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Abstract 7 

The Kalman filter (KF) is the most well-known estimation strategy that yields the optimal solution 8 

to the linear quadratic estimation problem. The system in such applications shall be well modeled 9 

assuming the presence of Gaussian noise. While the KF is effective under the stated conditions, it 10 

lacks robustness to other type of disturbances. Therefore, numerous variants of the KF have been 11 

developed to accommodate its limitations. The smooth variable structure filter (SVSF) is as an 12 

alternative solution with improved robustness, especially in the case of modeling uncertainties. It 13 

is based on sliding mode technique that offers robustness at the cost of optimality. On the other 14 

hand, some algorithms and solutions involve with several possible operating modes and generates 15 

an estimation based on the output of these models, i.e. the static multiple models that obtains the 16 

estimates based on weighted statistical fusing of the outputs of the models depending on the 17 

likelihood of each mode. This paper introduces an adaptive formulation of the SVSF that is 18 

reformulated based on static multiple models. The proposed model is applied and tested on an 19 

electro-hydrostatic actuator (EHA). The proposed method takes the advantages of the SVSF’s 20 

robustness and stability, while reducing the estimation error due to the use of adaptive modeling 21 

structure. The results show an improvement on the SVSF performance, where the root mean 22 

squared errors are reduced by 41%, 99% and 75% for the position, velocity and acceleration 23 
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estimated states. Therefore, the proposed method is a good candidate for parameter and state 24 

estimation problems. 25 

Keywords: State and parameter estimation; Kalman filter; smooth variable structure filter; 26 

robustness; static multiple models 27 

Table of Nomenclature 28 

Symbols Representation Symbols Representation 
° Schur Product 𝛾 SVSF Coefficient Matrix 

𝑋ା Pseudoinverse of 𝑋 𝜓 Boundary layer vector 

𝑋ିଵ Inverse of 𝑋 𝑧௞ measurement value at time 𝑘 

𝑋෠ Estimated value of 𝑋 𝑃 Error covariance matrix 
|𝑋| Absolute value of 𝑋 𝑄 System noise’s covariance matrix 

𝐴 System Matrix 𝑅 Measurement noise’s covariance 
matrix 

𝐵 Input Matrix 𝑥 State Vector 

𝐶 Measurement Matrix 𝑧 Measurement Vector 

𝑋௞|௞ The a posteriori vale of 𝑋 at time 𝑘  𝑒௭ Error in measurement. 

𝑋௞|௞ିଵ The a priori vale of 𝑋 at time 𝑘  𝐾௞ Correction gain at time 𝑘 

𝑢௞ Input value at time 𝑘 𝑀௝ Model 𝑗 structure.  

𝜇௞
௝
 Weight at time 𝑘 for each model 𝑀௝ 𝑇 The time step, 1 msec. 

𝜎௝
ଶ The variance of model M୨ 𝑠𝑎𝑡 Saturated function 

𝑠𝑔𝑛 Sign function 𝑟 Number of models for SSM 

𝑛,𝑚 Number of states and measurements, 
respectively. 

𝑑𝑖𝑎𝑔 Convert the vector to a diagonal 
matrix where the elements of the 
vector are the diagonal elements of 
the matrix. 

 29 

1. Introduction 30 

Estimating the dynamic behavior involves the extraction of important values known as states from 31 

noisy measurements [1, 2]. States change over time and are typically governed by equations that 32 

describe system dynamics [3]. The estimation process is referred to as Filter as it tries to minimize 33 

the noise effect. Most of filters try to minimize the error (difference between the actual and 34 

estimated state values) while simultaneously reducing the effects of noise. The other type of filters 35 

try being robust to disturbances [3]. Disturbances and noise are typically present in measurements, 36 
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and may be caused by the sensor quality (system uncertainties) as well as environmental factors 37 

(Measurement uncertainties). System uncertainties may be caused by an inaccurate model and/or 38 

variations and nonlinearities in the physical system parameters. Reliable estimates of state and/or 39 

parameters are necessary for safely and accurately controlling a system in real-time. When system 40 

dynamics are changed abruptly in the presence of faults, adaptive estimation strategies that 41 

combined both types of filters can be used to mitigate inaccurate estimation. They maintain the 42 

stability of the filter during the fault, while reducing the error in the estimation. 43 

