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A B S T R A C T

This paper presents a robust, fault tolerant, tube-based nonlinear model predictive controller for systems
with additive external disturbances and actuator faults. The design exploits the sliding mode control design
embedded in the auxiliary controller to create a lumped disturbance upper bound that represents the worst-
case contribution of both faults and disturbances. In this way, the proposed design is shown to maintain
robust control invariance in the presence of both forms of uncertainty. The design is expanded in two ways
which utilize a double boundary layer for the sliding surface to create a blended tube design, permitting the
control to take advantage of disturbance-based and lumped disturbance-based tubes. The proposed designs
are implemented on the attitude control of a nanosatellite system in both simulation and experimentation,
where performance is evaluated with average root mean square values on the attitude and input variables.
Simulation results reveal the proposed fault-tolerant technique maintains robust control invariance in the
presence of faults, unlike its nominal counterpart. Additionally, use of a double boundary layer and blended
tube significantly improved tracking performance at little increase in control effort while still maintaining
robust control invariance. Experimental results establish the validity of the fault-tolerant technique in practice
on a model nanosatellite.
. Introduction

Real world systems are plagued by uncertainty in the form of
isturbances, noise, or faults. Although many controllers possess in-
erent robustness to disturbances and noise, faults can cause serious
egradation in controller performance and lead to instability. Thus,
ault tolerant control (FTC) schemes are of interest, designed with the
oal to mitigate or correct the effect of faulty conditions, such as sensor
r actuator failures [1]. In general, FTC methods can be distinguished
s passive or active [2]. The passive approach lends itself to robust
ontrol techniques and focuses on resilience against the worst possible
ailure while the active approach focuses on diagnosis and adjustment
o faults, inviting more adaptive control approaches [3–9].

In recent years, MPC has found increasing use in FTC schemes
10–12]. Specifically, robust MPC approaches, i.e. min–max or tube-
ased MPC, have been applied actively [13–19] and passively [20–22].
hough effective, the active designs are inherently suboptimal due to
he decoupling necessary between fault detection, isolation, and recov-
ry architectures in the controller. Additionally, these designs can be
omplex to implement due to the need to update system parameters or
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change controller structure. Indeed, although potentially conservative,
passive FTC’s ‘‘one-size-fits-all’’ approach is easy to implement. Because
it is designed on the worst case scenario for a system, a passive scheme
requires no knowledge of fault activation or of multiple models to
maintain system performance. This convenience prompts development
of passive FTC schemes employing MPC, such as the works [20–22].

Ref. [20] uses an extended state-space model coupling the states and
output tracking error to mitigate uncertainty in industrial processes.
In a similar vein, [21] built upon these results by introducing 𝐻∞
performance indexing to increase the robustness of the design proposed
by [20] for interval time-varying delays and partial actuator failure.
Recently, [22] has used a similar approach for time delay systems,
combining the extended state-space model with a parameter dependent
Lyapunov-Krasovskii functional to mitigate uncertainties caused by
actuator faults, time delay, and external disturbances. However, these
studies were limited to linear systems and were exclusive to min–max
robust MPC approaches, which is more computationally complex than
tube-based MPC. To the authors’ best knowledge, only the work of [23]
has considered FTC for tube-based MPC on a nonlinear system. Unfortu-
nately, this approach is active rather than passive, using multiple fault
vailable online 19 September 2023
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models in its design to steer the system trajectories from a nominal to
a safety set in the event of a fault. Thus, there is a current gap in the
literature surrounding passive FTC methods with tube-based MPC for
nonlinear systems that should be addressed.

In this paper, we propose a passive fault tolerant tube-based MPC
for nonlinear systems with additive external disturbances and actuator
faults. This is accomplished using a tube-based controller that cascades
an NMPC and a model predictive sliding mode controller (MPSMC).
The primary contribution lies in exploiting the tube size design with
sliding mode control, resulting in three main outcomes: (1) inclusion of
a lumped disturbance bound that accounts for disturbances and faults;
(2) design of a double boundary layer to mitigate response to faults;
and (3) use of a blended tube design to reduce conservatism. The
subsequent design relies only on one system model and requires no
change to its nominal online constraint tightening scheme, resulting
in minimal increase to conceptual complexity. The proposed method
is implemented in simulation and in experimentation on a nonlinear
nanosatellite system perturbed by disturbances and actuator failures.
Controller performance is evaluated using root mean squared values
on the control effort and the states.

The remainder of this paper is organized as follows: Section 2
overviews the problem statement, followed by a description of the
underlying tube-based NMPC strategy in Section 3. The proposed fault
tolerant controller is detailed in Section 4 and Section 5 describes the
mathematical model for validation. Section 6 provides simulation and
experimental results and discussion, and the paper is concluded in
Section 7.

2. Problem setup

Consider the following nonlinear, feedback linearizable, control
affine dynamic system:

̇ (𝑡) = 𝑓 (𝑥(𝑡)) + 𝑏𝑢(𝑡) +𝑤(𝑡) (1)

where 𝑥(𝑡) ∈ R𝑛 is the system state, 𝑢(𝑡) ∈ R𝑟 is the system input,
𝑤(𝑡) ∈ R𝑛 is an external disturbance, 𝑓 (⋅) is the system dynamics, and
𝑏 ∈ R𝑛×𝑟 is the input matrix. The solution at time 𝑡0 to (1) for initial
condition 𝑥(𝑡0) and piecewise continuous control 𝑢(⋅) ∈ ℒ ([𝑡0, 𝑡],R𝑟) is
denoted as 𝑥(𝜏; 𝑥(𝑡0), 𝑢(⋅), 𝑤(⋅)), 𝜏 ∈ [𝑡0, 𝑡]. Here, ℒ ([𝑎, 𝑏],R) represents
the Lebesgue measurable and essentially bounded functions mapping
𝑢 ∶ [𝑎, 𝑏] → R. The system (1) is subject to the constraints 𝑥 ∈  , 𝑢 ∈  ,
and 𝑤 ∈  , where the constraint sets  = {𝑥 ∈ R𝑛

|𝐿𝑥𝑥 ≤ 𝐵𝑥} and  =
{𝑢 ∈ R𝑟

|𝐿𝑢𝑢 ≤ 𝐵𝑢} are convex, closed, and bounded, containing the
origin in their interior, and 𝐿𝑥, 𝐿𝑢, 𝐵𝑥, 𝐵𝑢 are user determined constants.
Further, the external disturbance is bounded to the set 𝑤 ∈  ∶= {𝑤 ∈
R𝑛 ∶ ‖𝑤‖ ≤ 𝑊 }, where ‖⋅‖ denotes the Euclidean norm, 𝑊 is the upper
bound of the disturbance, and  is closed and bounded, containing the
origin in its interior. Let (1) be affected by an actuator fault yielding:

