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A B S T R A C T   

This paper proposes a new adaptive estimation strategy for a nonlinear system with modeling uncertainties. The 
extended Kalman filter (EKF) and unscented Kalman filter (UKF) are optimal estimators which have been used 
extensively for state estimation in literature and industry. While the EKF uses a first order Taylor series expansion 
to approximate nonlinearities, the UKF uses sigma points from the projected probability distribution of states. 
The sliding innovation filter (SIF) is a suboptimal, yet robust estimation strategy which has recently been pro
posed. For nonlinear systems, the extended SIF (ESIF) is formulated by using a first order Taylor series expansion 
like the EKF. This work proposes a novel adaptive estimation strategy which combines and balances the opti
mality of the EKF and UKF with the robustness of the ESIF. These new methods are referred to as the EKF-ESIF 
and UKF-ESIF, respectively. A time-varying sliding boundary layer is used as a means of detecting the presence of 
faults or uncertainties and as a criterion for switching between the EKF or UKF and the ESIF. In normal operating 
conditions the algorithm computes estimates using an optimal KF-based gain, and an SIF-based gain when a fault 
is detected. The system examined in this study consists of a magnetorheological (MR) damper with a constant 
current. Faults or uncertainties are introduced as unwanted behavior in the power supply in the form of un
dercurrent and overcurrent. The robustness of the EKF-ESIF and UKF-ESIF was validated for force estimation 
exerted by the MR damper and the results were compared with the standard EKF and UKF.   

1. Introduction 

THE goal of estimation theory is to extract information from systems 
with uncertainty. This uncertainty may stem from noise, disturbances, 
or inaccuracies in the system model. In control systems, accurate esti
mates are vital for feedback loops. The Kalman filter (KF) produces the 
optimal estimate for systems with white noise (or normal distribution 
with zero mean) [1]. Optimality is achieved through minimizing the 
trace of the state error covariance matrix which is a measure of state 
estimation error [1–4]. Due to its optimality and simple corrective gain 
calculation, the KF is very popular estimator with numerous applications 
such as fault detection, tracking, and system parameter estimation [5]. 
However, most systems in nature exhibit nonlinear behavior or have 
non-Gaussian noise distributions. In addition, it is possible that an 
estimator does not have full knowledge of the system resulting in 
modeling uncertainty [1]. Thus, current research in estimation theory 

seeks to improve estimation accuracy in these scenarios. 
As with control theory, there exists a trade-off between estimation 

accuracy and robustness. While the KF is optimal under certain condi
tions, disturbances can cause the estimates to become unstable. Modern 
estimation theory aims to increase estimation accuracy while simulta
neously achieving robustness to noise, disturbances, and modeling 
uncertainty. 

Several strategies for approximating nonlinearities in systems 
models have been proposed in literature. One of the most popular 
methods, the extended Kalman filter (EKF), linearizes the system around 
the a priori (predicted) state estimate [1,6,7]. Specifically, a first-order 
Taylor series approximation of the system model is calculated to pro
duce a Jacobian matrix. This matrix is used to generate the a priori state 
error covariance matrix. For highly-nonlinear systems, the Jacobian 
matrix is not an appropriate approximation and may cause the EKF es
timates to diverge from the true state trajectory which can lead to poor 
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estimates and numerical instability [8]. 
Another way to the capture nonlinear behavior of a system is through 

sample points. The sigma point Kalman filter (SPKF) uses weighted 
statistical linear regression to approximate the nonlinearities [9]. The 
sigma points are generated from a projected probability distribution of 
the states that are propagated through the nonlinear system model [9]. 
This method does not require local linearization and generally produces 
more accurate estimates when compared to the EKF [10]. 

The unscented Kalman filter (UKF) is a popular variant of the SPKF. A 
deterministic sampling approach known as the unscented transform is 
used to select a minimal number of sampling points around the previous 
state estimate [9]. Monte Carlo sampling can be used to approximate the 
mean and covariance of the updated states. The UKF can approximate 
the statistical mean and covariance for any nonlinearity up to the third 
order [8]. This generally makes the UKF superior to the EKF which uses a 
first-order approximation, especially for increasingly nonlinear systems. 
The tradeoff for increased accuracy in this case is increased computa
tional cost which may result in lower sample rates for real-time systems. 

Sliding mode observer (SMOs) are based on variable structure con
trol and systems introduces in the 1950s [8]. The observer gains are 
produced as a function of the innovation (measurement error). The error 
surface moves towards the origin in an ideal scenario [11]. SMOs define 
a sliding surface (or hyperplane) to apply a discontinuous switching 
force that keeps the estimates within an area of the sliding surface [11]. 
The smooth variable structure filter (SVSF) is a model-based estimator 
formulated on SMO concepts [12]. 