Kalman expanded on the research of his predecessors and introduced a new solution to 44 

linear filtering and tracking problems [4]. He derived a filter that utilized linear models and 45 

measurements to yield an optimal estimation based on strict assumptions. This filter later became 46 

known as the Kalman filter (KF). Since the KF is applicable to linear Gaussian models, several 47 

works were conducted to modify the KF and make more applicable to nonlinear and/or non 48 

Gaussian models, i.e. Extended KF, and Unscented KF [4].  49 

Another branch of estimation methods is still developing in parallel to the KF and its 50 

variants. This branch includes the well-known sliding mode observers (SMOs). These observers 51 

are based on variable structure (VS) and sliding mode (SM) techniques [5, 6, 7]. Both techniques 52 

consider the system has discontinuity in his structure. Therefore, they define discontinuations 53 

hyperplanes that divide the state space into different regions; within these regions, the equations 54 

used to describe the system are continuous [8, 9]. The name ‘variable structure’ is chosen since 55 

system dynamics may be mathematically described by a finite number of equations. 56 

Variable structure theory provided the foundation for variable structure control (VSC). In 57 

VSC, the controller signal is formulated as a discontinuous state function, such that discontinuity 58 

hyperplanes are introduced [8, 9]. The most well-known type of VSC is the sliding mode controller 59 
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(SMC) [6, 10]. SMC makes use of a discontinuous switching plane along a desired state trajectory, 60 

which is referred to as the sliding surface. The primary objective for the SMC is to maintain the 61 

states within sliding surface neighbourhood. A switching gain is used to push the states towards 62 

the surface when they try to move away. Once the state values are on the surface, the states slides 63 

along the surface towards the desired values [10]. Although the switching effects bring robustness 64 

and stability to the control process, it also introduces high-frequency switching known as 65 

chattering [11]. Quite often a boundary layer is introduced in an effort to smooth out the control 66 

signal [10]. Prior to the 1980s, VSC and SMC methods were only considered in the continuous-67 

time domain [12]. In 1985, a discrete-time formulation of SMC was presented [13]. A stability 68 

condition was provided shortly afterwards and is now typically used in the design of discrete 69 

controllers [14, 15]. 70 

SMOs, which was developed in 1980s [12, 16], reduces the error with the help of a 71 

switching function similar to VSC and SMC [17]. Observer gains are calculated based on the errors 72 

between the measurements and estimates [17]. Most SMOs apply a discontinuous signal to the 73 

estimates in order to keep them bounded to an area of the surface [12]. The motion consists of 74 

three phases: reachability, injection, and sliding [12, 18]. The reachability phase consists of forcing 75 

the estimates to the sliding surface from some initial conditions, in a finite period of time [12]. 76 

Once within a defined area of the surface (called an existence subspace), both the injection and 77 

sliding phases are present. The sliding phase forces the estimated errors to slide along a hyperplane 78 

towards the origin [12]. The injection phase consists of preventing the estimate from leaving the 79 

existence subspace; keeping it bounded within an area of the sliding surface [12]. According to 80 

[12, 16, 19], the action of the injection phase enables the observer to be robust enough to overcome 81 

uncertainties, modeling errors, and nonlinearities present in the system. A number of SMOs have 82 
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been developed based on these principles. The most notable observers were introduced by Slotine 83 

et al. [9, 20], Walcott et al. [21, 22], Edwards et al. [19], and later by both Tan and Edwards [23]. 84 

SMOs have been applied to estimation problems, and fault detection and isolation [12]. 85 

Another filter called the smooth variable structure filter (SVSF) was presented in 2007, 86 

which was based on sliding mode and variable structure techniques [3, 12, 24]. The SVSF is 87 

formulated as a predictor-corrector estimator similar to the KF. However, it utilizes a gain structure 88 

based on sliding mode techniques. The filter’s gain is calculated based on the error in 89 

measurements at the prediction stage of the current time (known as innovation), the error in 90 

measurements at the update stage from the previous time step, and a switching term [24]. Similar 91 

to SMOs, the switching gain structure improves stability and robustness of the estimation process 92 

by bounding the state estimates close to the true trajectory [25, 26]. The SVSF presented in [24] 93 

