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A B S T R A C T   

In modern industry, the quality of maintenance directly influences equipment’s operational uptime and effi-
ciency. Hence, based on monitoring the condition of the machinery, predictive maintenance can minimize 
machine downtime and potential losses. Throughout the field, machine learning (ML) methods have become 
noteworthy for predicting failures before they occur. However, the efficacy of the predictive maintenance 
strategy relies on selecting the appropriate data processing method and ML model. Existing surveys do not 
comprehensively inform users or evaluate the quality of the monitoring systems proposed. Hence, this survey 
reviews the recent literature on ML-driven condition monitoring systems that have been beneficial in many cases. 
Furthermore, in the reviewed literature, we provide an insight into the underlying findings on successful, 
intelligent condition monitoring systems. It is prudent to consider all factors when narrowing the search for the 
most effective model for a particular task. Therefore, the tradeoff between task constraints and the performance 
of each diagnostic technique are quantitively and comparatively evaluated to obtain the given problem’s optimal 
solution.   

1. Introduction 

Production plants are expected to run twenty-four hours a day to 
meet market demand. Unexpected equipment breakdowns cause 
tremendous economic stresses through significant process downtime. 
Most companies require that these interruptions are anticipated in 
advance to take the necessary precautions before stoppages occur un-
expectedly. A non-intrusive procedure for tracking and detecting po-
tential faults in systems is obligatory for mechanical and electrical 
devices. The manufacturing industry has reported a considerable in-
crease in the frequency of accidents due to poor and dangerous main-
tenance practices (Rao, 1998). Every year, industry in the U.S. spends 
approximately $200 billion on maintaining plant equipment and facil-
ities while poor maintenance causes losses of up to $60 billion (Mobley, 
2002). As a solution, there are three traditional maintenance strategies 
(Tavner et al., 2020):  

1. Breakdown maintenance.  
2. Planned maintenance.  
3. Condition-based maintenance or predictive maintenance. 

Method (i) runs the equipment until it breaks, then replaces it. 
Method (ii) applies periodical maintenance at regular intervals with or 
without machinery monitoring. The final method (iii) proposes moni-
toring machinery’s health, and it suggests applying the proper mainte-
nance based on the identified diagnosis. Such diagnostic techniques 
implicitly yield higher plant efficiency, and reduced replacement 
expenditure and financial losses caused by unexpected breakdowns. 
According to Davies’s market research, the outcome of predictive 
maintenance was remarkably rewarding for the British market during 
the’90s (A. Davies, 1998). 

Predictive maintenance (PdM) or condition-based monitoring is an 
advanced diagnostic technique to reveal the operating machinery faults 
in their incipient phase before any breakdowns occur. Therefore, 
required maintenance can be done by analyzing the equipment’s sensor 
signals. In a production scenario, this intelligent monitoring procedure 
can be applied either directly (offline) or indirectly (online) (Serin et al., 
2020). The offline monitoring strategy conducts machine-aided periodic 
onsite inspection that requires operations to be interrupted. Conversely, 
online monitoring continuously checks the equipment through sensors 
during operations. PdM techniques can be categorized into two 
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strategies: model-based or data-driven (Jaber, 2017a). The model-based 
approaches build a mathematical model of the system based on empir-
ical data and regard any deterministic change between the output of the 
actual and the mathematical system as indicating a fault (Windmann 
et al., 2015). However, the application of model-based approaches is 
impractical in real-life settings and is only possible within a specific set 
of conditions or a controlled environment (Jaber, 2017a; Wong et al., 
2020). A data-driven strategy uses intelligent models to recognize fault 
indicators from machinery’s lifecycle data (W. Zhang et al., 2019). Ac-
cording to a recent report, machine learning (ML) techniques are 
selected as an intelligent model for PdM (Lin et al, 2019). In Fig. 1, we 
visualized a pipeline workflow of a complete PdM with an ML model. 
The explanation of each process mainly belongs to T. Marwala (Mar-
wala, 2012; Tavner et al., 2020). 

Data acquisition step converts, amplifies, corrects the outputs from 
multiple sensors, and finally stores them in a computer. Sensors are 
designed to convert the physical environmental inputs into electrical 
signals. Physical characteristics of the industrial asset are acquired uti-
lizing sensors installed on the equipment. Here are the typical sensor 
measurements in PdM: vibration, acoustic emission, strain, temperature, 
and current (Liton Hossain et al., 2018). The robustness and reliability of 
the diagnosis depend on the quality of the measured data. According to 
studies on sensor implementation techniques, it has been proven that a 
suitable sensor placement strategy is crucial in real-world applications 
where candidate sensor locations are ranked (Gao et al., 2006). Tradi-
tionally, to carry out data acquisition tasks in real-world applications, a 
data acquisition instrument (e.g., an accelerometer) is used to acquire 
the data from the equipment (T M et al., 2019). At the next step, Analog 
to Digital conversion, correction, and amplification of data are typical 
follow-up processes depending on the signal type (Marwala, 2012). 
Finally, the processed data are stored in a storage device. 

Data processing step is employed to convert raw signals to a useful 
shape, where the trends and patterns can be easily identified (Stacho-
wiak et al., 2005). Accuracy of the decision algorithm is highly depen-
dent on the quality of the input data. Therefore, feature extraction and 
selection methods are standard approaches to achieve optimal data 
vectors. Feature extraction is responsible for reducing dimensions, 
handling missing values, and correcting irregularities in the acquired 
data. Feature selection reduces the extracted features by removing the 
input vectors’ redundant attributes. This way, the ML model can di-
agnose without being exposed to any deceptive or false data. 

Condition Prognosis and Diagnosis step is responsible for identifying 
and classifying the fault using ML models. According to T. Marwala, the 
ideal procedure for estimating the machine’s well-being is subdivided 
into five stages (Marwala, 2012). Initially, the processed data are 
employed to train the intelligent algorithm that performs fault detection. 
Later, in the fault classification phase, more information is extracted from 
the physical defect, including the nature, extent, and type of the failure. 
The next step is to identify the fault location in the tool. Fault quantifi-
cation is the next stage where the detected fault’s magnitude is estimated 
and quantified. The final stage is to predict the remaining life of the 
machinery that is being monitored. These are the ideal steps for condi-
tion monitoring, yet the procedure varies depending on the specific 

requirements and the system’s nature. Most of the studies seek only one 
or two of the above features. 

This paper presents a survey on condition monitoring using ML 
methods. The objective is to summarize and review recent developments 
in this field. The following databases were used to perform a literature 
search: Web of Science, Engineering Village, Springer, and Google 
Scholar served as the main databases. The article topics were filtered 
based on the following keyword index {condition monitoring} OR {fault 
detection} OR {predictive maintenance}. Further keyword filtering is 
applied to find the relevant ML-driven PdM studies published between 
2009 and 2021. This survey paper’s remaining structure is outlined as 
follows: Section 2 describes common data processing methods for con-
verting raw signals into a meaningful data vector. Section 3 demon-
strates the diagnostic and prognostic ML techniques that portray 
promising results for condition monitoring. Section 4 highlights and 
interprets the underlying findings of the successful methods reviewed in 
the previous sections. Last, Section 5 summarizes each paper surveyed 
based on scholarly reviews. In summary, this survey provides more in-
sights into the ML methods compared to other survey papers in this field, 
and a discussion in-depth concludes our underlying findings on the 
reviewed literature. 

2. Data processing 

2.1. Feature extraction techniques 

Feature extraction reduces the dimension of the initial input data 
into a feature set of a (desirably) lower dimension that contains most of 
the vital information of the original data. An ML system’s robustness 
depends on the quality of the extracted features and the monitoring 
system’s reliability. Unfortunately, not all features are meaningful or 
possess relevant information about a machine’s condition. Hence, 
removing redundant and irrelevant features is imperative. After a signal 
is captured, the characteristics and fault indicating features are extrac-
ted utilizing statistical-based signal processing techniques. In signal 
processing, the feature extraction methods are categorized into five 
groups: the time domain, frequency domain, and time-frequency domain, 
model-based information extraction, and model-based information extrac-
tion (Jaber, 2017b). 

Time domain refers to a time series of machine signals that are not 
transformed into another domain (e.g., frequency domain). The goal is 
to detect the original signal’s statistical characteristics by exploiting the 
series of discrete data. The standard forms are considered to be the peak- 
to-valley ratio, root-mean-square (RMS), mean, area under the curve, 
slope, shape factor, variance, entropy, and the crest factor (Caesarendra 
et al., 2013). Time domain analysis is one of the most employed tech-
niques in PdM models. Kim et al. employed RMS to extract abnormal 
patterns from raw vibration signals, where extracted signals increased 
the accuracy of localized defect detection in low-speed bearings (Kim 
et al., 2007). In the presence of non-stationary signals, more complicated 
statistical processes (i.e., kurtosis and skewness) may provide potential 
solutions by analyzing sharpness or spike patterns (Caesarendra, 2016). 
Anomaly patterns in the system distort the characteristics and 

Fig. 1. Sample ML-driven PdM model.  

O. Surucu et al.                                                                                                                                                                                                                                 



Expert Systems With Applications 221 (2023) 119738

3

probability distribution function (PDF) of the signal (Caesarendra, 
2016). These two features observe the PDF of the signal to identify any 
changes in the distribution function. Kurtosis measures the relative 
flatness or spikiness of a signal compared to its non-faulty state (Mar-
wala, 2012). It has proven its usefulness for identifying spontaneous 
transitions within vibration signals, while the distribution shape of 
signals is represented through the skewness parameter (Z. Wang et al., 
2001). In PDF, a normal distribution equals zero skewness, and 
depending on the asymmetry of the distribution the skewness value 
moves towards higher negative or positive values. The study on 
discriminating motor faults has shown that fault detection can be 
significantly enhanced by utilizing statistical process control techniques 
combined with time-domain analysis (Tseng et al., 2014). 

Frequency-domain shows how the signal’s amplitude is distributed 
over a range of frequencies. In some cases (e.g., high damping), relevant 
information may be hidden in the frequency domain rather than the 
time domain (Marwala, 2012). Therefore, Fourier transform (FT) is 
essential to represent the signal in a frequency domain using sine waves. 
This representation provides an alternative perspective where the 
magnitude of the signals within the given frequency band can be 
monitored. Among FTs, the discrete Fourier transform (DTF) is consid-
ered the fastest (Gray & Goodman, 1995), yet a fast Fourier transform 
(FFT) is required to compute the DTF (Su & Chong, 2007). The industry 
has been applying the FFT to analyze many machinery signals: the in-
duction motor current (Yoo, 2019), the machine vibration of rotating 
machinery (Atoui et al., 2013), U-phase load current of the stator 
(Pandarakone et al., 2018b). FFT is capable of performing stationary 
analysis, however when it is alone, it cannot clearly display the 
nonstationary signals of faulty components, as shown in Fig. 2 (Liton 
Hossain et al., 2018)(H. Li et al., 2009). The reason behind is non- 
stationary signals have a tendency of containing random frequency 
components compared to stationary signals. There are numerous ap-
proaches to overcome this critical problem. After implementing FFT, 
non-stationary signals can be analyzed by expressing them as constants 
using synchronous sampling methods where the signals are assessed 
based on a sample clock (Pepper, 2000). Another approach is to use the 
frequency response function (FRF), which is derived using the response 
to excitation ratio in the frequency domain (Marwala, 2000). Similar to 
time-domain analysis, to distinguish any indicator of non-stationary 
data, the frequency domain uses similar statistical parameters, known 
as statistical frequency-domain features or frequency parameter indices. The 
statistical features exhibit a different reaction when the frequency ele-
ments of the system change. Typical frequency parameter indices are 
described as follows: frequency center (FC), root mean square frequency 
(RMSF), and root variance frequency (RVF) (Niu, 2017). The RMSF and 

FC show the position variation of main frequencies, whereas the RVF 
indicates the power spectrum convergence, which is known as power 
distribution with the frequency. Similar to remaining time domain 
analysis, frequency signals can be extracted using spectral skewness 
(SS), spectral kurtosis (SK), spectral entropy, and Shannon’s entropy 
(Sandoval et al., 2019). 

Time-frequency domain represents the time periods at which various 
signal frequencies are more dominant. For instance, damage caused by 
fatigue failure can cause non-stationary signals in the sensor signal. In 
such cases, it can be beneficial to analyze the behaviour of frequency 
components in the given time period (Marwala, 2000). In frequency 
domain analysis, the FT is used to determine the signal’s amplitudes and 
frequencies, yet it is not specified at which intervals the corresponding 
amplitude occurs (Layer & Tomczyk, 2015). Thus, a domain holding 
both time and frequency is required while analyzing non-stationary 
signals. Various approaches have been derived for analyzing the time- 
frequency domain in fault detection; these are Wavelet Transform 
(WT), Short-Time Fourier Transform (STFT), and Wigner-Ville Distri-
bution (WVD) (Wigner, 1997). These methods output the two- 
dimensional functions of time and frequency, known as the time-fre-
quency domain. STFT divides the non-stationary signals into small win-
dows of equal time and uses FFT to decompose the original signals at 
predetermined intervals. Cocconcelli et al. implemented the STFT as a 
feature extraction method for detecting damage in ball bearings (Coc-
concelli et al., 2012), where an abnormal behaviour in sum of the STFT 
coefficients is regarded as an anomaly or a fault indicator. However, 
Layer et al. remark that selecting an appropriate STFT window width 
have been a problem, and an incorrect selection may result in blurred 
time-frequency data (Layer & Tomczyk, 2015). In wavelet transform 
(WT), this problem has been overcome by replacing the time window 
with a wavelet function. This approach exploits short windows at high 
frequencies and long windows at low frequencies. The WT method is 
frequently used in pattern recognition of discontinuous and unsteady 
frequency domain data (Daubechies, 1990). Lastly, WVD is another 
powerful method used in determining the time-frequency domain of 
nonstationary instabilities. It provides high-resolution representations 
in both the time and frequency domains. Unlike STFT and WT, this 
method represents the time-frequency distributions in a two- 
dimensional plane (image or matrix form) (Debnath & Shah, 2015). 
Any changes in energy distribution at the location affect the signal’s 
amplitude. This phenomenon can be seen through lighter shades in the 
WVD image (Singru et al., 2018). In detecting physical damage to the 
scrutinized part, a joint time-frequency analysis technique called WVD 
has been derived for non-stationary signals (H. Li et al., 2006). 