The corrective gain for the SVSF is calculated using the measurement 
error and a switching term. The corrective gain forces the estimates to 
remain in an area of the hyperplane [12]. While the switching structure 
of the gain adds stability and robustness, the state estimates can be prone 
to chatter when the smoothing boundary layer is too narrow. Since its 
original formulation in 2007, the SVSF has been expanded to incorpo
rate an adaptive smoothing boundary layer [12]. Further improvements 
have been made on SVSF that include the use of a chattering function for 
multi-target tracking, higher order solutions, and fault detection [13]. 
More importantly, an adaptive formulation of the SVSF has been pro
posed, where it has been implemented alongside the KF in [14]. The 
findings in [14], show that such an approach demonstrates improved 
estimation performance, and thus serving as one of the main inspirations 
behind this research. 

The sliding innovation filter (SIF) was first presented in 2020 and is 
based on SMOs like the SVSF [15]. The SIF improves upon the SVSF 
formulation through a simpler, more concise gain calculation and pro
duces more accurate state estimates [15]. The originally formulation of 
the SIF uses a fixed sliding boundary layer and was expanded to incor
porate the state error covariance in the corrective gain calculation. An 
adaptive formulation of the SIF, termed the ASIF, was presented in [16] 
and minimizes the state error covariance which results in a time-varying 
sliding boundary layer. This time-varying sliding boundary layer is a 
function of the innovation, its covariance, and the state error covariance 
and can be used as a metric for measuring modeling uncertainty. Several 
other works propose modified formulations of the SIF geared towards 
improving the filter’s performance for target tracking applications 
[17,18]. 

Many adaptive estimation strategies have also been proposed in the 
literature, an area which has been experiencing rapid growth in recent 
years. Adaptive estimation methods enable traditional filters such as the 
KF to dynamically update certain parameters of the algorithm, such as 
the system and measurement models, or their respective noise co
variances as in [19] and [20]. Several adaptive methods have also been 
proposed to address the degradation of performance associated with the 
KF in the face of non-Gaussian noise [21–23], and in the presence of 
measurement outliers [23,24]. For more examples of adaptive estima
tion techniques and applications, we refer the reader to [25–29]. 

Other types of adaptive estimation methods, such as the one in [14] 
and as will be proposed by this paper, utilize a mechanism to detect the 

presence of undesired factors such as faults, disturbances, or modelling 
uncertainties, and can subsequently switch between several different 
filters. 

In this paper, the time-varying sliding boundary layer is used to 
propose two new adaptive estimation strategies that combine the EKF 
and UKF with an extended version of the SIF for nonlinear systems called 
the ESIF. This paper presents a method for switching between the EKF/ 
UKF and ESIF when a system model is well-defined or contains modeling 
uncertainties, respectively, using the time-varying sliding boundary 
layer. Experimental simulations are carried out on a magnetorheological 
(MR) damper test bed with constant current input. Faults are simulated 
in the system by means of overcurrent and undercurrent from the power 
supply. The goal of the approach proposed in this study is to output an 
optimal KF-based estimate in normal operating conditions, and a robust 
SIF-based estimate in the presence of a fault by using the time-varying 
boundary layer as a means of detecting the fault. 

The paper is organized as follows. An overview of the estimation 
methods used in this paper are provided in Section 2. The proposed 
adaptive approach is described in Section 3, followed by an exposition 
on the experimental setup in Section 4. A discussion of the results may be 
found in Section 5, followed by concluding remarks and future work in 
Section 6. 

2. Estimation methods 

2.1. Extended Kalman filter 

The EKF is an extension of the KF for nonlinear dynamic systems. The 
system is linearized around the predicted (or a priori) state estimate 
x̂k+1|k, where k is the time step, in order to calculate the a priori state 
error covariance, innovation, and corrective Kalman gain [1]. A first 
order Taylor series expansion of the nonlinear system model f and 
measurement process h are used to generate respective Jacobian 
matrices, Fk+1 and Hk+1, respectively. This is done because the nonlinear 
equations cannot be applied directly to the state error covariance terms 
[10]. Otherwise, the rest of the EKF’s procedure is identical to that of the 
KF, and can be summarized as follows. 

The prediction stage is completed by calculating the a priori state 
error covariance matrix Pk+1|k, as follows [10]: 

Pk+1|k = Fk+1Pk|kFk+1
T +Qk (2.1.1)  

where Pk|k is the previous sate error covariance, Qk is the system noise 
covariance matrix and T is the matrix transpose operator. 

In the update stage, the Kalman gain, Kk+1 is used to calculate the a 
posteriori estimate, x̂k+1|k+1, and a posteriori state error covariance 
Pk+1|k+1 using the following equations [10]: 

Kk+1 = Pk+1|kHk+1
T[Hk+1Pk+1|kHk+1

T + Rk+1
]− 1 (2.1.2)  

x̂k+1|k+1 = x̂k+1|k +Kk+1
[
zk+1 − Hk+1 x̂k+1|k

]
(2.1.3)  

Pk+1|k+1 = [I − Kk+1Hk+1]Pk+1|k[I − Kk+1Hk+1]
T

+Kk+1Rk+1KT
k+1

(2.1.4)  

where zk+1 is the measurement, Rk+1 is the measurement noise covari
ance matrix and I is the identity matrix. Implementing the EKF can be 
problematic if the Jacobian matrix cannot be derived easily. In addition, 
the EKF can only handle a limited level of nonlinearities. The UKF is 
generally better suited for higher order nonlinear systems. 

