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A B S T R A C T

The Differential Evolution (DE) algorithm is a powerful and simple optimizer for solving various optimization
problems. Based on the literature, DE has shown suitable performance in exploring search spaces and locating
global optimums. However, it is typically slow in extracting the problem solution. In this paper, the exploration
ability of the DE algorithm is augmented with a competitive control parameter 𝜔 based on the value of
the objective function of the mutating members. A new mutation strategy is introduced, subtracting weaker
members from superior weaker ones. The proposed DE algorithm, which is referred to as the self-competitive
DE, has been employed for solving real-world optimization problems. Several DE algorithms are enhanced with
the proposed parameter 𝜔, and the efficiencies of the resulting enhanced algorithms are tested. Furthermore,
the optimal Proportional–Integral–Derivative (PID) controller tuning for an Automatic Voltage Regulator (AVR)
system is used to investigate the effectiveness of the proposed strategy in solving real-world optimization
problems. Simulation results demonstrate a good performance of the proposed parameter 𝜔 over several
other well-known DE algorithms.
. Introduction

There are some cases in engineering and optimization problems
hat cannot be solved using conventional analytic approaches because
ither the analytical solution is unavailable or very difficult to obtain,
r complex functions and numerous parameters of the problem intro-
uce a large number of solutions making it difficult to assess all of
he possible solutions. Evolutionary and swarm intelligence algorithms
ith improved versions for example symbiotic organisms search (SOS)

1], sooty tern optimization algorithm (STOA) [2], salp swarm algo-
ithm (SSA) [3], stochastic fractal search algorithm (SFS) [4], simulated
nnealing (SA) [5], circulatory system based optimization (CSBO) [6],
re some random search methods inspired by natural biological evo-
ution modeling. These algorithms benefit from superior features while
orking on possible solutions, which provide more close estimations of

he optimal solution. This paper proposes a modification to the basic
E algorithm and its improved variants. This optimizer, which was

irst introduced in [7], is a class of evolutionary algorithms and has
very simple structure from conception and implementation points

f view. In their next study [8], the authors of the paper compared
he performance of DE with several popular optimization methods.

∗ Corresponding author.
E-mail addresses: a.rahimnejad@gmail.com, rahimnea@mcmaster.ca (A. Rahimnejad).

The comparison proved the superiority of the DE algorithm to the
other optimization methods. From then on, this algorithm has been
the main topic of a large number of scientific articles in the literature
on evolutionary algorithms. Today, DE is known as a very effective
optimization method for continuous environments and is used in a wide
range of engineering problems.

In recent years, improved and modified versions and different com-
binations and applications of the DE algorithm have been presented.
Various mutation strategies with both exploitation and exploration
abilities have been used by scholars for local and global search purposes
[9–11]. A number of recently introduced mutation operators include
Gaussian mutation [12], Gaussian PBX-𝛼 [13], DE/rand-to-best/pbest
[13], and rotation-invariant mutation operator [14]. Mutation strate-
gies also use the data associated with the best and worst adjacent
members [15]. Two factors highly impact DE performance. The first
one is the strategy adopted for producing new offspring. This is car-
ried out using mutation and crossover operators. The second factor
is the employed mechanism for controlling the algorithm parameters
including crossover rate, scaling factor, and the number of the popu-
lation [16]. The optimization process is repeated until the termination
criterion of the algorithm is satisfied [17,18].
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In the following, the main topics of research on the DE algorithm
are presented.
(1) During the last decades, several competent mutation strategies
have been employed on DE. An improved mutation strategy called
‘‘DE/current-to-pbest’’ was introduced in [19] to improve the perfor-
mance of the traditional DE. In another study, the cultural algorithm
(CA) with diversity measure was utilized to improve the DE in terms
of optimization [19]. A successful-parent selection method was given
in [20], which adapts the parent selection during stagnation.
(2) In some studies, parameter control methods were provided for the
DE algorithm. In [20,21], the weight of the mutation (F ) and the
probability of crossover (CR) parameters experience evolution during
the population evolution. Composite DE (CoDE) [22], and self-adaptive
DE (SaDE) [23] are among the DE algorithms with a set of differ-
ent mutation operators. In SaDE, mutation operators and the related
control parameters are self-adapted over time using experience while
providing suitable solutions. However, in CoDE, new solutions are
obtained by merging three original mutation operators and with new
control parameter settings based on comparison with different strate-
gies. Additionally, an adaptive population tuning method is presented
in [24] to reallocate the computing resources more reasonably.
(3) Optimization of the conventional crossover strategy has also been
discussed in the literature, e.g. a multimodal method in DE [25].
Also, eigenvectors of the covariance matrix are used in [26] to make
the crossover rotationally invariant and so a better search ability is
achieved.
(4) Some researchers have presented several other DE modifications,
where more than one mutation operator is used to breed new solutions,
such as EPSDE [27,28], a multi-population-based DE (MDE) [29], etc.
To modify the performance of the DE, intelligent selection of mutation
vectors has deeply been investigated in some studies [30].

Ref. [30] suggests a multi-population DE with a balanced ensemble
of mutation strategies known as mDE-bES. Exploitation and explo-
ration must be utilized in the evolution strategy at the same time
to boost the robustness of the algorithm. Hence, single-mutation and
multi-mutation operator strategies with combined search skills were
introduced. The first type includes BDE [31], CCDE [32], ProDE [33],
BoRDE [34], TLBSaDE [35], and TDE [36]. And, the second type
includes PDE [37], DEPSO [38], a modified DE using a diversity
maintenance strategy [39], DE algorithms based on nonparametric
statistical tests [40], jDEsoo [41], and SPSRDEMMS [42]. Other novel
ideas have also been used in the DE algorithms besides the above-
mentioned studies. Ref. [43] suggested using the opposition-based DE
(ODE), where opposition-based learning, a novel approach in machine
intelligence, is employed to increase the convergence rate of DE. In [44]
the attraction–repulsion concept in electromagnetism was utilized to
modify the optimization power of the original DE with hybrid mutation.
Furthermore, in [31], explorative and exploitive mutation operators
are combined in a linear way to give a hybrid approach (BDE) which
makes a balance between these two operators. A new hybrid of DE and
particle swarm optimizer [45]. In CCDE (colonial competitive DE) [32],
various types of DE algorithms are enhanced using the concepts of
socio-political evolution. Neglecting half of the valuable data, when
determining the mutation vectors, is one of the deficiencies of the men-
tioned methods. In the ProDE method, individuals in the surrounding
area of the target individual are chosen to be involved in the mutation
operation [33]. The authors of [46] proposed an adaptive DE algorithm
with a Lagrange interpolation argument algorithm.

Also, a teaching-learning procedure was used by TLBSaDE, a new
version of SaDE, to produce mutant individuals [35]. A novel multi-
objective modified DE (MOMDE) was introduced in [39] using a new
diversity maintenance strategy. By using a SaDE-type learning scheme,
the researchers in [40] modified the EPSDE. A parallel DE algorithm
with a generalized opposition-based learning strategy and self-adapting
control parameters was presented in PDE [37]. A new self-adaptive

mutation for DE was proposed in [47] and a new multi-population
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DE via an ensemble of different mutation strategies was proposed
in [48]. In SPSRDEMMS [42], a single mutation strategy is selected
from DE/best/1 and DE/rand/1 to produce the mutant individual as
the population number is reduced through the iterations. An auto-
mated control parameter adaptation approach for CR and F has been
studied in [49], which increases the robustness. Hence, this method
can be employed instead of a method with fixed control parameters.
In addition, a selection rule was presented for population size (NP)
in [49]. A modified DE with a new role assignment technique was
investigated in [50]. Novel parameter control methods of DE are pro-
vided in [51,52]. Several selection methods were also given in [53] for
the best individual in DE/current-to-pbest/1, DE/rand-to-best/1, and
DE/best/1. The authors of [54] present a similar rank-based parent
selection scheme, and the authors of [54] proposed a new micro DE.

In this paper, a new mutation strategy, named self-competitive
mutation strategy, is proposed for DE algorithms in a way that the
movement is always towards the members with better fitness values;
i.e. the mutation equations are reformatted so that always the weaker
members are subtracted from the other one. This way it is ensured
that the algorithm would always tend to search the regions with a
higher chance of improving the solutions. This mutation strategy is then
applied to several basic and modern DE algorithms, which have been
widely used in recent years, without altering the other parameters and
structure of the selected algorithms. After that, the basic and advanced
versions of the proposed DE algorithms are applied to some standard
test functions, the results of which show that the proposed mutation
strategy enhance the performance of the algorithms in solving various
range of functions. Friedman rank test and Wilcoxon signed-rank test
are employed for assessing the performance of the proposed enhanced
variants of the DE algorithm [55,56].

The purpose of this comprehensive comparative study is to show the
effect of the proposed self-competitive mutation strategy on different
variants of basic and modern DE algorithms and also, the optimal
design of a proportional–integral–derivative (PID) controller for an
automatic voltage regulator (AVR) system is used to investigate the ef-
fectiveness of the proposed strategy in solving real-world optimization
problems. The optimal design of a PID controller for the AVR system
is very complex, nonlinear, and non-convex. Thus, the present study
combines the power of the best self-competitive DE (SCDE) algorithm
to propose a novel robust algorithm for the optimal design of a PID
controller for the AVR system.

Here are the main contributions of this paper:

1. Hybridizing basic and modern DE algorithms with the proposed
self-competitive mutation strategy developed novel, efficient,
and robust optimization algorithms named self-competitive DE
(SCDE) algorithms.

2. This work addresses the very complex, nonlinear, and non-
convex characteristics of real-world optimization problems by
using the standard shifted rotated multimodal and hybrid com-
position functions from the popular and very widely used CEC
2005. The proposed SCDE algorithms have been employed for
solving these standard real parameter test functions.

3. Two non-parametric statistical tests, i.e., Friedman rank test
and Wilcoxon signed-rank test, are utilized for investigating the
performance of different DE algorithms augmented with the
proposed self-competitive strategy.

4. An optimal scheduling of a PID controller for the AVR system is
determined by the best SCDE algorithm in comparison with its
original version.

The rest of the paper is organized as follows. In Section 2, a brief
review of the basic and advanced versions of the DE algorithm is
presented. The proposed self-competitive versions are introduced and
discussed in Section 3. In Section 4, a comparative study of the results
obtained by the basic and advanced versions of DE and their self-

competitive counterparts is presented. In Section 5, a comparative
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application of the proposed best SCDE algorithm in designing an opti-
mal PID controller for the AVR system is presented. Finally, the paper
is concluded.

2. Differential evolution and its variants

Metaheuristic algorithms are generally known as general-purpose
optimization algorithms that are able to find near-optimal solutions
for mathematical and real-world problems, while classical and analytic
methods are not able to find the optimal solution at a reasonable
computational time. One of these evolutionary algorithms that have
been broadly employed in various fields is the differential evolution
algorithm, which was first introduced by [7,8]. The differential evo-
lution algorithm deals with a population of individuals that denote
chromosomes in the genetic space and represent vector values as solu-
tions in the problem space. This algorithm is among the algorithms that
work with real variables, which is considered one of the advantages of
this algorithm. DE was proposed to solve the main demerits of genetic
algorithms (GAs), i.e. the absence of local search. The main distinction
between GA and DE is in their mutation, crossover, and selection
operators. DE uses a differential operator to generate new solutions,
which have the ability to exchange information among members of the
population. One of the advantages of DE is that it includes a memory
that keeps the info of suitable solutions in the current individuals.
Furthermore, in DE, all individuals have the same likelihood of being
elected as one of the parents. The DE algorithm has high speed, simplic-
ity, and robustness. It has three parameters: NP which is the population
size, F which shows the weight of the mutation and CR which is the
probability of crossover. The parameter F is usually selected between
0 to 2 and the parameter CR is selected between 0 and 1.

The components and steps of DE, in general, include:

1. Establishment of an initial population.
2. Mutation operator
3. Crossover operator
4. Selection operator
5. Termination criterion of the algorithm.

The following describes each of these steps for DE algorithms.