̇ (𝑡) = 𝑓 (𝑥(𝑡)) + 𝑏[(I𝑟 − 𝛼)]𝑢(𝑡) +𝑤(𝑡) (2)

where I𝑟 is an 𝑟 × 𝑟 identity matrix and 𝛼 is an 𝑟 × 𝑟 diagonal matrix
with elements 𝛼𝑖, 𝑖 = 1… 𝑟 that indicate actuator effectiveness and are
bounded as 0 ≤ 𝛼𝑖 ≤ �̄�𝑖 ≤ 1 where 𝛼𝑖 = 0 represents nominal operating
condition, �̄�𝑖 represents the upper bound of an actuator’s effectiveness,
and 𝛼𝑖 = 1 represents complete actuator failure. Defining 𝑢𝐹 (𝑡) = −𝛼𝑢(𝑡),
the faulty system can now be described as:

̇ (𝑡) = 𝑓 (𝑥(𝑡)) + 𝑏𝑢(𝑡) + 𝑏𝑢𝐹 (𝑡) +𝑤(𝑡) (3)

Considering the fault and the disturbance as a lumped disturbance term
produces:

̇ (𝑡) = 𝑓 (𝑥(𝑡)) + 𝑏𝑢(𝑡) +𝑤𝐿(𝑡) (4)

where 𝑤𝐿(𝑡) = 𝑏𝑢𝐹 (𝑡) + 𝑤(𝑡) with 𝑤𝐿(𝑡) ∈ R𝑛 now represents the sum
of actuator failures and external disturbances. The control goal is to
stabilize the closed-loop of (4) subject to state and input constraints and
2

Fig. 1. Block diagram of controller architecture.

any possible uncertainty upper bounded by 𝑊𝐿 = 𝑊 + �̄�𝐵𝑢, which now
represents both external disturbances and additive faults and where �̄�𝐵𝑢
is the upper bound of the actuator faults. In this paper, this goal will
be addressed using tube-based robust MPC, which partners the optimal
control input 𝑣∗(𝑡) from a primary controller and the input 𝜅 from an
auxiliary controller to control (4). Specifically, we focus on modifying
the tube-based method with the lumped disturbance bound such that
the true system trajectory 𝑥(𝑡) remains in a robust control invariant
(RCI) set around an optimal nominal trajectory 𝑧∗(𝑡).

Definition 1 (Robust Control Invariant Set). Let 𝑒(𝑡) ∶= 𝑥(𝑡) − 𝑧∗(𝑡). A set
 ⊆  is a RCI set if there exists a control 𝜅 ∈  such that if 𝑒(𝑡0) ∈ ,
then for all allowable 𝑤(𝑡) ∈  , it holds that 𝑒(𝑡) ∈  ∀𝑡 ≥ 𝑡0.

Thus, fault tolerance in the scope of this work will refer to the ability
of the tube-based RMPC to maintain RCI in the presence of both forms
of uncertainty, additive actuator faults and external disturbances.

Remark 1. The term �̄� is included as the upper bound of the actuator
effectiveness for two reasons: (1) to allow the user to define an admis-
sible region of the actuator faults and (2) to avoid the underactuated
scenario of �̄� = I𝑟, which is not under examination in this study. Similar
to selecting an appropriate disturbance upper bound 𝑊 , �̄� can be se-
lected based on the expected amount of potential actuator degradation.
This is not an unreasonable assumption, as typical methods of failure
and their effects are known for physical systems.

Remark 2. For purposes of simplicity, subsequent analysis will con-
sider that (1) and its iterations can be defined by a double integrator
model with a single input (i.e. 𝑛 = 2, 𝑟 = 1). However, all analysis can
be extended to multi-input, feedback linearizable systems, including
square systems.

3. Controller design

This section presents the development of the tube-based robust
MPC controller formed using a model predictive sliding mode con-
troller, termed NMPC-MPSMC. Introduced in [24], to account solely for
bounded disturbances, the architecture features a primary controller
cascaded with an auxiliary controller, as shown in Fig. 1. In this
scheme, a sampled-data NMPC is the primary controller and a sampled-
data MPSMC is the auxiliary controller. Both controllers are designed
based on an undisturbed system model (𝑤𝐿 = 0) with assumed system
dynamics 𝑓 described as:

̇ (𝑡) = 𝑓 (𝑥(𝑡)) + �̂�𝑢(𝑡) (5)

For the remainder of the analysis, we assume no uncertainty exists in
the input channel such that �̂� = 𝑏.

3.1. Primary controller

The primary controller is designed to control (5) with nominal state
𝑧(𝑡) ∈  ⊂  and nominal input 𝑣(𝑡) ∈  ⊂  , where , are tightened
state and input constraints. The optimal control problem solved at
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sampling instant 𝑡𝑘 = 𝑘𝑇𝑠, where 𝑘 ∈ N and constant sampling time
𝑇𝑠 ∈ R≥0, is:

min
𝑣(⋅)∈ℒ ([𝑡𝑘 ,𝑡𝑘+𝑇 ],R)

𝐽𝑇 ,nom (6a)

ubject to

̇ (𝜏) = 𝑓 (𝑧(𝜏)) + 𝑏𝑣(𝜏), (6b)

(𝑡𝑘) = 𝑧0, (6c)

(𝜏) ∈ , 𝑣(𝜏) ∈  , (6d)

(𝑡𝑘 + 𝑇 ) ∈ 𝑓 , (6e)
∈ [𝑡𝑘, 𝑡𝑘 + 𝑇 ]

here 𝑧(𝑡𝑘) is the initial state, 𝑧0 is the solution to (5) with the optimal
nput determined by (6) at the previous sampling instant, 𝑇 is the
ime horizon, 𝑓 ⊂  is a tightened terminal constraint set, and the
pen-loop cost function is:

𝑇 ,nom = ∫

𝑡𝑘+𝑇

𝑡𝑘
𝑙nom(𝑧(𝜏), 𝑣(𝜏))𝑑𝜏 + 𝑉𝑓,nom(𝑧(𝑡𝑘 + 𝑇 )) (7)

where the cost functions are defined as quadratic stage cost 𝑙nom(𝑧, 𝑣) =
𝑧 − 𝑥𝑟𝑒𝑓‖2𝑄 + ‖𝑣‖2𝑅 and quadratic terminal cost 𝑉𝑓,nom(𝑧) = ‖𝑧 − 𝑥𝑟𝑒𝑓‖2𝑃
hich are weighted by positive semi-definite matrix 𝑄 and positive
efinite matrices 𝑅 and 𝑃 . Here, ‖𝑥‖2𝛱 denotes a norm weighted by a
ymmetric matrix 𝛱 . The subscript (⋅)nom indicates the function belongs

to the primary controller and 𝑥𝑟𝑒𝑓 is the reference trajectory that can be
defined as a static set-point or as a time-varying signal. Note at 𝑡 = 𝑡0,
initial condition 𝑧0 is initialized as 𝑧0 = 𝑥𝑟𝑒𝑓 (𝑡0). The outputs to (6) are
an optimal open-loop input sequence along the time horizon 𝑣∗(⋅; 𝑧(𝑡𝑘))
nd its associated optimal state trajectory 𝑧∗(⋅; 𝑧(𝑡𝑘), 𝑣∗(⋅; 𝑧(𝑡𝑘))), where

(⋅)∗ denotes the optimal solution. Only the portion of the input sequence
pertaining to 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) is applied to the system (5) until the next
sampling instant 𝑡𝑘+1.