Model-based information extraction refers to the estimation of un-
measurable state variables in a dynamic system. Some variables cannot 
be measured directly in real-world applications but can be predicted 
utilizing several estimation techniques (Nursalam, 2016 & Fallis, 2013). 
In some cases, the instrumentation system cannot directly access 
fundamental quantities that have immense importance for fault detec-
tion. In such cases, the “inferential estimation” approach should esti-
mate the essential measurements. The traditional approach is using the 
Kalman Filter (KF) to predict linear dynamic systems, yet the nonlinear 
systems are generally estimated using a derivation of KF: the unscented 
KF (UKF) and extended KF (EKF) (Grimble & Majecki, 2020). Classical 
KF is known as a “state observer,” which provides a recursive solution to 
the linear filtering estimation problem based on the state-space equation 
of linear dynamical systems. For example, due to measurement and 
transmission errors, the actual state of power systems is challenging to 
measure. Liu et al. implemented Kalman filter (KF) extensions (i.e., EKF 
and UKF) to predict the dynamic state of power systems (Liu et al., 
2020). Another example of an immeasurable signal is the permanent 
magnet temperature, which is critical for safely operating high speed- 
rotors. Since the magnets spin during operation, measuring and trans-
mitting temperature data is difficult. Hence, KF is engaged to estimate 
the permanent magnet’s temperature using other machine signals (Feng 

Fig. 2. Time domain and FTT analysis of non-stationary vibration signals of a 
faulty gear. (a) Time-domain (b) FFT. Adapted from (H. Li et al., 2009). 
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et al., 2018). As mentioned, KF based strategies are compelling; how-
ever, depending on the application, they lack robustness when model-
ling errors, disturbances, and uncertainties (Gadsden, 2011). Recently, 
novel estimation strategies, the sliding innovation filter (SIF), and 
extended SIF (ESIF) outperformed the KF-based methods when there 
were uncertainties and disturbances (Gadsden & AlShabi, 2020). Addi-
tional to KF, this novel state estimator benefits from the switching term, 
which allows the predictions to slide along a decision boundary layer. 

Dimensionality-reduction refers to reducing the dimensions of the 
input data vector by transforming it into a lower-dimensional space 
without disrupting its original form. Using high-dimensional data is 
complicated since interpretation is problematic, storage is expensive, 
and analysis is complicated. Therefore, a lower-dimensional structure 
allows us to work with a more compact representation of the data. In this 
feature extraction method, the objective is to reduce the dataset’s 
dimensionality to improve the learning model’s efficiency by trans-
forming the input dataset. According to a review on monitoring large- 
scale HVAC systems, the most common methods for data reduction are 
principal component analysis (PCA) and linear discriminant analysis 
(LDA) (Mirnaghi & Haghighat, 2020). PCA is a technique for com-
pressing high-dimensional data into independent orthogonal compo-
nents without losing the input vector’s correlation. The method utilizes 
eigenvalues and eigenvectors to perform orthogonal projection onto the 
principal subspace (Deisenroth et al., 2020). In PdM applications, PCA 
can be applied to a wide range of types of machinery: Induction motor 
(Ghate & Dudul, 2010), stirred tank heater (Amin et al., 2019), and 
hydraulic system (P. Guo et al., 2019). Another common approach for 
dimensionality-reduction is LDA. The method aims to determine a 
collection of vectors that best discriminate among classes. Unlike PCA, 
LDA aims to separate each class of reduced data by utilizing the data 
labels. This popular method has proven its applicability in induction 
motors (Jung et al., 2010), transmission lines (A novel transmission line 
relaying scheme for fault detection and classification using wavelet 
transform and linear discriminant analysis, 2015), hydraulic systems 
(Helwig et al., 2015), and many more applications throughout the pre-
dictive maintenance industry. 

2.2. Feature selection techniques 

The accuracy of a machine learning model is highly dependent on the 
quality of the input data. Redundant attributes must be filtered after 
feature extraction because, a large dataset with numerous attributes 
introduces inefficient complexity to the ML model, which ultimately 
leads to overfitting and less accurate results. Besides, reducing the 
number of features provides less computational and memory re-
quirements. It is worthwhile to mention that none of these procedures 
requires data transformation, unlike feature extraction. Selection tech-
niques are divided into three approaches: wrapper, filter, and embedded 
(Kumar, 2014). 

Filter methods rank each data vector, independently of the ML model. 
In a case study, the minimum redundancy maximum relevance (mRMR) 
method was proposed and tested to use for tool condition monitoring 
(Fernandes et al., 2019). The algorithm reduced the feature space from 
47 to 32 by ranking the features by their relevance to the objective and 
penalizing those that are redundant. Maximum relevance means finding 
the subsets of features that best represent the target class, and minimum 
redundancy refers to finding the n most distinct features in the feature 
set. Another common filter method is Fisher’s discriminant ratio (FDR). 
FDR quantifies the discriminatory power of individual features. Thus, 
useful features can be selected based on their FDR scores. However, the 
method can also be used to gain insights into the input data. Bhat et al. 
analyzed input signals’ behaviour by examining the FDR score’s sensi-
tivity to different conditions (Bhat et al., 2016). For instance, they 
discovered that some features’ FDR score dropped significantly when a 
noise was introduced. As a solution, they picked the most stable features 
against external factors, which significantly increased the classification 

rate. 
Wrapper methods measure the relative usefulness of features by 

examining the learning algorithm’s performance. For example, genetic 
algorithms (GA) are implemented as wrappers in the condition moni-
toring applications to find the optimal group from the input dataset. For 
instance, Baraldi et al. used GA to find the optimal feature subset among 
46 nuclear power plant sensor signals (Baraldi et al., 2011). According to 
the results, the learning algorithm had a ten times improved perfor-
mance with the GA’s selected feature subset. 

Embedded methods select the best features while the learning algo-
rithm’ executes. Usually, these methods are integrated into the learning 
algorithm. A typical example is the random forest method, which is 
detailly explained in section 3: ensemble learning (Jović et al., 2015). 

3. Machine learning methods for condition monitoring 

ML is a branch of artificial intelligence specialized in building al-
gorithms that learn from data and continuously improve its performance 
over time without human intervention (H. Wang et al., 2009). In 2020, 
trend analysis for the PdM industry reported that the recent trend 
throughout the field is toward ML-driven solutions (Çinar et al., 2020). 
In the report, the authors emphasized that the ML is the fundamental 
element in achieving the following advancements: Stoppage reduction, 
maintenance cost reduction, spare-part life increases, operator safety, 
increased production, and repair verification. In order to analyze ML 
models, we divided them into four subsections: classification, clustering, 
regression, and ensemble. In each subsection, we provided a brief 
explanation of ML-driven PdM models, the dataset, and the experi-
mental results. 

3.1. Classification analysis 

Classification analysis is an ML method for predicting the class value 
of analyzed data using prior observations. This approach can be super-
vised or unsupervised (Stetco et al., 2019). Classification is a funda-
mental task in the machine fault identification and classification 
framework. In condition monitoring, fault detection can be referred to as 
binary classification, either as a faulty or healthy case. On the other 
hand, the fault classification can be regarded as a multi-class classifi-
cation where the input is to be classified into non-overlapping multiple 
classes (e.g., degree of the fault). There are several standard measure-
ment techniques (performance metrics) to evaluate the model’s perfor-
mance. If the model uses a classification-based strategy for diagnostic 
purposes, here are the typical metrics: accuracy, recall, precision, recall, 
specificity, and F1 (Sokolova & Lapalme, 2009). 

3.1.1. Multilayer perceptron 
Artificial Neural Networks (ANN) are deep learning computer algo-

rithms that mimic the working principles of the human brain (Shan-
muganathan, 2016). The processing elements, known as neurons, 
consist of weights and biases. Each neuron is designed to transmit a 
signal to other neurons like the synapses in a human brain. The network 
structure consists of an arbitrary number of neurons in three main types 
of layers: the input layer, the hidden layers, and the output layer. ANN 
architecture is subdivided into two branches: feed-forward neural net-
works and recurrent or feedback neural networks. The multilayer per-
ceptron (MLP) is one of the simplest supervised learning methods among 
the feed-forward neural networks, transferring signals in only one di-
rection (forward) from the input layer, through the hidden layers, to the 
output layer (Gardner & Dorling, 1998). The network has a densely 
linked formation, where each neuron is interconnected between the 
entire forward layer. Each neuron is fired by an assigned activation 
function. This function acts as a mathematical “gate” between the input 
neuron and the output going to the next layer as a continuous function. 
In summary, the model is capable of learning complex representations 
through activation functions. Due to its simplicity, a typical choice for an 
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activation function is the ReLU (rectified linear unit); however, the in-
dustry uses other activation functions in many scenarios: Sigmoid, 
Softmax, Leaky ReLU, PReLU (X.-D. Zhang, 2020). As the last step, the 
model learns the existing data pattern using the backpropagation (BP) 
algorithm. The error between the desired output and the network’s 
output is propagated backward by varying the network’s weights and 
biases (Du & Swamy, 2014). Thus, the learning algorithm is capable of 
improving its accuracy in pattern recognition. In the past, this algorithm 
has been utilized to perform diagnostic and prognostic predictions for 
many types of industrical equipment. 

In 2011, an MLP structure was implemented to expose the potential 
physical damage on the bearing of the electric motor based on vibration 
data (Vijay et al., 2011). In a laboratory environment, the dataset is 
acquired by recording the vibration signals of faulty and healthy bear-
ings. The MLP had three main layers: an input (10 neurons), one hidden, 
and an output. The neurons of which the input and hidden layer consist 
were fired by the sigmoid activation function. The dataset was split into 
training (80%) and testing (20%) sets. The hidden layer architecture was 
detected by varying the number of neurons in the hidden layer from 5 to 
25. After a qualitative analysis, the lowest MSE results were achieved 
with 16 neurons in the hidden layer. After completing the training, this 
MLP achieved a 100% fault identification accuracy on both the testing 
and training sets (Vijay et al., 2011). In 2010, Ghate et al. proposed an 
optimal MLP neural network classifier for fault detection in a three- 
phase induction motor (Ghate & Dudul, 2010). The stator currents 
were processed using statistical parameters: RMSE, the maximum and 
minimum values, skewness, and the kurtosis coefficients. Later, PCA 
reduced the number of features from 13 to 5. The objective of this study 
was to detect if the given AC currents are faulty or healthy. The authors 
selected three different machine learning models to perform prediction: 
MLP, PCA-MLP, and neural network with self-organizing map (SOM- 
NN). Due to the results, the dimensionality reduction process (i.e., PCA) 
increased the average fault detection accuracy from 95.33% to 97.25% 
for SOM-NN, and MLP’s accuracy only was boosted from 98.03% to 
98.2%. When a uniform or gaussian noise was introduced to the AC 
currents, PCA significantly increased the robustness of both models 
(PCA-MLP and PCA-SOM-NN). In 2020, health indicators of the power 
transmission line were extracted from three-phase voltage and current 
simulations by utilizing an MLP classifier (Leh et al., 2020). The simu-
lated data contained six input vectors including three-phase voltage and 
current values. The ANN design for fault detection consisted of an output 
layer with six neurons, a hidden layer with 14 neurons, and one output 
layer with one neuron, where the neurons were activated through tan 
sigmoid and ReLU, respectively. The fault classification design had one 
hidden layer with six neurons and four neurons in the output layer for 
individual faults. Due to the confusion matrix, the model detected a fault 
with an accuracy of 100%. In terms of fault classification, the developed 
model categorized the test set into four different states with an accuracy 
of 70% and an RMSE of 0.44 (Leh et al., 2020). In 2020, the stator 
winding condition was empirically monitored with an efficiently 
modelled MLP (Verma et al., 2020b). The stator inter-turn fault was 
manually generated for data collection by taping the winding at 25%, 
50%, and 75%. Three currents for individual phases were statistically 
processed using skewness, kurtosis, median, mean in the time domain. 
During the modelling phase, various performance characteristics of 
eleven neural network models such as the number of features, number of 
epoch runs, training time, activation functions, learning rate, model loss 
functions, and accuracy concerning each model are quantified. Only a 
few models could be able to classify healthy motors. The neural network 
with raw data scored 94.73% accuracy, whereas the neural network 
with statistical featured data had 98.43% (Verma et al., 2020b). 

A supervised ML model’s performance highly depends on the quality 
and quantity of the input vector. In real-world applications, labelling the 
dataset is a challenging and costly operation. In response to that prob-
lem, A. Caraddu et al. proposed a PdM model powered by a weakly 
supervised learning strategy for marine dual-fuel engines (Coraddu 

et al., 2021). In this study, the primary consideration was to train ML 
models based on their proposed weakly learning technique so that the 
ML models would not suffer when the number of labels is insufficient. 
This way, the cost of gathering labelled data would be reduced. In this 
experiment, the authors relied on a Digital Twin of the dual-fuel engine 
or on anomaly detection algorithms; they compared them against state- 
of-the-art fully supervised ML models (i.e., NN, Random Forest, kernel 
method, OC-SVM, GKNN). ML models were run in three scenarios: fully 
supervised performance estimation, fully supervised health status esti-
mation and weakly supervised health status estimation. Due to the re-
sults, the proposed weakly supervised learning method maintained its 
robustness, even though the labelled data was significantly reduced. 