Step 1: Establishment of the initial population
Similar to other evolutionary algorithms the starting point of the

algorithm (Iter = 1) is the establishment of an initial population.
In this algorithm, the initial population is created randomly with
a uniform distribution with a size of NP in the range of 𝑋min =
[

𝑥𝑚𝑖𝑛,1, 𝑥𝑚𝑖𝑛,2,… , 𝑥𝑚𝑖𝑛,𝐷
]

and 𝑋max =
[

𝑥𝑚𝑎𝑥,1, 𝑥𝑚𝑎𝑥,2,… , 𝑥𝑚𝑎𝑥,𝐷
]

consid-
ering the dimension D of the problem. The 𝑗th decision variable of 𝑖th
chromosome (solution) can be initialized as:

𝑥𝑖1,𝑗 = 𝑟𝑎𝑛𝑑𝑗 (0, 1) ×
(

𝑥𝑗,max − 𝑥𝑗,min
)

+ 𝑥𝑗,min (1)

In the above relation:
𝑟𝑎𝑛𝑑𝑗 (0, 1) is a function that generates random numbers between 0 and
1 for the 𝑗th (𝑗 = 1, 2, 3, . . . , D) dimension of the variable.

tep 2: Mutation Operator
In this step, for each target vector, e.g. the 𝑖th member 𝑋𝑖

𝐼𝑡𝑒𝑟
𝑖 = 1, 2, .., NP), several members are randomly selected, e.g. 𝑋𝑟1

𝐼𝑡𝑒𝑟,𝑟2
𝐼𝑡𝑒𝑟, 𝑋𝑟3

𝐼𝑡𝑒𝑟, 𝑋𝑟4
𝐼𝑡𝑒𝑟, and 𝑋𝑟5

𝐼𝑡𝑒𝑟, and the mutation vector (𝑉 𝑖
𝐼𝑡𝑒𝑟) is gen-

rated based on the corresponding mutation equation. The following
elationships are some of the most used equations for mutation in
E [32]:

‘DE/rand/1’’:
𝑖
𝐼𝑡𝑒𝑟 = 𝑋𝑟1

𝐼𝑡𝑒𝑟 + 𝐹
(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

(2)

‘‘DE/best/1’’:
𝑖 ( 𝑟1 𝑟2 )
𝑉𝐼𝑡𝑒𝑟 = 𝑋𝑏𝑒𝑠𝑡 + 𝐹 𝑋𝐼𝑡𝑒𝑟 −𝑋𝐼𝑡𝑒𝑟 (3) g

3

‘‘DE/current-to-rand/1’’:

𝑉 𝑖
𝐼𝑡𝑒𝑟 = 𝑋𝑖

𝐼𝑡𝑒𝑟 + 𝐹
(

𝑋𝑏𝑒𝑠𝑡 −𝑋𝑖
𝐼𝑡𝑒𝑟

)

+ 𝐹
(

𝑋𝑟1
𝐼𝑡𝑒𝑟 −𝑋𝑟2

𝐼𝑡𝑒𝑟
)

(4)

‘DE/rand/2’’:
𝑖
𝐼𝑡𝑒𝑟 = 𝑋𝑟1

𝐼𝑡𝑒𝑟 + 𝐹
(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

+ 𝐹
(

𝑋𝑟4
𝐼𝑡𝑒𝑟 −𝑋𝑟5

𝐼𝑡𝑒𝑟
)

(5)

‘DE/rand-to-best/1’’:
𝑖
𝐼𝑡𝑒𝑟 = 𝑋𝑟1

𝐼𝑡𝑒𝑟 + 𝐹
(

𝑋𝑏𝑒𝑠𝑡 −𝑋𝑟1
𝐼𝑡𝑒𝑟

)

+ 𝐹
(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

(6)

‘DE/current-to-rand/1’’:
𝑖
𝐼𝑡𝑒𝑟 = 𝑋𝑖

𝐼𝑡𝑒𝑟 + 𝑟𝑎𝑛𝑑(0, 1) ∗
(

𝑋𝑖
𝐼𝑡𝑒𝑟 −𝑋𝑟1

𝐼𝑡𝑒𝑟
)

𝐹 ∗ 𝑟𝑎𝑛𝑑(0, 1) ∗
(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

(7)

here
(

𝑋𝑟1
𝐼𝑡𝑒𝑟 −𝑋𝑟2

𝐼𝑡𝑒𝑟
)

,
(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

and
(

𝑋𝑟4
𝐼𝑡𝑒𝑟 −𝑋𝑟5

𝐼𝑡𝑒𝑟
)

are different
ectors that mutate the base vector. 𝑋𝑏𝑒𝑠𝑡 is the best individual vector
ith the best fitness value in the current population at iteration Iter.

tep 3: Crossover operator
In this step, a crossover is built between the mutation and target

ectors (𝑉 𝑖
𝐼𝑡𝑒𝑟 and 𝑋𝑖

𝐼𝑡𝑒𝑟, respectively), and the trial vector (𝑈 𝑖
𝐼𝑡𝑒𝑟) is

roduced based on Eq. (8) such that each component of the mutation
ector is transferred with a probability of CR to the trial vector, other-
ise the corresponding in the original vector component is transferred

o the trial vector.

𝑖
𝐼𝑡𝑒𝑟,𝑗 =

⎧

⎪

⎨

⎪

⎩

𝑣𝑖𝐼𝑡𝑒𝑟,𝑗 , 𝑖𝑓
(

𝑟𝑎𝑛𝑑𝑖,𝑗 (0, 1) ≤ 𝐶𝑅
)

𝑥𝑖𝐼𝑡𝑒𝑟,𝑗 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(8)

tep 4: Selection
n this step, the values of the objective functions for the trial vectors are
valuated. In the minimization problem, if the trial vector has a value
ower than the target vector, it is selected as one of the members of
he next generation (𝑋𝑖

𝐼𝑡𝑒𝑟+1); otherwise, the target vector (𝑋𝑖
𝐼𝑡𝑒𝑟) will

e transferred to the population in the next generation.

𝑖
𝐼𝑡𝑒𝑟+1 =

{

𝑈 𝑖
𝐼𝑡𝑒𝑟, 𝑖𝑓

(

𝑓 (𝑈 𝑖
𝐼𝑡𝑒𝑟) ≤ 𝑓 (𝑋𝑖

𝐼𝑡𝑒𝑟)
)

𝑋𝑖
𝐼𝑡𝑒𝑟, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(9)

his procedure continues until NP new members are generated for the
ext generation. Then the procedure is iterated to meet the termination
riterion. The pseudo-code of this algorithm with DE/rand/1 mutation
trategy is shown in Algorithm 1.

In the following, four variants of DE are introduced:

.1. jDE

A novel adaptive DE, known as jDE, was introduced in [21] by
mitating the classic DE/rand/1 method. The new method is able to
djust the population size and tune the control parameters 𝐹𝑖 and 𝐶𝑅𝑖
f the individuals in the optimization process. The values of these two
uantities for individuals are assumed 0.5 and 0.9, respectively, in the
nitialization step.

New values of these two parameters are reproduced based on uni-
orm distributions in the ranges of [0.1, 1] and [0,1], respectively,
sing the jDE algorithm. Better values lead to individuals with a higher
hance of survival.

.2. EPSDE

EPSDE [28] performs two mutation strategies, namely DE/rand/1
nd DE/current-to-pbest/1, at the same time, where the probability
f generating offspring is adapted based on their success ratios in the
revious fifty generations. The adaptation process is able to develop
he most desired mutation strategy at the consequent learning steps. In
his process, the participant heuristics (such as different versions of the
ifferential evolution algorithm, simplex methods, and evolution strate-
ies) are taken into account at the same time, and the probabilities of

enerating offspring by these heuristics are matched dynamically.
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𝜔

2.3. SaDE

In SaDE [23], a normal distribution is used to produce mutation fac-
tors separately at each generation. The proposed approach has proved a
great potential at providing both local and global search by presenting
suitable mutation vectors during the evolution step. The probabilities
of the crossover operation are also randomly produced using a normal
distribution. In contrast to 𝐹𝑖, the values of 𝐶𝑅𝑖 are only changed once
er six consecutive generations. A local search is used for a number of
uitable individuals after 200 generations to accelerate the convergence
peed of the SaDE.

.4. JADE

JADE [19] method is employed to enhance the optimization per-
ormance. It carries out the DE/current-to-pbest mutation strategy and
pdates control parameters adaptively to the desired values. According
o the simulations, JADE provides more suitable performance compared
o conventional or adaptive DE algorithms, canonical particle swarm
ptimization, and other evolutionary algorithms from the convergence
peed viewpoint.

. The proposed strategy, self-competitive differential evolution
SCDE) algorithms

This paper proposes a simple yet effective strategy called the self-
ompetitive strategy which modifies the mutation operator of different
4

ariants of the DE algorithm. In order to implement the proposed
trategy to any variant of DE, the following modification is made to
ts mutation operator:

If there is a subtraction of two randomly selected members to form
he difference vector, it is multiplied by a control parameter. The
arameter is selected so that it is guaranteed that always the weaker
ember is subtracted from the better one. Although the method is

traightforward, based on the subsequent results and discussions, it is
seful for some of the most widely used DE models.

For instance, in the DE/rand/1 model algorithm, which includes the
ubtraction of two randomly selected members to form the difference
ector

(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

, the implementation of the proposed strategy
tarts by defining a control parameter 𝜔, given in Eq. (10), which
an be one of three values of 1, −1, or 0. This parameter is selected
uch that multiplying it by

(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

and thus obtaining 𝜔23
𝐼𝑡𝑒𝑟 ×

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

leads to the subtraction of the member with a higher
ost function from the other member.

23
𝐼𝑡𝑒𝑟 =

𝑓
(

𝑋𝑟3
𝐼𝑡𝑒𝑟

)

− 𝑓
(

𝑋𝑟2
𝐼𝑡𝑒𝑟

)

|

|

|

𝑓
(

𝑋𝑟3
𝐼𝑡𝑒𝑟

)

− 𝑓
(

𝑋𝑟2
𝐼𝑡𝑒𝑟

)

|

|

|

+ 𝜀

=

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1 𝑖𝑓 𝑓
(

𝑋𝑟2
𝐼𝑡𝑒𝑟

)

< 𝑓
(

𝑋𝑟3
𝐼𝑡𝑒𝑟

)

, i.e. 𝑖𝑓 𝑋𝑟2
𝐼𝑡𝑒𝑟 is better than 𝑋𝑟3

𝐼𝑡𝑒𝑟

−1 𝑖𝑓 𝑓
(

𝑋𝑟2
𝐼𝑡𝑒𝑟

)

> 𝑓
(

𝑋𝑟3
𝐼𝑡𝑒𝑟

)

, i.e. 𝑖𝑓 𝑋𝑟3
𝐼𝑡𝑒𝑟 is better than 𝑋𝑟2

𝐼𝑡𝑒𝑟

0 𝑖𝑓 𝑓
(

𝑋𝑟2
𝐼𝑡𝑒𝑟

)

= 𝑓
(

𝑋𝑟3
𝐼𝑡𝑒𝑟

)

(10)
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Fig. 1. The convergence characteristics of these five algorithms for Unimodal 4 and Multimodal 10 test functions.
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Table 1
A typical example of the self-competitive strategy.
𝜔23
𝐼𝑡𝑒𝑟 𝜔45

𝐼𝑡𝑒𝑟 𝑉 𝑖
𝐼𝑡𝑒𝑟 = 𝑋𝑟1

𝐼𝑡𝑒𝑟 + 𝜔23
𝐼𝑡𝑒𝑟 × 𝐹 ×

(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟

)

+ 𝜔45
𝐼𝑡𝑒𝑟 × 𝐹 ×

(

𝑋𝑟4
𝐼𝑡𝑒𝑟 −𝑋𝑟5

𝐼𝑡𝑒𝑟

)

1 1 𝑋𝑟1
𝐼𝑡𝑒𝑟 + 𝐹 ×

(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟

)

+ 𝐹 ×
(

𝑋𝑟4
𝐼𝑡𝑒𝑟 −𝑋𝑟5

𝐼𝑡𝑒𝑟

)

1 −1 𝑋𝑟1
𝐼𝑡𝑒𝑟 + 𝐹 ×

(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟

)

+ 𝐹 ×
(

𝑋𝑟5
𝐼𝑡𝑒𝑟 −𝑋𝑟4

𝐼𝑡𝑒𝑟

)

1 0 𝑋𝑟1
𝐼𝑡𝑒𝑟 + 𝐹 ×

(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟

)

−1 1 𝑋𝑟1
𝐼𝑡𝑒𝑟 + 𝐹 ×

(

𝑋𝑟3
𝐼𝑡𝑒𝑟 −𝑋𝑟2

𝐼𝑡𝑒𝑟

)

+ 𝐹 ×
(

𝑋𝑟4
𝐼𝑡𝑒𝑟 −𝑋𝑟5

𝐼𝑡𝑒𝑟

)

−1 −1 𝑋𝑟1
𝐼𝑡𝑒𝑟 + 𝐹 ×

(

𝑋𝑟3
𝐼𝑡𝑒𝑟 −𝑋𝑟2

𝐼𝑡𝑒𝑟

)

+ 𝐹 ×
(

𝑋𝑟5
𝐼𝑡𝑒𝑟 −𝑋𝑟4

𝐼𝑡𝑒𝑟

)

−1 0 𝑋𝑟1
𝐼𝑡𝑒𝑟 + 𝐹 ×

(

𝑋𝑟3
𝐼𝑡𝑒𝑟 −𝑋𝑟2

𝐼𝑡𝑒𝑟

)

0 1 𝑋𝑟1
𝐼𝑡𝑒𝑟 + 𝐹 ×

(

𝑋𝑟4
𝐼𝑡𝑒𝑟 −𝑋𝑟5

𝐼𝑡𝑒𝑟

)

0 −1 𝑋𝑟1
𝐼𝑡𝑒𝑟 + 𝐹 ×

(

𝑋𝑟5
𝐼𝑡𝑒𝑟 −𝑋𝑟4

𝐼𝑡𝑒𝑟

)

0 0 𝑋𝑟1
𝐼𝑡𝑒𝑟

In the above equation, the value of 𝜀 is a small value that is used
to avoid a zero denominator. In order to thoroughly describe the
proposed strategy, the cases that can occur in improving the DE/rand/2
algorithm and forming its self-competitive version (SCDE/rand/2), are
presented in Table 1. In this table 𝜔23

𝐼𝑡𝑒𝑟 and 𝜔45
𝐼𝑡𝑒𝑟 are the parameters

which are multiplied by the difference vectors
(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

and
𝑋𝑟4

𝐼𝑡𝑒𝑟 −𝑋𝑟5
𝐼𝑡𝑒𝑟

)

, respectively.
Similarly, the proposed self-competitive strategy can be used for

mproving other variants of DE algorithms, which are formulated in
he next section.

