, 
the loss and accuracy of this model were 0.0029 and 0.99 (i.e., 
99%), respectively (Figure 6b). The training and validation sets 
had a mean IoU of 0.61 and 0.60, respectively (Table 1). The 
total training time was 342.9 s, where the first epoch took 30 
s and each subsequent epoch was 2.1 s.

After testing the CaMos data, the model was able to predict 
the masks of each testing image (N = 42) with a loss and accu
racy of 0.27 and 0.97 (i.e., 97%), respectively. In addition, the 
testing data produced a mean IoU of 0.57 (Table 1). The overall 
execution time was 1.03 s.

CLSA (white boundary lines)
After training and validating this model using 170 epochs, 
the loss and accuracy for the training data were 4.89 × 10−4 

and 0.99 (i.e., 99%), respectively (Figure 7a). Also, the loss 
and accuracy for the validation data was 6.62 × 10−4 and 
0.99 (i.e., 99%), respectively (Figure 7b). Loss values 

decreased substantially over the first 35 of the 170 trained 
epochs. The training and validation sets had a mean IoU of 
0.56 and 0.54, respectively (Table 1). The total training time 
was 368 s, where the first epoch took 30 s and each 
subsequent epoch was 2 s.

After testing the CLSA data, the model was able to predict the 
masks of each testing image (N = 44) with an accuracy of 0.93 
(i.e., 93%) and a loss of 0.50. In addition, the testing data pro
duced a mean IoU of 0.51 (Table 1). The overall execution time for 
testing the CLSA images was 1.01 s.

Data augmentation

After training and validating the CLSA model using 170 
epochs, the loss and accuracy for the training data were 
0.1014 and 0.95 (i.e., 95%), respectively. In addition, the loss 
and accuracy for the validation data were 0.1233 and 0.94 
(i.e., 94%), respectively (Table 2). Similarly, CaMos was 
trained and validated using 150 epochs, and the loss and 
accuracy for the training data were 0.002 and 0.99 (i.e., 
99%), respectively. Also, the loss and accuracy for the vali
dation data were 0.05 and 0.98 (i.e., 98%), respectively 
(Table 2). The training and validation loss for both CLSA 
and CaMos show a downward trend as more epochs were 
trained (Figure 8).

For the augmented CLSA data, the training and valida
tion data had a mean IoU of 0.53 and 0.52, respectively 
(Table 2). The testing data produced a mean IoU of 0.50. In 
addition, the augmented CaMos data, had a mean IoU of 
0.58 and 0.55 for the training and validation datasets, 
respectively.

Figure 6. For the CaMos dataset, a) the loss of the training data over the span of 150 epochs. b) the loss of the validation data over 150 epochs.

Table 1. Summary of U-net output.

Database

Training Testing

Training Accuracy Training Loss IoU Training Time (s) Testing Accuracy Testing Loss IoU Execution Time (s)

CLSA 0.99 (99%) 0.000489 0.61 368 0.93 (93%) 0.50 0.51 1.01
CaMos 0.99 (99%) 0.000289 0.56 343 0.97 (97%) 0.27 0.57 1.03
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Figure 7. For the CLSA dataset, a) the loss of the training data over the span of 170 epochs. b) the loss of the validation data over 170 epochs.

Table 2. Summary of U-net output with the augmented data.

Database

Training Testing

Training Accuracy Training Loss IoU Training Time (s) Testing Accuracy Testing Loss IoU Execution Time (s)

CLSA 0.95 (95%) 0.1014 0.53 1088 0.94 (94%) 0.3262 0.50 1.01
CaMos 0.99 (99%) 0.0020 0.58 906 0.96 (96%) 0.2572 0.53 1.01

Figure 8. For the CaMos augmented dataset, a) the loss of the training data over the span of 150 epochs. b) the loss of the validation data over 150 epochs. For the 
CLSA augmented dataset, c) the loss of the training data over the span of 170 epochs. d) the loss of the validation data over 170 epochs.
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Final output: contour of the femur

For each test set the contour was extracted and overlayed on 
the original image for the CaMos database (Figure 9), and CLSA 
database (Figure 10).

Discussion

In this work, a U-net CNN model was developed to automate 
the segmentation of DXA hip images in order to extract the 
contour of the hip and proximal femur. This was successfully 
demonstrated on standard clinical DXA images, addressing 
both the overlap with the pelvis and the possible presence of 
white boundary lines. This approach is a critical step towards 
automating femur contour identification for widespread imple
mentation of enhanced fracture risk prediction algorithms.

The CNN was trained and tested using two different image 
sets from the CLSA and CaMos. The main challenges of these 
datasets were with the overlapping of the pelvis and femur, as 
well as the white boundary lines present on the hip DXA 
images. Using the CaMos (without white boundary lines) 
images, the model achieved a 97% accuracy on the testing 
data. Similarly, using CLSA (with white boundary lines) images 
achieved a 93% accuracy on the testing data. At a glance, these 

results demonstrate the effectiveness of this CNN strategy. 
However, there is a 3% and 7% loss from CaMos and CLSA, 
respectively that the contour may not have been accurately 
identified. The clinical importance of how ‘good’ 97% versus 
93% has not been quantified. This aspect is beyond the scope 
of this study; however, future work should investigate how 
effective the CNN strategy is and determine how well both 
databases perform by applying the predicted contours to the 
SSAM fracture risk algorithm. This will determine if automatic 
detection of the hip and proximal femur’s contour using this 
CNN strategy is adequate, or whether these small errors are 
important enough that they would affect a clinical assessment 
of fracture risk.