3.1.2. Radial basis function neural network 
The Radial Basis Function neural network (RBFNN) is from the 

feedforward neural network family and is used as a supervised classifier 
throughout the monitoring industry. The RBFNN has a similar structure 
to MLP with one hidden layer, which applies the radial basis function 
(RBF) as an activation function to produce a hidden space with higher 
dimensions (Alves et al., 2018; Mohammadi et al., 2017). Similar to 
ANN, when training, the model typically utilizes two different steps: 
adjusting the kernel function’s parameters and optimizing the network’s 
weights and biases (Niros & Tsekouras, 2016). After the tuning process, 
this network becomes ready to solve classification or regression tasks, 
and one can easily implement the RBFNN algorithm to fault classifica-
tion or identification tasks. Fig. 3 illustrates the network structure of an 
RBFNN model. 

In 2010, the RBFNN model was implemented as a fault detection 
technique to identify cracks or wear on gears by utilizing the vibration 
data (H. Li et al., 2009). First, during the speed-up process, the vibration 
signals were sampled from each healthy and faulty gear. According to 
their qualitative analysis, the order cepstrum had the most notable re-
action to the non-stationary signal compared to the FFT, angular 
resampling technique, and conventional order spectrum. Thus, the order 
cepstrum method was selected among the remaining methods to elimi-
nate the spectral smearing and modulation effects due to variations in 
shaft speed. At the first training stage, the model utilized K-means 
clustering to determine the Gaussian RBF parameters (width and cen-
ter). In the second training stage, the weights were tuned using a cost 
function, and the model was tested for each gear state (healthy, cracked, 
worn). According to the reported results, the RBFNN’s success rate for 
each condition was 100% (H. Li et al., 2009). In 2020, the Welch-RBFNN 
(W-RBFNN) model was proposed for identifying three different fault 
types in an induction motor’s bearings (Jin et al., 2020). In order to 
further analyze the effectiveness of the Welch step, they visualized the 
data vector after each preprocessing step, which can be found in Fig. 4. 
The dataset was formed by collecting vibration data from a motor-driven 
mechanical system. Fig. 4(a) visualizes the raw vibration data with their 

Fig. 3. A sample RBFNN architecture for bearing fault detection. (). 
Adapted from Gs et al., 2011 
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labels. Later, the raw data were transformed using the Welch power 
spectrum, where the signals were preliminarily separated after the 
transformation, as shown in Fig. 4(b). Fig. 4(c) displays the selected 
center vectors after training the model. In the last section, Fig. 4(d) vi-
sualizes the output of the W-RBFNN model after being trained. In order 
to boost the accuracy, Z. Jin et al. used data augmentation to analyze the 
performance of the proposed model against the training dataset volume. 
After training the model with datasets of 90 and 12,000 samples, two 
distinct accuracies were achieved (98.61% and 100%). Other methods 
MLP, SVM, and WD-CNN were compared using noisy signals to validate 
the robustness of the model. In the presence of high noise, the W- 
RBFNN’s accuracy decreased to 79.5%, whereas the WD-CNN and MLP 
accuracy declined respectively from 99.8% to 66.95% and from 99.8% 
to 31.25%. The RBFNN with the Welch method (W-RBFNN) out-
performed the others under different noisy environments similar to 
those in real-world industrial production (Jin et al., 2020). 

3.1.3. Convolutional neural network 
The Convolutional Network or Convolutional Neural Network (CNN) 

is a supervised deep learning method for processing topological datasets 
and was initially inspired by visual cortex (Hubel & Wiesel, 1968). CNN 

is an extension of ANN and contains sparse interactions, which execute 
using a smaller kernel size compared to the input. A standard CNN 
consists of convolution, pooling, and fully connected layers as presented 
in Fig. 5 (Datta, 2020). The convolution layer is the first stage and ex-
tracts features from an input dataset by convolving the input data with 
smaller-sized kernels to produce an activation map (Ajit et al., 2020). 
Hence, a CNN can easily point out local patterns in a dataset, unlike an 
MLP, which learns global patterns. 

In 2020, an experimental study on the condition monitoring of hy-
draulic pumps using a CNN showed promising results in fault classifi-
cation (Sun et al., 2020). In a laboratory, various vibration signals were 
captured from faulty and healthy hydraulic pumps. STFT, WT, and 
Wigner-Will distribution (WWD) transformed the vibration signals into 
time-frequency images that contained rich state information. The CNN 
model included the following features: two kernel sizes (3×3 and 5×5) 
and the mean-pool method. After comparing each model, the WT-CNN 
outperformed the SFT-CNN and WWD-CNN models with an accuracy 
of ~100% by correctly classifying three health states (Sun et al., 2020). 

An alternative approach is using a CNN on a 1-D dataset known as 1- 
D CNN, where the operation was performed on data vectors rather than 
data matrices. Thus, CNN models can analyze the time-series measure-
ments of sensors by exploiting the network’s ability to learn spatial 
correlations. In 2016, to prove this alternative strategy, a highly accu-
rate fault detection-based real-time condition monitoring system using 
the adaptive 1-D CNN was proposed by Eren et al. (Ince et al., 2016). 
Their objective was to prove the efficacy of a simpler CNN architecture. 
A three-phase induction motor’s currents were monitored for the data 
set. Authors stated that the 1-D model did not require major pre-
processing before implementation. Therefore, in the data processing 
stage before training, the three-phase squirrel-cage induction motor’s 
current signals were downsampled by a factor of 8. The model’s struc-
ture had three hidden convolutional layers with 2 MLP layers. As an 
evaluation method, multiple classification performance metrics were 
utilized to verify the model’s applicability by comparing the perfor-
mance of 1-D CNN against the major ML methods in combination with 
various data processing techniques such as WP-MLP, WP-RBFN, WP- 
SVM, FFT-MLP, FFT-RBFN, and FFT-SVM. As stated in the test results, 
the classification metrics were impressive (~97.2% on average), and the 
algorithm was vastly faster than its rival methods (Ince et al., 2016). In 
2020, Mitiche et al. implemented a 1-D CNN to perform fault detection 
for high voltage (HV) electrical assets (Mitiche et al., 2020). The elec-
tromagnetic interference signals were acquired from real-world power 
stations. The signals were extracted using spectrum analysis after 
recording the peak and average power. The model was trained using a 
ten-fold cross-validation method to fine-tune the model and the Adam 
optimizer as the backpropagation method. Two stages were prepared for 
two loss functions: employing the binary cross-entropy loss to overcome 
the binary classification problem and using cross-entropy loss to over-
come the multi-class classification problem. Results show that the 1-D 
CNN achieved higher accuracy with a lower computation cost 
compared to the previously proposed 2-D CNN models. The stage with 
the binary classification task reached an accuracy of 99%, precision of 
99%, recall of 99%, specificity of 99%, and an F1 score of 99%. The 
second stage (multi-class prediction) resulted in the following accuracy 
(90%), precision (~91%), precision (90%), recall (89%), specificity 

Fig. 4. Data states at each stage are visualized by t-distributed stochastic 
neighbor embedding. (). 
Adapted from Jin et al., 2020 

Fig. 5. A general architecture of CNN model.  
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(97%), and F1 score (89%). Later, the model was successfully imple-
mented into an operating power site (Mitiche et al., 2020). 

3.1.4. Autoencoder 
An autoencoder is an ANN used for encoding the given data’s pattern 

and reconstructing it with a minimum of difference. As shown in Fig. 6, 
the encoder structure mainly consists of three structure: the encoder 
stage consists of a set of linear feed-forward filters (i.e., MLP), the 
activation stage provides a nonlinear mapping that transforms the 
encoded coefficients into a range between 0 and 1, and the decoder stage 
reconstructs the input based on mapped values after the activation stage. 
Typically, an error term is assigned to measure the error caused by the 
middle layer. There are several strategies, such as stacked sparse 
autoencoder, denoising autoencoder, adversarial autoencoder, and 
many more for deploying autoencoders into the systems. 

In a stacked sparse autoencoder (SSAE) network, the objective is to 
minimize the reconstruction error by using low-dimensional features. 
The network utilizes the initial layer to transform and compress the 
input signals. In 2020, Ou et al. proposed order analysis and an SSAE to 
monitor the state of milling tools (Ou et al., 2020). In an experimental 
setup, a three-axis CNC machine was used to collect spindle current 
signals. First, the order analysis extracted the order characteristics from 
the raw signals. Later, the SSAE model was constructed, which was 
composed of two hidden layers and a SoftMax classifying layer (output 
layer). Due to the results, the model classified five states with over 99% 
accuracy and a training time of 17 s. On the other hand, the model was 
compared with other conventional ML models: KNN had 84% accuracy, 
random forest’s accuracy was 94%, and support vector machine had 
91% accuracy. 

If the input signals are noisy in a real-world system, then recon-
structing the input data vector becomes difficult. To overcome this 
problem, an approach is to add noise to input vectors but measure the 
reconstruction loss against the denoised input. This is known as a 
denoising autoencoder (DAE). In 2018, a monitoring system based on a 
denoising autoencoder was proposed for wind turbines (Jiang et al., 
2018). A wind turbine model was established to evaluate the proposed 
monitoring technique, and eight sensor measurements were acquired 
from the simulation model. The DAE model’s objective was to encode 
manually corrupted signals, convolute the underlying nonlinear corre-
lations, and reconstruct the original (uncorrupted) input. The proposed 
model consisted of two stages, the encoder, and decoder. To capture the 
local temporal pattern of nonlinear correlations, overlapping sliding 
windows (SW) were applied to the input vector. Subsequently, the SW- 
DAE model regarded the changes in reconstruction error as anomalies or 
faults. After finding the fault, the proposed model isolated the corre-
sponding fault. Next, the most relevant variables strongly related to the 
fault were determined using the reconstruction-based contribution 
approach, where the larger contribution indicates a greater relation to 
the detected fault. The proposed model was tested in a noisy environ-
ment and was compared with other autoencoder models and the PCA 
approach. The proposed model achieved relatively higher accuracy than 
other models for seven of the eight faults. On average, the proposed 
model achieved ~91% accuracy for each fault, and the omission of the 
sliding window decreased the model’s performance to ~83.5% (Jiang 
et al., 2018). 

Another approach is to use an adversarial autoencoder (AAE), which 
utilizes adversarial loss to regularize the network (Makhzani et al., 

2015). Dissimlar to a classical autoencoder structure, the decoder 
function acts as a generative network by learning to convert the prior 
distribution to the data distribution. Between the two stages, the 
discriminator takes the encoder’s output and outputs the probability of 
the data generated by the encoder. During training, the autoencoder 
updates the encoder and decoder to minimize the reconstruction error, 
and the discriminative network distinguishes between the original and 
artificial samples. Thus, the discriminator improves the quality of 
generated data (Makhzani et al., 2015). In 2020, a novel fault detection 
method based on an AAE was proposed (Jian & Zhiyan, 2020). A 
chemical simulation known as the Tennessee Eastman Process was used 
to produce a dataset to benchmark the proposed model’s performance. 
The proposed method included the following steps: first, the AAE model 
was tuned using the training dataset, then the parameters in the encoder 
and decoder computed the anomaly score based on the reconstruction 
error. Later, a threshold with a certain confidence level was introduced 
into the system, where an anomaly score higher than the threshold was 
regarded as the anomaly. The proposed AAE model and an AE model 
were tested to compare their performance in fault detection. According 
to the test run, the AAE model achieved slightly higher accuracy 
compared to the AE model (Jian & Zhiyan, 2020). 

3.1.5. Bayesian network 
The Bayesian network (BN) or Bayesian network classifier (BNC) is 

an unsupervised or supervised tool that presents and observes multi-
variate distributions based on computing the Bayesian inference prob-
ability. BN utilizes an acyclic graphical model to analyze the conditional 
dependencies among desired variables. The acyclic graphs are the maps 
between uncertain observations and certain conclusions. They are key to 
explaining the cause-effect relationship between corresponding vari-
ables. The BN requires parameters that describe the probabilistic re-
lations of each variable to their parents. The model is constructed in 
three steps: determine the dependencies among the variables, predict 
the prior probability distribution, and compute the conditional proba-
bility distribution (Amin et al., 2019). Due to its relational structure, a 
BN model can function despite missing entries since the model knows 
the dependencies among all variables (Heckerman, 2008). In fault 
detection, they are being used to predict the response values (fault la-
bels) of a set of observations. 

In 2020, an unsupervised BNC was integrated as a data-driven 
approach to monitor the condition of railway catenaries (H. Wang 
et al., 2020). The periodic inspections of the Beijing-Guangzhou high- 
speed line were used to form a dataset with 12 features. The input 
vectors were processed by the feature extraction methods of the time- 
domain statistical distributions, as well as the power spectrum density 
and time-frequency representation domains. The BN topology was 
formed based on the physical relationship between the feature sets. 
Fig. 7 shows BN’s structure as a graph, where the relationship between 
all events that are directly or indirectly linked to the status of the cat-
enaries’ condition (SCC). The parameters were configured using 
maximum likelihood estimation using the historical dataset. Later, BN 

Fig. 6. A sample architecture of an autoencoder.  
Fig. 7. Graph structure of the BN for catenary condition monitoring, adapted 
from (H. Wang et al., 2020). 
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parameters were estimated using the historical data, which ultimately 
mapped the probabilistic relationship between the given input and 
desired output. To quantify the SCC, as the last step, a key performance 
indicator (KPI) was obtained by analyzing the probabilistic relationship 
based on historical observations. Due to the results, BNC reduced the 
false alarm rate by up to 66.2% compared with their current practice. 
This approach has proven its robustness by tolerating the noisy input 
data (H. Wang et al., 2020). In 2016, using a similar procedure for BN 
topology formation, the supervised BN classifier (BNC) was used to 
create a probabilistic boundary to decrease the false alarm rate (He 
et al., 2016). The experimental data were taken from a 90-ton water- 
cooled centrifugal chiller of the ASHRAE project 1043-RP. In this case, 
based on the training sample, eight states, including seven faulty con-
ditions and one normal state were selected. The parameters were chosen 
using the prior probabilities and conditional probabilities of the training 
samples. As a novel strategy, He et al. inserted an extra node into the BN, 
which presented an additional cause-effect relation based on site in-
formation (He et al., 2016). Lastly, the probabilistic boundary was 
implemented by introducing a tolerance variable into the system. After 
implementing the additional strategies noted above, the model was 
termed sI-PB-BNC. As reported in the paper, the false alarm rate 
decreased from 22.7% to 4.7% by integrating the BN into the detection 
system (He et al., 2016). 