. Experimental results

To show the impact of the competitive control parameter 𝜔 on
arious DE algorithms, 25 widely used real parameter test functions of
imension 30 were employed from CEC 2005; whose data and details
re provided in [57]. The number of function evaluations is considered
00,000 for all algorithms, the same as that of [57]. These test functions
nclude the following: Unimodal Functions (F1 to F5), Basic Multimodal
unctions (F6 to F12), Expanded Multimodal Functions for the (F13 and
14), and Hybrid Composition Functions (F15 to F25).

In Sections 4.1 to 4.4, the impact of the competitive control param-
ter 𝜔 on different DE algorithms is demonstrated. In each section, the
ilcoxon signed-rank test with a significance level of 0.05 is used for

airwise comparison of one of the proposed self-competitive DE algo-
ithms with other relevant algorithms. Then in Section 4.5, the results
f the Friedman test are presented, through which the best-proposed
ariant of DE in terms of average ranking is identified.

.1. SCDE/rand/1 and SCjDE

In this part, the performance of the proposed method on the
E/rand/1 algorithm and the improved DE algorithm known as jDE,
hich is an adaptive and modified version of the DE/rand/1 algorithm,

s analyzed. Codes of the jDE algorithm are extracted from (http://
5

ces.essex.ac.uk/staff/qzhang/) with the same control parameters. The
elf-competitive versions of DE and jDE are called SCDE and SCjDE,
espectively. The only change made to the DE and jDE to achieve the
CDE and SCjDE algorithms is using the control parameter coefficient
23
𝐼𝑡𝑒𝑟, and their other conditions are identical to those of their original
ounterparts. The values of 𝐹 = 0.9 and CR = 0.9 are set for algorithms

DE/rand/1 and SCDE/rand/1. Also, NP = 60 is chosen for these two
algorithms.

- Modified SCjDE (MSCjDE)

The proposed SCjDE algorithm can be further improved by us-
ing (11) as a mutation equation. In (11), the mutation vector 𝑋𝑟1

𝐼𝑡𝑒𝑟
is compared with the current vector 𝑋𝑖

𝐼𝑡𝑒𝑟, and the better one is
used in the mutation process. The modified SCjDE algorithm is called
MSCjDE.

𝑉 𝑖
𝐼𝑡𝑒𝑟 =

{

𝑋𝑖
𝐼𝑡𝑒𝑟 + 𝜔23

𝐼𝑡𝑒𝑟 × 𝐹 ×
(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

𝑖𝑓 𝑓
(

𝑋𝑖
𝐼𝑡𝑒𝑟

)

< 𝑓
(

𝑋𝑟1
𝐼𝑡𝑒𝑟

)

𝑋𝑟1
𝐼𝑡𝑒𝑟 + 𝜔23

𝐼𝑡𝑒𝑟 × 𝐹 ×
(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

𝑖𝑓 𝑓
(

𝑋𝑖
𝐼𝑡𝑒𝑟

)

≥ 𝑓
(

𝑋𝑟1
𝐼𝑡𝑒𝑟

)

(11)

The results of the algorithms given in this section are listed in Table 2.
In this table and other Tables, subscripts = ∕−∕+ show the comparison
with the original algorithm in the same table: ‘=’ means the equal
result, ‘−’ means the worse result, and ‘+’ means the better result
than the original algorithm. Furthermore, each algorithm was run 25
times independently for optimizing each function and the average and
standard deviation values of the optimal objective function values of
these runs were reported in the tables as Mean and Std. Dev. indices,
respectively. Moreover, In order to compare the performance of all
algorithms in optimizing each test function, the Rank index is used,
which shows the rank of each algorithm in the list of sorted Mean
indices for each test function. Additionally, Nb shows the number
of times the considered algorithm obtains the best result among all
algorithms and Mr is the average of the Rank indices of each algorithm
in optimizing all test functions. As is seen from Table 2, algorithms
with self-competitive mutations outperform their corresponding orig-
inal counterparts. The most potent algorithm among the given five
algorithms is the MSCjDE algorithm. It can be concluded from this table
that the proposed control parameter was effective on DE/rand/1 and
jDE algorithms. Moreover, the convergence characteristics of these five
algorithms in one example run for the unimodal test function F4 and
the multimodal test function F10 are illustrated in Fig. 1.

The results of the Wilcoxon signed-rank test for comparing MSCjDE
with some versions of DE/rand/1 are presented in Table 3. In this
article, SPR and SNR are assumed as the sum of the positive and
negative ranks, respectively, MPR and MNR are considered as the mean
of the positive and negative ranks, respectively, F(i) < F(j) shows the
number of times the first algorithm outperforms the second one, and
F(j) < F(i) demonstrate the opposite. It should be noted that, in the
Wilcoxon test, positive ranks are associated with the cases in which

http://dces.essex.ac.uk/staff/qzhang/
http://dces.essex.ac.uk/staff/qzhang/
http://dces.essex.ac.uk/staff/qzhang/
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Table 2
The results of DE/rand/1 and SCDE/rand/1 (𝐹 = 0.9, CR = 0.9) and jDE, SCjDE, and MSCjDE for the 30-D real-parameter functions.

Function DE/rand/1 SCDE/rand/1 jDE SCjDE MSCjDE
Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev
Rank Rank Rank Rank Rank

F1 7.34E−01 ± 4.61E−01 7 1.42E−01 ± 1.07E−01 +, 6 0.00E+00 ± 0.00E+00 1 0.00E+00 ± 0.00E+00 =, 1 0.00E+00 ± 0.00E+00 =, 1
F2 2.21E+03 ± 1.13E+03 14 1.28E+03 ± 7.39E+02 +, 12 8.85E−07 ± 1.15E−06 10 2.60E−07 ± 5.24E−07 +, 9 1.06E−09 ± 3.02E−09 +, 7
F3 1.94E+07 ± 8.54E+06 13 1.10E+07 ± 3.94E+06 +, 12 1.90E+05 ± 1.00E+05 7 1.86E+05 ± 1.24E+05 +, 6 7.37E+04 ± 4.46E+04 +, 4
F4 6.89E+03 ± 3.19E+03 16 5.95E+03 ± 3.28E+03 +, 15 3.42E−02 ± 3.19E−01 8 1.54E−02 ± 3.38E−02 +, 7 8.74E−03 ± 1.61E−02 +, 5
F5 2.33E+03 ± 5.64E+02 16 1.61E+03 ± 6.77E+02 +, 14 4.00E+02 ± 3.35E+02 9 2.48E+02 ± 3.57E+02 +, 8 1.41E+01 ± 6.35E+01 +, 3
F6 6.67E+02 ± 5.42E+02 15 2.68E+02 ± 2.07E+02 +, 13 2.25E+01 ± 2.45E+01 11 9.57E+00 ± 1.69E+01 +, 8 6.54E−01 ± 1.13E+00 +, 2
F7 1.13E+00 ± 1.07E−01 15 9.89E−01 ± 5.00E−02 +, 14 1.03E−02 ± 9.58E−03 6 6.11E−03 ± 6.86E−03 +, 3 5.72E−03 ± 6.19E−03 +, 2
F8 2.09E+01 ± 5.48E−02 1 2.09E+01 ± 3.82E−02 =, 1 2.09E+01 ± 8.01E−02 1 2.09E+01 ± 4.32E−02 =, 1 2.09E+01 ± 4.74E−02 =, 1
F9 8.80E+01 ± 2.16E+01 11 8.47E+01 ± 3.47E+01 +, 10 0.00E+00 ± 0.00E+00 1 0.00E+00 ± 0.00E+00 =, 1 0.00E+00 ± 0.00E+00 =, 1
F10 2.35E+02 ± 1.65E+01 16 2.35E+02 ± 1.59E+01 =, 16 5.75E+01 ± 7.61E+00 7 5.39E+01 ± 1.01E+01 +, 6 3.85E+01 ± 6.22E+00 +, 5
F11 3.90E+01 ± 1.49E+01 12 3.90E+01 ± 1.27E+00 =, 12 2.75E+01 ± 1.83E+00 5 2.75E+01 ± 1.36E+00 =, 5 2.46E+01 ± 1.35E+00 +, 3
F12 4.77E+04 ± 4.22E+04 14 3.16E+04 ± 3.32E+04 +, 9 1.63E+04 ± 87.76E+03 7 1.03E+04 ± 8.26E+03 +, 4 9.14E+03 ± 3.77E+03 +, 3
F13 1.69E+01 ± 2.45E+00 11 1.61E+01 ± 2.10E+00 +, 9 1.71E+00 ± 9.40E−02 2 1.71E+00 ± 1.44E−01 =, 2 1.71E+00 ± 1.34E−01 =, 2
F14 1.34E+01 ± 1.81E−01 7 1.34E+01 ± 1.30E−01 =, 7 1.30E+01 ± 2.10E−01 5 1.30E+01 ± 2.19E−01 =, 5 1.27E+01 ± 2.56E−01 +, 3
F15 4.03E+02 ± 6.47E+01 16 3.68E+02 ± 9.34E+01 +, 12 3.75E+02 ± 9.59E+01 13 3.48E+02 ± 9.538E+01 +, 1 3.68E+02 ± 8.53E+01 +, 2
F16 2.77E+02 ± 3.93E+01 15 2.69E+02 ± 2.66E+01 +, 14 7.94E+01 ± 8.75E+01 2 7.94E+01 ± 2.10E+01 =, 2 7.42E+01 ± 3.37E+01 +, 1
F17 2.97E+02 ± 2.08E+01 18 1.88E+02 ± 2.39E+01 +, 9 1.35E+02 ± 2.33E+01 3 1.67E+02 ± 8.57E+01 −, 7 1.29E+02 ± 9.75E+01 +, 1
F18 9.07E+02 ± 2.81E−01 7 9.07E+02 ± 5.85E−01 =, 7 9.04E+02 ± 1.13E+01 3 9.04E+02 ± 8.40E−01 =, 3 9.04E+02 ± 3.09E−01 =, 3
F19 9.07E+02 ± 2.45E−01 6 9.07E+02 ± 5.58E−01 =, 6 9.04E+02 ± 1.20E+00 4 9.04E+02 ± 9.18E−01 =, 4 9.04E+02 ± 3.06E−01 =, 4
F20 9.07E+02 ± 2.95E−01 5 9.07E+02 ± 4.41E−01 =, 5 9.04E+02 ± 1.15E+00 3 9.04E+02 ± 1.17E+00 =, 3 9.04E+02 ± 1.02E+00 =, 3
F21 5.00E+02 ± 6.42E−02 1 5.00E+02 ± 3.17E−02 =, 1 5.00E+02 ± 8.84E−13 1 5.00E+02 ± 1.11E−13 =, 1 5.00E+02 ± 1.14E−13 =, 1
F22 9.18E+02 ± 1.22E+01 11 9.10E+02 ± 1.14E+01 +, 10 8.75E+02 ± 1.93E+01 6 8.75E+02 ± 1.87E+01 =, 6 8.65E+02 ± 1.95E+01 +, 4
F23 5.34E+02 ± 6.60E−04 1 5.34E+02 ± 7.50E−04 =, 1 5.34E+02 ± 2.90E−04 1 5.34E+02 ± 1.00E−04 =, 1 5.34E+02 ± 1.38E−04 =, 1
F24 2.00E+02 ± 1.56E−01 1 2.00E+02 ± 3.63E−02 =, 1 2.00E+02 ± 2.90E−14 1 2.00E+02 ± 2.90E−14 =, 1 2.00E+02 ± 1.16E−12 =, 1
F25 2.00E+02 ± 2.19E−01 1 2.00E+02 ± 5.31E−12 =, 1 2.00E+02 ± 2.90E−14 1 2.00E+02 ± 1.86E−12 =, 1 2.00E+02 ± 1.48E−12 =, 1
+∕ − ∕ = – 14/0/11 – 9/1/15 14/0/11
Nb/Mr 5/13.889 5/12.056 7/6.556 8/5.333 9/3.556
Table 3
Wilcoxon’s test results between MSCjDE and some versions of DE/rand/1.

i j MPR MNR SPR SNR F(i) < F(j) F(j) < F(i) 𝑝-value 0.95 Confidence interval

MSCjDE

DE/rand/1 10.500000 NaN 210 0 20 0 9.515546e−05 −3.446496e+03 −34.999996
SCDE/rand/1 10.000000 NaN 190 0 19 0 1.421330e−04 −2.997496e+03 −29.850079
jDE 7.500000 NaN 105 0 14 0 1.097051e−03 −3.583000e+03 −3.002327
SCjDE 7.307692 10.000000 95 10 13 1 8.373849e−03 −5.826000e+02 −1.450004
t
r
i

w
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w
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the first algorithm surpasses the second one. It is obvious from Table 3
that all of the p-values are lower than the significance level of 0.05
and all of the SPR values are higher than SNR values. Therefore, it is
concluded that MSCjDE is significantly superior to other tested variants
of DE/rand/1.