did not contain a state error covariance derivation, which is an important feature for optimal 94 

estimation strategies (it is another performance indicator). A state error covariance function was 95 

introduced and expanded in [25, 27, 28], which vastly improved the number of useful applications 96 

for the SVSF [29, 30, 31]. Other developments and improvements to the SVSF were conducted in 97 

the literature including fault detection using chattering, higher-order implementations, and 98 

tracking multiple targets [12, 32, 33, 34, 35]. The SVSF has demonstrated robust performance on 99 

a number of different estimation problems [4]. Most recently, a filter, which is referred to as the 100 

sliding innovation filter (SIF), was introduced in [36, 37, 38, 39]. The SIF is based on similar 101 

concepts to the SVSF, but offers a simpler formulation with improved results. An opportunity for 102 

improving the SVSF involves the development of an adaptive formulation. The ability for the 103 

SVSF to automatically modify its system and/or measurement models based on different operating 104 

modes offers significant room for improvement (e.g., in terms of both accuracy and robustness). 105 
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In this paper, a new adaptive formulation of the SVSF is presented and tested on an 106 

experimental setup. The novel method integrates the static multiple models estimator (SMM) with 107 

the SVSF predictor-corrector estimation strategy. The SMM consists of several possible operating 108 

modes where several possible estimates are obtained. The SMM then combines these estimates 109 

using some weights based on the likelihood of each mode. This strategy may be used for fault 110 

detection and diagnosis problems, and has demonstrated good accuracy and repeatability of results. 111 

The performance of the proposed method is evaluated using an electro-hydrostatic actuator (EHA) 112 

which was built for experimentation. The results are compared with the standard SVSF estimation 113 

method. 114 

This paper is organized as follows. Section 2 summarizes the SVSF estimation process. 115 

Section 3 introduces the SMM estimator and the proposed SMM-SVSF or the adaptive SVSF 116 

algorithm. Section 4 describes the experimental setup as well as the equations of motion governing 117 

the EHA. Section 5 discusses the application of the standard SVSF and adaptive SVSF to the EHA 118 

system, followed by concluding remarks. 119 

2. The Smooth Variable Structure Filter 120 

The smooth variable structure filter (SVSF) is a predictor-corrector estimation strategy that 121 

offers solution with robustness and stability against disturbances and uncertainties. The SVSF uses 122 

a smoothing boundary layer with an upper bound that is defined based on the level of noise and 123 

unmodeled dynamics [40, 41]. The SVSF is model-based and may be applied to both linear or 124 

nonlinear systems and measurements [3, 12]. The SVSF’s concepts are illustrated in Fig. 1. 125 
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 126 

Figure 1. SVS’s concepts with existence subspace boundary layer [3]. 127 

As described earlier, the SVSF strategy is structured similarly to the KF. However, it 128 

presents a novel way to calculate its gain. As per (2.1) and (2.2), 𝑥ො௞ାଵ|௞  and 𝑃௞ାଵ|௞ are calculated.  129 

𝑥ො௞ାଵ|௞ ൌ 𝐴𝑥ො௞|௞ ൅ 𝐵𝑢௞ ሺ2.1ሻ 130 

𝑃௞ାଵ|௞ ൌ 𝐴𝑃௞|௞𝐴் ൅ 𝑄௞ ሺ2.2ሻ 131 

Then 𝑧̂௞ାଵ|௞ and 𝑒௭,௞ାଵ|௞ are calculated as per (2.3) and (2.4), respectively. 132 

𝑧̂௞ାଵ|௞ ൌ 𝐶𝑥ො௞ାଵ|௞ ሺ2.3ሻ 133 

𝑒௭,௞ାଵ|௞ ൌ 𝑧௞ାଵ െ 𝑧̂௞ାଵ|௞ ሺ2.4ሻ 134 

The gain used by the SVSF, 𝐾௞ , is calculated with the use of the boundary layer widths, 𝜓, 135 

as follows [3]: 136 

𝐾௞ାଵ ൌ 𝐶௞
ା𝑑𝑖𝑎𝑔 ቂቀቚ𝑒௭ೖశభ|ೖ

ቚ ൅ 𝛾 ቚ𝑒௭ೖ|ೖ
ቚቁ ∘ 𝑠𝑎𝑡 ቀ𝜓തିଵ𝑒௭ೖశభ|ೖ

ቁቃ 𝑑𝑖𝑎𝑔 ቀ𝑒௭ೖశభ|ೖ
ቁ
ିଵ

ሺ2.5ሻ 137 
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The saturation function is defined as follows: 138 