2.2. Unscented Kalman filter 

The UKF uses the unscented transform to approximate nonlinear 
processes. This deterministic sampling approach selects a minimal 
number of sample points, known as sigma points, around the previous 
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state estimate [1]. The sigma points are propagated through the 
nonlinear system model and measurement process and used to approx
imate the system mean and covariance. While the UKF is better able to 
account for nonlinearities and arbitrary distributions, it is more 
computationally expensive than the EKF. The UKF algorithm is sum
marized as follows. 

The state vector can be approximated by 2n+1 sigma points, where n 
is the dimension of the state vector. The i th sigma point χi

k|k is calculated 
as follows [1]: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

χi
k|k = x̂k|k, i = 0

χi
k|k = x̂k|k +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(n + κ)
(
Pk|k

)

i

√

, i = 1,⋯, n

χi+n
k|k = x̂k|k −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(n + κ)
(
Pk|k

)

i

√

, i = 1,⋯, n

(2.2.1)  

where κ is a scaling factor and design parameter. The associated weight 
wi of the samples determined as follows [1]: 

wi =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

κ
n + κ

, i = 0

1
2(n + κ)

, i = 1,⋯, 2n
(2.2.2) 

The a priori state estimate x̂k+1|k and a priori state error covariance 
Pk+1|k are calculated by propagating the sigma points as follows [1]: 

χi
k+1|k = f

(
χi

k|k

)
(2.2.3)  

x̂k+1|k =
∑2n

i=0
wiχi

k+1|k (2.2.4)  

Pk+1|k =
∑2n

i=0
wi

[
χi

k|k − x̂k+1|k

][
χi

k|k − x̂k+1|k

]T
+Qk (2.2.5) 

The prediction stage measurements are also propagated as follows 
[1]: 

ξi
k+1|k = h

(
χ i

k+1|k

)
(2.2.6)  

ẑk+1|k =
∑2n

i=0
wiξi

k+1|k (2.2.7) 

In the update stage, the a posteriori state error covariance Pz,k+1|k and 
innovation covariance Pxz,k+1|k are used to calculate the UKF corrective 
gain Kk+1 as follows [1]: 

Pz,k+1|k =
∑2n

i=0
wi

[
ξi

k+1|k − ẑk+1|k

][
ξi

k+1|k − ẑk+1|k

]T
+Rk+1 (2.2.8)  

Pxz,k+1|k =
∑2n

i=0
wi

[
χi

k+1|k − x̂k+1|k

][
ξi

k+1|k − ẑk+1|k

]T
(2.2.9)  

Kk+1 = Pxz,k+1|kPz,k+1|k
− 1 (2.2.10) 

Finally, the a posteriori state estimate x̂k+1|k+1 and a posteriori state 
error covariance Pk+1|k+1 are updated as follows [1]: 

x̂k+1|k+1 = x̂k+1|k +Kk+1
(
zk+1 − ẑk+1|k

)
(2.2.11)  

Pk+1|k+1 = Pk+1|k − Kk+1Pz,k+1|kKk+1
T (2.2.12)  

2.3. Extended sliding innovation filter 

The sliding innovation filter (SIF) is a Bayesian, model-based esti
mator formulated on SMO concepts. While similar to the KF, the SIF 
features a different corrective gain that incorporates a sliding boundary 

layer [15]. The SIF gain is a function of the measurement matrix (or 
measurement Jacobian), the innovation (measurement error), and 
sliding boundary layer widths. The sliding boundary layer widths are a 
user defined parameter based on the upper limit of uncertainties in the 
estimation process due to modeling uncertainty and noise. The widths 
and are generally chosen based on practitioner’s knowledge or experi
ence, or tuned manually otherwise [15]. Previous state estimates are 
forced towards the sliding boundary layer by the corrective gain. 
However, if the estimates are already within the boundary layers limits, 
the estimates switch about the true state trajectory [15]. The SIF esti
mation concept is depicted in Fig. 1. 