4.2. SCDE/current-to-pbest/1 and SCJADE

In this section, the effect of the proposed strategy on the DE/current-
to-pbest/1 algorithm and the improved DE algorithm known as JADE
[19], which is an adaptive and modified version of the DE/current-
to-pbest/1 algorithm, is analyzed. Codes of the JADE algorithm are
extracted from (http://dces.essex.ac.uk/staff/qzhang/) with the same
control parameters. The self-competitive versions of DE/current-to-
pbest/1 and JADE are called SCDE/current-to-pbest/1 and SCJADE,
respectively. The only change made on the improved versions is using
the control parameter coefficient 𝜔12

𝐼𝑡𝑒𝑟, and their other conditions are
identical to those of their original counterparts. The values of 𝐹 =
0.5, CR = 0.5, and NP = 60 are chosen for DE/current-to-pbest/1
and SCDE/current-to-pbest/1 algorithms. The mutation equation for
SCDE/current-to-pbest/1 and SCJADE algorithms is given in Eq. (12).

𝑣𝑖𝑗,𝐼𝑡𝑒𝑟 = 𝑥𝑖𝑗,𝐼𝑡𝑒𝑟 + 𝐹
(

𝑥𝑏𝑒𝑠𝑡,𝑗 − 𝑥𝑖𝑗,𝐼𝑡𝑒𝑟
)

+ 𝜔12
𝐼𝑡𝑒𝑟 × 𝐹

(

𝑥𝑟1𝑗,𝐼𝑡𝑒𝑟 − 𝑥𝑟2𝑗,𝐼𝑡𝑒𝑟
)

(12)

he results of the algorithms given in this section are listed in Ta-
le 4. One can easily see from Table 4 that SCDE/current-to-pbest/1
utperforms its original algorithm for 16 functions and loses at only
wo functions. Also, the self-competitive strategy was able to improve
he performance of the JADE algorithm and SCJADE algorithms have a

eaker performance than JADE for just one test function. In addition,

6

he convergence characteristics of these five algorithms in one example
un for Unimodal test function F4 and Multimodal test function F10 are
llustrated in Fig. 2.

The results of the Wilcoxon signed-rank test for comparing SCJADE
ith some versions of DE/current-to-pbest/1 are presented in Table 5.

t is seen from Table 5 that the p-values for comparing SCJADE with
E/current-to-pbest/1 and SCDE/current-to-pbest/1 are lower than the

ignificance level and their SPR values are higher than SNR values,
hich shows the significance and superiority of SCJADE over these

wo algorithms. When comparing SCJADE with JADE, the 𝑝-value is
higher than 0.05. Nevertheless, since the SPR value is greater than the
SNR value, it is concluded that SCJADE outperforms JADE, but not
significantly.

4.3. SCDE/best/1, SCDE/current-to-rand/1 and SCDE/rand/2

In this section, the performance of the proposed improvement on
the original DE, DE/best/1, DE/current-to-rand/1, and DE/rand/2 al-
gorithms is tested. The values of F and CR for different algorithms are
as follows: 𝐹 = 0.7 and CR = 0.9 for DE/best/1 and SCDE/best/1
algorithms, 𝐹 = 0.8 and CR = 0.2 for DE/current-to-rand/1 and
SCDE/current-to-rand/1 algorithms, and 𝐹 = 0.45 and CR = 0.7 for
DE/rand/2 and SCDE/rand/2 algorithms. Furthermore, NP = 60 is
chosen for all algorithms.

Based on the investigations, SCDE/current-to-rand/1 works better
without considering the parameter 𝜔𝑖1

𝐼𝑡𝑒𝑟, as in (14).
‘‘SCDE/best/1’’:

𝑖 12 ( 𝑟1 𝑟2 )
𝑉𝐼𝑡𝑒𝑟 = 𝑋𝑏𝑒𝑠𝑡 + 𝜔𝐼𝑡𝑒𝑟 × 𝐹 𝑋𝐼𝑡𝑒𝑟 −𝑋𝐼𝑡𝑒𝑟 (13)

http://dces.essex.ac.uk/staff/qzhang/
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Fig. 2. The convergence characteristics of the algorithms for Unimodal test function F4 and Multimodal test function F10.
Table 4
The results of DE/current-to-pbest/1, SCDE/current-to-pbest/1, and JADE variants (𝐹 = 0.5, CR = 0.5) for the 30-D real-parameter functions.

Function DE/current-to-pbest/1 Mean ± Std
Dev Rank

SCDE/current-to-pbest/1 Mean ± Std
Dev Rank

JADE Mean ± Std Dev Rank SCJADE Mean ± Std Dev Rank

F1 2.38E+00 ± 4.76E+00 8 3.70E−22 ± 1.84E−21 +, 3 0.00E+00 ± 0.00E+00 1 0.00E+00 ± 0.00E+00 =, 1
F2 1.83E+02 ± 1.80E+02 11 2.29E−07 ± 9.24E−07 +, 8 1.00E−28 ± 1.05E−28 1 1.00E−28 ± 1.43E−28 =, 1
F3 1.45E+06 ± 6.97E+05 9 2.10E+06 ± 8.64E+05 −, 11 5.62E+03 ± 3.62E+03 1 5.62E+03 ± 4.20E+03 =, 1
F4 7.72E+00 ± 1.18E+01 11 5.61E−10 ± 2.25E−09 +, 3 1.03E−15 ± 3.41E−15 2 4.80E−18 ± 1.61E−17 +, 1
F5 2.19E+03 ± 4.77E+02 15 1.07E+03 ± 5.85E+02 +, 10 6.60E−08 ± 2.27E−07 2 8.63E−11 ± 2.22E−10 +, 1
F6 3.10E+05 ± 6.57E+05 17 5.32E+02 ± 9.22E+02 +, 14 1.03E+01 ± 2.91E+01 9 1.03E+01 ± 4.20E+01 =, 9
F7 1.79E+01 ± 1.21E+01 17 3.82E+00 ± 2.54E+00 +, 16 6.99E−03 ± 7.57E−03 2 1.80E−03 ± 3.69E−03 +, 1
F8 2.09E+01 ± 8.41E−02 1 2.09E+01 ± 3.00E−02 =, 1 2.09E+01 ± 1.75E−01 1 2.09E+01 ± 3.75E−02 =, 1
F9 1.96E+01 ± 1.10E+01 2 1.96E+01 ± 1.23E+01 =, 2 0.00E+00 ± 0.00E+00 1 0.00E+00 ± 0.00E+00 =, 1
F10 1.61E+02 ± 1.52E+01 11 1.55E+02 ± 1.16E+01 +, 10 2.47E+01 ± 5.78E+00 3 2.35E+01 ± 2.96E+00 +, 1
F11 3.60E+01 ± 1.91E+00 11 3.46E+01 ± 3.00E+00 +, 8 2.52E+01 ± 1.48E+00 4 2.52E+01 ± 1.55E+00 =, 4
F12 1.62E+04 ± 1.08E+04 6 1.57E+04 ± 1.37E+04 +, 5 5.28E+03 ± 3.90E+03 2 5.20E+03 ± 6.08E+03 +, 1
F13 9.44E+00 ± 8.80E−01 8 9.44E+00 ± 9.26E−01 =, 8 1.45E+00 ± 1.32E−01 1 1.45E+00 ± 1.17E−01 =, 1
F14 1.29E+01 ± 2.11E−01 4 1.29E+01 ± 2.72E−01 =, 4 1.23E+01 ± 2.69E−01 2 1.23E+01 ± 2.37E−01 =, 2
F15 3.55E+02 ± 1.17E+02 10 3.85E+02 ± 1.09E+02 −, 14 3.44E+02 ± 1.12E+02 7 3.44E+02 ± 9.61E+02 =, 7
F16 3.03E+02 ± 1.28E+02 17 2.44E+02 ± 1.08E+02 +, 11 8.96E+01 ± 9.92E+01 3 1.30E+02 ± 1.52E+02 −, 5
F17 2.82E+02 ± 1.04E+02 16 2.71E+02 ± 1.03E+02 +, 15 1.46E+02 ± 1.31E+02 5 1.36E+02 ± 1.53E+02 +, 4
F18 9.26E+02 ± 3.04E+01 11 9.10E+02 ± 3.37E+01 +, 9 9.04E+02 ± 7.46E−01 3 9.04E+02 ± 7.53E−01 =, 3
F19 9.15E+02 ± 4.87E+01 8 9.15E+02 ± 2.63E+01 =, 8 9.04E+02 ± 2.05E−01 4 9.04E+02 ± 7.33E−01 =, 4
F20 9.20E+02 ± 3.19E+01 9 9.20E+02 ± 7.20E+01 =, 9 9.04E+02 ± 3.34E−01 3 9.04E+02 ± 9.75E−01 =, 3
F21 5.99E+02 ± 1.95E+02 5 5.63E+02 ± 1.58E+02 +, 4 5.00E+02 ± 4.46E−14 1 5.00E+02 ± 1.74E−12 =, 1
F22 9.27E+02 ± 2.16E+01 13 9.03E+02 ± 1.56E+01 +, 9 8.70E+02 ± 1.83E+01 5 8.65E+02 ± 1.94E+01 +, 4
F23 7.28E+02 ± 2.07E+02 5 6.33E+02 ± 1.69E+02 +, 2 5.34E+02 ± 3.27E−13 1 5.34E+02 ± 3.63E−13 =, 1
F24 2.05E+02 ± 8.39E+00 2 2.05E+02 ± 6.00E+01 =, 2 2.00E+02 ± 2.90E−14 1 2.00E+02 ± 2.88E−14 =, 1
F25 2.09E+02 ± 2.40E+01 2 2.00E+02 ± 4.47E−01 +, 1 2.00E+02 ± 2.90E−14 1 2.00E+02 ± 2.90E−14 =, 1
+∕ − ∕ = – 16/2/7 – 7/1/17
Nb/Mr 1/12.722 2/10.389 10/3.667 15/3.333
Table 5
Wilcoxon’s test results between the SCJADE and some version of DE/current-to-pbest/1.

i j MPR MNR SPR SNR F(i) < F(j) F(j) < F(i) 𝑝-value 0.95 Confidence interval

SCJADE
DE/current-to-pbest/1 12.500000 NaN 300 0 24 0 1.940350e−05 −1102.999960 −16.49997
SCDE/current-to-pbest/1 12.000000 NaN 276 0 23 0 2.888847e−05 −279.850028 −14.49995
JADE 4.142857 7.0000 29 7 7 1 1.414821e−01 −40.599929 20.19739
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‘‘SCDE/current-to-rand/1’’:
𝑉 𝑖
𝐼𝑡𝑒𝑟 = 𝑋𝑖

𝐼𝑡𝑒𝑟 + 𝑟𝑎𝑛𝑑(0, 1) ×
(

𝑋𝑖
𝐼𝑡𝑒𝑟 −𝑋𝑟1

𝐼𝑡𝑒𝑟
)

𝜔23
𝐼𝑡𝑒𝑟 × 𝑟𝑎𝑛𝑑(0, 1) × 𝐹

(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

(14)

‘SCDE/rand/2’’:
𝑖
𝐼𝑡𝑒𝑟 = 𝑋𝑟1

𝐼𝑡𝑒𝑟 + 𝜔23
𝐼𝑡𝑒𝑟 × 𝐹

(

𝑋𝑟2
𝐼𝑡𝑒𝑟 −𝑋𝑟3

𝐼𝑡𝑒𝑟
)

+ 𝜔45
𝐼𝑡𝑒𝑟 × 𝐹

(

𝑋𝑟4
𝐼𝑡𝑒𝑟 −𝑋𝑟5

𝐼𝑡𝑒𝑟
)

(15)

he results of all algorithms are given in Table 6. Also, the convergence
haracteristics of these four algorithms for Unimodal test function F4
nd Multimodal test function F10 are shown in Fig. 3. In general, it can
e said that the proposed control parameter has no sensible positive
ffect on DE/best algorithms. However, it can be concluded from
able 6 that it has a positive and acceptable impact on DE/rand/2 and
E/current-to-rand/1 algorithms and has converted them into more

obust SCDE/rand/2 and SCDE/current-to-rand/1 algorithms.
 [

7

The results of the Wilcoxon signed-rank test for comparing
CDE/best/1 with some other versions of DE are presented in Table 7.
owever, except for the first row of Table 7, since the SPR values are
reater than the SNR values, it is concluded that SCDE/best/1 outper-
orms DE/current-to-rand/1, SCDE/current-to-rand/1, DE/rand/2, and
CDE/rand/2, but not significantly. For the comparison of SCDE/best/1
ith DE/best/1, the 𝑝-value is relatively high and the SPR and SNR
alues are very close together. It can be concluded that the performance
f these two algorithms in solving 25 CEC2005 benchmark functions is
ery close together.