𝑠𝑎𝑡 ቀ𝜓തିଵ𝑒௭ೖశభ|ೖ
ቁ ൌ

⎩
⎨

⎧
1, 𝑒௭೔,௞ାଵ|௞/𝜓௜ ൒ 1

𝑒௭೔,௞ାଵ|௞

𝜓௜
, െ1 ൏

𝑒௭೔,௞ାଵ|௞

𝜓௜
൏ 1

െ1, 𝑒௭೔,௞ାଵ|௞/𝜓௜ ൑ െ1

ሺ2.6ሻ 139 

where 𝜓തିଵ is defined by (2.7) for 𝑚 number of measurements [3]: 140 

𝜓തିଵ ൌ

⎣
⎢
⎢
⎢
⎡

1
𝜓ଵ

0 0

0 ⋱ 0

0 0  
1
𝜓௠⎦

⎥
⎥
⎥
⎤

ሺ2.7ሻ 141 

The state vector and error covariance matrix are respectively updated as per (2.8) and (2.9).  142 

𝑥ො௞ାଵ|௞ାଵ ൌ 𝑥ො௞ାଵ|௞ ൅ 𝐾௞ାଵ𝑒௭,௞ାଵ|௞ ሺ2.8ሻ 143 

𝑃௞ାଵ|௞ାଵ ൌ ሺ𝐼 െ 𝐾௞ାଵ𝐶ሻ𝑃௞ାଵ|௞ሺ𝐼 െ 𝐾௞ାଵ𝐶ሻ் ൅ 𝐾௞ାଵ𝑅௞ାଵ𝐾௞ାଵ
் ሺ2.9ሻ 144 

Finally, the updated measurement error, 𝑒௭,௞ାଵ|௞ାଵ, is found as per (2.10) and is used in the next 145 

iteration. 146 

𝑒௭,௞ାଵ|௞ାଵ ൌ 𝑧௞ାଵ െ 𝑧̂௞ାଵ|௞ାଵ ሺ2.10ሻ 147 

The existence subspace, denoted by the dotted black line shown in Figure 1, refers to the 148 

level of uncertainty found in the estimation process. It is typically present due to the amount of 149 

noise and/or modeling uncertainties [3]. The existence space, 𝛽, is described mainly from the 150 

innovation signal [27, 34]. While the width is not precisely known, designer knowledge may be 151 

used to define the upper bound. When the smoothing boundary is defined larger than the existence 152 

subspace, the estimated states are smoothed. Likewise, if the smoothing term is set too small, 153 

chattering (high-frequency switching) may occur. 154 
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3. A Novel Adaptive Formulation of the Smooth Variable Structure Filter 155 

The static multiple model (SMM) algorithm assumes that the system behaves according to 156 

a finite number of 𝑟 models 𝑀ଵ, 𝑀ଶ, … , 𝑀௥. The SMM uses variable weights, 𝜇௞
௝ , calculated at 157 

time 𝑘 to represent each model 𝑀௝. These weights represent a probability of the system behaving 158 

according to a corresponding operating mode (i.e., mathematical model). These weights are used 159 

to combine the corresponding model state estimates [42] which creates an overall estimate. The 160 

weights are initially uniformly distributed, and subsequent weights are calculated as follows: 161 

𝜇௞
௝ ൌ

𝑝൫𝑧௞ห𝑀௝൯𝜇௞ିଵ
௝

∑ 𝑝൫𝑧௞ห𝑀௜൯𝜇௞ିଵ
௜௥

௜ୀଵ

ሺ3.1ሻ 162 

where 𝑝൫𝑧௞ห𝑀௝൯ is the likelihood value of measurement 𝑧௞ based on 𝑀௝ and is defined as follows: 163 