Although BNC is a traditional classifier, it is not solely suitable for 
dynamic systems. A couple of steps must be introduced to overcome the 
machinery’s dynamic behaviour. The classical BNC has a temporal 
relationship known as STATIS. If the system is dynamic (e.g., a chemical 
process) a dynamic Bayesian network (DBN) must be introduced to 
monitor it. Unlike BN, this dynamic network requires an update in each 
time step, as shown in Fig. 8. The BN can be converted into DBN by the 
following three steps (Amin et al., 2019; Murphy, 2002):  

1) Reshape the BN architecture based on the process dynamics. 
2) Add the state of a node to describe the temporal relationships be-

tween time slices.  
3) Repeat the static BN with time if all the variables exert influence on 

the process and update the belief of current time step. 

In 2019, research was conducted on supervised DBN fault detection 
in a binary distillation column and a continuously stirred tank heater 
(CSTH) (Amin et al., 2019). A chemical operation was simulated to 
generate a train and test set to the DBN model. The chemical process had 
two main components: a binary distillation column and a continuous 
stirred tank heater. As a first step, the DBN’s relational architecture was 
constructed using prior knowledge and process flow diagrams. The next 
step was to estimate the DBN parameters through maximum likelihood 
estimation, and the fault would be indicated when the novel dynamic 
Bayesian anomaly index (DBAI) threshold was exceeded. The DBN re-
sults were compared with PCA, PCA-T2, and BN classifiers, and the 
study proves that DBN outperformed all methods for achieving the 
lowest false alarm rate and highest detection rate (Amin et al., 2019). 

3.1.6. Naïve Bayes 
Naïve Bayes (NB) classifier’s (NBC) structure was derived to avoid the 

BN’s intractable complexity. Similar to BN, the occurrence of an event is 
predicted by analyzing past observations, but unlike BN, each feature is 
only dependent on the class known as “parent”. In 2018, during research 

on detecting induction motor bearing failure, a supervised Gaussian NBC 
proved its robustness by achieving relatively high accuracy (Pandar-
akone et al., 2018a). In a laboratory, U-phase current signals were ac-
quired from an induction motor at various rotational speeds. FFT and 
then Frequency Spectrum analysis was performed to extract the relevant 
information from the induction motor’s U-phase load current. SVM and 
Gaussian NBC were trained to predict three different failure states: 
healthy (no crack), hole 0.5 mm, and hole 2 mm. The results showed that 
the Gaussian NBC had an 88.37% accuracy in diagnosing the motor’s 
condition (Pandarakone et al., 2018a). In 2015, an NB classifier was 
proposed for end-milling, where the algorithm was designed to predict 
the probability of the tool wear by utilizing the posterior distribution 
(Karandikar et al., 2015). The end-milling force data were acquired at 
different spindle speeds using a cutting force dynamometer. Among the 
input signals, time domain mean cutting force and sum of the frequency 
domain amplitudes were selected based on the R2 comparison. In an 
environment with multiple sensors, a BNC based on Dirichlet distribu-
tion and NBC achieved successful predictions on the posterior proba-
bilities of tool wear states. This validated that both models were 
successful, even though they were computationally inexpensive (Kar-
andikar et al., 2015). 

3.1.7. Support vector machine 
Support vector machine (SVM) is a statistical ML method that is 

commonly applied to most classification problems. This algorithm pro-
vides a map between inputs and outputs in the training dataset as a 
supervised machine learning method. SVMs can process big data and 
manage multidomain classification industrial problems (Shan Sutha-
haran, 2016). The classification strategy is based on constructing the 
best hyperplane for separating the hidden classes in the dataset. The 
algorithm considers data points as p-dimensional vectors. The goal is to 
find an optimal p + 1 dimensional hyperplane that decides the classi-
fication of each data point. For binary classification, the optimal hy-
perplane is created based on maximizing the distance between two 
categories (e.g., maximum margins). According to an experiment on 
milling processes conducted in 2020, SVM and the comprehensive signal 
analysis methods produced promising outcomes in tool health moni-
toring (J. Guo et al., 2020). Cutting force and vibration signals were 
obtained from the “prognostic data challenge 2010” database ((2010) 
PHM Society Conference Data Challenge, 2021). Due to the experiment, 
a recent statistical-based signal analysis method known as multifractal 
detrended fluctuation analysis (MFDFA) achieved favourably high ac-
curacy in detecting the long-range correlation of non-stationary time 
series. Later, the MFDFA method and the SVM model were combined to 
find abnormal behaviours in the machinery signals. Due to the com-
parison against past studies, the proposed model was the most success-
ful, with an accuracy of 95.6%. The authors noted that the model was 
more successful when the signal had long abnormal patterns. 

In some cases, a multi-class classification task requires the fault type 
of the component to be classified. However, the SVM hyperplane pro-
vides a binary classification, yet the extension of SVM obtains promising 
results on multi-class classification problems. According to a survey 
particularly on SVM for condition monitoring, the industry generally 
implements three distinct strategies for SVM multi-class classification: 
one-against-all (OAA), one-against-one (OAO), and direct acyclic graph 
(DAG) (Widodo & Yang, 2007). In 2016, an SVM using the OAO strategy 
was applied to classify the tool wear states based on images of the 
machined tool surfaces (Bhat et al., 2016). In the experimental setup, the 
images of machined surfaces were captured after the cutting process. A 
statistical texture analysis method (gray-level co-occurrence technique) 
extracted 15 different features from the machined surface images. Next, 
the Fisher discriminant ratio (FDR) reduced the number of features from 
15 to 4. The multiclass SVM (MSVM) model with Gaussian and poly-
nomial kernels were integrated to classify the tool wear states into three 
different groups (sharp, semi-dull, and dull). The OAO approach with 
Max-Win voting for both kernel functions was integrated to classify the Fig. 8. An exemplary Dynamic Bayesian Network (DBN) architecture.  
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data points into three classes. The SVM with the polynomial kernel had 
the best accuracy (94% and 99%). In 2020, the multiclass SVM model 
successfully diagnosed nonlinear and high dimensional vibration signals 
of a solenoid pump (Akpudo & Hur, 2020). A testbed was built in a 
laboratory to collect vibration signals of the pumps in study. As a feature 
extraction step, mel frequency cepstral coefficient (MFCC) was 
employed to extract useful trends from the input signals, and the locally 
linear embedding (LLE) method was used to reduce the dimensionality. 
The SVM model consisted of a Gaussian kernel for nonlinear estimation, 
and a Lagrangian formulation for multi-class classification. The SVM 
model classified the test set into four states (i.e., contaminated fluid, 
heavy fluid, filter clogged, and normal) and achieved a test score with an 
F1 score of 89%, recall of 88.5%, and precision of 90%. If the outlier 
quantity is relatively small, then a decrease in the performance of an 
MSVM can be expected. In 2018, to address this problem, a new 
extension for MSVM was introduced and tested to diagnose induction 
motor faults by embedding Support Vector Data Description (SVDD) to 
classical multiclass SVM (OAA, OAO, DAG) (Zgarni et al., 2018). In this 
strategy, hyper-spheres were constructed to discriminate the training 
samples of each class. The experiment test set was collected by 
measuring the induction motor’s current signals with a healthy and 
faulty rotor under five different load conditions. The current signals 
were converted into the frequency domain through the Stationary 
Wavelet Packet Transform (SWPT) to extract the key features. The 
proposed classification system (SVDD-DAG SVM) boosted the classifi-
cation rate from 91% to 100%, and the F1 score rose to 100%. The 
average rate of classification for other MSVM methods (OAA, OAO) was 
improved by 5%, which proved its feasibility for all types of MSVM 
methods (Zgarni et al., 2018). 

3.1.8. Fuzzy logic 
Fuzzy logic (FL) or Fuzzy set theory is a powerful method for map-

ping vague inputs to a precise output using linguistic rules. As 
mentioned before, the real-world information is vague and partially 
true, which ultimately creates a fuzzy environment. FL plays a vital role 
in decision-making problems where the extant decision theories are not 
robust in a fuzzy environment. FL is essentially a derivation of four 
fundamental elements (Jaber, 2017a)(Marwala, 2012): the membership 
function (MF) associates each data element of the input space with a 
corresponding fuzzy membership value in the range between 0 and 1 
(Aliev, 2013); fuzzy sets are a class with a continuum of grades of 
membership (Zadeh & Aliev, 2018); fuzzy logical operators are applied 
to discover new fuzzy sets from existing fuzzy sets; fuzzy rules are 
conditional statements that form the input and output relationship of the 
system which typically includes human descriptive judgments and some 
sample rules are given below (Cuka & Kim, 2017): 

IF {signal is low} AND {error is low} THEN {tool wear is small}. 
IF {signal is medium} AND {error is low} THEN {tool wear is 

medium}. 
Finally, in order to converge to a final output, the defuzzification 

process is required to reduce the system output to a singular value. A 
rule-based system that mimics a human expert’s reasoning process that 
involves FL is known as fuzzy inference systems (FIS) (Kolman & Mar-
galiot, 2009). Typically, Mamdanior or Sugeno fuzzy rule systems are 
being widely utilized in the PdM industry (Trillas & Eciolaza, 2015). 
This powerful technique can be implemented in many industrial systems 
(e.g., microcontrollers) to enhance its capability. 

In 2017, research on fuzzy logic-based online tool condition moni-
toring was demonstrated and implemented during end-milling opera-
tions (Cuka & Kim, 2017). The FL theory was applied to predict the 
cutting tool’s life, and the machinery was programmed to adjust its 
machining speed with respect to the cutting tool’s expected life. Signals 
from 4 different sensors were extracted respectively using FFT, fre-
quency band analysis, and statistical metrics (Peak-to-peak amplitude, 
RMSE, power of the signals). The cutting tool’s health was divided into 
four fuzzy sets (small wear, medium wear, accelerated wear, breakage) 

based on image analysis of the tool’s taken picture. The triangle method 
was selected as a membership function due to its cost-effective compu-
tational outcomes. Later, fuzz rules were formed and implemented ac-
cording to expert knowledge. Finally, the centroid method outputted a 
single FIS value that determines the classification result. Due to a visual 
inspection of the cutting tool, the experiment showed that the FL model 
was 100% accurate (Cuka & Kim, 2017). In 2020, a condition moni-
toring method for wind turbine condition monitoring based on FIS with 
an assembled multidimensional membership function was proposed by 
Furning et al. (Qu et al., 2020). Different than conventional methods, the 
authors used a nD membership function instead of 2D. The experimental 
data were collected from a group of wind turbines in China. As a data 
preparation step, invalid and contaminated data were removed manu-
ally. Before constructing the FIS model, the future trend of the wind 
speed was predicted through regression analysis. Then, based on the 
regression prediction, the combination of the cubic spline fitting and the 
2D membership functions formed the third dimension. The proposed 
model monitored the wind speeds of the wind turbines and identified 
anomaly data segments in the trend. After multiple experiments, the 
proposed method had an earlier anomaly detection capability and fewer 
false alarms than the classical 2D membership function. In 2017, the 
authors proposed a fuzzy multi-parametric expert system for diagnosing 
power systems (Žarković & Stojković, 2017). The experiment examined 
the performance of two FL-based methods: Mamdani-type and Sugeno- 
type, by introducing numerous power transform inputs: age, frequency 
response analysis, the overheating temperature of the hot spot, polari-
zation index, dissolved gas-in-oil analysis, the temperature of isolation, 
and tg δ. Both models had triangular and trapezoidal membership 
functions with 27 different fuzzy rules. They were evaluated using a 
health index, a transformer status indicator, and experiential input from 
various conferences. Due to the reports, the result for all FLC models 
achieved similar performance outcomes; however, a higher correlation 
between the transformer status indexes and the FL outcome was ach-
ieved by a Sugeno-type rule system (Žarković & Stojković, 2017). In 
2019, an FLC was applied to identify the faults in an induction motor 
using the stator currents’ amplitude (Agyare et al., 2019). The experi-
ment used a simulation dataset to test and train the proposed algorithm, 
in which an induction motor model was used to acquire signals. RMS 
values of the stator currents were the test set for the fuzzy controller. 
Fuzzy rules and logic were developed with the help of expert knowledge. 
The inputs (low, normal, high, very high, too high current) and the 
outputs (open phase, damaged, critically damaged, seriously damaged, 
healthy) were fuzzified into five trapezoidal membership functions. Due 
to the report of the experiment, the fuzzy logic controller was able to 
detect the various faults of the 3-phase induction motor (Agyare et al., 
2019). In 2020, a novel predictive maintenance system for catenary 
systems was proposed using a Mamdani-based supervised FC in railway 
systems (Karaduman & Akin, 2020). A camera and a temperature sensor 
collected the railway system’s input vectors and the temperature sig-
nals’ noises. Later, the CWD filtered the correlation coefficients (CC) as a 
preprocessing step by utilizing the captured pantograph images. Mean 
values of two features were introduced to triangular membership func-
tions with three fuzzy rules. During the training phase, the mean cor-
relation coefficient (MCC) of the training features determined the fuzzy 
membership functions. After various examinations, the FC model results 
were compared with the true values. As a fault detector, the fuzzy 
classifier (93.9%) achieved the highest accuracy compared to an SVM 
(80.3%) and ANN (76.5%) (Karaduman & Akin, 2020). 

