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A Dynamic Second-Order Estimation Strategy for Faulty Systems

 

Abstract 

This paper introduces a novel second-order state estimation method that is applied to linear systems dealing 

with modeling uncertainties. This method produces state estimates by decreasing the innovation sequence 

(measurement error) and its time difference which results in preserving smoothness and stability against modeling 

uncertainties. This filter is referred to as the second-order filter since it updates state estimates based on values 

of the measurement error and its incremental change. The corrective gain of this filter is designed based on a 

time-varying manifold that is a linear combination of the measurement error and its time difference. This manifold 

introduces a cut-off frequency coefficient into the filter formulation. The optimal version of the dynamic second-

order filter is then calculated by finding the optimal value of this coefficient at each time step such that the state 

error covariance matrix is minimized. It is shown that the corrective gain of the optimal second-order filter 

collapses to the Kalman filter’s gain for a known model with white noise. In order to verify the accuracy of the 

method, it is implemented on an aerospace electro-hydrostatic actuator setup under the normal and faulty 

scenarios. 

Keywords: Estimation theory; faulty systems; Kalman filter; signal processing; sliding modes 

Data Sharing and Data Availability: Data sharing not applicable to this article as no datasets were generated or 

analysed during the current study. 

1. Introduction 

Estimation is the process of extracting the value of a quantity or state from indirect, inaccurate and uncertain 

measurements. The main goals are to minimize the estimation error as well as achieving robustness against 

modeling uncertainties, measurement noise and bounded disturbances. Noise and disturbances are inherently 

present in the measurement process and are caused by instruments and environmental factors. Other 

uncertainties are caused by perturbations or inherent inaccuracy in modeling, including variations of physical 

parameters due to system deteriorations or aging. Parameter and state estimation are increasingly used in real-

time control and monitoring applications. 

Optimality in estimation has usually been obtained by adjusting a filter’s corrective gain to minimize the state 

error covariance. The Wiener-Kolmogorov filter was one of the first major contributions in optimal estimation that 

was proposed for stationary signals. It assumed estimates with known spectral properties subject to white noise. 

The Kalman filter was a generalization of the Wiener-Kolmogorov filter and has been applied to linear systems 

with non-stationary Gaussian signals [1]. The Kalman filter is optimal for a linear system with a perfectly known 

model subject to white process noise and measurement noise. Under these assumptions, the Kalman Filter 

recursively computes the optimal states using a predictor-corrector algorithm using an optimal gain. The Kalman 

filter gain is calculated such that the state error covariance matrix is minimized as each time sample. 
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Another important consideration in estimation is robustness to modeling uncertainties and bounded 

disturbances. Considerable research has been performed on the design of robust state estimation methods for 

dynamic systems with bounded uncertainties, such as minimax estimators, worst-case, or set-membership state 

estimators [2,3,4]. From the statistical standpoint, the minimax estimators deal with uncertainties that are 

uniformly distributed within a given bound. In the case of ellipsoidal bounding sets, these estimators coincide with 

the Kalman filter for linear systems. Other strategies found in literature include the robust Kalman filter [5,6,7,8], 

the H∞ filter [9,10,11], and variable structure filtering (VSF) [12,13,14]. Xie et al. [5] have presented a robust 

Kalman filter method that is robust versus time-varying norm-bounded parametric uncertainties in the state and 

measurement matrices. Their filter applies to linear systems with modeling uncertainty and guarantees that the 

variance of measurement error remains norm-bounded [5]. The robust Kalman filter was moreover designed for 

systems with bounded modeling uncertainties such that an upper bound of the mean square estimation error is 

minimized at each step [7]. Zames [15] proposed the H∞ method in 1980 that removed the necessity of a perfect 

model or complete knowledge of the input statistics. The H∞ theory was designed based on tracking the energy of 

a signal for the worst possible values of noise and modeling uncertainties [16]. 

The Smooth Variable Structure Filter (SVSF) is a model-based robust state estimation strategy [12]. It is based 

on the concept of variable structure systems that achieves stability given an upper bound for modeling 

uncertainties and noise levels [12]. Gadsden developed the optimal version of the SVSF filter and presented 

applications for fault diagnosis [14,17]. Mahalanabis et al. presented a second-order method [18] for state 

estimation of nonlinear systems. Their method was restricted to a class of nonlinear systems subjected to a 

Gaussian noise distribution. They showed that a nonlinear state equation may be expanded using a polynomial 

function of arbitrary order and developed a second-order state estimation method based on the nonlinear state 

model with first-order differential equations [18]. Afshari modeled the dynamics of actuation systems using 

physical methods [19,20] and designed filters for robust state estimation for actuations systems under normal 

and faulty cases [21,22,23]. 