3.2. Auxiliary controller

The auxiliary controller is used to counteract the effects of the
disturbance 𝑤 by maintaining the true system trajectory 𝑥 close to the
nominal trajectory 𝑧. The MPSMC accomplishes this by minimizing the
deviation from zero of a sliding variable designed on the error between
the optimal nominal trajectory and a predicted, undisturbed system
trajectory initialized with the current state of the system. Specifically,
the sliding variable is designed as:

𝑠 = �̇�𝑡(𝑡) + 𝜆𝑒𝑡(𝑡) (8)

where 𝑒𝑡(𝑡) = �̌�(𝑡)−𝑧∗(𝑡; 𝑧(𝑡𝑘), 𝑣∗(𝑡; 𝑧(𝑡𝑘))), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑇 ], 𝜆 > 0 is a scalar
gain, and the superscript (⋅̌) indicates variables internal to the auxiliary
optimal control problem. Then, the auxiliary control problem can be
defined by:

min
�̌�(⋅)∈ℒ ([𝑡𝑘 ,𝑡𝑘+𝑇 ],R)

= 𝐽𝑇 ,aux (9a)

subject to
̇̌ (𝜏) = 𝑓 (�̌�(𝜏)) + 𝑏(�̌�(𝜏) + 𝑏−1�̄�(�̌�(𝜏))sat(�̌�(𝜏), �̌�(𝜏)))

−�̈�𝑑 (𝜏) + 𝜆 ̇̌𝑒𝑡(𝜏), (9b)
̇̌𝑥(𝜏) = 𝑓 (�̌�(𝜏)) + 𝑏�̌�(𝜏), (9c)
̇̌𝛷(𝜏) = −𝜆′�̌�(𝜏) + 𝐹 (𝑥𝑑 (𝜏)) +𝑊 + 𝜂, (9d)
̇̌𝑆(𝜏) = 𝐴�̌�(𝜏) + 𝐵�̌�(𝜏), (9e)

�̌�(𝑡𝑘) = 𝑥(𝑡𝑘), �̌�(𝑡𝑘) = 𝑠(𝑡𝑘), (9f)

�̌�(𝑡𝑘) = 𝛷0, �̌�(𝑡𝑘) = |𝑒(𝑡𝑘)|, (9g)

�̌�(𝜏) ∈  , �̌�(𝑡) ∈  , (9h)
3

�̌�(𝑡𝑘 + 𝑇 ) ∈ 𝑓 , (9i)
𝜏 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇 ]

where 𝜆′ is the control bandwidth, 𝜂 > 0 is a design parameter satisfying
the sliding condition, and �̄�(𝑥) is a gain determined by:

�̄�(𝑥) = 𝐹 (𝑥) +𝑊 + 𝜂 − �̇�

= 𝐹 (𝑥) − 𝐹 (𝑥𝑑 ) + 𝜆′𝛷 (10)

where 𝛷 is the boundary layer thickness and the nonlinear dynamics
are bound by an assumed model error function 𝐹 (𝑥) ≥ |𝑓 (𝑥) − 𝑓 (𝑥)|.
Use of 𝐹 (𝑥) permits system uncertainty to be captured and is justifiable
because in practice, users tend to know ranges of parameter deviations
for dynamic systems. Eq. (9) is subjected to sliding mode dynamics
(9b), system dynamics (9c), boundary layer thickness dynamics (9d),
tube dynamics (9e), initial conditions on the system, sliding variable,
boundary layer, and tube size (9f)–(9g), and state and input constraints
(9h)–(9i). In (9), 𝑥𝑑 (𝜏) and its derivatives are the associated optimal
nominal state trajectory from (6) and 𝛷0 = �̌�∗(𝑡𝑘+1; 𝑠(𝑡𝑘), �̌�∗(⋅)) from
the previous sampling instant. Eq. (9d) describes the boundary layer
thickness 𝛷 as a function of the maximum disturbance bound 𝑊 , slid-
ing parameter 𝜂, and the model error function 𝐹 (𝑥). Eq. (9e) describes
the tube geometry, denoted as 𝑆, that bounds the error between the
true system trajectory and the optimal nominal trajectory defined as
𝑒(𝑡) ∶= 𝑥(𝑡) − 𝑧∗(𝑡; 𝑧(𝑡𝑘), 𝑣∗(𝑡; 𝑧(𝑡𝑘))), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), where 𝐴 = −𝜆 and
𝐵 = I𝑟, such that all realizations of 𝑥 are RCI with respect to 𝑧∗. The
open-loop cost function of (9) is:

𝐽𝑇 ,aux = ∫

𝑡𝑘+𝑇

𝑡𝑘
𝑙aux(�̌�(𝜏), �̌�(𝜏))𝑑𝜏 + 𝑉𝑓,aux(�̌�(𝑡𝑘 + 𝑇 )) (11)

here the cost functions are defined as quadratic stage cost 𝑙aux(𝑠, 𝑢) =
𝑠‖2𝑄′ +‖𝑢‖2𝑅′ , quadratic terminal cost 𝑉𝑓,aux(𝑠) = ‖𝑠‖2𝑃 ′ , 𝑄′ is a positive

semi-definite matrix, 𝑅′, 𝑃 ′ are positive definite matrices, and the
subscript (⋅)aux indicates the function belongs to the auxiliary controller.