The neuro-fuzzy system (NFS) is the method that combines the fuzzy 
sets and logic with the neural network. In 2020, the NFS and FIS for 
condition monitoring of induction motors were implemented and 
compared (Verma et al., 2020a). From an experimental setup consisting 
of healthy and faulty induction motors, three-phase stator current sig-
nals were acquired in the time domain. The FIS model was designed with 
predetermined rules and membership functions. For the NFS-based 
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model, the membership function type and hyperparameters of the 
neural network were defined before training the model. The following 
procedure constructed an adaptive neuro-fuzzy inference system 
(ANFIS) architecture: the first layer takes three current values (inputs) 
and computes the corresponding membership functions, constant values 
are generated for the combination of inputs, and the aggregate output is 
obtained using all the rules for a given set of inputs, the final outcome is 
the weighted mean of all the aggregated outcomes. After testing both 
models, the ANFIS model achieved an accuracy of 93.3%, whereas the 
Fuzzy logic had an accuracy of 86.3% (Verma et al., 2020a). 

3.2. Cluster analysis 

Cluster analysis pursues the same objectives as classification anal-
ysis. Due to this reason, they are evaluated with the classification per-
formance metrics; however, they do not share the same approach. The 
objective of clustering is to divide the data points into several groups 
where similar data points share the same cluster. Clustering-based 
models are used in supervised or unsupervised learning. According to 
a recent study on unsupervised methods in condition monitoring, some 
of the most common clustering techniques are K-means, Fuzzy C-means 
(FCM), and agglomerative hierarchical clustering (Amruthnath, 2018). 

3.2.1. K-means clustering 
K-means clustering is an unsupervised recursive method that aims to 

classify n observations into k clusters where the new data belongs to the 
nearest cluster center, and the algorithm updates the cluster centers 
after each iteration. In 2010, K-means clustering was tested in various 
scenarios to validate its fault detection and identification performance 
on rolling bearings (Yiakopoulos et al., 2011). The vibration signals 
were collected from three industrial installations and one laboratory test 
case. The real success of this approach was due to the authors including 
well-chosen frequency-domain parameters (kurtosis, skewness, vari-
ance, RMS, FT, WT, and order spectrum), signal envelope (highest and 
lowest values of the signal), and expert knowledge was employed for 
interpreting the signal behaviours and underlying causes. They used the 
system’s mathematical dynamic model to distinguish the data. Later, the 
researchers computed the pre-clusters’ initial centroid locations. Each 
cluster represented a potential bearing fault. Four different distance 
measurements (all the above metrics and Cosine metric distance) were 
utilized to compute the distance of new data points. The test results 
confirmed that the K-means clustering model based on correlation dis-
tance achieved a classification rate of 100% on all test sets (Yiakopoulos 
et al., 2011). 

3.2.2. Fuzzy C-means 
Fuzzy C-means is an unsupervised dynamic clustering method. The 

algorithm has a structure similar to K-means clustering; however, it uses 
a fuzzy membership to assign a degree of membership for every cluster 
(Nayak et al., 2015). The chosen memberships quantify the strength of 
the relation between the data values and centroids. In 2017, a study 
designed a successful fault detection approach for grounding distribu-
tion systems using the FCM clustering method (M. Guo & Yang, 2017). 
The dataset was generated using a simulation of a grounding mathe-
matical distribution model. In the proposed approach, the dataset was 
processed by applying two feature extraction methods: the Hilbert- 
Huang transform (HHT) band-pass filter and wave transformation. The 
HHT band-pass filter reconstructed the instantaneous frequencies that 
represent the original signals to improve the signals’ comparability. The 
time-frequency matrix was created using an HHT band-pass filter. The 
polarity distribution matrix (PDM) was constructed from the time- 
frequency matrix. As the final step of the feature extraction process, 
the amplitude-polarity feature matrix (APFM) was formed by merging 
both matrices to assess the characteristic parameters of the intermittent 
zero-sequence current fault in different feeders. The SVD method 
transformed the extracted data into a compact form. The FCM method is 

applied to the normalized singular values to detect the fault feeder 
without a certain threshold setting. According to four different earth 
fault cases, the proposed method correctly identified the fault conditions 
and factors. In 2019, The FCM clustering method was implemented to 
identify anomalies in a continuous distillation system (Azzaoui et al., 
2019). This distillation system has two main modes: the normal mode, 
where all the system’s parameters follow a uniform pattern, and the 
abnormal mode, in which these parameters deviate during the process. 
Six indicators of the real-world distillation signals were converted into 
the time-frequency domain using the stationary WT. The membership 
matrix and the cluster numbers were initialized and executed by using 
the time-frequency domain data. According to the model’s outcome, the 
SWT-FCM achieved a classification rate of 74.17%, a sensitivity of 
100%, and a specificity of 48%. 

3.2.3. Hierarchical clustering 
Unlike FCM and K-means, agglomerative hierarchical clustering 

starts by assigning each data element to an individual cluster. Then, 
moving up the hierarchy, similar clusters are combined (Murtagh & 
Contreras, 2011). Initially, there are as many clusters as possible. The 
measurement methods decide the similarities between the data points. 
Finally, from the dendrogram graph, the optimal number of clusters is 
chosen based on the distance between the clusters. In 2015, the hier-
archical clustering method was proposed to implement a monitoring 
system for power transformers (Babnik et al., 2008). The power trans-
formers’ radiometric signals were acquired using a helical antenna in a 
laboratory setup. Each captured data vector was transformed into a 
frequency domain using FT. Later, the PCA algorithm reduced the di-
mensions from (5000x2500) to (5000x6), where the first six components 
contained enough information to represent the dataset. In order to 
achieve the performance, various hierarchical clustering models are 
constructed from various distance metrics and linkage methods. After-
ward, the data points inside each cluster were qualitatively examined for 
each hierarchical clustering model. In the experiment analyses, they 
reported the effect of the variation in distance and linkage method on 
the final clusters. The average linkage algorithm caused single records to 
join a larger cluster each time. Ward’s linkage method tends to create 
clusters of similar size. Lastly, a variation in distance metrics did not 
affect the final results. 

3.2.4. Support vector machine 
The SVM concept can be adapted to the clustering analysis as well. 

One-class SVM (OCSVM) constructs a spherical decision boundary in an 
unsupervised manner to solve one-class classification problems using a 
specific optimization formula. In 2018, a fault detection system based on 
OCSVM was applied to a closed-loop system (Z. Li & Li, 2018). A 
simulation dataset representing three tanks with five parameters was 
generated and normalized. The OCSVM model with RBF kernel function 
was trained, and a 95% confidence interval was set as a threshold. The 
threshold was recalculated for all new data. According to the test results, 
the OCSVM’s effective fault detection rate was ~97% for eight different 
faults (Z. Li & Li, 2018). However, the condition monitoring industry 
seeks more robust and accurate performance of SVMs by utilizing 
additional developments with the available approaches. In 2016, a novel 
approach using OCSVMs was proposed to resolve performance degra-
dation in classic OCSVMs (Xiao et al., 2016). The strategy is to modify 
the training set to remove consistent outliers to prevent them from 
becoming support vectors. The vnuOCSVM model was proposed to 
overcome this problem, which identifies the potential outliers and 
remove them from the training. In this way, the decision boundary be-
comes more robust against outliers. During the training stage, the 
training samples were normalized to the zero mean and unit standard 
deviation. Later, the following steps were applied to train the proposed 
method: the samples located outside the boundaries were regarded as 
“suspected outliers,” and the OCSVM model was retrained without the 
suspected outliers to compute the final hyperplane, known as “cluster 
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core.” Thus, the model observed the distribution of the target class 
without being affected by the outliers. The hyperplane for vnuOCSVM 
was farther from the outliers, while the remaining models misclassified 
some outliers. Datasets from a realistic chemical process (i.e., Tennessee 
Eastman Process) were used to benchmark the proposed model’s fault 
detection performance against the classical OCSVM models (etaOCSVM, 
wOCSVM, OCSVM). According to the results, the vnuOCSVM had the 
lowest false alarm rate, higher fault detection rate, and a larger margin 
for potential outliers. 

3.3. Regression analysis 

Regression is the task of estimating continuous output variables 
based on given observations. This approach can identify the anomaly 
data by analyzing fault-free patterns where deviations are regarded as 
abnormalities. Another application is the estimation of the remaining 
useful life (RUL), where the machinery’s lifespan is predicted through its 
indicators. 

3.3.1. Recurrent neural network 
The recurrent neural network (RNN) is a class of ANN that is prac-

tical for recognizing patterns in sequential data. The RNN structure 
(Fig. 9) contains multiple feed-forward neural networks that transmit 
information to the following node, known as the hidden state. Differently 
expressed, the output of the current node is the harmonization of the 
prior knowledge (hidden state) with its own experience, which there-
after is passed to the next node. Therefore, RNNs use the previous output 
to determine the next output. However, the algorithm is computation-
ally expensive since the network has two inputs, and the steps are not 
parallel (Wani et al., 2021). Furthermore, RNNs suffer from two well- 
documented problems: “gradient vanishing” and “exploding gradients” 
(Sherstinsky, 2020). Empirical studies show that the RNN with a simple 
repeating structure (vanilla RNN) cannot learn long-term dependencies 
if the number of time steps exceeds 10 (Hochreiter & Schmidhuber, 
1997). Due to these restrictions, the industry started using RNNs as a 
feature or feature selection method (Barron et al., 2008; Gugulothu 
et al., 2018; Huang et al., 2019). Long short-term memory (LSTM) is a 
novel recurrent network architecture derived from an RNN combined 
with an optimum gradient-based learning technique (Hochreiter & 
Schmidhuber, 1997). 

LSTM’s complicated cell structure with four gates provides long- 
range dependencies between the elements (Calin, 2020). The network 
architecture interconnects these memory cells in a cascaded form, as 
shown in Fig. 10. LSTM is applied when RNNs cannot meet industry 
requirements. Because of its outstanding success in using sequential 
inputs, the predictive maintenance industry applies this technique as a 
regression-based anomaly detection method. In 2018, a novel fault 
prognosis method using LSTM based on vibration signal of rotating 
machinery was presented (Xie & Zhang, 2018). The model was trained 
to predict the performance of the given electrical motor. During the 
experiment, vibration data were collected using an accelerometer, and 
the unprocessed data were employed in three other models: LSTM, SVM, 
and echo state network (ESN). Among all methods, LSTM had the lowest 

RMSE value (0.018). The model has also proven its robustness by 
achieving successful results under different conditions. In 2019, Fabrizio 
showed the effect of hyperparameter tuning of LSTM on the RMSE value, 
which then resulted in promising outcomes in the estimation of 
remaining useful life (Bruneo & De Vita, 2019). Differently from grid 
search analysis, they trained several models equal to the Cartesian 
product’s cardinality, which can be computed by multiplying the single 
cardinalities of each set. Thus, they gained an insight into which 
hyperparameter affects the result most. A dataset consisting of the his-
tories of 100 NASA engines was used to train and test an SVM, a deep 
neural network (DNN), and LSTM. The training set was normalized 
between − 1 and 1, and the unrelated features were later removed from 
the dataset. The models were trained to predict the RUL value of the 
given battery. The hyperparameters were tuned as a function of the 
model’s RMSE. Due to the outcomes, fine-tuned LSTM outperformed the 
other models with a relatively low RMSE value (11.42) (Bruneo & De 
Vita, 2019). 

In 2020, a study on fault detection in rotating machinery using DL 
methods, LSTM proved its effectiveness by showing accurate diagnosis 
under various rotation speeds (Lee et al., 2020). In this research, a motor 
testbed was used to capture the acceleration signals of the system. RMS 
and Kurtosis processed the raw data, and the processed data was 
transformed into the time-frequency domain through continuous 
wavelet transformation (CWT). Each model was trained using the Adam 
optimizer, and a grid search method was used to choose each model 
parameter. The researchers built the structure for both the CWT with 
CNN (CWT-CNN) and time-series LSTM (TS-LSTM) models. At a con-
stant RPM setting, the CWT-CNN model and TS-LSTM had an accuracy 
of nearly 100%. Unfortunately, both models suffered from changes in 
the equipment’s speed. As a solution, before processing the raw data, the 
time-series signals were scaled and smoothed, which included the 
following steps: scaling the time-domain data, transforming the signals 
into the frequency domain using DFT, filtering out the high-frequency 
components utilizing low pass filter, and removing redundant ampli-
tudes, converting back to the time-domain using inverse DTF. At a 
varying RPM setting, a third, scaled and smoothed TS-LSTM, was tested 
with unseen RPM settings along with the previous models. According to 
the results, CWT-CNN had an accuracy of 83.2%, while the scaled and 
smoothed TS-LSTM produced a similar accuracy with less variation in 
performance (Lee et al., 2020). 

However, LSTMs are not only restricted to regression tasks, and the 
network can perform a many-to-one classification by changing the 
activation function on the output layer. In 2018, an alternative approach 
was implemented using LSTM for fault detection in a simulated chemical 
process (Xavier & De Seixas, 2018). A realistic simulation of an indus-
trial plant, the Tennessee Eastman process was used as a benchmark for 
this study. Instead of using LSTM as a regression-based forecasting 
method, the authors turned the fault detection model into a many (each 
sequence) to one (unique fault) classification problem. Hence, the model 
no longer needed any detection threshold. The comparison between 
LSTM and 14 statistical-based data-driven approaches confirmed that 
the novel model outperformed 13 of the other methods with an accuracy Fig. 9. An exemplary structure of RNN.  

Fig. 10. An exemplary LSTM network structure, where the memory cells are 
linked in a cascaded form (x and h are the input and the output, respectively). 
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of 97% and used significantly lower parameters (Xavier & De Seixas, 
2018). 