The model achieved an IoU of 0.57 and 0.51 on the 
testing data for both CaMos and CLSA databases. This 
demonstrates that the intersection between the ‘true output’ 
and the predicted output was more than 50%. Even though 
theoretically IoU of 1.0 is a 100% overlap, this is often 
considered impossible to achieve, where similar previous 
work on training a deep learning model for classifying 
bone tumours on radiographs achieved a mean IoU of 
0.52, which allowed for a successful model that automati
cally detected the location of the tumour (von Schacky et al. 
2021). Similar results have been reported in another previous 

a b c
Figure 9. a) CaMos hip DXA scan from testing set. b) the corresponding predicted output mask from the model. c) the contour projected on to the original input image.

a b c
Figure 10. a) CLSA hip DXA scan from testing set. b) the corresponding predicted output mask from the model. c) the contour projected on to the original input image.
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CNN segmentation study, which achieved a high accuracy of 
0.92 and 0.93 and a mean IoU of 0.59 and 0.44, for the 
testing data of two different objects that were segmented 
(Majeed et al. 2018).

CLSA and CaMos are large longitudinal databases that 
encapsulate over 50,000 DXA images combined; however, in 
the present study only approximately 100 images from each 
dataset were used to train the CNN. This was due to the 
laborious work needed to prepare the images for the CNN (i. 
e., manually identifying the correct contour for testing the 
proposed strategy). However, very good results were still 
achieved in this study with the current data size used. This 
demonstrates the great potential of this developed CNN. 
Increasing the training set size would only improve our CNN 
to produce a more accurate contour detection algorithm.

Currently, the training and testing set sizes for both CLSA 
and CaMos were both 70:30 split. Ratios of 90:10, 80:20 and 
70:30 have been successfully used with high accuracy (El Saleh 
et al. 2019). Hence, due to the limited overall data, and ensuring 
that the reliability and robustness is tested, 70:30 split was done 
to increase the size of the testing data.

For every input image that was used for training this model, 
a ‘true output’ was created to compare the predicted results. 
This method consisted of manually outlining the contour of the 
femur for every DXA image and creating a ‘true mask’ for every 
input that was used for training the CNN. This was done by the 
same author to ensure consistency among all images. One of 
the main challenges faced was successfully using different 
approaches for automatically detecting the contour of the 
femur. Different approaches were tested such as the Canny, 
Sobel method and thresholding, as these are extensively used 
for edge detection. However, the complexity of the hip DXA 
image did not allow these methods to produce an accurate 
result. Most medical images contain multiple layered anatomi
cal features that contain non-uniform intensities and noise 
which result in failure of these basic algorithms (Ferreira et al. 
2012). In medical image analysis and processing, various 
denoising techniques (Goceri 2023) and intensity normalisa
tions have been used with different medical images (Goceri 
2018). However, they may increase computational costs. Hence, 
a U-net CNN approach was developed to tackle this problem.

U-net architectures (such as was used in this present study) 
have been commonly used for image segmentation with high 
performance (Deniz et al. 2018; Peng et al. 2020; Bjornsson et al. 
2021). A standard U-net contains a 5-layer structure in each 
path which allows us to solve more complicated image seg
mentation problems (Ronneberger et al. 2015). U-net structure 
can be modified to either greater or less than 5-layers for each 
path, and this is usually decided based on the type of applica
tion (Deniz et al. 2018; Peng et al. 2020; Bjornsson et al. 2021). 
U-net architecture has many advantages for segmentation pro
cess, such as the encoder and decoder structure allowing the 
model to capture small and large features within the image. 
Another main advantage of U-net for image segmentation is 
the fewer training samples required; U-net has shown to pro
duce good results while using limited training data (Du et al. 
2020). This can be done because of the features such as skip 
connections that help generate information and map it from 
the encoder to decoder to avoid the loss of information. Finally, 

another main advantage to U-net is the ability to easily adapt 
U-net models to other biomedical applications (Du et al. 2020).

Many researchers believe building a deep layered U-net struc
ture allows for a more accurate output; however, when the 
image is in the expanding path some details are missed due to 
image loss from the contracting path. The design of the CNN 
structure is completely based on the task at hand and while 
developing the CNN, different pre-trained models can be used. 
However, CNN models can also be developed without using any 
pre-trained models. MobilenetV2 is a pre-trained model that 
contains more than a million images classified images (Sandler 
et al. 2018). This pre-trained model was used as the encoder for 
this model, as it assisted in classifying DXA images. MobilenetV2 
has been previously used as an encoder for image segmentation 
(Peng et al. 2020; Kanadath et al. 2021). The benefits of using pre- 
trained models in CNN are achieving the most accurate results, 
faster computation, and better overall performance.