The optimal open-loop control input �̌�∗(⋅; 𝑠(𝑡𝑘)) is the solution to
(9) which is applied to (1) until the next sampling instant 𝑡𝑘+1. Note
rom (9b) this value represents the total control input based on a
anipulation of the sliding mode derivation as detailed in [24]. The

uxiliary controller also produces associated optimal trajectories for the
liding surface, state trajectories, boundary layer thickness, and tube
ize. The tube size is used to determine the tightened constraint sets
s:

= {𝑧 ∈ R𝑛 ∶ 𝐿𝑥𝑧 ≤ 𝐵𝑥 − 𝐿𝑥𝑆𝑜𝑝𝑡} (12)

 = {𝑣 ∈ R𝑟 ∶ 𝐿𝑢𝑣 ≤ 𝐵𝑢 − 𝐿𝑢𝑏
−1�̄�𝑚𝑎𝑥(𝑥(𝑡))} (13)

where 𝑆𝑜𝑝𝑡 = �̌�∗(𝑡; 𝑠(𝑡𝑘), �̌�∗(𝑡; 𝑠(𝑡𝑘))), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) is the optimized tube
ize and gain �̄�𝑚𝑎𝑥(𝑥(𝑡)) is defined by

̄𝑚𝑎𝑥(𝑥(𝑡)) = max{�̄�(𝑥𝑙𝑏), �̄�(𝑥𝑢𝑏)}, 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) (14)

here 𝑥𝑙𝑏 = 𝑧∗(𝑡; 𝑧(𝑡𝑘), 𝑣∗(𝑡; 𝑧(𝑡𝑘))) − 𝑆𝑜𝑝𝑡(𝑡), 𝑥𝑢𝑏 = 𝑧∗(𝑡; 𝑧(𝑡𝑘), 𝑣∗(𝑡; 𝑧(𝑡𝑘))) +
𝑜𝑝𝑡(𝑡), and max{⋅} is the element-by-element maximum.

Feasibility and convergence of the abovementioned control design
as been proven input-to-state stable in [24], where input-to-state
tability is justifiable as a tool for analysis based on the results in [25].
erminal ingredients can be determined through the design of the
erminal cost function using methods outlined in [26,27]. However,
or simplicity, in this paper terminal ingredients for the primary and
uxiliary controllers have been selected such that the nominal terminal
onstraint set is 𝑓 = {𝑧𝑒}, where 𝑧𝑒 represents a user-defined set of
quilibrium states specific to the system dynamics; and such that the
uxiliary terminal constraint set is 𝑓 = {𝑥𝑒}, where 𝑥𝑒 = 𝑧∗(𝑡𝑘 +
; 𝑧(𝑡𝑘), 𝑣∗(𝑡𝑘+𝑁−1; 𝑧(𝑡𝑘))) where 𝑁 = 𝑇

𝑇𝑠
, a value representing the time

horizon in iterative steps.
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4. Tube-based MPC with fault tolerant MPSMC

In this section, it will be shown that by introducing the lumped
uncertainty bound 𝑊𝐿 into the design of the MPSMC, a tube-based
controller can be designed that simultaneously considers the effect of
actuator faults and external disturbances and maintains robust control
invariance of the tube design. Substituting 𝑊𝐿 for 𝑊 in (9d) results in
a boundary layer 𝛷 that accounts for external disturbances and faults:

̇ = −𝜆′𝛷 + 𝐹 (𝑥𝑑 ) +𝑊𝐿 + 𝜂 (15)

q. (15) enlarges the tube size and discontinuous gain value by using
𝐿 as opposed to 𝑊 , allowing both to mitigate the effect of actuator

aults on the system. As a robust technique, this solution is overly
onservative, as it considers that actuator faults are active at all times.
urther, due to the enlarged tube size, evolutions of the system trajec-
ories may fall in a wider band around the nominal trajectory than if a
arrower tube size is employed. Ideally, when no faults exist, the spread
f system trajectories around the nominal trajectory for either tube
esigned on 𝑊𝐿 or 𝑊 should be the same width. To accomplish this,
minor augmentation is proposed in the discontinuous term �̄�(𝑥)sat(⋅)
f (9b) where the saturation function is now:

at(𝑠,𝛷𝑊 , 𝛷𝑊𝐿
) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sign(𝑠), |𝑠| > 𝛷𝑊𝐿
𝑠

𝛷𝑊𝐿
+ 𝜉sign(𝑠), 𝛷𝑊𝐿

≥ |𝑠| > 𝛷𝑊

𝑠
𝛷𝑊𝐿

+ 𝜉 𝑠
𝛷𝑊

, 𝛷𝑊 ≥ |𝑠|

(16)

where 𝛷𝑊 defined by (9d) and 𝛷𝑊𝐿
defined by (15) can be considered

as inner and outer boundary layers such that 𝛷𝑊𝐿
> 𝛷𝑊 > 0,

and 𝜉 is an 𝑟 × 𝑟 positive, diagonal matrix with elements bounded as
0 ≤ 𝜉𝑖 ≤ 1, 𝑖 = 1… 𝑟. This value can be considered as a gain that
determines how aggressively the input will behave to approach 𝛷𝑊 and
mitigate the spread of trajectories. At 𝜉𝑖 = 1 the saturation function
fully incorporates 𝛷𝑊 to mitigate trajectory spread while at 𝜉𝑖 = 0
𝛷𝑊 is disregarded, returning the saturation function to its traditional
definition with boundary layer 𝛷𝑊𝐿

. Further, it is possible to use 𝜉 to
reduce the conservativeness of �̄�(𝑥) and define a more accurate tube
size through the following changes to (10) and (9e):

�̄�(𝑥) = 𝐹 (𝑥) − 𝐹 (𝑥𝑑 ) + 𝜆′[(I𝑟 − 𝜉)𝛷𝑊𝐿
+ 𝜉𝛷𝑊 ] (17)

�̇�0 = 𝐴𝑆0 + 𝐵[(I𝑟 − 𝜉)𝛷𝑊𝐿
+ 𝜉𝛷𝑊 ] (18)

where now the gain and tube can use a linear combination of both the
inner and outer boundary layer sizes to determine a less conservative
gain and a tighter tube size.

The values of 𝜉 are user determined, and should be selected to limit
trajectory spread around the nominal trajectory. Introducing 𝜉 accom-
plishes this by bringing (17) closer in value to (10). This technique can
be taken further by changing 𝜉 from a static to dynamic variable and
introducing it to the optimal control problem (9) by adding:

�̇�(𝑡) = 𝜐(𝑡) (19)

where 𝜐 is an artificial control input used to smoothen the optimization
of 𝜉. Thus, the fault tolerant MPSMC, termed FT-MPSMC, can be
described by the following optimization problem:

min
�̌�(⋅),�̌�(⋅)∈ℒ ([𝑡𝑘 ,𝑡𝑘+𝑇 ],R𝑟)

= 𝐽𝑇 ,aux (20a)

subject to
̇̌ (𝜏) = 𝑓 (�̌�(𝜏)) − �̈�𝑑 (𝜏) + 𝜆 ̇̌𝑒𝑡(𝜏)

+𝑏−1�̄�(�̌�(𝜏))sat(�̌�(𝜏), �̌�𝑊 (𝜏), �̌�𝑊𝐿
(𝜏)), (20b)

̇̌ (𝜏) = 𝑓 (�̌�(𝜏)) + 𝑏�̌�(𝜏), �̇�(𝜏) = 𝜐(𝜏), (20c)
̇̌𝛷𝑊 (𝜏) = −𝜆′�̌�𝑊 (𝜏) + 𝐹 (𝑥𝑑 (𝜏)) +𝑊 + 𝜂, (20d)
̇̌ ′ ̌
4