This paper presents a dynamic second-order filter that is applied to systems with linear state and measurement 

models. Its corrective gain is formulated as a second-order Markov process and is designed based on a manifold 

that is a linear combination of the innovation sequence (measurement error) and its time difference. The stability 

of the dynamic second-order filter under the manifold is proven using the Lyapunov’s second law of stability. The 

stability criterion results in convergence and an iterative decrease in the measurement error and its time 

difference. In addition to its initial formulation, an optimal version of the dynamic second-order filter is then 

presented that minimizes the state error covariance. It is shown that the corrective gain of the optimal second-

order filter collapses to the Kalman filter’s gain given white noise. An experimental electro-hydrostatic actuator 

(EHA) setup is used to show the improved performance of the dynamic second-order filter over the robust Kalman 

filter and the SVSF method. 
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2. The Dynamic Second-Order Filter for State Estimation 

Consider a dynamic system defined by linear state and measurement models in discrete time as follows: 

𝒙௞ାଵ ൌ 𝑭𝒙௞ ൅ 𝑮𝒖௞ ൅ 𝒘௞ (1) 

𝒛௞ାଵ ൌ 𝑯𝒙௞ାଵ ൅ 𝒗௞ାଵ (2) 

where 𝒙 ∈ ℝ௡ൈଵ is the state vector, 𝒖 ∈ ℝ௣ൈଵ is the control vector, and 𝒛 ∈ ℝ௠ൈଵ is the measurement vector. 

𝑭 ∈ ℝ௡ൈ௡
 is the state matrix, 𝑮 ∈ ℝ௡ൈ௣is the control matrix, 𝑯 ∈ ℝ௠ൈ௡is the measurement matrix, and 𝒘 ∈

ℝ௡ൈଵ and 𝒗 ∈ ℝ௠ൈଵ
 are the process noise and the measurement noise, respectively. The following assumptions 

are made in the derivation of the dynamic second-order filter.
 

Assumption 1: Vectors w and v are mutually independent random variables and have a truncated Gaussian 

distribution with a zero mean. Their amplitudes are respectively bounded by 𝑤𝑚𝑎𝑥 and 𝑣𝑚𝑎𝑥 such that: 

ቊ
ห𝑤௜,௞ห ൑ 𝑤௠௔௫; 𝑖 ൌ 1, … ,𝑛

ห𝑣௜,௞ห ൑ 𝑣௠௔௫; 𝑖 ൌ 1, … ,𝑚
 (3) 

It is moreover assumed that they are statistically independent with respect to the state vector 𝒙 ∈ ℝ௡ൈଵ. 

Assumption 2: It is assumed that the system with equations (1) and (2) is completely observable. The 

measurement matrix H is assumed to be invertible. For cases where m ≠ n, the pseudo-inverse of the H matrix, 

namely𝑯ା, is calculated using the Moore-Penrose pseudo-inverse. 

Definition 1: Let 𝛥 be the backward difference operator that applies to variable x such that: 𝛥𝒙௞ାଵ ൌ 𝒙௞ାଵ െ 𝒙௞. 

It is assumed that 𝛥 is a smooth differentiable operator. 

The dynamic second-order filter applies to systems with linear state and measurement models in a predictor-

corrector form. It is summarized in the following prediction and update steps. 

1. Prediction step: 

 Prediction of the a priori state estimate 𝒙ෝ௞ାଵ|௞ using the previous a posteriori state estimate 𝒙ෝ௞|௞, is 

calculated as follows: 

𝒙ෝ௞ାଵ|௞ ൌ 𝑭෡𝒙ෝ௞|௞ ൅ 𝑮෡𝒖௞ (4) 

Prediction of the a priori measurement 𝒛ො௞ାଵ|௞, is calculated as follows: 

𝒛ො௞ାଵ|௞ ൌ 𝑯෡𝒙ෝ௞ାଵ|௞ (5) 

Note that 𝑭෡, 𝑮෡, and 𝑯෡  are respectively the estimated state matrix, control matrix, and measurement matrix. 