3.3.2. Support vector regression 
Apart from classification problems, the SVM concept can be used as 

the regression algorithm known as support vector regression (SVR). The 
transition from SVM to SVR is accomplished by introducing an 
ε-insensitive region around the function known as the ε-tube. Thus, in a 
supervised manner, an optimization problem is reformulated along the 
tube region to find the best approximation of the continuous-valued 
function where the flattest tube that contains most of the training in-
stances represents the best approximation (F. Zhang & O’Donnell, 
2019). In 2014, an SVR-based PdM model was proposed to monitor 
performance degradation in vessel propulsion (Coraddu et al., 2014). A 
realistic simulator of a naval propulsion system is utilized to generate a 
naval vessel propulsion dataset for the SVR model. Due to expert anal-
ysis, the indicator of the asset degradation was the following signals: 
ship speed, compressor decay, and gas turbine decay. In preprocessing 
step, ship speed was expressed with probability density functions, and 
the remaining features were selected using expert knowledge. For the 
forecasting task, two well-known ML models were employed: SVR and 
regularized least squares (RLS). Both models were tuned using the grid 
search analysis and the k-fold cross-validation method. Later, in order to 
assess the models’ learning capability, they were trained with different 
sample sizes (10, 25, 50, 100, 250, 500). Due to the results, SVR ach-
ieved a slightly higher MSE value in every case; it gained a low error rate 
after being trained with 100 or more data points. Therefore, the authors 
proved that their model could support monitoring operations in the 
maritime domain. In 2018, ε-SVR was constructed to estimate the rotor 
power curve of a wind turbine through an operational wind turbine’s 
historical data set (Pandit and Infield, 2018). Later, a well-known con-
ventional benchmark (i.e., the binning method) modelled the rotor 
power curve for comparative analysis. Rotor speed is one of the key 
performance indicators for wind turbines and represents the relationship 
between power production and the hub-height wind speed. The signals 
from real-world wind turbines formed the raw dataset. The corrected 
wind speed was obtained using an air density correction formula to 
construct the rotor curves. The results of both methods were compared 
with the actual measurements. According to the graphical analysis, SVM 
had a better fit and a faster response compared to the binned method 
(Pandit and Infield, 2018). In 2017, the new approach of SVR combined 
with a feature extraction method (MFCC) was introduced for tool-wear 
condition monitoring based on the RUL (Benkedjouh et al., 2017). Raw 
time-domain force signals of six different flute cutters were converted to 
cepstral representation by following the MFCC steps: converting the data 
into the frequency domain using DFT, computing the Mel-frequency 
spectrum and logging the power at each of the Mel-frequencies, taking 
the discrete cosine transform, and removing the dependencies using 
cepstral coefficients. The MFCC-SVM estimated the wear curves to assess 
the RUL of the worn tool and achieved R2 of 97% and RMSE of 0.0398 on 
average for six cutting tools (Benkedjouh et al., 2017). In 2019, SVR was 
implemented as a monitoring framework to detect the abnormal con-
ditions of coal mills in thermal power plants (Hong et al., 2019). The 
support vectors detected the deviations in corresponding performance 
indicators based on their training set experiences. The parameters were 
derived from the grid search strategy, and the abnormality threshold 
(control limit) was chosen based on the Pauta criterion and the Gaussian 
kernel-density estimation method. The proposed method was applied to 
three real failure cases at coal mills (the separator failure, the fluctuation 
of the outlet temperature, and the co-firing cases). Euclidean distance 
was used to evaluate the similarities between the data points, and the 
accumulated anomalies were collected for the root causes related vari-
ables identification. For every case, the SVR results highly matched the 
expert’s conclusions, and the average performance metrics of the model 
indicated promising outcomes: a TPR of 95.2%, an FPR of 9.1%, and an 

MSE of 1.35 (Hong et al., 2019). In 2020, a novel approach with SVM 
was proposed mainly to estimate the degradation trend in noisy data. 
The novel approach proved its effectiveness and robustness by produc-
ing accurate outcomes in RUL estimation on the NASA Li-ion battery 
dataset (Ben Ali et al., 2020). The novel approach’s structure consists of 
two main components: an enhanced SVR or incremental support vector 
regression (ISVR) and quantum-behaved particle swarm optimization 
(QPSO). ISVR employs the same principles as SVR; however, it follows 
different steps to perform the regression task. As an optimizer, the QPSO 
method determines the hyper-parameters of the ISVM. Finally, the 
QPSO-ISVM and other standard regression methods (Linear regression 
and Polynomial regression) were trained and tested to compare the 
proposed method’s capabilities. The models were trained to predict the 
degradation in the batteries’ capacities. During validation, the capacity 
degradation of the two real Li-ion batteries was compared with each 
model’s outcome. Based on MAPE and RMSE evaluation, QPSO-ISVM 
outperformed the other methods with a significantly low RMSE 
(0.0202 and 0.0255) and MAPE (0.823% and 4.2%) on both batteries. 

3.4. Ensemble learning 

Ensemble learning combines several machine learning algorithms 
(supervised or unsupervised) to reduce overall variance by fusing their 
outputs (Thomas Rincy & Gupta, 2020). The main objective of ensemble 
learning is to compensate for each other’s weaknesses, ultimately 
improving accuracy. For this purpose, various ensemble methods (i.e., 
Bagging, Stacking, AdaBoost) were established (Zhou, 2012). 

3.4.1. Stacking 
The stacking method refers to the combination of heterogeneous 

weak learners (learns in parallel), where weak learners’ predictions are 
used to train the meta learner. In 2019, a stacking ensemble method 
combining an SVM and random forest was proposed for monitoring the 
hydraulic systems (P. Guo et al., 2019). First, the feature extraction 
(mean value, kurtosis, skewness, etc.) methods transformed 15 different 
time-domain signals (temperature, pressure, flow, etc.) into a useful 
form while PCA reduced the dimension of the input vectors. The feature 
set was selected through Pearson correlation coefficients. Constructing 
the proposed stacking method included the following steps: the dataset 
was divided into k number of partitions, a fixed kernel SVM and k-fold 
cross-validation were used to obtain and test the k classifiers, the pre-
dicted labels were combined into a single array to be used as a training 
set for the second layer, and the mean values of the k original test set’s 
predicted values were passed into the meta learner (random forest 
model) with multiple decision trees. For a relative comparison, the 
classical methods (ANN, LDA) and the proposed model were tested by 
introducing the same dataset. According to the experimental results, the 
proposed stacking model outperformed the conventional methods with 
an identification accuracy of 88.6% in fault detection for different 
components (cooler, valve, pump, accumulator) of the hydraulic system 
(P. Guo et al., 2019). In 2011, a stacking ensemble method consisting of 
EKF and FIS was proposed to perform unsupervised fault detection and 
diagnosis on industrial gas turbines (Salar et al., 2011). The gas turbine 
system consisted of multiple stages: a frontal compressor, frontal tur-
bine, rear compressor, and rear turbine. Four signals were acquired from 
the hydraulic system: the turbine exit temperature, fuel flow, 
compressor outlet pressure, and compressor outlet temperature. The 
flow capacity signals were passed into the EKF method to estimate the 
health parameters of each stage. The EKF method successfully estimated 
the flow capacity for each state based on the state-space model of the 
system. Second, based on the EKF prediction, the FIS analyzed the de-
viations in the system to classify and locate (rear or front) the system’s 
physical fault by utilizing predetermined fuzzy rules. The EKF-FIS model 
was verified through data from simulations of the actual defects in 
various fault scenarios; it showed a high correct classification rate of 
96.15% (Salar et al., 2011). 
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3.4.2. Bagging 
The bagging or bootstrap method trains the learners in parallel, and 

the outputs are fused using a deterministic averaging process (Kramer, 
2013). The random forest (RF) algorithm is an ensemble learning 
method that constructs a forest of decision trees in parallel. In 2020, in 
the assessment of diesel engine conditions, ensemble learning based on 
bagging extension (random forest method) achieved higher accuracy 
than shallow classifiers (Shao et al., 2020). A mathematical model 
simulated a large marine diesel engine under various engine loads with 
15 distinct features. A decision tree model was constructed based on the 
control statements. In the RF structure, each internal node represented a 
feature, each branch represented the test’s output, and each leaf node 
represented a class label for classification. The random forest classifier 
considered the category with the most votes as the output result. The 
testing and training dataset contained 15 features with 100 sets of data 
for each working condition. According to the paper, in comparison with 
singular classifiers (KNN and SVM), this approach outperformed the 
other methods with an accuracy of 95% by classifying the faults into five 
states (Shao et al., 2020). Again in 2020, apart from classical ap-
proaches, a combination of the time-domain analysis, frequency-domain 
analysis, and variational mode decomposition (VMD) was introduced to 
the random forest (RF) ensemble method for diagnosing tool wear (Yuan 
et al., 2020). The spindle motor current was monitored during a real- 
time cutting operation under various spindle speeds, cutting depths, 
and feed rates. The degree of tool wear was optically measured using a 
microscope. Three distinct models (RF, SVM, RBFANN) were tested 
under ten different operations, and the average recognition accuracy of 
the various conditions was the evaluation criteria. According to the 
outcome, the RF model outperformed the other models in all test con-
ditions with an average recognition accuracy of 95% (Yuan et al., 2020). 
In 2013, a bagging model composed of support vector data description 
(SVDD) methods was proposed for batch process monitoring (Ge & Song, 
2013). Based on 17 signals, the models were implemented in a case 
study of an industrial semiconductor etching process. The training data 
was processed and partitioned into sub-datasets for each sub-model. As a 
first strategy, a voting-based approach decided the final evaluation re-
sults by voting on each monitoring result. The objective was to establish 
a statistics-based binary rule and count the individual models’ violations 
based on each sub-model output. As a second strategy, each monitoring 
result was probabilistically combined using the Bayesian fusion strategy. 
The fault detection rate of both ensemble SVDDs was compared to the 
classic SVDD, and the performance of the SVDD was enhanced by 
incorporating bagging ensemble methods (Ge & Song, 2013). 

3.4.3. Boosting 
Unlike Bagging, the Boosting method compensates for the weakness 

of the ensembles by following a sequential rather than a parallel process 
(Dong et al., 2020). In 2020, a gradient boosting tree was proposed for 
fault diagnosis in low voltage smart distribution grids (Sapountzoglou 
et al., 2020). The boosting tree consisted of multiple classical trees 
trained with identical training sets; however, each tree specialized in a 
particular characteristic of the input-output relation. The boosting tree 
used the following structure in sequence: the first tree determined a 
decision boundary based on a voltage value; the second tree corrected 
the misclassified samples of the first tree and determined another 
boundary based on the current signals; the third tree corrected the first 
and second trees’ estimations. Thus, the model’s prediction was based 
on the serial combination of the three trees. During the experiment, data 
from Portugal’s semi-rural LV distribution grid consisting of 230,688 
data points were utilized as the dataset. The distribution grid consisted 
of various elements (conductor, resistances, reactances) to connect the 
nodes. Voltage and current sensors monitored each node’s correspond-
ing values. Later, the authors split the dataset into three partitions: the 
training set (learning the pattern), the validation set (optimal hyper-
parameter adjustment), and the testing set (performance evaluation). 
The fault detection model caught the occurrence of faulty current phases 

with an accuracy of 100%. However, the variation in fault resistance 
affected the accuracy of classification and location. The fault types were 
successfully assigned to four categories with an accuracy of 98% for low 
faulty resistance and 86.7% for high faulty resistance. The model iden-
tified the defective branch among the others with an accuracy that 
varied from 95.8% (low resistance) to 84.1% (high resistance). In 2020, 
an ensemble-boosted regression trees (EBRT) model predicted potential 
hazards by monitoring the fire-resistant hydraulic fluids contamination 
levels in coal mines (Uma Maheswari et al., 2020). A dataset consisting 
of 73 hydraulic variants from real-world underground coal mines was 
used to train and test the proposed model. The proposed model used the 
gradient boosting technique; it consisted of multiple regression tree 
models where the tree-shaped structure outputs a continuous value by 
iteratively portioning the dataset into smaller groups. In the proposed 
EBRT model, each regression model was selected sequentially, and the 
dataset was divided into simple trees where each tree learned individ-
ually. The weights were respectively updated, and the results were 
aggregated to agree on the final output. The proposed model achieved a 
31.68 RMSE in estimating hydraulic fluid values. Therefore, by using 
this model, the potential risk of imminent hazards can be detected in 
advance. 

4. Discussion 

In the previous section, we reviewed various ML-driven PdM 
methods without giving our insights. In this section, we highlighted each 
model’s limitations and strengths and provided our underlying findings 
of a successful condition monitoring model. For a general analysis, the 
results of the empirically tested methods were categorized and listed in 
Tables 1-5 based on the type of ML model involved in the condition 
monitoring system. Tables 1 and 2 list techniques for the classification- 
based methods, Table 3 summarizes the clustering-based methods, 
Table 4 represents the regression-based methods, and Table 5 displays 
the ensemble-based condition monitoring methods. Each column rep-
resents a feature of the summarized paper: date, machinery in the study, 
signals acquired from the machinery, dataset information for the model, 
processing techniques, results of the test run, and a summary of the 
research. We must stress that comparing individual performances be-
tween models from different cases is not a proper evaluation strategy, 
since each case does not share the same complexity. As previously dis-
cussed, designing real-world problems in a mathematical model is a 
complicated task in most cases, and many more recent scholars support 
this statement. For instance, according to the study on RUL estimation of 
Li-ion batteries, model-based approaches suffer from a deficiency of 
adequate information, and they were unable to estimate the true states 
of the given system (Ben Ali et al., 2020). In such cases, data-driven 
strategies are more feasible, practical, and effective. Due to this 
reason, data-driven approaches are more frequently used in the field. 

As mentioned, ML-driven condition monitoring systems require 
feature engineering processes to become a robust model (Section 2). The 
main goal of the data processing step is to extract faulty (anomaly) and 
healthy patterns in a way that the ML model can easily learn their 
characteristics. Due to our interpretations based on Tables 1-5, we found 
that all researchers utilized at least one preprocessing method in their 
proposed models, and many scholars stressed the importance of this 
crucial process. For example, according to the FMC model’s results, the 
WT increased the model’s performance by 11% in classification rate and 
47% in sensitivity (Azzaoui et al., 2019). So we know that a collection of 
high-quality input vectors must always be present for any type of 
monitoring system to achieve good performance. Unfortunately, sensor 
signals may have accuracy degradation, drift deviation, and missing 
values. Thus, interpretation and computation are required to obtain a 
high-quality dataset for the learning algorithm. The first option can be 
using a more straightforward method such as interpolation. Due to poor 
vibration and acoustic-emission sensor measurements, Benkedjouh et al. 
determined the maximum wear curves by interpolating the integer 
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values between 66 and 165 (Benkedjouh et al., 2017). In some cases, the 
number of faulty machinery can be way less than healthy ones. Thus, 
data augmentation methods are the cheapest for such cases. 