𝛷𝑊𝐿
(𝜏) = −𝜆 𝛷𝑊𝐿

(𝜏) + 𝐹 (𝑥𝑑 (𝜏)) +𝑊𝐿 + 𝜂, (20e)
̇̌𝑆(𝜏) = 𝐴�̌�(𝜏) + 𝐵[(I𝑟 − 𝜉(𝜏))�̌�𝑊𝐿
(𝜏) + 𝜉(𝜏)�̌�𝑊 (𝜏)], (20f)

̌(𝑡𝑘) = 𝑥(𝑡𝑘), �̌�(𝑡𝑘) = 𝑠(𝑡𝑘), (20g)

�̌�𝑊 (𝑡𝑘) = 𝛷𝑊 ,0, �̌�𝑊𝐿
(𝑡𝑘) = 𝛷𝑊𝐿 ,0, (20h)

̌(𝑡𝑘) = |𝑒(𝑡𝑘)|, 𝜉(𝑡𝑘) = 𝜉0, (20i)

̌(𝜏) ∈  , 𝜉(𝜏) ∈ 𝛯, (20j)

̌(𝑡) ∈  , �̌�(𝜏) ∈ 𝛶 , (20k)

�̌�(𝑡𝑘 + 𝑇 ) ∈ 𝑓 , (20l)
∈ [𝑡𝑘, 𝑡𝑘 + 𝑇 ]

here �̄�(𝑥) is defined by (17) and the open-loop cost function is now:

𝑇 ,aux = ∫

𝑡𝑘+𝑇

𝑡𝑘
𝑙aux(�̌�(𝜏), 𝜉(𝜏), �̌�(𝜏), �̌�(𝜏))𝑑𝜏

+ 𝑉𝑓,aux(�̌�(𝑡𝑘 + 𝑇 ))
(21)

here the terminal cost is unchanged from (11) and the stage cost
s now defined as 𝑙aux(𝑠, 𝜉, 𝑢, 𝜐) = ‖𝑠‖2𝑄′ + ‖𝑢‖2𝑅′ + ‖I𝑟 − 𝜉‖2𝑅′′ and
′′ is positive semi-definite. The gain 𝜉 is penalized as the deviation

rom identity to indicate that (20) should attempt to maintain the
isturbance-based tube of (9e) but expand the tube size by transitioning
o lumped disturbance-based tube of (18) as necessary. Based on (17),
his also adjusts the gain necessary to push the sliding trajectory
owards the more heavily weighted boundary layer.

The optimal open-loop control input solution �̌�∗(⋅; 𝑠(𝑡𝑘)) to (20)
s applied to (4) until the next sampling instant 𝑡𝑘+1, producing the
losed-loop system:

̇ (𝑡) = 𝑓 (𝑥(𝑡)) + 𝑏𝑢(𝑡) +𝑤𝐿(𝑡),

(𝑡) = �̌�∗(⋅; 𝑠(𝑡𝑘)), 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) (22)

he fault-tolerant MPSMC presented in this section leverages boundary
ayer sliding mode control design to account for uncertainty (i.e. ad-
itive, bounded external disturbances and actuator faults) in a simple
nd additive manner. The scheme offers a wide degree of freedom,
apable of three different implementations: (i) replacing 𝛷𝑊 with
𝑊𝐿

in (9); (ii) implementing (20) without a dynamic internal gain,
liminating (19) and its related equations from the optimization; or
iii) with a dynamic internal gain and resulting optimization problem
20). Additionally, due to the design of (16), the original constraint
ightening scheme described in Section 3.2 remains unchanged when
mplementing (20). Further, the stability results of NMPC-MPSMC hold
or FT-NMPC-MPSMC and its derivations as the convergence properties
nd recursive feasibility of the controller architectures are identical,
naffected by the change in cost function from (11) to (21). Though
ntricate, the complexity of (20) can be altered depending on imple-
entation (i), (ii), or (iii). Studies on the computational complexity of

he design are left as a subject of future work. For the remainder of this
aper, the total control produced by cascading (6) and (20) is termed
T-NMPC-MPSMC. To distinguish between the abovementioned forms,
T-NMPC-MPSMC refers to (i), FT-NMPC-MPSMC𝜉 refers to (ii), and
T-NMPC-MPSMC�̇� refers to (iii).

. Application of developed controller

The proposed fault tolerant tube controller is verified on a nonlinear
anosatellite system actuated with reaction wheels. Reaction wheel
ailure is common and can lead to degradation in spacecraft pointing
ccuracy, thus presenting an ideal scenario on which to verify the pro-
osed method. In this paper, we examine an overactuated nanosatellite
quipped with four reaction wheels where multiple wheel failures can
ccur simultaneously.
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5.1. Satellite kinematics and dynamics

The attitude of a satellite can be represented by the quaternion
𝑞 =

[

𝑞1 𝑞2 𝑞3 𝑞4
]𝑇 , composed of vector component 𝑞1∶3 and scalar

component 𝑞4. The quaternion satisfies a norm constraint ‖𝑞‖ = 1
nd is used to parameterize the attitude to avoid singularities resulting
rom Euler angle notation. The kinematic and dynamic equations of a
igid body spacecraft with reaction wheels in the presence of external
isturbances and actuator faults (omitting time argument) are:

̇ = 1
2
𝛺(𝜔𝑏)𝑞 (23a)

�̇�𝑏 = 𝐼−1𝑏 [𝜏𝑒𝑥𝑡 − [𝜔𝑏×](𝐼𝑏𝜔𝑏 +𝒲 ℎ𝑊𝑤 ) −𝒲 (ℎ̇𝑊𝑤 − 𝛼ℎ̇𝑊𝑤 )] (23b)

here 𝜔𝑏 =
[

𝜔𝑥 𝜔𝑦 𝜔𝑧
]𝑇 is the angular velocity of the satel-

ite expressed in the body frame and 𝐼𝑏 ∈ R3×3 is the unknown
ass moment of inertia of the satellite body expressed in the body

rame. The reaction wheel angular momentum ℎ𝑊𝑤 is expressed in the
heel frame, indicated by the 𝑊 superscript, and ℎ̇𝑊𝑤 is the reaction
heel torque coordinated in the wheel frame. 𝒲 is the reaction wheel

onfiguration matrix which maps the wheel torques into the body
rame. 𝜏𝑒𝑥𝑡 =

[

𝜏ext,𝑥 𝜏ext,𝑦 𝜏ext,𝑧
]𝑇 is an external disturbance, and the

skew-symmetric matrix [𝜔𝑏×] and operation 𝛺(𝜔𝑏) are

𝛺(𝜔𝑏) =
[

−[𝜔𝑏×] 𝜔𝑏
−𝜔𝑇

𝑏 0

]