For system models and measurement processes that are nonlinear, 
the extended sliding innovation filter (ESIF) may be used. The ESIF has 
an identical prediction stage to the EKF. Nonlinear behavior is also 
approximated by first order Taylor series. The prediction stage of the 
ESIF is given as follows [15]: 

x̂k+1|k = f
(

x̂k|k , uk
)

(2.3.1)  

Pk+1|k = Fk+1Pk|kFk+1
T +Qk (2.3.2) 

While the system used in this paper is nonlinear, the measurement 
process is linear and constant. For simplicity, the measurement matrix is 
denoted by C. The update stage is given by the following [15]: 
⃒
⃒
⃒
⃒̃zk+1|k

⃒
⃒
⃒
⃒ =

⃒
⃒zk+1 − Cx̂k+1|k

⃒
⃒ (2.3.3)  

Kk+1 = C+sat
(⃒
⃒
⃒
⃒̃zk+1|k

⃒
⃒
⃒
⃒

/

δ
)

(2.3.4)  

x̂k+1|k+1 = x̂k+1|k +Kk+1 z̃k+1|k (2.3.5)  

Pk+1|k+1 = (I − Kk+1C)Pk+1|k(I − Kk+1C)
T
+Kk+1Rk+1KT

k+1 (2.3.6)  

where 
⃒
⃒
⃒
⃒z̃k+1|k

⃒
⃒
⃒
⃒ refers to the absolute value of the innovation, C+ is the 

pseudoinverse of the measurement Jacobian, sat refers to the diagonal 
matrix of the saturated vector values, and δ refers to the sliding 
boundary layer width [15]. The SIF gain Kk+1 is applied to the innova
tion ̃zk+1|k and the a priori state estimate x̂k+1|k in the same fashion as the 
KF. The calculation of the a posteriori state error covariance Pk+1|k+1 is 
also identical to the KF [15]. 

It can be helpful to illustrate the SIF gain by considering a simple 
example of a system with two measurements (and C = I) such that the 
saturation term in (2.3.4) can be expanded further: 

Fig. 1. The sliding innovation filter (SIF) concept depicting the effect of the 
sliding boundary layer and SIF switching gain [15]. 
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Kk+1 = C+sat
(⃒
⃒
⃒
⃒̃zk+1|k

⃒
⃒
⃒
⃒

/

δ
)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sat

⎛

⎜
⎜
⎝

⃒
⃒
⃒
⃒̃z1

⃒
⃒
⃒
⃒

δ1

⎞

⎟
⎟
⎠ 0

0 sat

⎛

⎜
⎜
⎝

⃒
⃒
⃒
⃒̃z2

⃒
⃒
⃒
⃒

δ2

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.3.7) 

When multiplied with the innovation z̃k+1|k as in (2.3.5), the state 
estimates x̂k+1|k are updated with the following term: 

Kk+1 z̃k+1|k =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

sat

⎛

⎜
⎜
⎝

⃒
⃒
⃒
⃒̃z1

⃒
⃒
⃒
⃒

δ1

⎞

⎟
⎟
⎠z̃1

sat

⎛

⎜
⎜
⎝

⃒
⃒
⃒
⃒̃z2

⃒
⃒
⃒
⃒

δ2

⎞

⎟
⎟
⎠z̃2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.3.8) 

As shown in the (2.3.8), the state estimates are updated with their 
corresponding innovation and sliding boundary layer term. The SIF gain 
effectively acts as a switching term which forces the measurement errors 
to be bounded towards the true state trajectory. The term within the 
saturation function is responsible for judging whether the state lies 
within, or outside the border. The state estimates are within the sliding 
boundary layer when the proportion of the absolute value of the inno
vation is less than one, and thus the value of this proportion is unaffected 
by the saturation term. If the state estimates are beyond the sliding 
boundary layer, the value of this proportion would be greater or equal to 
one, and is consequently saturated to a value of one by the saturation 
term. 

3. Proposed combined Kalman and sliding innovation filtering 
strategies 

A time-varying sliding boundary layer δvbl was derived in [16], and is 
computed at each timestep to replace the fixed sliding boundary layer δ. 
This time-varying boundary layer forms the basis of the adaptive SIF 
strategy and is given by the following equations as defined in [16]: 

Sk+1 = CPk+1|kCT + Rk+1 (3.1)  

δvbl = Sk+1
(
CPk+1|kCT)− 1

⃒
⃒
⃒
⃒̃zk+1|k

⃒
⃒
⃒
⃒ (3.2)  

where Sk+1 is the innovation matrix and 
⃒
⃒
⃒
⃒̃zk+1|k

⃒
⃒
⃒
⃒ is the absolute magni

tude of the innovation. The innovation matrix is a term which was also 
newly derived in [16], and as shown in (3.1), is a function of the a priori 
state error covariance, measurement matrix, and measurement noise 
covariance. No other use exists for the innovation matrix other than to 
compute the time-varying sliding boundary layer at each timestep. On a 
side note, it is theoretically possible to improve the SIF results for a well- 
defined system by computing an average of the time-varying boundary 
layer and setting the fixed boundary layer width δ to that value. This 
results in a well-tuned existence subspace [16]. However, this approach 
is rather counterproductive as it would be more conducive to go forth 
with implementing the ASIF due to its improved performance. 