As proposed by Kerdprasop et al., in the event of faulty data being 
scarce, the number of failure cases can be duplicated equally as the 
healthy cases. Thus, the model has a higher chance of analyzing the 

faulty cases, which ultimately lowers the false alarm rate and increases 
the detection rate. If the system contains too many signals, another 
simple solution is to select a criterion (e.g., %50 or less missing data) to 
eliminate misleading signals and then conduct a manual selection. 

Alternatively, combining a data-driven and model-based approach 
may lead to greater success if the system behaviour is known. Also, if an 

Table 1 
Summary of reviewed Literature On Classification-Based Methods For Condition Monitoring.  

Year Machinery Acquired signals & 
Dataset 

Data Processing ML model Result Summary 

2020 Railway 
Catenaries 

12 different signals 
(1.546 × 106 samples) 

Kurtosis, RMS, wavelet entropy, 
power spectrum density, FT 
Hilbert spectrum 

BN 
(unsupervised) 

80.3% accuracy in 
fault detection. 

A BN approach for condition 
monitoring of high-speed railway 
catenaries (H. Wang et al., 2020).  

2016 Chiller 6 temperature signals, 
(22400 samples) 

Manual feature selection sI-PB-BN 
(supervised) 

92.5% accuracy in 
fault classification (7 
cases) 

Fault diagnosis of chiller using sI-PB-BN 
(He et al., 2016).  

2019 Distillation 
column 

6 signals (500 samples) Unsp.1 DBN (supervised) 93% accuracy in 
fault detection 

Fault detection and pathway analysis 
using DBN (Amin et al., 2019).  

2018 Induction 
motor 

U-phase 3 load currents 
and voltages (320 
samples) 

FFT NB (supervised) 88.3% accuracy in 
fault classification (3 
cases) 

Detecting induction motor bearing 
failure using NBC (Pandarakone, 
Gunasekaran, et al., 2018).  

2019 Hydraulic 
Brake system 

Vibration data (550 
samples) 

Mean, STD, variance, kurtosis, 
median, mode, skewness, sum, 
standard error, max, min, range, 
RMS, shape factor 

NB (supervised) 89.23% accuracy in 
fault detection 

Real-time condition monitoring of 
hydraulic system using NB and BN (T M 
et al., 2019).  

2020 Milling tool Cutting force and 
vibration signals (270 
samples) 

MFDFA SVM (supervised) 95.6% accuracy in 
fault detection. 

Tool condition monitoring in a milling 
process using MFDFA and SVM (J. Guo 
et al., 2020).  

2016 Cutting tool Machined surface 
images (250×250) 

GLCM, FDR MSVM 
(supervised) 

96.75% accuracy in 
fault classification (3 
classes) 

Tool condition monitoring by SVM 
classification of machine surface 
images in turning (Bhat et al., 2016).  

2020 Solenoid pump Vibration signals (1000 
samples) 

MFCC MSVM 
(supervised) 

92.5% accuracy in 
fault classification (4 
cases) 

Solenoid pump fault detection based on 
MFCC, LLE and SVM (Akpudo & Hur, 
2020).  

2018 Induction 
motor 

Three current signals 
(225 samples) 

SWPT, RMS SVDD-DAG SVM 
(supervised) 

100% accuracy in 
classification (3 
cases) 

SVDD-DAG-SVM for induction motor 
condition monitoring (Zgarni et al., 
2018).  

2017 End milling Cutting force, current, 
vibration, machining 
signals (unsp.1 samples) 

FFT, frequency band analysis, 
Peak-to-peak amplitude, RMSE, 
power of the signals 

FIS 
(unsupervised) 

Quantitative 
evaluation through 
graphs. 

Fuzzy logic-based tool condition 
monitoring of end-milling (Cuka & 
Kim, 2017).  

2020 Wind turbine Cut-in and cut-out wind 
speed (unsp.1 samples) 

Unsp.1 FIS 
(unsupervised) 

Graph-based 
comparison with 
true signals. 

Wind turbine condition monitoring 
based on multidimensional 
membership function using FIS (Qu 
et al., 2020).  

2017 Power 
transformer 

6 indicators (unsp.1 

samples) 
Frequency response analysis FLC 

(unsupervised) 
Quantitative 
evaluation through 
graphs. 

Condition monitoring based on FC for 
power transformers (Žarković & 
Stojković, 2017).  

2019 Induction 
motor 

Three-phase stator 
currents (unsp.1 

samples) 

RMS FLC 
(unsupervised) 

Graph-based 
comparison with 
true signals. 

FLC-based condition monitoring for a 
three-phase induction motor (Agyare 
et al., 2019).  

2020 Pantograph- 
catenary 
systems 

Image (unsp.1 samples) CWD, correlation coefficients FC (supervised) 93.9% accuracy in 
fault classification (3 
cases). 

An approach based on predictive 
maintenance using the FC in 
pantograph-catenary systems ( 
Karaduman & Akin, 2020).  

1 Unspecified information. 
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expert exists, there is a further benefit to examine the preprocessed data. 
For example, Karandikar et al. selected the relevant features based on 
their correlation to the value of R2. Yet, the selected attributes were 
further examined and approved by a human expert, and each chosen 
attribute was rationally explained with respect to the system’s behav-
iour (Karandikar et al., 2015). This correction process resulted in a 
tremendous decrease in the error rate. An alternative approach is to 

correct the feature set manually based on prior knowledge if the input 
vector is not sufficiently representative of the system’s characteristics. 
Another strategy for using expert knowledge is to model the system’s 
behaviour and use it to boost the learning algorithm’s performance. 
Yiakopoulos et al. initialized cluster locations for a K-means clustering 
model that used a mathematical model of the physical behaviour of 
defective rolling-element bearings (Yiakopoulos et al., 2011). As an 

Table 2 
Summary of Reviewed Literature On Classification-Based Deep Learning Methods For Condition Monitoring.  

Year Machinery Acquired signals & 
Dataset 

Data Processing ML model Result Summary 

2011 Rolling element 
Bearing 

raw vibration data 
(10×4800 samples) 

RMS, variance, 
mean, kurtosis, 
skewness 

MLP (supervised) 100% accuracy in 
fault detection. 

ANN based condition monitoring of rolling element 
bearing (Vijay et al., 2011).  

2010 Induction motor 
(stator winding) 

Stator current 
(13×2500 samples) 

RMS, skewness and 
kurtosis, PCA 
(feature selection) 

MLP (supervised) 98.25% accuracy in 
fault classification (4 
classes). 

Optimal MLP classifier for fault classification of 
three-phase induction motor (Ghate & Dudul, 
2010).  

2020 Power 
Transmission 
Line 

Three-phase voltage 
and current 
(6×1000 samples) 

Unsp. 1 MLP (supervised) 100% accuracy in 
fault detection. 
70% accuracy in fault 
classification (4 
classes). 

Fault detection and classification using ANN for 
power transmission line (Leh et al., 2020).  

2020 Induction motor 
(stator winding) 

Three-phase stator 
currents (3×1M 
samples) 

Mean, average, 
RMS 

MLP (supervised) 98.4% accuracy in 
fault identification. 

An efficient MLP model for real-time fault detection 
in industrial machine (Verma, Nagpal, et al., 2020).  

2021 Marine dual fuel 
engines 

Engine input 
parameters (unsp1) 

Expert analysis Kernel Method (best 
score), MLP, RF, OC- 
SVM 

~97% accuracy in 
fault identification. 

Authors trained ML models based on their proposed 
weakly learning technique so that the ML models 
would not suffer when the number of labels is 
insufficient (Coraddu et al., 2021)  

2009 Gear Vibration data 
(16384 samples) 

Order cepstrum. RBFNN (supervised) 100% accuracy in 
fault classification (3 
classes). 

Gear fault classification under speed-up conditions 
on order cepstrum and RBFNN (H. Li et al., 2009).  

2020 Rolling bearing Vibration data 
(6306 samples) 

Welch power 
spectrum 

W-RBFNN 
(supervised) 

98.93% accuracy in 
fault classification 
(10 cases) 

Fault diagnosis method of rolling bearings based on 
Welch power spectrum transformation with 
RBFNN (Jin et al., 2020).  

2016 Induction motor 
(bearing) 

Three-phase motor 
current (240 
samples) 

No data processing 1D-CNN (supervised) 97% accuracy in fault 
detection. 

Real-time induction motor fault detection by 1-D 
CNN (Ince et al., 2016).  

2020 High voltage 
electrical asset 

EMI signals (13,360 
samples) 

Peak and average 1D-CNN (supervised) 99% accuracy in fault 
detection. 

1D-CNN based real-time fault detection system for 
power asset diagnosis (Mitiche et al., 2020).  

2020 Milling tool Three-phase spindle 
current signals 
(1040 samples) 

Order analysis SSAE (unsupervised) 99% accuracy in fault 
classification (5 
classes). 

Order analysis and SSAE based milling tool wear 
condition monitoring (Ou et al., 2020).  

2018 Wind turbine 8 signals (8200 
samples) 

Sliding Window SW-DAE 
(unsupervised) 

~91% accuracy in 
fault detection. 

Wind turbine fault detection using a DAE with 
temporal information (Jian & Zhiyan, 2020).  

2020 Tennessee 
Eastman Process 

52 process variables 
(unsp.1 samples) 

Unsp.1 AAE (semi- 
supervised) 

Graph-based 
quantitative 
evaluation. 

A novel fault detection method based on AAE ( 
Makhzani et al., 2015).  

2020 Induction motor Three-phase current 
(314 samples) 

Unsp.1 Neuro-fuzzy 
(supervised) 

93.3% accuracy in 
fault classification (6 
classes) 

Neuro-fuzzy system for fault detection of stator 
winding (Verma, Jain, et al., 2020).  

2018 Tennessee 
Eastman Process 

52 process variables 
(unsp.1 samples) 

Unsp.1 LSTM (supervised) 97% accuracy in fault 
classification (7 
cases) 

Fault classification in a chemical process using 
LSTM (Xavier & De Seixas, 2018).  

1 Unspecified information. 
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outcome, the enhanced K-means clustering model was not sensitive to 
the initial clustering point, which ultimately increased the algorithm’s 
robustness. Model-based information extraction methods (e.g., EKF, 
ESIF) can be powerful strategies to estimate essential health parameters 
from available signals when available sensors are contaminated. Salar 
et al. successfully predicted the flow capacity of each stage in a multi-
stage gas turbine system based on the available measurements (Salar 
et al., 2011). The diagnostic algorithm achieved a high accuracy rate in 
such a complex environment by utilizing corrected sensor values. After 
completing the data processing step, the most intuitive way of validating 
processed features is to compare the raw data visually with the pro-
cessed data. Ou et al. utilized PCA to display the raw data; they projected 
the processed input vectors in a 3D graph. Their data processing method 
was visually inspected to validate its performance (Ou et al., 2020). 
They once more confirmed that the final dataset was ready for the 
training step. 

In the model selection stage, the trade-off between a task’s con-
straints and the results each diagnostic technique produces must be 
carefully inspected. Available data is a significant factor when selecting 
a machine learning model. For example, if the available data points 
contain an associated label or output, a supervised approach can be 
utilized to perform its task. Another standard is the amount of available 
data in the dataset. According to the comparison in Tables 1 and 2, deep 
learning methods typically require larger datasets for classification 
models. In the reviewed papers on condition monitoring systems with a 
large number of signals, we can also generalize that the researchers 
generally preferred ensemble methods over sole ones. If the machinery 
system consists of multiple parts or pipelines, an ensemble method can 
be an appropriate solution to isolate the corresponding fault. For 
example, gas turbines are complex systems involved in power 

generation and typically consist of individual components. Salar et al. 
introduced a hybrid approach called the EKF-Fuzzy method; they iso-
lated each turbine section during the fault detection process (Salar et al., 
2011). Similar to gas turbines, voltage distribution grids consist of 
multiple interconnected modules. In low voltage distribution grids, the 
proposed ensemble method was more viable than the conventional 
methods. The increase in fault resistance caused a degradation in the 
singular methods, but the proposed ensemble of models remained suc-
cessful (Sapountzoglou et al., 2020). The PdM model is sometimes 
required to control the machinery’s output. Suppose the model is 
required to control the system’s reaction and function as a controller. In 
that case,n FL-based decision system is a powerful option that auto-
matically makes critical decisions (interrupting the operation, adjusting 
the operation speed, etc.) in the event of a hazard (Cuka & Kim, 2017). 
However, we should note that FL-based strategies can only be imple-
mented in the presence of an expert. After the model selection, a critical 
factor that influences the model’s performance is parameter selection. 
For the SVM model, kernel functions must be selected according to the 
characteristics of the available dataset. For example, the Gaussian kernel 
function exhibits better classification results with large amounts of data, 
while RBF is more effective on small data samples (J. Guo et al., 2020). 
Another approach to boost the ML model’s performance is to change the 
model’s architecture with respect to the system’s known characteristics. 
For example, experts know that the leading cause of vibration in the 
compressor is due mainly a frost. In response, He et al. implemented an 
extra node into a BN to present site information that indicates a fault 
event (He et al., 2016). Subsequently, the rate of undetected refrigerator 
leaks (27.6%) and overcharging (9.4%) decreased to 7.6% and 5.4%, 
respectively (He et al., 2016). 

The training process involves tuning hyperparameters of the ML 

Table 3 
Summary Of Reviewed Literature on Clustering-Based Methods For Condition Monitoring.  