(24)

[𝜔𝑏×] =
⎡

⎢

⎢

⎣

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

⎤

⎥

⎥

⎦

(25)

For redundancy, satellites are often equipped with more than three
reaction wheels. The configuration matrix, 𝒲 , maps the resulting wheel
torques from the wheel coordinate frame 𝑊 into the spacecraft body
coordinate frame 𝐵 as:

ℎ̇𝐵𝑤 = 𝒲 ℎ̇𝑊𝑤 (26)

This paper considers a pyramidal configuration of the reaction wheel
assembly. In this layout, the wheels are skewed by an angle 𝛽1 from
each primary axis, and then skewed further by an angle 𝛽2 from the
satellite body frame, resulting in the distribution matrix:

𝒲 =

[ 𝑐(𝛽1)𝑠(𝛽2) −𝑐(𝛽1)𝑠(𝛽2) −𝑐(𝛽1)𝑠(𝛽2) 𝑐(𝛽1)𝑠(𝛽2)

−𝑐(𝛽1)𝑐(𝛽2) −𝑐(𝛽1)𝑐(𝛽2) 𝑐(𝛽1)𝑐(𝛽2) 𝑐(𝛽1)𝑐(𝛽2)

𝑠(𝛽1) 𝑠(𝛽1) 𝑠(𝛽1) 𝑠(𝛽1)

]

(27)

where 𝑐(⋅) = cos(⋅) and 𝑠(⋅) = sin(⋅). To introduce actuator faults, the
parameter 𝛼 is applied directly to the reaction wheels, rather than the
body equivalent torque. The upper bound of actuator effectiveness can
be found by converting 𝛼 to its equivalent in the body frame. Two
methods of failure are explored in this paper: a float failure, represented
by 𝛼𝑖 = 1, 𝑖 = 1…4 and resulting in zero actuation, and a loss of
efficiency failure, represented by 0 < 𝛼𝑖 < 1 and resulting in actuator
degradation by a finite percentage over time. Based on (23) and (26)
the system’s states are defined as 𝑥 =

[

𝑞 𝜔𝑏
]𝑇 and the control input

is defined as 𝑢 =
[

−ℎ̇𝐵𝑤
]𝑇 . The sliding surface for (23) is defined by:

𝑠 = 𝜔𝑒 + 𝜆𝑞𝑒,1∶3 (28)

where the state errors are:

𝑞𝑒 = 𝑞 ⊗ 𝑞−1𝑑 (29)

𝜔𝑒 = 𝜔𝑏 − 𝜔𝑑 (30)

where 𝑞 is the measured quaternion, 𝑞𝑑 is the desired quaternion, 𝜔𝑏 is
the measured angular velocity of the satellite body, 𝜔𝑑 is the desired
angular velocity of the satellite body, and the operator 𝑞⊗ represents:

𝑞⊗ =
[

𝑞4I3 − [𝑞1∶3×] 𝑞1∶3
𝑇

]

(31)
5

−𝑞1∶3 𝑞4 s
where [𝑞1∶3×] is identical to (25) using the quaternion vector compo-
nents, and I3 is the 3 × 3 identity matrix. The model error function is
defined as:

𝐹 (⋅) = |

|

|

𝐼−1𝑏
[

[−𝜔𝑏×](𝐼𝑏𝜔𝑏 +𝒲 ℎ𝑊𝑤 )
]

|

|

|

(32)

where 𝐼𝑏 is an error coefficient representing the maximum possible
rror between an assumed inertia 𝐼𝑏 and the true inertia 𝐼𝑏 along the
iagonals only (i.e. no products of inertia are considered). From (32),
(𝑥) indicates the function evaluated with values from the auxiliary

ontroller and 𝐹 (𝑥𝑑 ) indicates the function evaluated with values from
he primary controller, i.e.:

(𝑥) = 𝐹 (�̌�(𝜏)) (33)

(𝑥𝑑 ) = 𝐹 (𝑧∗(𝜏, 𝑣∗(𝜏, 𝑧(𝑡𝑘)))), 𝜏 ∈ [𝑡𝑘, 𝑡𝑘 + 𝑇 ] (34)

. Simulation and experimental results

.1. Scenario description

A simulated rest-to-rest attitude tracking maneuver in the presence
f external disturbances and reaction wheel faults is used to verify
he proposed strategies. The maneuver is represented by a square
ave on the 𝑍-axis, alternating between pointing at 0◦ and 10◦ every
5s. This maneuver corresponds to a slew from 𝑞1∶3 = [0 0 0] to
1∶3 = [0 0 −0.0872]. Note in this paper we consider the restriction
4 ≥ 0, which results in the negative 𝑞3 element. Simulations are
mplemented in MATLAB via direct multiple shooting with CasADi,
hich includes the nonlinear optimization library iPOPT [28]. System
arameters, initial conditions, and gain values are provided in Table 1.
ll weighting matrices were user-defined and tuned manually. The
alue of the disturbance is randomized but satisfies an upper bound
= 𝜏𝑒𝑥𝑡,𝑚𝑎𝑥 = 3×10−3 mN m. Fault affliction is also randomized. Three

perating modes, indicated as 𝜎𝑗 , 𝑗 = 1…3, are considered: Nominal,
ault 1, and Fault 2. Fault 1 is characterized by a float failure of a
andomly selected wheel (𝛼𝑖 = 1), while Fault 2 is characterized by
loss of efficiency failure ranging from 0.5 ≤ 𝛼𝑖 ≤ 0.95 on another

andomly selected wheel. The faults are compounding, such that Fault 2
ncludes the failure of Fault 1 when it is applied. Based on these values
f 𝛼, the upper bound of the faults in the body frame is determined to
e �̄�𝐵𝑢 = 11.4mNm. The state and input constraint sets are:

= {−0.3536 ≤ 𝑞1 ≤ 0.3536,

−0.1464 ≤ 𝑞2 ≤ −6.852 × 10−4,

−0.8536 ≤ 𝑞3 ≤ 0.8536, 0.3536 ≤ 𝑞4 ≤ 0.9966,

|𝜔𝑏| ≤ 0.5 rad/s}
= {|𝑢𝑥| ≤ 8.16 mN m, |𝑢𝑦| ≤ 8.16 mN m, |𝑢𝑧| ≤ 11.5mN m}

here the quaternion constraints represent a pointing constraint of
[45◦ 45◦ 90◦]. The additional constraints for FT-NMPC-MPSMC�̇�
re 𝛯 = {0 ≤ 𝜉 ≤ 1} and 𝛶 = {|𝜐| ≤ 0.05}. The simulation time is set
o 3min and begins in the Nominal mode (𝜎1). Fault 1 (𝜎2) is injected
t 1min followed by Fault 2 (𝜎3) at 2min. The sampling time is set to
𝑠=0.6s, with a time horizon of 𝑇 = 12s. Controller performance is
valuated through the root mean squared errors (RMSE) of the system
rajectory with respect to the nominal response for the vector portion
f the quaternion and the root mean square (RMS) value of the control
nput along each body axis. Both RMSE and RMS are evaluated as an
verage over 50 repeated simulations.