𝑝൫𝑧௞ห𝑀௝൯ ൌ  
1

ට2𝜋𝜎௝
ଶ
𝑒𝑥𝑝

െ൫𝑧௞ െ 𝑧̂௞|௞ିଵ൯
ଶ

2𝜎௝
ଶ ሺ3.2ሻ 164 

𝜎௝
ଶ ൌ 𝐶௞

௝𝑃௞|௞ିଵ
௝ 𝐶௞

௝் ൅ ሺ𝜎௭ଶሻ௝ ሺ3.3ሻ 165 

where 𝜎௝
ଶ refers to the variance of model M୨ based on the predicted measurement zො୩|୩-ଵ for model 166 

𝑀௝ [42]. Note that the parameter definitions may also be found in the Table of Nomenclature. Each 167 

model has its own likelihood value calculated from the filtering strategy (whether it is from a 168 

Kalman filter, smooth variable structure filter, or another type). The adaptive estimates are 169 

calculated using the weighted sum produced by the system models, as per (3.4). 170 

𝑥ො௞|௞ ൌ෍𝜇௞
௝

௥

௝ୀଵ

𝑥ො௞|௞
௝ ሺ3.4ሻ 171 
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The adaptive covariance is calculated in a similar fashion, as shown in (3.5). 172 

𝑃௞|௞ ൌ෍μ௞
௝

௥

௝ୀଵ

൤𝑃௞|௞
௝ ൅ ቀ𝑥ො௞|௞

௝ െ 𝑥ො௞|௞ቁቀ𝑥ො௞|௞
௝ െ 𝑥ො௞|௞ቁ

்
൨ ሺ3.5ሻ 173 

The proposed SMM-SVSF (or adaptive SVSF) uses the model weights from the static 174 

multiple models estimator to generate a weighted prediction. The weighted state predictions are 175 

used to calculate the SVSF gain, which is used to generate an updated state estimate and state error 176 

covariance. Since the algorithm uses a weighted combination of system modes, the weights could 177 

be used to describe the mixing of different system modes. Figure 2 depicts the algorithm flow chart 178 

and Table 1 shows the corresponding pseudocode. Note that the initial mode weights can be 179 

defined by the user, provided that the sum of each value is 1 (so total probability is 100%). 180 

 181 

Figure 2. The proposed SMM-SVSF (or adaptive SVSF) flowchart. 182 
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Table 1. Pseudocode for the SMM-SVSF algorithm. 183 

1: For models (𝑀௝), 𝑗 ൌ 1 to 𝑟 
    𝑥ො௞ାଵ|௞,_௝←ሺ𝐴௝ ,𝑢ሻ 
2: For models (𝑀௝), 𝑗 ൌ 1 to 𝑟 
    𝜎 ← ሺ𝑄,𝑅,𝑃௞|௞ሻ  
    𝑝 ← ሺ𝑥ො௞ାଵ|௞,௝ , 𝑧,𝜎ሻ 
3: 𝜇௞ାଵ ← ሺ𝑥ො௞ାଵ|௞,௝ , 𝜇௞ሻ 
4a: 𝑥ො௞ାଵ|௞ ← ሺ𝑥ො௞ାଵ|௞,௝ , 𝜇௞ାଵሻ 
4b: For operating modes 𝑗 ൌ 1 to 𝑟 
    𝑃௞ାଵ|௞,௝ ← ሺ𝐴௝ , 𝑥ො௞ାଵ|௞ሻ  
5: 𝑃௞ାଵ|௞ ← ሺ𝑃௞ାଵ|௞,௝ , 𝜇௞ାଵሻ  
6: 𝐾௞ାଵ ← (𝐶, 𝛾, saturation)  
7a: 𝑥ො௞ାଵ|௞ାଵ ← ሺ𝑥ො௞ାଵ|௞,, 𝑧,𝐶,𝐾௞ାଵሻ 
7b: 𝑃௞ାଵ|௞ାଵ ← ሺ𝑃௞ାଵ|௞,𝐶,𝐾௞ାଵ,𝑅ሻ  