Year Machinery Acquired signals & 
Dataset 

Data Processing ML model Result Summary 

2011 Rolling element 
bearing 

Vibration signals 
(8192 samples) 

(kurtosis, skewness, variance, 
RMS, FT, WT, and order 
spectrum), signal envelope. 

K-means 
(unsupervised) 

100% accuracy in fault 
classification (3 cases) 

Rolling element bearing fault 
classification in industrial 
environments based on K-means 
clustering (Yiakopoulos et al., 2011).  

2018 Three-phase 
diode rectifiers 

Three-phase voltage 
signals (unsp.1 

samples) 

FFT K-means 
(unsupervised) 

100% accuracy in fault 
classification (8 classes). 

A diode open circuit fault detection in 
a three-phase rectifier based on K- 
means clustering (Rahnama et al., 
2018).  

2017 Resonant 
grounding 
system 

Transient zero- 
sequence current 
(unsp. samples) 

HHT band-pass filter, wave 
transformation, SVD 

FCM 
(unsupervised) 

Graph-based quantitative 
evaluation. 

FCM and SVD based earth fault 
detection in resonant grounding 
distribution systems (M. Guo & Yang, 
2017).  

2019 Continuous 
distillation 
system 

6 system signals 
(unsp.1 samples) 

Stationary WT SWT-FCM 
(unsupervised) 

74% accuracy, 100% 
sensitivity, and 48% 
specificity in fault 
detection. 

Abnormality detection in a 
continuous distillation system using 
FCM (Azzaoui et al., 2019).  

2015 Power 
transformer 

Radiometric signals 
(6×5000 samples) 

PCA Hierarchical 
Clustering 
(unsupervised) 

Qualitative analysis. Hierarchical clustering-based health 
monitoring of power transformers ( 
Babnik et al., 2008).  

2018 Closed-loop 
system 

2 water flow rate and 
3 water level signals 
(300 samples) 

Simulation data OCSVM 
(unsupervised) 

~98% fault detection 
rate. 

OCSVM based closed-loop system 
condition monitoring (Z. Li & Li, 
2018).  

2016 Tennessee 
Eastman 
Process 

52 process variables 
(14850 samples) 

Unsp.1 vnuOCSVM 
(unsupervised) 

71.1% accuracy in fault 
detection. 

Robust vnOCSVM for fault detection ( 
Xiao et al., 2016).  

1 Unspecified information. 
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model to reach an accurate conclusion when given new data. Hence, 
chosen training strategy greatly impacts the overall performance of the 
learning algorithm. The researchers mostly did not give much infor-
mation about this process since it is a standard process in the industry. 
Thus, from our observations of the literature, 3D RMSE plots are among 
the most intuitive approaches to determining optimal parameters. 
Fig. 11 shows that the optimal hyperparameter yielding the lowest 
RMSE value is the lowest blue part of the graph. 

Another important factor to consider is the training duration of the 
ML algorithm. Following the comparison of 11 different MLP models, it 
is reported that the training duration is not always correlated to per-
formance (Verma et al., 2020b). Similarly, increasing the number of 
data points is not always yield better performance. In 2020, Jin et al. 
evaluated the model’s performance as a function of the training set’s 
size. In the experiment, the W-RBFNN method was trained with two 
different dataset sizes (90 and 12,000 samples), and the model’s per-
formance only improved from 98.61% to 100% (Jin et al., 2020). 
Therefore, they found that the proposed model’s computational cost 
could be vastly decreased by sacrificing only ~1.4% of its accuracy. 

Before deploying the ML model into a real-world application, the 
model’s performance and reliability are tested through a test set. Due to 
our analysis, some of the testing approaches produce more realistic re-
sults for real-world applications. Additional strategies could be applied 
besides the classical test run. For example, after testing the learning 
algorithm with the original dataset, a secondary test set may involve the 
same dataset with more noisy components, as Jin et al. have already 
done (Jin et al., 2020). Another option can be providing missing data for 
a long duration, short duration, or varying the environmental noise (H. 
Wang et al., 2020). In this way, we would be able to quantify the 
robustness of the learning algorithm. 

The main characteristics of condition monitoring systems were 
highlighted in the summary tables. Most of the system signals (except 

simulations) were extracted using a feature extraction strategy. How-
ever, a few deep learning models did not require a feature engineering 
step, which are 1-D CNN, autoencoders, and LSTM. So, we can conclude 
that deep learning models have high enough complexity to decompose 
patterns without the help of a data processing step. However, their 
performance becomes more stable when the feature engineering step is 
involved. Another factor to consider when comparing two proposed ML 
models is their learning type. Due to Tables 1-3, the performance of 
classification models is usually higher than clustering ones. We can 
generalize that the clustering task is more challenging than supervised 
classification. As a result, the researchers increased the intensity of the 
feature engineering step to improve the accuracy of clustering-based 
anomaly detection algorithms. On the other hand, classification 
models mostly had only a single preprocessing step, since the perfor-
mance is high enough. We saw the same effect on the dataset size as well. 
Simple classifiers (i.e., BN, NB and SVM) are not strongly affected by the 
dataset size. Some researchers only utilized 90 data points to train their 
model. In regression analysis, LSTM models achieved promising results 
in RUL prediction. However, they require large datasets for training. 
Ensemble models are typically applied to complex systems with multiple 
components and signals. 

Due to our analysis, the researchers are exploring ways to further 
develop the existing ML models. Taking the SVM concept as an example 
of how many modifications the SVM method has: the MSVM methods for 
multi-class classification, the OC-SVM method as a clustering approach, 
and the SVDD-DAG SVM method to build hyper-spheres. Furthermore, 
1D CNN has been derived from the classical CNN to adapt the original 
concept for time-series datasets. Additionally, the BN structure was 
modified to be implemented into dynamic systems, known as DBN. 
Another example is the proposal of vnuOCSVM, where the model was 
designed to resolve the performance degradation of the OCSVM method. 

Based on the reviewed articles, we want to share our observations on 

Table 4 
Summary Of Reviewed Literature on Regression-Based Methods For Condition Monitoring.  

Year Machinery Dataset Data Processing ML model Result Summary 

2018 Rolling 
bearing 

Vibration signals (2000 
samples) 

Unsp.1 LSTM 
(supervised) 

0.018 RMSE in vibration data 
estimation. 

LSTM approach for rotating machinery fault 
prognosis (Xie & Zhang, 2018).  

2019 Turbofan 
engine 

21 signals (33,727 
samples) 

Manual feature 
selection 

LSTM 
(supervised) 

11.42 RMSE in RUL estimation. LSTM for predictive maintenance in smart 
industries (Bruneo & De Vita, 2019).  

2020 Motor system Acceleration signal 
(480,000 samples) 

RMS, Kurtosis, 
CWT, scaling and 
smoothing 

LSTM 
(supervised) 

83.2% accuracy in anomaly 
detection. 

Development of a speed invariant deep 
learning model with application to condition 
monitoring of rotating machinery (Lee et al., 
2020).  

2014 Naval 
propulsion 
system 

Performance 
degradation signals (up 
to 500 samples) 

Expert Analysis SVR 
(supervised) 

Up to ~ 0.09 MSE in RUL 
estimation. 

an SVR-based PdM model was proposed to 
monitor performance degradation in vessel 
propulsion (Coraddu et al., 2014).  

2018 Wind turbine Wind speed (626 
samples) 

Air density 
correction 

ε-SVR 
(supervised) 

Graph-based quantitative 
comparison. 

Comparative analysis of binning and SVR for 
wind turbine rotor speed-based power curve 
use in condition monitoring (Pandit & Infield, 
2018).  

2017 Cutting tool 6 force signals (6×315 
signals) 

MFCC SVR 
(supervised) 

0.0398 RMSE on average for 6 
cutting tools 

Tool condition monitoring based MCC-SVR ( 
Benkedjouh et al., 2017).  

2019 Coal mills 12 variables (230 
samples) 

Manual feature 
selection 

SVR 
(supervised) 

0.059 MSE for ventilation 
pressure estimation. 

Abnormal condition monitoring and diagnosis 
for coal mills based on SVR (Hong et al., 
2019).  

2020 Li-ion 
batteries 

Battery capacity 
(unsp.1 samples) 

Unsp.1 QPSO-ISVR 
(supervised) 

0.023 RMSE and ~ 6% MAPE for 
capacity degradation estimation 
on average of two test cases. 

Reliable state of health condition monitoring 
of Li-ion batteries based on QPSO-ISVR (Ben 
Ali et al., 2020).  

1 Unspecified information. 

O. Surucu et al.                                                                                                                                                                                                                                 



Expert Systems With Applications 221 (2023) 119738

18

the research gaps in the field. The biggest problem of each application is 
the number of available data. Thus, augmenting the available data 
should be the main consideration. Still, the researchers do not employ 
data augmentation techniques in their proposed PdM models. Thus, a 

PdM model with data augmentation step (e.g., bootstrapping, generative 
adversarial network) may eliviate the data scarcity problem. Our second 
recommendation is to include recently developed ML models rather than 
conventional ML models. One example is using a multihead attention 
layer in a sequential ML model (Vaswani et al., 2017). Lastly, the suc-
cessful studies in different fields can be integrated into the PdM. For 
instance. Due to Uber’s research, the LSTM model can be utilized to 
encode the input data (Laptev et al., 2017). As a result, the prediction 
performance is significantly boosted compared to the classical pre-
processing methods (e.g., time series analysis). Finally, a rapidly 
developing field, known as physics informed machine learning, should 
be explored further for meaningful condition monitoring strategies that 
make use of the underlying physics of a system coupled with ML 
techniques. 

5. Conclusion 

Currently within the literature, there are few resources that 
comprehensively inform users or evaluate the quality of proposed con-
dition monitoring systems. That being the case, this survey paper 
extensively reviewed recent ML-driven condition monitoring tech-
niques. Based on the reviewed literature, we provided an insight into the 
underlying findings on successful condition monitoring systems, and we 
shared our observations on the research gaps in the PdM field. Section 2 
demonstrated how to properly process data for a model to extract all 
possible knowledge from the available information. The systems in this 
study and their features must be critically considered, and comprehen-
sive investigations should precede decisions on the appropriate feature 

Table 5 
Summary Of Reviewed Literature on Ensemble Methods For Condition Monitoring.  

Year Machinery Acquired signals & Dataset Data Processing ML model Result Summary 

2019 Hydraulic 
System 

18 sensors (18×2205 
samples) 

Mean, square root amplitude, 
skewness, kurtosis, kurtosis 
index, skewness index, waveform 
indicator, PCA, Pearson 
correlation coefficients 

Ensemble SVM 
(stacking) 
(supervised) 

88.6% accuracy in 
fault detection. 

Health condition monitoring of 
hydraulic system based on 
ensemble (stacking) SVM (P. Guo 
et al., 2019).  

2011 Gas Turbines 5 health parameter 
estimation (unsp1. 
samples) 

EKF EKF-FIS (stacking) 
(unsupervised) 

96.15% accuracy in 
fault classification (8 
classes) 

A hybrid EKF-Fuzzy approach to 
fault detection and isolation of 
industrial gas turbines (Salar 
et al., 2011).  

2020 Diesel Engine 15 signals (100×15 
signals) 

Unsp.1 RF (bagging) 
(supervised) 

95.1% accuracy and 
90% F1 score in fault 
detection. 

Intelligent fault diagnosis of 
diesel engine based on RF 
ensemble method (Shao et al., 
2020).  

2020 CNC machine Spindle motor current 
(unsp.1 samples) 

Mean, RMS, kurtosis, margin 
factor, frequency centroid, 
spectral mean square, frequency 
variance, frequency band energy, 
VMD 

RF (Bootstrap) 
(supervised) 

95.19% accuracy in 
fault classification (3 
cases). 

Tool wear condition monitoring 
by combining variational mode 
decomposition and Ensemble 
learning (Yuan et al., 2020).  

2013 Semi- 
conductor etch 
process 

17 signals (1388 samples) Manual feature selection BagSVDD 
(supervised) 

46.1% accuracy and 
0.027 false alarm rate 
in fault detection 

Bagging SVDD model for batch 
monitoring (Ge & Song, 2013).  

2020 Low voltage 
distribution 
grid 

72 signals (230,688 
samples) 

Unsp.1 Gradient boosting 
ensemble tree 
(supervised) 

~90% accuracy in 
classification (4 
classes) 

Fault diagnosis in low voltage 
smart distribution grids using 
gradient boosting trees ( 
Sapountzoglou et al., 2020).  

2020 Hydraulic 
fluids 

Viscosity, fire point, auto- 
ignition temperature, 
boiling point, vapor 
pressure (5×73 samples) 

Unsp.1 Ensemble boosted 
tree regression 
model 

31.68 RMSE in fault 
detection. 

Hydraulic fluid monitoring based 
on ensemble boosted regression 
tree model (Uma Maheswari 
et al., 2020).  

1 Unspecified information. 

Fig. 11. An exemplary 3D RMSE plot for tuning the hyperparameters of the 
LSTM model. 
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extraction and selection methods. Section 3 presented recent ML tech-
niques for effective predictive maintenance while providing compara-
tive analysis and explanatory insights into each technique’s advantages 
or limitations. Most techniques excel in a certain task but often perform 
poorly in others. Consequently, no generalization can be made on the 
overall best technique. In Section 4, the underlying findings of the 
reviewed condition monitoring systems were elucidated with our ob-
servations. Based on our analysis, it is prudent to consider all factors 
when narrowing the search for the most effective model for a particular 
task. For instance, deep learning methods may perform well using non- 
linear or high-dimensional data; however, an ensemble method may 
outperform a deep learning model. Furthermore, a simple physics-based 
model coupled with a signal processor may yield the best and most cost 
effective condition monitoring system. Therefore, the tradeoff between a 
task’s constraints and each diagnostic technique’s capabilities must be 
evaluated quantitively and comparatively to determine the optimal so-
lution for a given problem. 
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