.2. Benchmark: MPSMC v. FT-MPSMC

To highlight the benefit of employing the fault tolerant auxiliary
ontroller, system performance of FT-NMPC-MPSMC is compared to
MPC-MPSMC. Table 2 presents the resultant RMSE and RMS data,
howing that the two controllers perform nearly identically regarding
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Table 1
System Parameters.

Parameter Simulation Value Experimental Value

𝐼𝑏 (kgm2)

⎡

⎢

⎢

⎢

⎢

⎣

0.0196 −0.0033 −0.001

−0.0033 0.0217 0.0009

−0.0010 0.0009 0.0287

⎤

⎥

⎥

⎥

⎥

⎦

𝐼𝑏 (kgm2)

⎡

⎢

⎢

⎢

⎢

⎣

0.0039 0 0

0 0.0043 0

0 0 0.0057

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

0.0088 0 0

0 0.0098 0

0 0 0.0129

⎤

⎥

⎥

⎥

⎥

⎦

𝑞0
[

0 0 0 1
]𝑇

–

𝜔0 (rad/s)
[

0 0 0
]𝑇

𝜂 0.02 0.008

𝜆 0.75

𝜆′ 0.65 1.25

NMPC Parameters

𝑄, 𝑃 𝑑𝑖𝑎𝑔
(

0.03 0.03 0.5 0.03 0.5 0.5 0.5
)

𝑅 0.1I3

MPSMC Parameters

𝑄′ , 𝑃 ′ 0.9I3

𝑅′ 0.1I3

FT-MPSMC Parameters

𝜉 0.6I3 0.3I3

𝑅′′ 0.1I3

Table 2
Simulation Results.

Quaternion State RMSE

𝑞1 𝑞2 𝑞3
NMPC-MPSMC 0.00713 0.00544 0.00906
FT-NMPC-MPSMC 0.00710 0.00547 0.00911
FT-NMPC-MPSMC𝜉 0.00489 0.00388 0.00659
FT-NMPC-MPSMC�̇� 0.00466 0.00373 0.00632

Control Torque RMS ( mN m)

𝑢𝑥 𝑢𝑦 𝑢𝑧
NMPC-MPSMC 0.0719 0.0758 0.170
FT-NMPC-MPSMC 0.0741 0.0758 0.172
FT-NMPC-MPSMC𝜉 0.0806 0.0828 0.196
FT-NMPC-MPSMC�̇� 0.0832 0.0853 0.202

tracking and control effort. The graphical data displayed in Fig. 2,
illustrating the attitude response across the vector quaternion for each
controller, confirms this. Both controllers maintain decent tracking
until the introduction of the second fault where the system trajecto-
ries diverge from the nominal trajectory across the states. However,
the graphical data also show the importance of the proposed design,
most noticeably in state 𝑞1, where NMPC-MPSMC shows several tube
iolations as a result of the fault and the FT-NMPC-MPSMC shows none.
ecause it includes 𝑊𝐿 instead of 𝑊 in its formulation, the proposed
ontrol successfully encapsulates all system trajectories in its tube.
his demonstrates that combining the maximum possible expected fault
ontribution with the maximum possible expected disturbance level
aintains the RCI property of the NMPC-MPSMC’s tube, thus imbuing

he controller with a fault tolerant quality in the presence of both forms
6

f uncertainty.
Fig. 2. System trajectories for NMPC-MPSMC (left) and FT-NMPC-MPSMC (right).

Fig. 3. System trajectories for FT-NMPC-MPSMC𝜉 (left) and FT-NMPC-MPSMC�̇� (right).

6.3. FT-MPSMC expansions

In this section, the performance of the augmented forms of the FT-
MPSMC are compared to investigate the effect of the double boundary
layer and blended tube design. Fig. 3 illustrates identical trajectory
trends to Fig. 2. As predicted, the spread of the trajectories is slightly
narrower than FT-NMPC-MPSMC for both augmented controllers sug-
gesting improved resilience to actuator faults. Further, both augmented
controllers are able to maintain all trajectories in their tubes due to the
addition of �̄�𝐵𝑢, again highlighting that RCI is maintained. Of special
interest is that FT-NMPC-MPSMC�̇� appears to have about the same tube
size across the vector quaternion as NMPC-MPSMC and yet is able to
maintain all trajectories in the tube. Fig. 4 presents the tube size for 𝑞1
and confirms this observation. Both augmented controllers’ tubes fall
in the range between those of NMPC-MPSMC and FT-NMPC-MPSMC
as expected due to the effect of 𝜉. The tube for FT-NMPC-MPSMC𝜉 is
closer to the disturbance-only based tubes due to 𝜉 = 0.6I3, which also
indicates that the tube formulation used more of the inner boundary
layer. The impact of a dynamic 𝜉 is clearly seen for FT-NMPC-MPSMC�̇� ,
where the tube remains close to that of NMPC-MPSMC but fluctuates
with change in 𝜉 allowing it to widen enough to maintain all system
trajectories when appropriate.

The effect of the double boundary layer is best seen by the improved
tracking performances of the augmented controllers presented in Ta-
ble 2. Recall that FT-NMPC-MPSMC can be thought of as a version of
the controller where 𝜉 = 0 and no inner boundary layer is present. From
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Fig. 4. Tube size across controllers for 𝑞1.

Fig. 5. The Nanosatellite Attitude Control Simulator (NACS) in the ICE lab at McMaster
University.

Fig. 6. MockSat exploded view and internal components [29].
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Table 3
Comparison to SMC Results.

Quaternion State RMSE

𝑞1 𝑞2 𝑞3
FT-SMC 0.00332 0.00281 0.0212
NMPC-MPSMC 0.00942 0.0983 0.0134
FT-NMPC-MPSMC 0.00921 0.0957 0.0134
FT-NMPC-MPSMC𝜉 0.00788 0.0957 0.0114
FT-NMPC-MPSMC�̇� 0.00776 0.0983 0.0112

this baseline, the inclusion of an inner boundary layer significantly
reduces the RMSE. Indeed, both augmented controllers have pointedly
lower RMSEs than both NMPC-MPSMC and FT-NMPC-MPSMC, with FT-
NMPC-MPSMC�̇� having the lowest, reflecting the observed reduction
in trajectory spread from Fig. 2. Of note, however, is the increase
in RMS for both augmentations. This is not surprising given that a
typical tradeoff in sliding mode control is tracking accuracy versus
control effort, where improved tracking results in increased control
effort. However, the RMSE and RMS provided show that including 𝜉
barely exacerbates this tradeoff, where tracking accuracies are reduced
by a third and RMS increases at a maximum of around 0.03 mN m.
This implies an advantage to including the double boundary layer
formulation as the system benefitted from improved performance at
little cost to applied torque.