.4. SCEPSDE

In this section, the proposed control parameter is tested on EPSDE
28]. The mutations of this algorithm are comprised of mutations
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Fig. 3. The convergence characteristics of the algorithms for Unimodal test function F4 and Multimodal test function F10.
Table 6
The results of DE/best/1 and SCDE/best/1 (𝐹 = 0.7, CR = 0.9), DE/current-to-rand/1and SCDE/current-to-rand/1 (𝐹 = 0.8, CR = 0.2), and DE/rand/2 and SCDE/rand/2 (𝐹 = 0.45,
R = 0.7) for the 30-D real-parameter functions.
Function DE/best/1 SCDE/best/1 DE/current-to-rand/1 SCDE/current-to-rand/1 DE/rand/2 SCDE/rand/2

Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev
Rank Rank Rank Rank Rank Rank

F1 0.00E+00 ± 0.00E+00 1 0.00E+00 ± 0.00E+00 =, 1 0.00E+00 ± 0.00E+00 1 0.00E+00 ± 0.00E+00 =, 1 7.58E−21 ± 4.10E−21 5 2.70E−21 ± 1.44E−21 +, 4
F2 4.25E−28 ± 4.90E−28 3 3.87E−28 ± 6.75E−28 =, 2 3.79E+03 ± 6.55E+02 17 3.03E+03 ± 5.14E+02 +, 16 2.86E+03 ± 5.52E+02 15 1.87E+03 ± 6.26E+02 +, 13
F3 4.29E+04 ± 2.17E+04 2 6.30E+04 ± 2.23E+04 −, 3 3.81E+07 ± 7.84E+06 14 3.81E+07 ± 6.08E+06 =, 14 6.68E+07 ± 1.46E+07 16 6.20E+07 ± 1.27E+07 +, 15
F4 4.20E−05 ± 1.27E−04 4 3.36E+00 ± 2.14E+01 −, 10 1.15E+04 ± 2.09E+03 18 7.87E+03 ± 1.53E+03 +, 17 5.05E+03 ± 9.63E+02 14 4.20E+03 ± 8.77E+02 +, 13
F5 1.20E+02 ± 1.32E+02 6 3.90E+01 ± 7.00E+01 +, 5 4.13E+03 ± 3.69E+02 18 3.61E+03 ± 3.60E+02 +, 17 1.89E+02 ± 1.09E+02 7 2.32E+01 ± 2.02E+01 +, 4
F6 1.44E+00 ± 1.95E+00 5 7.97E−01 ± 1.63E+00 +, 3 2.87E+01 ± 1.69E+00 12 2.72E+03 ± 1.56E+00 +, 16 1.08E+01 ± 1.29E+00 10 5.29E+00 ± 8.94E−01 +, 7
F7 2.10E−02 ± 2.42E−02 12 1.72E−02 ± 1.13E−02 +, 9 2.61E−01 ± 4.09E−02 13 2.61E−01 ± 4.95E−02 =, 13 7.98E−03 ± 5.32E−03 5 1.79E−02 ± 4.60E−02 −, 10
F8 2.09E+01 ± 4.66E−02 1 2.09E+01 ± 6.28E−02 =, 1 2.09E+01 ± 6.02E−02 1 2.09E+01 ± 4.29E−02 =, 1 2.09E+01 ± 6.82E−02 1 2.09E+01 ± 5.33E−02 =, 1
F9 6.24E+01 ± 1.88E+01 8 6.61E+01 ± 2.20E+01 −, 9 3.43E+01 ± 3.63E+00 4 3.32E+01 ± 3.12E+00 +, 3 1.47E+02 ± 9.32E+00 12 1.47E+02 ± 5.85E+00 =, 12
F10 9.03E+01 ± 3.41E+01 8 9.56E+01 ± 3.04E+01 −, 9 1.92E+02 ± 1.02E+01 13 1.86E+02 ± 1.13E+01 +, 12 2.00E+02 ± 1.08E+01 15 1.98E+02 ± 1.04E+01 +, 14
F11 1.40E+01 ± 2.51E+00 2 1.33E+01 ± 2.55E+00 +, 1 3.42E+01 ± 1.28E+00 7 3.42E+01 ± 1.70+00 =, 7 4.00E+01 ± 8.67E−01 14 3.95E+01 ± 9.75E−01 +, 13
F12 3.32E+04 ± 4.28E+04 10 2.18E+04 ± 2.06E+04 +, 8 1.01E+05 ± 1.53E+04 16 9.20E+04 ± 1.49E+04 +, 15 2.61E+05 ± 9.34E+04 18 1.25E+05 ± 1.01E+05 +, 17
F13 5.62E+00 ± 1.84E+00 4 6.34E+00 ± 1.71E+00 −, 5 7.59E+00 ± 4.91E−01 7 7.40E+00 ± 5.81E−01 +, 6 1.63E+01 ± 1.28E+00 10 1.63E+01 ± 9.14E−01 =, 10
F14 1.21E+01 ± 5.40E−01 1 1.21E+01 ± 4.10E−01 =, 1 1.32E+01 ± 1.44E−01 6 1.32E+01 ± 1.20E−01 =, 6 1.34E+01 ± 9.59E−02 7 1.34E+01 ± 1.08E−01 =, 7
F15 3.86E+02 ± 7.87E+01 15 3.66E+02 ± 9.65E+01 +, 11 2.44E+02 ± 2.36E+01 5 2.24E+02 ± 3.04E+01 +, 3 3.52E+02 ± 8.23E+01 9 3.28E+02 ± 7.92E+01 +, 6
F16 2.20E+02 ± 1.51E+02 8 2.84E+02 ± 1.63E+02 −, 16 2.50E+02 ± 1.64E+01 13 2.37E+02 ± 2.12E+01 +, 10 2.31E+02 ± 4.52E+01 9 2.46E+02 ± 6.87E+01 −, 12
F17 2.01E+02 ± 1.52E+02 10 2.19E+02 ± 1.51E+02 −, 11 2.94E+02 ± 1.96E+01 17 2.69E+02 ± 3.45E+01 +, 14 2.48E+02 ± 2.82E+01 12 2.64E+02 ± 5.82E+01 −, 13
F18 9.13E+02 ± 1.09E+01 10 9.09E+02 ± 2.57E+00 +, 8 9.09E+02 ± 5.13E−01 8 9.09E+02 ± 3.95E−01 =, 8 9.06E+02 ± 1.54E−01 4 9.06E+02 ± 2.05E−01 =, 4
F19 9.09E+02 ± 3.80E+00 7 9.09E+02 ± 2.35E+01 =, 7 9.09E+02 ± 5.07E−01 7 9.09E+02 ± 4.08E−01 =, 7 9.06E+02 ± 1.82E−01 5 9.06E+02 ± 1.80E−01 =, 5
F20 9.11E+02 ± 5.35E+00 8 9.08E+02 ± 1.57E+01 +, 6 9.09E+02 ± 3.96E−01 7 9.09E+02 ± 5.34E−01 =, 7 9.06E+02 ± 1.57E−01 4 9.06E+02 ± 5.77E−01 =, 4
F21 5.51E+02 ± 1.51E+02 3 5.28E+02 ± 9.80E+01 +, 2 5.00E+02 ± 1.28E−13 1 5.00E+02 ± 1.08E−13 =, 1 5.00E+02 ± 1.35E−13 1 5.00E+02 ± 1.44E−13 =, 1
F22 9.19E+02 ± 2.43E+01 12 9.19E+02 ± 2.84E+01 =, 12 9.46E+02 ± 9.55E+00 15 9.38E+02 ± 6.97E+00 +, 14 8.86E+02 ± 1.03E+01 8 8.76E+02 ± 9.66E+00 +, 7
F23 6.57E+02 ± 1.35E+00 3 7.05E+02 ± 1.98E+02 −, 4 5.34E+02 ± 1.72E−04 1 5.34E+02 ± 1.72E−04 =, 1 5.34E+02 ± 3.06E−04 1 5.34E+02 ± 2.77E−04 =, 1
F24 2.62E+02 ± 2.14E+00 5 3.06E+02 ± 2.62E+02 −, 6 2.00E+02 ± 1.35E−12 1 2.00E+02 ± 1.16E−12 =, 1 2.00E+02 ± 1.56E−12 1 2.00E+02 ± 1.17E−12 =, 1
F25 3.64E+02 ± 3.38E+02 6 3.35E+02 ± 2.84E+02 +, 5 2.00E+02 ± 1.43E−12 1 2.00E+02 ± 8.63E−13 =, 1 2.00E+02 ± 1.60E−12 1 2.00E+02 ± 1.68E−12 =, 1
+∕ − ∕ = – 10/9/6 – 12/0/13 – 11/3/11
Nb/Mr 3/8.556 4/8.611 6/12.389 6/11.722 5/11.889 5/10.833
Table 7
Wilcoxon’s test results between the SCDE/best/1 and some modified versions of DE.

i j MPR MNR SPR SNR F(i) < F(j) F(j) < F(i) 𝑝-value 0.95 Confidence interval

SCDE/best/1

DE/best/1 9.1818 12.1111 101 109 11 9 0.8960408 −12.65003 22.00001
DE/current-to-rand/1 10.4286 12.1429 146 85 14 7 0.2970736 −5680.81999 27.99998
SCDE/current-to-rand/1 10.9286 11.1429 153 78 14 7 0.1984315 −3862.31997 23.37804
DE/rand/2 13.9231 10.8182 181 119 13 11 0.3834959 −1428.99997 13.99999
SCDE/rand/2 13 11.9091 169 131 13 11 0.5970654 −933.50007 19.25345
of DE/rand/2, DE/rand/1, and DE/current-to-rand/1, which are also
selected for use in self-competitive EPSDE (SCEPSDE). The selected
code for the EPSDE algorithm is the same code with the same chosen
parameters as in (http://dces.essex.ac.uk/staff/qzhang/).

In simulations, two algorithms of SCEPSDE known as SCEPSDE/1
and SCEPSDE/2 are obtained. The SCEPSDE/1 is identical to the origi-
nal EPSDE algorithm in all respects except for the DE/current-to-rand/1
mutation which is substituted by its self-competitive counterpart, given
in (14), is used. Also, SCEPSDE/2 is exactly similar to the original
EPSDE algorithm except for the DE/rand/2 mutation which is substi-
tuted by its self-competitive counterpart, given in (15). The results of all
algorithms are given in Table 8. Also, the convergence characteristics
of these three algorithms for Unimodal test function F4 and Multimodal
test function F10 are shown in Fig. 4. The proposed control parameter
has a positive impact on the EPSDE algorithm and both SCEPSDE/2 and
SCEPSDE/1 outperform EPSDE; from which its SCEPSDE/2 shows the
best performance.

The results of the Wilcoxon signed-rank test for comparing
SCEPSDE/2 with some versions of EPSDE and SCEPSDE/1 are presented
8

in Table 9. It is seen from Table 9 that the 𝑝-value for comparing
SCEPSDE/2 with EPSDE is lower than the significance level and the SPR
value is higher than the SNR value, which shows the significance and
superiority of SCEPSDE/2 over EPSDE. When comparing SCEPSDE/2
with SCEPSDE/1, the 𝑝-value is higher relatively high and the SPR and
SNR values are close together. It can be concluded that the performance
of these two algorithms in solving 25 CEC2005 benchmark functions is
close together.