 184 

After the SVSF boundary layer vector and convergence rate have been set and model 185 

weights have been initialized, a predicted state estimate for each system model is made. The 186 

standard deviation is calculated using three different covariance matrices: the state error, the 187 

system noise, and the measurement noise covariance matrices. Next, the updated estimates, 188 

standard deviations, and measurements are used to calculate the model probabilities. These 189 

probabilities are then used to update the model weights, which then are used to generate a weighted 190 

predicted state estimate and error covariance. This information is fed through the SVSF update 191 

stage as described in Section 2 using (2.8) through (2.10). 192 

4. Experimental Setup 193 

Electrohydrostatic actuators (EHAs) are a type of hydraulic and electrical actuator 194 

comprised of a linear or rotary actuator, a hydraulic circuit, and a bidirectional pump [43]. EHAs 195 

are used in automotive and aerospace industry due to their large force-to-weight ratios and their 196 

reliability. They are also used in various manufacturing applications such as metal forming, where 197 
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control of the outlet pressure is required [44]. Electromechanical systems often function under 198 

different operating modes. In the case of the EHAs, faults such as internal leakage and increased 199 

friction may be present. Internal leakage is caused by wearing of the piston seal, which affects the 200 

overall actuation performance [45]. If the leakage remains undetected, then it cannot be repaired, 201 

which can deteriorate lifetime performance and increase maintenance costs [45]. Since detection 202 

of internal leakage in EHAs through disassembly of the cylinder and piston is costly, adaptive 203 

estimation strategies can be used to improve the overall estimation process in the presence of 204 

multiple operating modes. 205 

The EHA model used in this paper was designed and manufactured at the Centre for 206 

Mechatronics and Hybrid Technology at McMaster University shown in Figure 3 [43]. The EHA 207 

used in this study is composed of several components, including: two linear actuators, a bi-208 

directional external gear pump, a variable-speed servomotor, an accumulator, a pressure relief 209 

valve, and safety circuits [46]. A variable-speed brushless DC electric motor drives the pump and 210 

forces hydraulic oil into the cylinder, and modifies the actuation performance by varying the fluid 211 

flow rate. An accumulator is used to prevent cavitation and collect leakages from the gear pump. 212 

The EHA is controlled by modifying input voltage to the motor, which consequently changes the 213 

direction and speed of the pump. Controlling the fluid flow rate in the outer circuit adjusts the 214 

position of the piston, which could be used for aerospace applications such as changing flight 215 

surfaces. 216 
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 217 

Figure 3. Prototype of the EHA used to collect experimental data [43]. 218 

The EHA was modelled using four states: the actuator position 𝑥ଵ ൌ 𝑥, velocity 𝑥ଶ ൌ 𝑥ሶ , 219 

acceleration 𝑥ଷ ൌ 𝑥ሷ , and differential pressure across the actuator 𝑥ସ ൌ 𝑃ଵ െ 𝑃ଶ. The physical 220 

modeling approach was used to obtain the nonlinear state-space equations in discrete-time 221 

described by [3, 47]: 222 

𝑥ଵ,௞ାଵ ൌ 𝑥ଵ,௞ ൅ 𝑇𝑥ଶ,௞ ሺ4.1ሻ 223 

𝑥ଶ,௞ାଵ ൌ 𝑥ଶ,௞ ൅ 𝑇𝑥ଷ,௞ ሺ4.2ሻ 224 

𝑥ଷ,௞ାଵ ൌ 1 െ ൤𝑇
𝑎ଶ𝑉଴ ൅ 𝑀𝛽௘𝐿

𝑀𝑉଴
൨ 𝑥ଷ,௞ െ 𝑇

൫𝐴ா
ଶ ൅ 𝑎ଶ𝐿൯𝛽௘
𝑀𝑉଴

𝑥ଶ,௞ …

…െ 𝑇
2𝑎ଵ𝑉଴𝑥ଶ,௞𝑥ଷ,௞ ൅ 𝛽௘𝐿൫𝑎ଵ𝑥ଶ,௞

ଶ ൅ 𝑎ଷ൯
𝑀𝑉଴

𝑠𝑔𝑛൫𝑥ଶ,௞൯ ൅ 𝑇
𝐴ா𝛽௘
𝑀𝑉଴

 𝑢 ሺ4.3ሻ

 225 

𝑥ସ,௞ାଵ ൌ
𝑎ଶ
𝐴ா

𝑥ଶ,௞ ൅
൫𝑎ଵ𝑥ଶ,௞

ଶ ൅ 𝑎ଷ൯
𝐴ா

𝑠𝑔𝑛൫𝑥ଶ,௞൯ ൅
𝑀
𝐴ா

𝑥ଷ,௞ ሺ4.4ሻ 226 

The system input is defined as follows: 227 
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𝑢 ൌ 𝐷௣𝜔௣ െ 𝑠𝑔𝑛ሺ𝑃ଵ െ 𝑃ଶሻ𝑄௅଴ ሺ4.5ሻ 228 