6.4. Comparison to SMC

While the purpose of this paper is to explore tube-based control,
this subsection briefly comments on the efficacy of implementing the
tube-based controllers as opposed to implementing solely SMC. A fault
tolerant SMC (FT-SMC) with saturated input was derived based on the
SMC formulation of FT-NMPC-MPSMC and simulated on the system.
New RMSE values, now based on the difference between the system
trajectories and the reference rest-to-rest trajectory, are presented in
Table 3 to compare performance. As seen, FT-SMC outperforms all
tube-based controllers except in state 𝑞3. However, these results do not
detract from the importance of the proposed method. Recall MPC-based
techniques offer a range of benefits, including constraint adherence and
information preview, that cannot be incorporated into well-established
but simple controllers, such as SMC. Though not explored in this work,
constraint violations can occur even in input saturated SMC [24]. Thus,
despite the results in Table 3, the proposed schemes holistically have
more to offer than the basic control scheme.

6.5. Experimental implementation

The proposed fault tolerant controllers were experimentally vali-
dated on the Nanosatellite Attitude Control Simulator (NACS) in the
Intelligent and Cognitive Engineering (ICE) Laboratory at McMaster
University. The simulator includes a Mock 1U CubeSat (MockSat),
equipped with a redundantly configured reaction wheel array; an Au-
tomatic Balancing System (ABS), which attempts to align the Center of
Mass (CM) with the Center of Rotation (CR); and a custom hemispher-
ical air bearing, which provides a near-frictionless 3-DOF joint. The
MockSat is equipped with a Raspberry Pi 3A+, inertial measurement
unit (IMU), custom motherboard, two lithium polymer power supplies,
and four reaction wheel actuators. The NACS is shown below in Fig. 5,
and an exploded view of the MockSat is provided in Fig. 6.

Due to the MockSat’s limited on-board computational resources,
the proposed controllers are offloaded to a Desktop PC (Intel® Core™
i7-7700K CPU @ 4.20 GHz Processor) to allow for soft real-time im-
plementation. Controllers are implemented in Python3.8 using CasADi.
Information is exchanged between the Desktop PC and the on-board
computer through a TCP Socket, in which serialization is achieved
with Python’s ‘Pickle’ package. The state vector is polled from the IMU
once per control loop execution (𝑇 = 0.6𝑠) and sent to the Desktop
𝑠
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Fig. 7. Block diagram of the experimental procedure.

PC, after which the MockSat waits for a reply. Control body torques
are calculated on the Desktop PC, decomposed into desired reaction
wheel accelerations, and then passed back to the MockSat. Reaction
wheel accelerations are passed to the motor controller in the form of
various PWM signals. The block diagram shown in Fig. 7 illustrates the
data passing between Desktop PC and MockSat. Further information
regarding the NACS can be found in [29].

In the experiments, the MockSat performs a rest-to-rest attitude ma-
neuver from an arbitrarily acquired initial attitude, to a 25◦ offset about
the 𝑍-axis from the initial position. The maneuver is performed in the
presence of an extreme fault scenario, selected here to be characterized
by 𝛼1 = 1, 𝛼2 = 0.95, 𝛼3 = 0, 𝛼4 = 0 indicating a majority failure
with respect to the 𝑌 -axis. Additionally, the quaternion constraints are
redefined to reflect the physical limitations of the testbed, resulting in
new state constraints

 = {−0.1825 ≤ 𝑞1 ≤ 0.1825,

− 0.1163 ≤ 𝑞2 ≤ −5.50 × 10−4,

− 0.8234 ≤ 𝑞3 ≤ 0.8234,

0.5246 ≤ 𝑞4 ≤ 0.9977,

|𝜔𝑏| ≤ 0.5 rad/s},

whereas input constraints remain unchanged. Finally, the upper bound
of the disturbance is redefined to be 𝑊 = 0.0184 mN m based on
potential torque imbalances from the air bearing. All experimental
parameters are defined in Table 1.

The numerical results displayed in Table 4 show that each controller
has comparable tracking errors in 𝑞1 and 𝑞3, but not 𝑞2, where the FT-
NMPC-MPSMC�̇� performs best. This potentially suggests the controller
compensates best for the failure across the 𝑌 -axis. Additionally, FT-
NMPC-MPSMC exerts the most control effort, being significantly higher
across the 𝑋-axis than its counterparts. The outcomes in Table 4 differ
from the trend previously identified in Table 2. While the reasons for
this difference require additional investigation, it is possible discrep-
ancies in the simulated and experimental systems could have led to
varied controller performance outcomes. This could include inability
to accommodate all types of experimental disturbances in simulation
or modeling differences (see Fig. 8).

7. Conclusions

This paper presented a novel approach for fault tolerant tube-
based NMPC. The approach exploited a sliding mode formulation to
incorporate faults as an additional form of disturbance, resulting in a
disturbance upper bound able to account for external disturbances and
actuator faults. To address potential overconservatism, the approach
was extended to include a double boundary layer design which was
examined as a static and dynamic variable. Simulation results on a
nonlinear nanosatellite system illustrated the efficacy of the FT-NMPC-
MPSMC schemes which maintained robust control invariance in the
8

Fig. 8. Experimental system trajectory for 𝑞3 per controller; from top: FT-NMPC-
MPSMC, FT-NMPC-MPSMC𝜉 , FT-NMPC-MPSMC�̇� .

Table 4
Experimental Results.

Quaternion State RMSE

𝑞1 𝑞2 𝑞3
FT-NMPC-MPSMC 0.00294 0.00759 0.0733
FT-NMPC-MPSMC𝜉 0.00313 0.00447 0.0818
FT-NMPC-MPSMC�̇� 0.00328 0.00169 0.0882

Control Torque RMS

𝑢𝑥 (mN m) 𝑢𝑦 (mN m) 𝑢𝑧 (mN m)

FT-NMPC-MPSMC 0.342 0.350 0.539
FT-NMPC-MPSMC𝜉 0.0896 0.112 0.283
FT-NMPC-MPSMC�̇� 0.0957 0.0924 0.356

face of disturbances and faults. The addition of the double boundary
layer minimized trajectory spread and improved tracking performances
with minimal increases in control effort. Further, the proposed tech-
niques were successfully validated experimentally on the NACS. Future
work includes investigation of more complex fault modes, expansion to
active FTC, and implementation on additional testbeds.
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