The proposed estimation strategy uses the EKF and UKF estimators 
when the time-varying boundary layer is below a certain threshold, δlim. 
When the time-varying boundary layer exceeds the threshold, the ESIF 
gain is used instead to compensate for the increased modeling uncer

tainty. In this paper, the experimentally determined δlim represents a 
significant change in the system model due to faults in the power supply, 
which results in a deviation in the MR damper behavior. However, if the 
measurement noise is too high, the threshold may not represent a clear 
boundary between the normal and faulty modes. 

For implementation, the a priori state estimate and a priori state error 
covariance matrix are calculated first. The time varying boundary layer, 
δvbl, is then calculated and compared with the experimentally deter
mined threshold value, δlim. If the time varying boundary layer is smaller 
than the threshold, the EKF or UKF gain is used to update the state es
timates and state error covariance. However, if the boundary layer value 
is larger than the threshold, the ESIF gain is implemented using the fixed 
boundary layer width, δ. Thus, the δvbl is not used in the computation of 
any of the filter’s gains and is merely an indicator of the presence of an 
uncertainty or fault and when to switch between the EKF/UKF and the 
ESIF gains. 

4. Experimental setup 

4.1. Description 

The primary component in the experimental setup used in this paper 
is the RD-8041-1 MR damper acquired from LORD [30]. MR dampers 
have numerous applications in the automotive and aerospace industry 
such as isolating vibrations to passengers using adaptive suspension 
systems [31]. A typical MR damper consists of the MR fluid itself, 
housing, piston, diaphragm, and magnetic coil. An electrical current is 
supplied to the damper to increase the viscosity of the MR fluid which in 
turn, increases the damping force. The change in viscosity is attributed 
to the rearrangement of the ferromagnetic particles suspended in the 
fluid. In the presence of a magnetic field, the particles align to form 
linear chain structures. As the MR damper is driven, the MR fluid moves 
between different chambers via small orifices in the piston assembly and 
converts mechanical energy into friction losses. 

The experimental setup was developed at the University of Guelph by 
the primary author. In order to mathematically model the MR damper, 
an A1 series linear actuator from UltraMotion was used to drive the 
damper [32]. A RAS1-500S-S resistive load cell acquired from Loadstar 
[33]was used to measure the damping force and a programmable power 
supply was used to supply current to the MR damper. Data acquisition 
and commands were delivered using RS232 serial communication on a 
laboratory computer. The components were mounted together using an 
extruded t-slotted aluminum frame as seen in Fig. 2. 

The RD-8041-1 is a linear MR damper with continuous variable 
damping force determined by the yield strength of the MR fluid (which 
in turn is determined by the magnetic field). The MR fluid responds in 
less than 15 ms to changes in the magnetic field and can operate at 1 A 
continuously or 2 A intermittently at 12 V DC. The RD-8041-1 is a 
monotube shock containing high pressure nitrogen gas (300 psi) which 
fully extends the piston under no load. At ambient temperatures the 
resistance of the coil is 5 Ω and at 71◦ C the resistance increases to 7 Ω. 
Extreme temperature changes can drastically alter the performance of 

Fig 2. Magnetorheological test bed used in this study.  
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the MR damper [34]. 
The Ultramotion linear actuator used to drive the MR damper is a 

standard servo cylinder with an acme screw to prevent backdrive and 
operates at 180 W. The actuator is capable of 445 N of continuous force 
and 1001 N at its peak with a maximum speed of 178 mm/s. There are 
several onboard sensors to measure states such as position, torque, 
temperature, and humidity. The position of the linear actuator is 
measured using the phase index absolute position sensor. This sensor is a 
multi-turn battery-less magnetic encoder with a resolution of 1024 
counts per revolution used for absolute position feedback and commu
tation. The measurement noise covariance of the sensor is discussed in 
subsequent sections. The torque feedback is calculated using closed loop 
current feedback on each motor phase. This is then translated into 
actuator output force. Since using current feedback is not an accurate 
method of calculating output force resulting in high error and noise. 

In general, there is a direct relationship between motor torque and 
actuator output force. However, there are some complicating factors 
that can significantly impact this relationship. Rotational inertial loads, 
lubricant viscosity, and seal friction can all contribute to output force 
variability. Factory test data was used in order to convert motor torque 
into actuator output force. The data is collected on each actuator during 
the acceptance test procedure (ATP) before leaving the factory. The 
current-force curves that are generated are unique to each actuator. 
However, there is still significant noise in force output. In order to 
reduce some of the noise in the torque sensor, a first order Butterworth 
filter was applied with a cutoff frequency between 0 and 0.3 of the 
Nyquist rate. 

The RAS1-500S-S is a resistive S-Beam load cell capable of measuring 
both compressive and tensile force measurement. The load cell is made 
from tool steal and has a capacity of 2224 N and a sample rate of 1000 
Hz. The calibration measurement equipment is traceable to NIST via 
Pacific Calibration Services. This sensor was used to test the efficacy of 
applying adaptive filtering strategies on the motor torque sensor of the 
linear actuator. While the noise covariance of the loadcell is 26.535 N, 
the noise covariance of the Ultramotion motor torque sensor is 622.407 
N. The comparatively high noise distribution of the onboard Ultra
motion motor torque sensor makes it a suitable candidate for applying 
adaptive filtering strategies. 