4.5. A global comparison between different variants of DE using the fried-
man test

In order to compare the performance of all studied algorithms
the Friedman test was carried out, and its results were presented in
Table 10. In this table, the Mean Rank index is the average of the
Rank indices of the algorithm for all test functions and the RankT
index shows the rank of each algorithm in the list of sorted Mean Rank
indices. It is observed from this table that, each self-competitive variant
of DE outperforms its original counterpart. Furthermore, SCJADE out-
performs all other algorithms in terms of the RankT index. The 𝑝-value

http://dces.essex.ac.uk/staff/qzhang/
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Fig. 4. The convergence characteristics of the algorithms for Unimodal test function F4 and Multimodal test function F10.
Table 8
The results of EPSDE algorithms on the 30-D real-parameter functions.

Function EPSDE Mean Std Dev, Rank SCEPSDE/1 Mean Std Dev, Rank SCEPSDE/2 Mean Std Dev, Rank

F1 0.00E+00 ± 0.00E+00 1 2.02E−30 ± 1.00E−29- −, 2 0.00E+00 ± 0.00E+00 =, 1
F2 4.95E−15 ± 2.19E−14 6 3.18E−26 ± 3.66E−26 +, 4 4.01E−26 ± 4.96E−26 +, 5
F3 2.06E+06 ± 6.16E+06 10 1.11E+06 ± 4.32E+05 −, 8 1.80E+05 ± 3.66E+05 +, 5
F4 1.10E+01 ± 3.06E+01 12 2.18E+00 ± 7.86E+01 +, 9 1.37E−02 ± 5.98E−02 +, 6
F5 1.33E+03 ± 6.90E+02 13 1.15E+03 ± 5.19E+03 +, 11 1.27E+03 ± 6.91E+02 +, 12
F6 9.57E−01 ± 1.74E+00 4 3.19E−01 ± 1.10E+00 +, 1 3.36E+00 ± 1.44E+01 −, 6
F7 1.92E−02 ± 1.64E−02 11 1.07E−02 ± 9.58E−03 +, 7 1.18E−02 ± 1.11E−02 +, 8
F8 2.09E+01 ± 5.88E−02 1 2.09E+01 ± 6.18E−02 =, 1 2.09E+01 ± 7.20E−02 =, 1
F9 0.00E+00 ± 0.00E+00 1 0.00E+00 ± 0.00E+00 =, 1 0.00E+00 ± 0.00E+00 =, 1
F10 4.76E+01 ± 9.33E+00 7 4.39E+01 ± 9.28E+00 +, 5 4.71E+01 ± 9.69E+00 +, 6
F11 3.53E+01 ± 3.83E+00 9 3.57E+01 ± 3.00E+00 −, 10 3.41E+01 ± 4.22E+00 +, 6
F12 3.61E+04 ± 5.95E+03 13 3.44E+04 ± 6.83E+03 +, 11 3.46E+04 ± 7.23E+03 +, 12
F13 1.94E+00 ± 2.05E−01 3 1.94E+00 ± 1.69E−01 =, 3 1.94E+00 ± 1.99E−01 =, 3
F14 1.35E+01 ± 2.84E−01 8 1.35E+01 ± 2.77E−01 =, 8 1.35E+01 ± 2.83E−01 =, 8
F15 2.26E+02 ± 4.58E+01 4 2.23E+02 ± 4.62E+01- +, 2 2.08E+02 ± 7.32E+00 +, 1
F16 1.59E+02 ± 1.40E+02 6 1.82E+02 ± 1.51E+01 −, 7 1.29E+02 ± 1.13E+02 +, 4
F17 1.60E+02 ± 6.58E+01 6 1.34E+02 ± 7.81E+01 +, 2 1.86E+02 ± 1.12E+02 −, 8
F18 8.20E+02 ± 3.51E+00 2 8.18E+02 ± 2.42E+00 +, 1 8.18E+02 ± 1.75E+00 +, 1
F19 8.22E+02 ± 4.48E+00 3 8.18E+02 ± 1.28E+00 +, 2 8.17E+02 ± 1.54E+00 +, 1
F20 8.21E+02 ± 3.55E+00 2 8.17E+02 ± 1.05E+00 +, 1 8.17E+02 ± 1.09E+00 +, 1
F21 8.49E+02 ± 7.27E+01 6 8.49E+02 ± 7.25E+01 =, 6 8.63E+02 ± 4.27E+00 −, 7
F22 5.19E+02 ± 5.42E+01 3 5.03E+02 ± 3.82E+00 +, 2 5.02E+02 ± 3.67E+00 +, 1
F23 8.55E+02 ± 9.31E+01 7 8.44E+02 ± 8.83E+01 +, 6 8.69E+02 ± 3.51E+00 −, 8
F24 2.13E+02 ± 1.76E+00 4 2.12E+02 ± 1.69E+00= 3 2.13E+02 ± 1.04E+00 =, 4
F25 2.13E+02 ± 1.72E+00 4 2.11E+02 ± 9.27E−01 +, 3 2.11E+02 ± 1.26E+00 +, 3
+∕ − ∕ = – 15/5/5 15/5/5
Nb/Mr 3/8.111 5/6.444 8/6.611
Table 9
Wilcoxon’s test results between SCEPSDE/2 and other versions of EPSDE.

i j MPR MNR SPR SNR F(i) < F(j) F(j) < F(i) 𝑝-value 0.95 Confidence interval

SCEPSDE/2 EPSDE 9.666667 11.25000 145 45 15 4 0.046328135 −30.999990 −0.0000297043
SCEPSDE/1 8.875000 10.00000 71 100 8 10 0.541865596 −7.000067 26.0000878920
calculated using the Friedman test is 2.2187e−23 which shows that the
performance of different variants of DE differs significantly.

4.6. A comparison with some modern algorithms

In order to further investigate the effectiveness of the proposed
self-competitive strategy, the results of the most promising version of
self-competitive DE, i.e., SCJADE, along with those of some of the
state-of-the-art methods are presented in Table 11. It is obvious from
Table 11 that, SCJADE outperforms all other methods in optimizing
CEC2005 benchmark functions.
9

The results of the Wilcoxon signed-rank test for comparing SCJADE
with some state-of-the-art methods are presented in Table 12. It can
be observed from Table 12 that the p-values for comparing SCJADE
with BES and GPEAed are lower than the significance level and their
SPR values are greater than SNR values, which demonstrates the sig-
nificance and superiority of SCJADE over these two algorithms. When
comparing SCJADE with FMPSO, the 𝑝-value is slightly higher than
0.05. Nevertheless, since the SPR value is greater than the SNR value,
it is concluded that SCJADE outperforms FMPSO, but not significantly.
Finally, while comparing SCJADE with HCLPSO, the 𝑝-value is high
and SPR and SNR values are close together. The ranking of these
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Table 10
Average ranking of different DE algorithms and their self-competitive counterparts
according to the Friedman test.

Algorithm RankT Mean rank

SCJADE 1 4.46
JADE 2 4.76
MSCjDE 3 5.02
SCjDE 4 6.46
jDE 5 7.14
SCEPSDE/2 6 7.92
SCEPSDE/1 7 8
EPSDE 8 9.08
SCDE/best/1 9 10.04
DE/best/1 10 10.12
SCDE/rand/2 11 11.16
DE/rand/2 12 11.6
SCDE/current-to-pbest/1 13 11.8
SCDE/current-to-rand/1 14 11.8
SCDE/rand/1 15 12.14
DE/current-to-rand/1 16 12.28
DE/rand/1 17 13.52
DE/current-to-pbest/1 18 13.7

algorithms can be extracted using the Friedman rank test. Table 13
demonstrates the results of the Friedman rank test. It is obvious from
the results presented in these tables that the proposed SCJADE has the
best average rank and thus, outperforms all other methods in solving
the CEC2005 benchmark functions.

5. Application of SCDE algorithms in designing the optimal PID
controller for AVR system

The frequency of the power system is mainly dependent on the
active power, while the magnitude of the voltages and the reactive
power are mainly interdependent. Hence, the frequency and voltage
of the power systems can be controlled separately. The Load Frequency
10
Control (LFC) loop [62,63] controls the system’s frequency by adjusting
the active power and the Automatic Voltage Regulator (AVR) loop
controls the reactive power and voltage magnitudes [64,65].

The proper operation of LFC and AVR systems guarantees the
quality and stability of the power system. The AVR system is widely
used for synchronous generators (SGs) to achieve proper voltage sta-
bility under different operating conditions of the generator; this task is
accomplished by controlling the current of the excitation system whose
controller is mainly of PID type. The performance of this controller
depends on the optimal tuning of its coefficients, i.e., 𝑘𝑃 , 𝑘𝐼, and, 𝑘𝐷.
Recent advances in the field of optimization and metaheuristic algo-
rithms have enabled designers to achieve optimal design and control
of energy systems.

5.1. Structure of PID controller

Proportional–integral–derivative (PID) controller is widely used in
practical applications due to its simple and meanwhile efficient struc-
ture compared to advanced controllers [66]. This controller can be
efficiently applied to many processes with the first or second order
of dynamics, whose operational range is not wide [66]. Although this
controller consists of three parameters to be identified, many methods
have been proposed to find the optimal values of these parameters
during the last few decades since the presentation of the Ziegler–
Nichols method [67]. Furthermore, the microscopic controller (MIC)
has been used to design the PID controller [68], which is suitable
for systems with small changes around the operating point and small
values of the modeling error; however, this method may cause zero-
pole cancellation for which a proper response from the controller is not
expected. For highly nonlinear and time-varying processes, neither the
application of the phase and gain margin concepts (frequency response)
is suitable [69], nor is applying corrective methods to improve their
performance for a wide range of the operational region [70]. In this
paper, the PID controller parameters in an AVR system are optimally

identified and tuned using the proposed algorithms.
Table 11
The comparison of the results of SCJADE with those of some of the state of the art methods.

Function FMPSO [58] HCLPSO [59] BES [60] GPEAed [61] SCJADE
Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev Mean ± Std Dev
Rank Rank Rank Rank Rank

F1 0.00E+00 ± 0.00E+00 = 0.00E+00 ± 0.00E+00 = 2.54E−13 ± 9.64E−14 + 2.28E−19 ± 1.23E−18 + 0.00E+00 ± 0.00E+00 –
F2 4.37E−25 ± 4.65E−25 + 1.70E–06 ± 1.71E–06 + 3.58E−04 ± 5.58E−04 + 4.29E+00 ± 3.78E+00 + 1.00E−28 ± 1.43E−28 –
F3 1.10E+06 ± 7.34E+05 + 6.42E+05 ± 2.61E+05 + 4.25E+05 ± 1.78E+05 + 6.78E+05 ± 2.37E+05 + 5.62E+03 ± 4.20E+03 –
F4 1.43E+03 ± 6.75E+02 + 5.22E+02 ± 3.09E+02 + 1.18E+03 ± 9.03E+02 + 1.12E+04 ± 5.77E+03 + 4.80E−18 ± 1.61E−17 –
F5 4.17E+03 ± 1.25E+03 + 2.97E+03 ± 4.55E+02 + 3.81E+03 ± 7.51E+02 + 3.19E+03 ± 7.24E+02 + 8.63E−11 ± 2.22E−10 –
F6 9.44E−01 ± 1.42E+00 − 2.39 ± 4.27 − 1.46E+01 ± 1.18E+01 + 6.03E+01 ± 6.41E+01 + 1.03E+01 ± 4.20E+01 –
F7 1.29E−02 ± 9.41E−03 + 0.02 ± 0.02 + 1.78E−02 ± 2.03E−02 + 4.70E+03 ± 3.67E−01 + 1.80E−03 ± 3.69E−03 –
F8 1.97E+01 ± 1.31E+00 − 20.87 ± 0.09 − 2.10E+01 ± 5.01E−02 + 2.10E+01 ± 6.22E−02 + 2.09E+01 ± 3.75E−02 –
F9 3.50E+01 ± 7.50E+00 + 0.00E+00 ± 0.00E+00 = 9.64E+01 ± 2.74E+01 + 7.34E+01 ± 1.79E+01 + 0.00E+00 ± 0.00E+00 –
F10 4.75E+01 ± 5.01E+00 + 56.08 ± 12.90 + 1.25E+02 ± 4.56E+01 + 1.27E+02 ± 3.31E+01 + 2.35E+01 ± 2.96E+00 –
F11 1.90E+01 ± 2.69E+00 − 20.32 ± 2.94 − 2.67E+01 ± 5.55E+00 + 3.91E+01 ± 8.91E+00 + 2.52E+01 ± 1.55E+00 –
F12 2.12E+04 ± 1.65E+04 + 3.91E+03 ± 3.69E+03 − 6.92E+03 ± 9.40E+03 + 1.00E+06 ± 2.47E+05 + 5.20E+03 ± 6.08E+03 –
F13 2.74E+00 ± 8.13E−01 + 1.45 ± 0.28 = 8.49E+00 ± 3.67E+00 + 1.16E+01 ± 5.57E+00 + 1.45E+00 ± 1.17E−01 –
F14 1.19E+01 ± 4.24E−01 − 11.93 ± 0.58 − 1.27E+01 ± 2.26E−01 + 1.37E+01 ± 3.73E−01 + 1.23E+01 ± 2.37E−01 –
F15 3.18E+02 ± 9.02E+01 − 88.04 ± 113.02 − 4.25E+02 ± 9.25E+01 + 5.01E+02 ± 2.94E+00 + 3.44E+02 ± 9.61E+02 –
F16 1.04E+02 ± 2.30E+01 − 104.07 ± 36.41 − 3.50E+02 ± 1.47E+02 + 2.94E+02 ± 1.29E+02 + 1.30E+02 ± 1.52E+02 –
F17 1.65E+02 ± 6.52E+01 + 109.59 ± 34.01 − 2.61E+02 ± 1.59E+02 + 3.00E+02 ± 1.59E+02 + 1.36E+02 ± 1.53E+02 –
F18 8.00E+02 ± 0.00E+00 − 894.42 ± 43.04 − 9.34E+02 ± 3.63E+01 + 9.04E+02 ± 3.61E+01 = 9.04E+02 ± 7.53E−01 –
F19 8.00E+02 ± 0.00E+00 − 913.49 ± 2.39 + 9.35E+02 ± 5.07E+02 + 8.94E+02 ± 4.82E+01 − 9.04E+02 ± 7.33E−01 –
F20 7.00E+02 ± 1.33E+02 − 914.03 ± 2.36 + 9.46E+02 ± 2.57E+01 + 8.99E+02 ± 4.01E+01 − 9.04E+02 ± 9.75E−01 –
F21 9.26E+02 ± 2.44E+02 + 5.00E+02 ± 0.00E+00 = 7.31E+02 ± 3.33E+02 + 5.44E+02 ± 1.68E+02 + 5.00E+02 ± 1.74E−12 –
F22 8.87E+02 ± 2.70E+01 + 910.68 ± 15.75 + 9.99E+02 ± 3.84E+01 + 9.79+02 ± 4.17E+01 + 8.65E+02 ± 1.94E+01 –
F23 8.79E+02 ± 2.76E+02 + 534.16 ± 4.07E–04 + 8.40E+02 ± 2.91E+02 + 6.08E+02 ± 1.73E+02 + 5.34E+02 ± 3.63E−13 –
F24 5.48E+02 ± 3.58E+02 + 2.00E+02 ± 0.00E+00 = 3.46E+02 ± 3.78E+02 + 2.00E+02 ± 5.77E−01 = 2.00E+02 ± 2.88E−14 –
F25 5.75E+02 ± 3.75E+02 + 2.00E+02 ± 0.00E+00 = 3.40E+02 ± 3.63E+02 + 2.20+02 ± 5.09E+00 + 2.00E+02 ± 2.90E−14 –
+∕ − ∕= 15/9/1 10/9/6 25/0/0 21/2/2
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Table 12
Wilcoxon’s test results between the SCJADE and the state-of-the-art methods.