It is assumed that 𝑯෡ ≃ 𝑯, 𝑭෡ ≃ 𝑭 and 𝑮෡ ≃ 𝑮. 
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 Calculation of the a priori and the a posteriori measurement error vectors, 𝒆𝒛𝒌శ𝟏|𝒌
∈ ℝ௠ൈଵ and 𝒆𝒛𝒌|𝒌

∈ ℝ௠ൈଵ 

as: 

𝒆𝒛𝒌శ𝟏|𝒌
ൌ 𝒛௞ାଵ െ 𝑯෡𝒙ෝ௞ାଵ|௞  (6) 

𝒆𝒛𝒌|𝒌
ൌ 𝒛௞ െ 𝑯෡𝒙ෝ௞|௞  (7) 

2. Update step: 

 The corrective gain 𝑲 ∈ ℝ௡ൈ௠
 is obtained as a function of the a priori 𝒆𝒛𝒌శ𝟏|𝒌

, the a posteriori 𝒆𝒛𝒌|𝒌
,
 
the 

𝒆𝒛𝒌షభ|𝒌షభ  
measurement errors, and the cut-off frequency matrix as follows: 

𝑲௞ାଵ ൌ 𝒇ሺ𝑯෡ ,𝜦, 𝒆𝒛𝒌శ𝟏|𝒌
, 𝒆𝒛𝒌|𝒌

,𝒆𝒛𝒌ష𝟏|𝒌ష𝟏
ሻ (8) 

where 𝜦 ∈ ℝ௠ൈ௠ is the cut-off frequency matrix and represents the filter’s bandwidth. Note that in order to 

calculate the corrective gain function f, the measurement matrix H and its estimate 𝑯෡  are non-singular. They 

are initially assumed to be square matrices indicating that all states are measured 𝑚 ൌ 𝑛. Section 5 presents 

the gain K for systems without full state measurement 𝑚 ് 𝑛. 

 The a priori state estimate is updated into the a posteriori state estimate as follows: 

𝒙ෝ௞ାଵ|௞ାଵ ൌ 𝒙ෝ௞ାଵ|௞ ൅ 𝑲௞ାଵ𝒆𝒛ೖశభ|ೖ
 (9) 

The proof of stability for the dynamic second-order filter is obtained by defining a manifold that is a linear 

combination of the measurement error and its time difference as follows: 

𝝈௞ ൌ 𝛥𝒆௭ೖ|ೖ
൅ 𝑪𝒆௭ೖ|ೖ

 (10) 

where 𝝈௞:ℝ௠ൈଵ → ℝ௠ൈଵ is the linear manifold, 𝒆𝒛ೖ|ೖ
∈ ℝ௠ൈଵ is the measurement error (innovation sequence), 

𝑪 ൌ 𝑫𝒊𝒂𝒈ሺ𝑐௜௜ሻ ∈ ℝ௠ൈ௠ is a diagonal matrix with entries 𝑐௜௜. In a geometrical sense, matrix C is related to the 

slope of the manifold in a phase plane, with coordinates 𝛥𝒆𝒛ೖ|ೖ
and 𝒆𝒛ೖ|ೖ

. Fig. 1 presents the concept of the 

dynamic second-order filter in a phase plane. 

 
Fig. 1: Dynamic second-order filter based on a linear manifold 
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Remark 1: The linear manifold 𝝈௞ ൌ 𝛥𝒆𝒛ೖ|ೖ
൅ 𝑪𝒆𝒛ೖ|ೖ  presents a first-order low-pass filter, where C is referred 

to as the manifold cut-off frequency matrix. Taking the Z-transform of the manifold, the measurement error 𝑒௜,௭ 

is given by: 

𝑒௜,௭ሺ𝑧ሻ ൌ
1

1 ൅ 𝑐௜௜ െ 𝑧ିଵ
𝜎௜ሺ𝑧ሻ (11) 

Rearranging equation (11) gives 𝑒௜,௭ሺ𝑧ሻ ൌ
௭

ሺଵା௖೔೔ሻ௭ିଵ
𝜎௜ሺ𝑧ሻ. Hence, the measurement error 𝑒௜,௭ሺ𝑧ሻ may be 

synthesized as the output of a first-order low-pass filter with a bandwidth that is a function of the manifold slope 

𝑐௜௜. By proper selection of elements 𝑐௜௜, it is possible to apply an internal filtering strategy with variable bandwidths 

for removing unwanted high-frequency dynamics. Furthermore, the entry 𝑐௜௜ denotes the cut-off frequency 

corresponding to the ith element of the measurement error 𝑒௜,௭ ∈ 𝒆𝒛. Its value adjusts the filter’s bandwidth which 

affects the smoothness of state estimates. Using an internal filtering method with its own cut-off frequency 

coefficient is one of the main advantages of the dynamic second-order filter over other state estimation methods. 