Force-velocity hysteresis curves have been modeled extensively by 
[35] and [36]. However, at low velocities over long stroke lengths, the 
force of the diaphragm and compressed nitrogen gas is not negligible. 
Thus, a force-position curve was modeled by driving the MR damper at a 
constant velocity over one full stroke. For the MR model used in this 
paper, the actuator speed was set to 41.5 mm/s and the damping force 
was recorded by the loadcell over a stroke length of 57 mm. Approxi
mately 200 S (extension and retraction) were used to model the behavior 
of the behavior at each operational mode (normal, overcurrent, under
current). The conditions of the operational modes are discussed below. 

We now discuss the conditions of the operational modes encountered 
by the MR damper, of which there are several different types of faults 
that can be experienced during MR damper operations. The viscosity of 
the MR fluid is sensitive to extreme temperatures and the particles in the 
MR fluid are also subject to degradation over time [37]. However, this 
paper focuses on faults introduced in the current supplied to MR damper 
through minor temperature changes or faulty power supplies. Under
current and overcurrent fault modes were modeled in addition to the 
normal operating current. The undercurrent, normal, and overcurrent 
operational modes are denoted by a supply current of 20 mA, 60 mA and 
100 mA respectively. 

A sample of experimental data used to model the MR damper is 
shown in Fig. 3. The figures show the actuator extending and retracting 
at a constant speed with the MR force being recorded by the loadcell and 
actuator motor torque sensor. The figures also show the application of a 
first order Butterworth filter on the actuator current sensor in order to 
reduce some of the noise before applying adaptive filtering strategies. 

4.2. Magnetorheological damper model 

The force–velocity hysteresis of an MR damper has been described in 
literature using many different mathematical models such as the 
nonlinear hysteretic biviscous model, polynomial function model, 
generalized sigmoid hysteresis model, and Bouc-Wen hysteresis model 
[35]. However, at low velocities and long stroke lengths, the force 
applied by the diaphragm and compressed nitrogen gas is not negligible. 
Thus, the relationship between MR damper force and actuator position 
was further incorporated into the model. 

The full mathematical model of the MR damper calculates force as a 
function of velocity, position, and current applied to the damper. 
Assuming the current is kept constant, the force becomes a function of 
position and velocity and can be modeled as a polynomial surface as 
seen in Fig. 4 and Fig. 5. Since the experiments were conducted using a 
constant velocity model, the overall system model was further reduced 
to, as per equation (4.2.2). The overall effect on the full MR model and 
its force profile is clear from Fig. 6, where it is evident that the position 
of the actuator is now the only factor affecting the system’s force output. 

A sixth order polynomial model was chosen for this experiment 
because it was the least computationally expensive for implementing 

Fig. 3. Sample of experimental data used to model the MR damper under 
normal operating conditions. 

Fig. 4. MR force during extension with respect to position and velocity.  
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model-based filters such as the EKF, UKF, and ESIF without sacrificing 
significant model accuracy. The basic polynomial hysteresis function is 
as follows [35]: 

fh =
∑n

k=0
akyk; n = 6 (4.2.1)  

where y is the position of the MR piston, ak is the polynomial coefficient 
constant which is experimentally obtained, k represents the polynomial 
exponent, and n represents the polynomial order [35]. The velocity 
(direction) of the piston determines whether the damping force follows 
the upper or lower hysteresis curve as shown as follows [35]: 

fd =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑6

k=0
aukyk; ẏ < 0

∑6

k=0
adkyk; ẏ > 0

∑6

k=0

1
2
(auk + adk)yk; ẏ = 0

(4.2.2)  

where auk and adk are the lower and upper polynomial coefficients 
respectively. Convergence of the two polynomial functions near the 
extremities is ensured through averaging the lower and upper poly

nomial functions when the piston velocity changes direction or is equal 
to 0 mm/s [35]. The coefficients of the polynomial model for the normal, 
undercurrent and overcurrent operating modes are given in Table 1. 