where 𝜔௣ is the pump speed. Table 2 summarizes and defines the numeric values of the parameters 229 

in the equations (4.1) to (4.5). 230 

Table 2. The EHA parameters, definitions, and values used in the experiment. 231 

 232 

 233 

 234 

 235 

 236 

The friction was modeled using a quadratic function based on the actuator velocity. The 237 

friction coefficients were obtained by preforming experiments ranging from 15.6 to 109 radians 238 

per second with each data set containing four trials for repeatability [43]. 239 

5. Results and Discussion 240 

The results of applying the proposed strategy on the EHA is discussed in this section. The 241 

state estimates were initialized to zero and the covariance matrices for system and measurement 242 

noises were defined respectively as 𝑄 ൌ 10ିଽ𝐼ସ௫ସ and 𝑅 ൌ 10ି଺𝐼ସ௫ସ, where 𝐼 is an identity matrix. 243 

Furthermore, the state error covariance matrix 𝑃 was initialized as 10𝑄. 244 

Leakage faults were introduced to investigate the effects of parametric uncertainties in the 245 

system. The purpose of this study was to demonstrate the efficiency of the proposed strategy 246 

compared to the standard SVSF. The SMM-SVSF algorithm demonstrates robustness in the 247 

Parameter Description Parameter Values 
𝐴ா Piston Area (m2) 1.52 ൈ 10ିଷ   

𝐷௣ Pump Displacement ( m3/rad ) 5.57 ൈ 10ି଻  
𝐿 Leakage Coefficient ( m3/(sൈPa)) 4.78 ൈ 10ିଵଶ  
𝑀 Load Mass (kg) 7.376 kg 
𝑄௅଴ Flow Rate Offset ( m3/s) 2.41 ൈ 10ି଺ 
𝑉଴ Initial Cylinder Volume ( m3) 1.08 ൈ 10ିଷ 
𝛽௘ Effective Bulk Modulus (Pa) 2.07 ൈ 10଼ 
𝑎ଵ Friction Coefficient 6.589 ൈ 10ସ 
𝑎ଶ Friction Coefficient 2.144 ൈ 10ଷ 
𝑎ଷ Friction Coefficient 436 
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presence of multiple operating modes. Multiple system modes are introduced to the system in the 248 

form of leakage faults. In order to obtain the coefficients of the leakage values, the EHA was 249 

operated with a constant pump speed of 94.25 radians per second under a series of differential 250 

pressures. The differential pressure was modified using a throttling valve in the hydraulic system. 251 

To ensure repeatability, five sets of measurements were made. A linear regression was performed 252 

on each data set, and the slope and intercept were used to define 𝐿 and 𝑄௅଴, respectively. The 253 

leakage coefficients and flow rate offsets used for this study are presented in Table 3. 254 

Table 3. Leakage coefficient values and flow rate offsets for varying operating conditions. 255 

Condition Leakage, 𝑳,  
(m3/(sൈPa)) 

Flow Rate Offset, 𝑸𝑳𝟎, 
(m3/s) 

Normal 4.78 ൈ 10ିଵଶ  2.41 ൈ 10ି଺  
Minor Leakage 2.52 ൈ 10ିଵଵ 1.38 ൈ 10ିହ 
Major Leakage 6.01 ൈ 10ିଵଵ 1.47 ൈ 10ିହ 

 256 

A minor leakage is introduced to the system at 𝑡 ൌ  3 𝑠𝑒𝑐 and a major leakage is 257 

introduced at 𝑡 ൌ  6 𝑠𝑒𝑐. The effect on the input flow rate can be seen in Figure 4. 258 