The optimiser and activation function should be chosen 
carefully. While there are various optimisers (e.g. Sobolev 
gradient-based (Goceri 2020a) and Lagrangian optimiser 
(Kervadec et al. 2022)) and activation functions (Kiseľák 
et al. 2020) implemented with deep networks to solve differ
ent classification problems, we applied the Adam and ReLU 
due to their efficiency in the proposed architecture with our 
datasets. The results herein were achieved using a Sparse 
Categorical cross entropy loss function with an Adam opti
miser (lr = 1×10−4), which allowed for the model to learn at 
a slow rate, minimising the loss. These results are currently 
higher than other studies that have done image segmenta
tion using a Sparse Categorical cross entropy loss function 
with an Adam optimiser, where accuracies on the order of 
88% have been previously reported (Tawde et al. 2021). 
However, this present study produced similar results to 
another study, where the accuracy of the CNN was 97.4%, 
using a Sparse Categorical cross-entropy loss function with 
a N-Adam optimiser (Kakarla et al. 2021). This demonstrates 
the effectiveness of using these loss and accuracy functions, 
over the most commonly known metric (e.g., dice similarity 
coefficient) for image segmentation (Kakarla et al. 2021; 
Tawde et al. 2021). The Sparse Categorical Accuracy metric 
calculates the number of predictions that match the integer 
labels, which in this case is the pixel value. An advantage of 
this metric is that it calculates the mean accuracy over all the 
predictions and accounts for true negative predictions. In 
general, the metrics used in this present study were selected 
due to their robustness and accuracy for computing the loss 
for image segmentation.

Currently, there is very limited literature on applying image- 
based machine learning to either longitudinal database used 
herein (CLSA and CaMos). A recent study used the CLSA data
base and built a CNN model to identify vertebral fractures while 
being able to generalise between various DXA machine manu
factures (Monchka et al. 2022). The CNN model achieved 
a sensitivity of over 90% while using the CLSA as well as other 
databases combined (Monchka et al. 2022). Although this appli
cation is different, the use of longitudinal databases such as 
CLSA and CaMos in machine learning models will tend to yield 
superior results due to their diverse images from various demo
graphics, which allows improvement of the model.
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It is known that deep networks are data-hungry, and sev
eral augmentations have been applied to solve various pro
blems with deep networks (Goceri 2020b) and to increase 
reliability and robustness of the methods. After training the 
CNN model with the augmented data for both the CLSA and 
CaMos databases, the model was compared to the original 
(pre-augmentation) dataset. For both databases, after testing 
our model, it was evident that the accuracy was similar in 
magnitude in comparison to the test set of the non- 
augmented model (96% and 94% for CaMos and CLSA, respec
tively), but the loss value was much smaller (0.33 and 0.26 for 
CaMos and CLSA, respectively). These results demonstrate 
that augmentation of data has positive impacts on improving 
the overall model.

The overall goal of this study was to take the critical 
next step in developing an integrated clinical tool based 
on the previously-developed fracture risk algorithm 
(Jazinizadeh and Quenneville 2020). This tool will use all 
types of DXA scans and efficiently be used by clinicians to 
assess fracture risk. The present study demonstrated 
a positive impact for automatically detecting the hip and 
proximal femur without any manual labour or extensive 
user interface. This is a steppingstone towards developing 
an automated clinical tool.

As in all studies, this current study presents limitations. 
Firstly, in order to build a CNN with high accuracy and low 
loss, expanding the training data becomes imperative; so that 
the CNN can learn from many different types of DXA images as 
the DXA images vary from intensities and overall shape. Since 
both CLSA and CaMos databases have more than 50,000 DXA 
images, more time and scans can be used to increase the 
datasets to further improve this CNN model. Secondly, different 
CNN parameters (e.g., number of layers in the U-net, learning 
rate, hyperparameters) have not been explored in order to 
compare with that of the present study’s technique to deter
mine the optimal method for accurately predicting the contour. 
Testing different CNN parameters and various loss functions 
was beyond the scope of this work, nevertheless state-of-the- 
art methods were still used in the present study to ensure 
a highly accurate CNN was developed. This provided 
a clinically acceptable timeframe of less than one second ana
lysis for a new scan. As future work, the performance of the 
proposed approach can be compared with the performance of 
a capsule network since capsule networks can preserve spatial 
relationships of learned features and have been proposed 
recently for image classification (Goceri 2021).

Overall, this study presented novel work that automated 
the detection of a hip and proximal femur’s contour using 
standard clinical hip DXA images exported from any DXA 
manufacturer (e.g., Hologic or GE Lunar). This was the first 
known study to develop a model that automatically detects 
the contour of the femur from all types of 2D hip DXA 
images used in clinical practice. This work demonstrates its 
potential for broad integration into clinical practice, as using 
any clinical diagnostic tool must be efficient and provide 
meaningful results within a quick timeframe. Automating 
the extraction of the contour allows for an enhanced frac
ture risk assessment tool and progressing towards clinical 
integration.
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