The models shown in Fig. 7 depicts the force-position relationship of 
the MR damper at a velocity of 41.5 mm/s. This represents a cross 
section of Fig. 6 at the specified velocity. The data points were fitted 
using (4.2.2) to obtain the polynomial coefficients in Table 1. The norm 
of the residuals for each data set to their polynomial models are [12.086, 
8.1279], [6.794, 8.070], and [7.367, 13.693] for the under current, 
normal, and over current modes respectively. The first number repre
sents the upper polynomial curve residual while the second represents 
the lower polynomial curve residual. The discretized state space equa
tions can be written as follows: 

x1,k+1 = x1,k +T • x2,k (4.2.3)  

x2,k+1 = x2,k (4.2.4)  

x3,k+1 =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑6

k=0
aukx1,k; x2,k < 0

∑6

k=0
adkx1,k; x2k > 0

∑6

k=0

1
2
(auk + adk)x1,k; x2,k = 0

(4.2.5)  

where x1, x2, x3, are the position, velocity, and force of MR damper and 
T is the sampling rate. The system and measurement noise covariance 
matrices are given by the following: 

Q = R • 10− 1 (4.2.6)  

R =

⎡

⎣
5.5134 • 10− 4 0 0

0 7.797 • 10− 4 0
0 0 622.407

⎤

⎦ (4.2.7) 

The system noise was not measured directly but was assumed to be 
one magnitude smaller than the measurement noise. 

5. Experimental results and discussion 

The linear actuator drove the MR damper for a total of 8 s with a 
constant velocity during extension and retraction (or triangle wave). 
The position and velocity profile captured by the actuator encoder can 
be seen in Fig. 8. The initial current of 60 mA was applied to MR damper 
which represents normal operation. The MR damper was allowed to 
fully extend and retract before an overcurrent fault (100 mA) was 
introduced at 2.66 s. The overcurrent fault is introduced in the experi
ments by adjusting the state space equations’ polynomial coefficients 
accordingly as per Table 1. After another full period of motion, a 

Fig. 5. MR force during retraction with respect to position and velocity.  

Fig. 6. Full MR force model with extension and retraction with con
stant velocity. 

Table 1 
Experimental coefficients for polynomial MR model.  

Polynomial 
Coefficient 

Undercurrent 
(20 mA) 

Normal 
(60 mA) 

Overcurrent 
(100 mA) 

au0 − 2.467 ⋅ 102 − 2.851 ⋅ 102 − 3.488 ⋅ 102 

au1 6.476 1.673 19.770 
au2 − 0.692 − 1.213 − 1.909 
au3 3.581 ⋅ 10-2 6.132 ⋅ 10-2 9.053 ⋅ 10-2 

au4 − 1.022 ⋅ 10-3 − 1.675⋅ 10-3 − 2.305 ⋅ 10-3 

au5 1.440 ⋅ 10-5 2.306 ⋅ 10-5 2.972 ⋅ 10-5 

au6 − 7.943 ⋅ 10-8 − 1.248 ⋅ 10-7 − 1.518 ⋅ 10-7 

ad0 53.347 52.975 94.000 
ad1 − 7.858 − 1.067 − 4.528 
ad2 0.909 0.184 0.578 
ad3 − 5.358 ⋅ 10-2 − 1.660 ⋅ 10-2 − 3.88 ⋅ 10-2 

ad4 1.604 ⋅ 10-3 6.375⋅ 10-4 1.278 ⋅ 10-3 

ad5 − 2.364 ⋅ 10-5 − 1.118 ⋅ 10-5 − 2.028 ⋅ 10-5 

ad6 1.352 ⋅ 10-7 7.303 ⋅ 10-8 1.232 ⋅ 10-7  
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modelling uncertainty in the form of an undercurrent fault (20 mA) was 
introduced to the MR damper at 5.3 s before completing a final extension 
and retraction. The undercurrent fault is implemented in an identical 
fashion as in the case of an overcurrent fault: by adjusting the co
efficients of the polynomial according to the values outlined in Table 1. 

The time varying boundary layer was recorded in order to determine 
the threshold for switching between the EKF and ESIF as well as UKF and 
ESIF. The boundary layer width over the course of the experiment can be 
visualized in Fig. 9. A threshold of δlim = 200 was manually selected for 
the boundary layer width of the third state based on experimental ob
servations throughout the course of this study. Under normal operating 
conditions, the boundary layer width is normally below this selected 
threshold. The boundary layer width exceeds this threshold far more 
frequently in the faulty cases. The fixed constant boundary layer used to 
compute the gain in the ESIF algorithm was also manually determined 
and tuned based on our experiments, and is given as follows: 

δ =

⎡

⎣
5.5134 • 10− 4 0 0

0 7.797 • 10− 4 0
0 0 60

⎤

⎦ (5.1) 

Preliminary experimental simulations demonstrate that the EKF and 
UKF both estimate the true force exerted by the MR damper accurately 
for the normal operating case. This is by virtue of both filters heavy 
reliance on the system model. The EKF-ESIF and UKF-ESIF have mod
erate performance in the normal case and begin to exhibit deviation 
from the true state when the measurement noise is high. The RMSE (root 
mean squared error) was calculated as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x̂i)

2

n

√
√
√
√
√

(5.2) 

where i is the time step, n is the number of steps, xi is the true 
damping force, and x̂i is the estimated damping force. Table 2. 

shows the RMSE for the normal case. Twenty separate trials were 
conducted and the RMSEs for each test were averaged to form Tables 2 
and 3. 