i j MPR MNR SPR SNR F(i) < F(j) F(j) < F(i) 𝑝-value 0.95 Confidence interval

SCJADE

FMPSO [56] 14.266667 9.555556 214 86 15 9 0.0696053 −714.99996 0.79998
HCLPSO [57] 10.5 9.444444 105 85 10 9 0.7022383 −260.98492 13.14999
BES [58] 13 N/A 325 0 25 0 5.960e−08 −590.20 −54.27
GPEAed [59] 12.619048 5.5 265 11 21 2 0.0001192 −2401.74912 −38.84495
Fig. 5. Block diagram of AVR control system for a generating unit [104].
.
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Table 13
Average ranking of SCJADE and state-of-the-art algorithms according to Friedman test

Algorithm RankT Mean rank

SCJADE 1 1.98
HCLPSO 2 2.2
FMPSO 3 2.68
GPEAed 4 4.04
BES 5 4.1

Many papers have worked on the optimal tuning of 𝑘𝑃 , 𝑘𝐼 and,
𝑘𝐷 coefficients of PID controller in an AVR system using metaheuris-
tic methods, some of which include teaching-learning based opti-
mization (TLBO) [71], firefly algorithm (FA) [72], RAO algorithm
for optimizing a multi-term fractional-order PID (MFOPID) controller
for improving the performance of the AVR System [73], bat algo-
rithm (BA) [74], hybrid of PSO with gravitational search algorithm
(PSOGSA) [75], an improved Lévy flight distribution algorithm with
fitness-distance balance (FDB)-based guiding mechanism [76], chaotic
optimization (CO) [77], model predictive controller aided with leader
Harris hawks optimization (MPC-LHHO) algorithm [78], many optimiz-
ing liaisons (MOL) [79], local unimodal sampling (LUS) optimization
algorithm [80], cooperation search algorithm (CSA) [81], Taguchi
combined genetic algorithm method (TGA) [82], a new hybrid SA and
gorilla troops optimization (GTO) [83], a hybrid genetic algorithm
(GA) [84], a new improved kidney-inspired algorithm (IKA) [85],
cuckoo search (CS) [86], a novel hybrid optimizer via Harris hawks
optimization (HHO) and SA technique (HHO-SA) for proportional +
integral + derivative plus second order derivative (PID+DD) controller
adopted in the AVR [87], whale optimization algorithm (WOA) [88,
89], symbiotic organism search (SOS) [90], salp swarm algorithm (SSA)
[91], Jaya algorithm and its improved version [92,93], multi-objective
extremal optimization [94], arithmetic optimization algorithm (AOA)
[95], enhanced crow search algorithm [96], a novel modified smoothed
function algorithm (MSFA) [97], equilibrium optimizer [98], artifi-
cial ecosystem-based optimization [99], water cycle algorithm [100],
a new improved artificial bee colony (IABC) high-order approxima-
tion (HOA)-based fractional order PID (IABC/HOA-FOPID) controller
[101], sine–cosine algorithm [102], and a hybrid simulated annealing
— Manta ray foraging optimization algorithm [103].

Fig. 5 shows the block diagram of the AVR control system. Note that
C(s) represents the transfer function of the PID controller. The goal is
to design a controller so that the output of the power system has some
defined characteristics.

The transfer function (TF), 𝐶(𝑠), of the PID controller is defined as
follows [104]:

𝐶(𝑠) = 𝐾 +
𝐾𝐼 +𝐾 𝑆 (16)
𝑃 𝑆 𝐷
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where 𝐾𝑃 , 𝐾𝐼 , and 𝐾𝐷 represent the proportional, integral, and deriva-
tive coefficients, respectively. The control system output can be written
using the following equation [104]:

𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) +𝐾𝑖 ∫

𝑡

0
𝑒(𝜏)𝑑𝜏 +𝐾𝑑

𝑑𝑒(𝑡)
𝑑𝑡

(17)

In order to design a PID controller for a given system, we have to
optimally adjust the coefficients 𝐾𝑃 , 𝐾𝐼 , and 𝐾𝐷 to obtain the desired
performance.

For the problem under consideration in this study, i.e. PID design
for synchronous generator’s AVR system, we mount a first-order low-
pass filter in the derivative path of the PID controller for obtaining a
smoother voltage profile [71]. The TF of the low-pass filter may be
defined as [71]:

𝐺𝐹 𝑖𝑙𝑡𝑒𝑟 (𝑠) =
𝑠

𝑠
(

1
𝑁

)

𝑇 + 1
(18)

where T and N represent the time constant and the filter coefficient,
respectively, whose values are defined in the interval of (0.01, 0.1) s
and (0.1, 2.0), respectively. Thus, considering this filter, the TF of the
PID controller used in this study may be rewritten as [71]:

𝐺𝑃𝐼𝐷 (𝑠) = 𝐾𝑃 +
𝐾𝑖
𝑆

+𝐾𝑑𝑆

⎛

⎜

⎜

⎜

⎝

1

𝑠
(

1
𝑁

)

𝑇 + 1

⎞

⎟

⎟

⎟

⎠

(19)

In different recently published articles, various objectives have been
considered for the problem of optimal design of PID controllers. In this
study, we have used four important criteria related to the time response
of the studied AVR system as indicators of the optimal performance of
the system, which include the following:

1. Rise time 𝑇𝑅
𝑅 is the time during which the time response of the system changes
rom 10% to 90% of its final value [104].

2. Settling time 𝑇𝑆
ettling time is the time at which the system time response remains
ithin the range of ±2% of its final response and does not exceed this

ange under any circumstances [104].
3. Maximum Overshoot 𝑀𝑃 (p.u.)

nother important characteristic of the step response of a system is its
aximum value of overshoot. In this paper, the maximum value of the

irst overshoot of step response subtracted by 1 is used. this way, if the
aximum value of the first overshoot of the step response is less than
, the value of 𝑀𝑃 , as the fitness value, is considered to be zero [104]

4. Steady-state error 𝐸𝑠𝑠 (p.u.)
𝑠𝑠 is defined as the difference between the final value of the system

esponse to the unit step input and one, i.e. 𝐸𝑠𝑠 = 1 − 𝑉𝑡(𝑒𝑛𝑑) [104].
Table 14 presents an overview of some objective functions used in

the literature for the optimal design of PID controllers.
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Table 14
Overview of the objective functions for the optimal PID design problems used in the literature.

Reference Cost

[79,88,105] 𝐼𝑆𝐸 = ∫ 𝑒2(𝑡)𝑑𝑡

[79,106] 𝐼𝐴𝐸 = ∫ 𝑒(𝑡)𝑑𝑡

[79,80,107] 𝐼𝑇𝑆𝐸 = ∫ 𝑡𝑒2(𝑡)𝑑𝑡

[79] 𝐼𝑇𝐴𝐸 = ∫ 𝑡 |𝑒(𝑡)| 𝑑𝑡

[80] 𝐶𝑜𝑠𝑡 = 𝑤1 ∗ (𝐼𝑆𝐸 or 𝐼𝑇𝑆𝐸 or 𝐼𝐴𝐸 or 𝐼𝑇𝐴𝐸) +𝑤2 ∗ 𝑇𝑆 +𝑤3 ∗ 𝑀𝑃

[90] 𝐶𝑜𝑠𝑡 = 𝑤1 ∗ ∫ 𝑡 |𝑒(𝑡)| 𝑑𝑡 +𝑤2 ∗ 𝑁𝑐𝑝 +𝑤3 ∗ 𝑆𝑟

[108,109]
𝐶𝑜𝑠𝑡 = 𝑤1 ∗ 𝑀𝑃 +𝑤2 ∗ 𝑇𝑅 +𝑤3 ∗ 𝑇𝑆 +𝑤4 ∗ 𝐸𝑆𝑆+

∫

(

𝑤5 |𝑒 (𝑡)| +𝑤6
(

𝑉𝑣 (𝑡)
)2
)

𝑑𝑡 +
𝑤7

𝑃𝑚
+

𝑤8

𝐺𝑚

[108] 𝐶𝑜𝑠𝑡 =
(

1 −𝑤1
)

𝑃𝑚 + 𝜔𝑔𝑐

[110,111] 𝐶𝑜𝑠𝑡 =
(

𝑤1 ∗ 𝑀𝑃
)2 +𝑤2 ∗

(

𝑇𝑆
)2 +𝑤3 ∗ (max _𝑑𝑣)−2

[86] 𝐶𝑜𝑠𝑡 = 𝑤1 ∗ 𝑀𝑃 +𝑤2 ∗
(

∫ 𝑡 |𝑒(𝑡)| 𝑑𝑡
)

+𝑤3 ∗ 𝑇𝑆 +𝑤4 ∗ 𝐸𝑆𝑆

[82] 𝐶𝑜𝑠𝑡 = 𝑤1 ∗ 𝑀𝑃 +𝑤2 ∗ 𝑇𝑅 +𝑤3 ∗ 𝑇𝑆 +𝑤4 ∗ 𝐸𝑆𝑆

[77,112] 𝐶𝑜𝑠𝑡 =
(

∫ 𝑡 |𝑒(𝑡)| 𝑑𝑡
)

+
(

𝑤1 ∗ 𝑀𝑃
)

[85] 𝐶𝑜𝑠𝑡 = 𝜇
(

∫ 𝑡𝑒2(𝑡)𝑑𝑡
)

+
(

1 − 𝑒−𝛽
) (

𝑀𝑃 + 𝐸𝑆𝑆
)

+ 𝑒−𝛽
(

𝑇𝑆 − 𝑇𝑅
)

[71,104,108,113–115] 𝐶𝑜𝑠𝑡 =
(

1 − 𝑒−𝛽
) (

𝑀𝑃 + 𝐸𝑆𝑆
)

+ 𝑒−𝛽
(

𝑇𝑆 − 𝑇𝑅
)