 259 

Figure 4. Input flow rate due to internal leakage faults. 260 
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Once the EHA was modeled at all these operations and they were verified experimentally, 261 

we used these mathematical models and values in a Matlab Simulation to compare the performance 262 

between the proposed algorithm to the traditional one. The benefits of using the simulation can be 263 

summarized in two points; the values at certain point are known, i.e. the true state, and the 264 

prototype will not be damaged due to the fault when introduced. The results of the simulation are 265 

shown in Figure 5 to Figure 8 and table 5. 266 

Figure 5 shows the position estimates, while the velocity and acceleration estimates are 267 

shown in Figure 6a and 6b, respectively. The SMM-SVSF performs slightly better than the 268 

classical SVSF when the major leakage fault is introduced as seen in Figures 5a and 5b. The SVSF 269 

filter shows a significant deviation from the true velocity when the minor leakage fault is 270 

introduced at 3 seconds, as shown in Figure 6a. The error becomes worse when the major leakage 271 

is introduced at 6 seconds as shown in Figure 6b. This error is caused by the modeling uncertainty 272 

of the acceleration state, particularly due to flow rate offset of the input. The greatest improvement 273 

can be seen in the velocity and acceleration estimates. Overall, the SMM-SVSF greatly 274 

outperforms the classical SVSF in the presence of modeling uncertainties such as leakage faults.  275 

  

(a) (b) 

Figure 5. Position estimates with leakage faults:  276 

(a) 9 second simulation, (b) zoomed in at 8 seconds (major leakage). 277 
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(a) (b) 

Figure 6. (a) Velocity estimates for EHA with leakage faults,  278 

(b) Acceleration estimates with leakage faults. 279 

 280 

Figure 7. Model probability weights. 281 
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(a) (b) 

Figure 8. The differences between SVSF and SMM-SVSF in terms of (a) Innovation squared, 282 

(b) Error squared. 283 

Table 5. RMSE results for SVSF and SMM-SVSF for scenario with leakage faults. 284 

Filter Position  
(m) 

Velocity 
(m/s) 

Acceleration 
(m/s2) 

Differential Pressure 
(Pa) 

SVSF 0.0003101 0.0091966 0.002810 0.001002 
SMM-SVSF 0.0001828 0.0000799 0.000712 0.001002 

 285 

The SMM-SVSF’s ability to determine system modes can be seen in Figure 7, which shows 286 

the weights of each system mode used to calculate the estimate. Throughout the entire experiment, 287 

the SMM-SVSF filter calculates at least an 80% probability of the correct operating mode at every 288 

stage of operation. The figure shows clear transitions from normal operation, to minor leakage, to 289 

major leakage at 3 seconds and 6 seconds respectively. The innovation squared (IS), and error 290 

squared (ES) are calculated and shown in Figure 8. These two compare the a priori and the a 291 

posteriori squared errors between the two algorithms, respectively. Moreover, they show the 292 

existence subspaces around the estimates in both prediction and update steps. From the figure, it 293 
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was easily obtained that the SMM-SVSF is more stable compared to the classical SVSF, and 294 

estimates are smoother with no chattering in SMM-SVSF compared to SVSF. The error of the 295 

classical SVSF in both steps increases due to introducing the faults, and it spikes when the actuator 296 

changes direction. In addition, the RMSE values in Table 5 show that the SMM-SVSF significantly 297 

reduces the errors in estimating the position, velocity, and acceleration. 298 

6. Conclusions 299 

This paper introduced the combination of the Smooth Variable Structure Filter and Static 300 

Multiple Mode estimation strategies to create an adaptive filtering method, SMM-SVSF, that can 301 

be used in fault and diagnosis applications. A brief background was provided on the estimation 302 

theory up to and including the sliding innovation filter. The SVSF was also included. The SMM-303 

SVSF was tested on an Electro-Hydrostatic actuator. The filter performed well for this particular 304 

EHA model due to two main factors: the system parameters of the different leakage modes vary 305 

significantly enough for mode differentiation using the SMM method, and the system and 306 

measurement noise covariances are well-known. This paper demonstrates that the addition of 307 

SMM to the SVSF strategy improves overall estimation process for a system with multiple 308 

operating modes, and thereby creates an adaptive SVSF. This can be observed from the results, 309 

where the root mean squared errors were reduced by 41%, 99% and 75% for the position, velocity 310 

and acceleration estimated states when the SMM-SVSF is applied rather than SVSF. Potential 311 

future work will incorporate additional operating modes such as friction faults as well as the 312 

mixing of several different operating modes. 313 

 314 

  315 
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