The filter performance of mixed operation in which the MR damper 
experiences normal, overcurrent, and undercurrent modes is shown in 
Fig. 10. In this case, combining the ESIF with the EKF and UKF results in 
significantly improved state estimation as shown by Table 3. While the 
UKF performed better than the EKF, the EKF-ESIF and UKF-ESIF per
formed comparatively. The combined ESIF strategy shows more 
robustness in the presence of modeling uncertainty caused by faults in 
the system. The standard EKF and UKF are unable to compensate for the 
modeling uncertainty which results in estimates that are very close to 
the system model for the normal case. In. Fig. 11, the estimation error for 
each filtering strategy is depicted. When sensor noise is high in the 
normal case, the combined estimation strategies occasionally use the SIF 
gain which is suboptimal for well-defined systems. However, the SIF 
consistently performs better than the UKF when modeling uncertainties 

Fig. 7. MR damping force with respect to position when piston velocity is set to 
41.5 mm/s. 

Fig. 8. Sample of experimental data used to model the MR damper under 
normal operating conditions. 

Fig. 9. Time varying boundary layer and boundary layer threshold for deter
mining switching between Kalman filter variants and ESIF. 

Table 2 
RMSE for normal operation.  

Estimation Strategy RMSE (Newtons) 

EKF  2.81 
UKF  2.74 
EKF-ESIF  6.89 
UKF-ESIF  6.79  
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are introduces. 
In addition, the high-frequency switching behavior of the SIF gain 

resulting in chattering can also be witnessed in the plot of the time 
varying boundary layer in Fig. 9, as well as in the estimator errors in 
Fig. 11. This behavior has been attributed to the fact that the state es
timates may grow beyond the size of the boundary layer, and then 
suddenly return within the boundary layer upon the triggering of the 
adaptive gain. As such, a simple thresholding-based approach as can be 
seen in Fig. 9 is associated with a limitation of the adaptive SIF-KF 
approach. These findings are consistent with that of the SVSF and its 

adaptive formulation: the SVSF-KF [14]. In [14], the authors propose 
modifying the adaptive gain formulation by exploring several alterna
tive formulations based on the normalized innovation squares (NIS) 
metric, the multiple model adaptive estimator (MMAE), and the inter
acting multiple model (IMM) frameworks. We therefore postulate that 
the dramatic fluctuation of the estimator error witnessed in this study 
can be addressed similarly as in [14], and consider this to be a significant 
area of future research which we plan to undertake in future studies. 

6. Conclusions 

In this paper, a combined Kalman and sliding innovation filtering 
strategy is presented. The criterion for switching between the filters was 
based on the time-varying sliding boundary layer that is utilized by the 
SIF. A trade-off exists between robustness to uncertainties and estima
tion accuracy. In this case, the proposed EKF-ESIF and UKF-ESIF stra
tegies sacrifice some estimation accuracy for robustness to uncertainties 
such as system faults. The experiment described in this paper is a chal
lenging estimation scenario and may be used for future research as it 
serves as a highly repeatable benchmark. For an MR damper undergoing 
mixed operation (which adds modeling uncertainty), the proposed EKF- 
ESIF and UKF-ESIF strategies demonstrated improved estimation per
formance over their standard counterparts by about 28 % for the EKF 
and 33 % for the UKF on average (for force estimation). The ESIF can be 
expanded further to improve estimation performance as it currently uses 
a first order Taylor series approximation of the nonlinear system model 
and measurement process. Instead, an iterative extended Kalman filter 
(IEKF) which recursively updates the point at which the system is line
arized around could also be implemented for the ESIF to better 
approximate nonlinear dynamics. 

We have also identified several promising avenues for future 
research based on the findings presented in this study. First, the chat
tering issue encountered due to the high-frequency gain switching will 
be addressed by investigating alternate strategies for triggering the 
adaptive gain. Examples of such alternate strategies include the NIS 
metric, a statistical-based thresholding approach, or probabilistic 
frameworks like the MMAE and IMM. These strategies have been 
selected based on their success in being implemented in a similar 
manner on the adaptive SVSF-KF approach. Secondly, future studies will 
also investigate a wider range of fault types, operating conditions and 
variable factors relating to the MR damper test bed. Such examples 
include other types of faults not related to the power supply, consider
ation of non-constant variables like velocity, temperature, pressure, and 
more. Finally, these future studies will include a comprehensive expo
sition of the SVSF and SIF’s adaptive formulations to confirm the SIF’s 
improved estimation performance. 
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Table 3 
RMSE for mixed operation.  

Estimation Strategy RMSE (Newtons) 

EKF  20.39 
UKF  18.36 
EKF-ESIF  13.71 
UKF-ESIF  13.22  

Fig. 10. Force estimation of the MR damper undergoing mixed operation with 
normal, overcurrent, and undercurrent modes. 

Fig. 11. Force estimation error for an MR damper undergoing mixed operation 
with normal, overcurrent, and undercurrent modes. 
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