[116] 𝐶𝑜𝑠𝑡 = 𝑤1 ∗ 𝑀𝑃 +𝑤2 ∗ 𝑇𝑅 +𝑤3 ∗ 𝑇𝑆
[111] 𝐶𝑜𝑠𝑡 = 𝑤1 ∗ 𝑀𝑃 +𝑤2 ∗ 𝑇𝑅 +𝑤3 ∗ 𝑇𝑆 +𝑤4 ∫ 𝑒(𝑡)𝑑𝑡 +𝑤5 ∫ 𝑢2 (𝑡) 𝑑𝑡

[117] 𝐶𝑜𝑠𝑡 =
[

∫ 𝑡𝑒2(𝑡)𝑑𝑡 ∫ 𝛥𝑢2 (𝑡) 𝑑𝑡 ∫ 𝑡𝑒2𝑙𝑜𝑎𝑑 (𝑡) 𝑑𝑡
]

[118] 𝐶𝑜𝑠𝑡 =
[

𝜔𝑔𝑐 𝑃𝑚
]

[84] 𝐶𝑜𝑠𝑡 = 𝑒−𝛽𝑇𝑆
(1−𝑒−𝛽 )∗(1−𝑇𝑅) + 𝑒−𝛽𝑀𝑃 + 𝐸𝑆𝑆

[103] 𝐶𝑜𝑠𝑡 =
(

1 − 𝑒−𝛽
)

(

𝑀𝑃

𝛼
+ 𝐸𝑆𝑆

)

+ 𝑒−𝛽
(

𝑇𝑆 − 𝑇𝑅
)

I

5.2. Model of AVR system’s components

In this section, the model of the components of the AVR systems is
briefly introduced [104]:

The amplifier, as one of the components of AVR, is modeled using
a gain factor 𝐾𝐴 and a time constant 𝜏𝐴, whose TF is as follows [104]:

𝑉𝑅(𝑠)
𝑉𝐶 (𝑠)

=
𝐾𝐴

1 + 𝜏𝐴𝑆
(20)

The value of the gain 𝐾𝐴 is set to be in the interval of 10 to 400, and
the time constant of the amplifier is set to small values between 0.02
s and 0.1 s so that it is ignored in most cases. In our study, 𝐾𝐴 and 𝜏𝐴
ave been set to 10 and 0.1 s, respectively.

To model the exciter system in its simplest form, by ignoring the
agnetic saturation phenomenon and other nonlinear factors, its TF

an be defined using a time constant 𝜏𝐸 with a small value, and gain
𝐸 as follows [104]:

𝑉𝐸 (𝑠)
𝑉𝑅(𝑠)

=
𝐾𝐸

1 + 𝜏𝐸𝑆
(21)

here the value of 𝐾𝐸 is in the interval of 1 to 200, and the value of
he exciter time constant 𝜏𝐸 is defined between 0.5 s and 1 s. In this
tudy, 𝐾𝐸 and 𝜏𝐸 have been set to 1 and 0.4 s, respectively.

The generator, as another component of the AVR system, can be
odeled using gain 𝐾𝐺 and time constant 𝜏𝐺 as the following equa-

ion [104]:
𝑉𝐹 (𝑠)
𝑉𝐸 (𝑠)

=
𝐾𝐺

1 + 𝜏𝐺𝑆
(22)

hese parameters depend on the (electrical) load so that from full-load
o no-load conditions, 𝐾𝐺 can change between 0.7 and 1, and 𝜏𝐺 has a
ariation between 1 s and 2 s. In our study, 𝐾𝐺 and 𝜏𝐺 have been set
o 1 and 1 s, respectively.
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Eventually, the sensor can be modeled using a simple first-order TF
defined as follows [104]:
𝑉𝑆 (𝑠)
𝑉𝐹 (𝑠)

=
𝐾𝑅

1 + 𝜏𝑅𝑆
(23)

where we normally set the gain 𝐾𝑅 to the constant value of 1, and the
time constant 𝜏𝑅 to a very small value in the range of 0.01 s to 0.06 s.
n our study, 𝐾𝑅 and 𝜏𝑅 have been set to 1 and 0.01 s, respectively.

Using the models described above, the block diagram of an AVR
system with a PID controller can be constructed as shown in Fig. 6.

5.3. Numerical results obtained by optimization methods and performance
comparison

In this study, the transfer function (TF) of the AVR system using the
above-mentioned values of the parameters and without considering the
TF of the PID controller is as follows [71]:
𝑉𝐹 (𝑠)
𝑉𝑟𝑒𝑓 (𝑠)

= 0.1𝑆 + 10
0.0004𝑆4 + 0.0454𝑆3 + 0.555𝑆2 + 1.51𝑆 + 11

(24)

The system response to a unit step input is plotted in Fig. 7. As can
be seen, this AVR system shows an oscillating step response without a
controller, which is not desired in practical systems. The step response
of the studied AVR system has a peak value of 1.5 p.u., a rise time of
0.261 s, a settling time of 6.9834 s, and a maximum steady-state error
of 𝐸SS = 0.0918.

Therefore, this AVR system substantially needs a PID controller with
appropriately tuned coefficients, whose optimal values are computed
using the proposed algorithm in this study.

5.3.1. PID design employing modified DEs
In this section, the proposed versions of DE algorithms are used to

optimally design a PID controller for the AVR system. The diagram of
the AVR system employing DE algorithms for the optimal design of the
PID controller is demonstrated in Fig. 8.
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Fig. 6. Block diagram of an AVR system with a PID controller.
Fig. 7. Terminal voltage step response of an AVR system without a PID controller.
Fig. 8. Block diagram of the AVR system employing DEs for the optimal design of PID controller.
To optimally design this controller using DE algorithms, we consider
he objective function as follows [104]:

𝑜𝑠𝑡 =
(

1 − 𝑒−𝛽
) (

𝑀𝑃 + 𝐸𝑆𝑆
)

+ 𝑒−𝛽
(

𝑇𝑆 − 𝑇𝑅
)

(25)

Minimizing this objective function makes the system output stable
in terms of both transient response and steady-state response. The
lower values of maximum overshoot, rise time, and settling time make
the response of the considered system fast enough with acceptable
oscillations. The coefficient 𝛽 is set to values around 1 in most articles;
however, in this paper, 𝛽 is set to values between 0.1 and 2.

In this study, we have performed 20 independent runs for each algo-
rithm with an iteration number of 100, and a population number of 30.
A summary of the best results obtained by the best algorithm concluded
13
in the previous section, i.e., SCJADE, along with its original version,
i.e., JADE, for various values of 𝛽 ranging from 0.1 to 2 is given in
Table 15. Moreover, the convergence characteristics of both algorithms
for the best-obtained solution are shown in Fig. 9 for different values
of 𝛽. According to the results presented in Table 15, it is clear that
increasing the 𝛽 coefficient reduces the amount of steady-state error
and maximum overshoot, and on the other hand, increases the system
rise time and settling time; thus, it can be concluded that an optimal
value for 𝛽may be considered as 1. Furthermore, the AVR system with
the PID controller optimized by these proposed algorithms has a much
better time response than the original AVR system (Eq. (24)), and all
four control parameters have been significantly reduced, meaning that
the AVR system with the optimally designed PID has a shorter settling
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Fig. 9. The convergence characteristics of the algorithms for the optimal design of PID controller for AVR system.
Table 15
A comparison between the proposed JADE and SCJADE algorithms for the optimal design of PID controller for the AVR system.

𝛽 Algorithm 𝐾𝑃 𝐾𝐼 𝐾𝐷 N T 𝑇𝑅 𝑇𝑆 𝑀𝑃 𝐸𝑆𝑆 Cost

0.1 JADE 0.50641 0.001 0.21337 200 0.26028 0.2852 0.4314 0.0545 0.0401 0.14129
SCJADE 0.49655 0.54171 0.20799 128.9041 1.0459 0.2783 0.4244 0.0248 0.0082 0.13533

0.2 JADE 0.30212 0.001 0.16167 158.7075 0.42877 0.3117 0.4749 0.0 0.1758 0.16545
SCJADE 0.48231 0.001 0.21483 155.5519 0.23492 0.2722 0.4087 0.0064 0.0130 0.11525

0.4 JADE 0.4779 0.0018692 0.21493 200 0.30674 0.2714 0.4075 0.0014 0.0175 0.097494
SCJADE 0.47888 0.001 0.21874 122.9127 0.18781 0.2679 0.4021 0.0022 0.0168 0.096219

0.6 JADE 0.4922 0.51544 0.18136 200 1.9518 0.3040 0.4660 0.0258 0.0074 0.10385
SCJADE 0.4776 0.001 0.22083 189.9675 0.29077 0.2660 0.3992 0.0015 0.0174 0.081617

0.8 JADE 0.47531 0.001 0.20925 200 0.28824 0.2845 0.4304 0.0163 0.0025 0.075934
SCJADE 0.47556 0.010883 0.21729 155.5248 0.23975 0.2709 0.4081 5.5e−04 0.0154 0.070476

1 JADE 0.50245 0.22881 0.20226 45.2717 0.09611 0.2891 0.4388 0.0109 0.0018 0.063026
SCJADE 0.46092 0.007824 0.20957 95.8451 0.14064 0.2867 0.4375 0.0073 0.0011 0.060779

1.2 JADE 0.48373 0.33097 0.17486 63.5694 0.21274 0.3283 0.5083 0.0053 5.7e−04 0.058342
SCJADE 0.47305 0.074305 0.20254 148.3506 0.23859 0.2936 0.4511 0.0029 0.0026 0.051286

1.4 JADE 0.46357 0.37206 0.151 144.7177 1.62 0.3523 0.5496 0.0040 8.30e−04 0.052276
SCJADE 0.46848 0.10511 0.19645 92.2368 0.15438 0.3035 0.4713 8.3e−04 6.35e−04 0.042484

(continued on next page)
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Table 15 (continued).

𝛽 Algorithm 𝐾𝑃 𝐾𝐼 𝐾𝐷 N T 𝑇𝑅 𝑇𝑆 𝑀𝑃 𝐸𝑆𝑆 Cost

1.6 JADE 0.47924 0.23657 0.18616 108.3171 0.24465 0.3150 0.4888 0.0011 0.0014 0.037144
SCJADE 0.44369 0.028777 0.19861 198.6772 0.2987 0.3041 0.4720 4.95e−4 5.31e−04 0.034722

1.8 JADE 0.47606 0.34514 0.16521 150.6778 0.76759 0.3418 0.5360 0.0 0.0010 0.032972
SCJADE 0.47791 0.32631 0.17342 115.243 0.41843 0.3318 0.5192 0.0 7.72e−04 0.031624

2 JADE 0.4443 0.36236 0.14596 135.3583 1.946 0.3632 0.5775 0.0 1.25e−04 0.029109
SCJADE 0.47541 0.25743 0.1798 124.5152 0.3018 0.3253 0.5094 0.0 6.1e−04 0.02544
Fig. 10. Terminal voltage step response of an AVR system with optimized PID controller using JADE and SCJADE algorithms.
nd rise time with smaller values of maximum overshoot and a steady-
tate error compared to the AVR system without a controller. Overall,
y comparing the results obtained by SCJADE and JADE algorithms,
e find that the proposed modifications to the standard DE algorithm,
espite their simplicity, have been very effective.

The step response of the terminal voltage of the AVR system for
he optimal coefficients, presented in Table 15, is shown in Fig. 10
or changing values of 𝛽 from 0.1 to 2. By comparing these responses
ith those obtained for the AVR system without a controller, depicted

n Fig. 7, the effect of the optimal design of the PID controller on
mproving the performance of the AVR system is clearly observed.
s seen, the oscillations and steady-state error have been drastically
educed; and even for some cases, the overshoot value has been reduced
o zero, which may be the important features of the optimal response
e have been looking for.
15
6. Conclusions

This paper proposes a self-competitive control strategy for improv-
ing different variants of DE algorithms without imposing any additional
computational burden on the DE algorithm. The proposed strategy
includes employing a competitive control parameter to the mutation
operator of the original variants of the DE algorithm. In order to
investigate the effectiveness of the proposed strategy, the improved
and original variants of the DE algorithms were used for solving 25
real parameter test functions and also optimal tuning of PID controller
for an AVR system. Identical conditions were used for each algorithm
and its improved version. Two non-parametric statistical tests, i.e., the
Friedman rank test and the Wilcoxon signed-rank test, were used for

assessing the rank and significance of the proposed improved variants
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of the DE algorithm. The extensive simulations and comparisons be-
tween the optimal results of 25 real parameter test functions and the
optimal design of the AVR system prove the efficiency of the proposed
self-competitive strategy in improving different variants of DE.

It is possible to utilize improved DE algorithms in future studies for
solving different real-world problems. In recent years, a large number
of evolutionary algorithms have been presented. The performance of
the proposed self-competitive strategy for these algorithms can be
investigated. Also, the performance of this strategy can be investigated
on the hybridizations of DE and particle swarm optimization algo-
rithms. Furthermore, the performance of the proposed strategy can be
examined for multi-objective DE algorithms.
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