3. Corrective Gain for the Dynamic Second-Order Filter 

A corrective gain 𝑲 ∈ ℝ௡ൈ௠for the dynamic second-order filter given a full measurement matrix 𝑯෡ ∈ ℝ௡ൈ௠ሺ𝑚 ൌ
𝑛ሻ is as follows: 

𝑲௞ାଵ ൌ 𝑯෡ିଵ ቂ𝒆𝒛ೖశభ|ೖ
െ ሺ𝜸 ൅ 𝜦ሻ𝑒௭ೖ|ೖ

൅ 𝜸𝜦𝒆𝒛ೖషభ|ೖషభ
ቃ ቂ𝒆𝒛ೖశభ|ೖ

ቃ
ା

 (12) 

where 𝜦 ∈ ℝ௠ൈ௠ is the cut-off frequency matrix, and 𝜸 ൌ 𝑫𝒊𝒂𝒈ሺ𝛾௜௜ሻ ∈ ℝ௠ൈ௠is a diagonal matrix with positive 

entries such that 0 ൏ 𝛾௜௜ ൏ 1 represents the convergence rate. ሾ𝒆𝒛ೖశభ|ೖ
ሿା is the pseudo-inverse of the a priori 

measurement error vector and is calculated using the Moore-Penrose pseudo-inverse. 

Theorem 1: Assume a linear discrete system with the state and measurement models of equations (1) and (2). 

The dynamic second-order filter with the corrective gain (12) is stable and produces convergent state estimates.
 

Proof: Consider a positive-definite Lyapunov function as: 

𝑉௞ ൌ 𝜎𝑖 ,𝑘ଶ (13) 

where 𝜎௜ ∈ ℝ 
is an element of the linear manifold and defined as: 𝜎௜,௭ೖ|ೖ

ൌ 𝛥𝑒௜,௭ೖ|ೖ
൅ 𝑐௜௜𝑒௜,௭ೖ|ೖ

. Furthermore, 

𝛥𝑒௜,௭ ∈ ℝ denotes the difference of the measurement error 𝑒௜,௭ೖ|ೖ
and is calculated as 𝛥𝑒௜,௭ೖ|ೖ

ൌ 𝑒௜,௭ೖ|ೖ
െ

𝑒௜,௭ೖషభ|ೖషభ
. The dynamic second-order filter is stable if ∆𝑉௞ାଵ ൌ 𝑉௞ାଵ െ 𝑉௞ ൏ 0. Substituting the Lyapunov function 

in this inequality yields: 𝛥𝑉௞ାଵ ൌ ሺ𝛥𝑒௜,௭ೖశభ|ೖశభ
൅ 𝑐௜௜ 𝑒௜,௭ೖశభ|ೖశభ

ሻଶ െ ሺ𝛥𝑒௜,௭ೖ|ೖ
൅ 𝑐௜௜ 𝑒௜,௭ೖ|ೖ

ሻଶ, where 𝛥𝑒௜,௭ೖశభ|ೖశభ
ൌ

𝑒௜,௭ೖశభ|ೖశభ
െ 𝑒௜,௭ೖ|ೖ

 and 𝛥𝑒௜,௭ೖ|ೖ
ൌ 𝑒௜,௭ೖ|ೖ

െ 𝑒௜,௭ೖషభ|ೖషభ
. By substituting these values and rearranging, ∆𝑉௞ାଵ is 

obtained as: 
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∆𝑉𝑘ାଵ ൌ
ሺ1 ൅ 𝑐௜௜ሻ2𝑒𝑖,௭ೖశభ|ೖశభ

2 െ 2ሺ1 ൅ 𝑐௜௜ሻ𝑒௜,௭ೖశభ|ೖశభ
𝑒௜,௭ೖ|ೖ

െ2𝑐௜௜ሺ1 ൅ 𝑐௜௜ሻ𝑒௜,௭ೖ|ೖ
𝑒௜,௭ೖషభ|ೖషభ

െ 𝑒𝑖,௭ೖషభ|ೖషభ
2 . (14)

For simplicity let elements of the manifold’s cut-off frequency matrix be defined as: 

𝜆௜௜ ൌ
1

1 ൅ 𝑐𝑖𝑖
 (15) 

where 𝜦 ൌ 𝑫𝒊𝒂𝒈ሺ𝜆௜௜ሻ ∈ ℝ௠ൈ௠
 is a diagonal matrix. This definition simplifies the calculation of the derivative of 

the error covariance with respect to the manifold cut-off frequency. 

Multiplying the gain equation (12) by 𝑯෡ , and then by 𝒆𝒛ೖశభ|ೖ
, and rearranging gives: 

𝒆𝒛ೖశభ|ೖ
െ 𝑯෡𝑲௞ାଵ𝒆𝒛ೖశభ|ೖ

ൌ ሺ𝜸 ൅ 𝜦ሻ𝒆𝒛ೖ|ೖ
െ 𝜸𝜦𝒆𝒛ೖషభ|ೖషభ

 (16) 

Since the estimated states are updated using equation (9), 𝒙ෝ௞ାଵ|௞ାଵ ൌ 𝒙ෝ௞ାଵ|௞ ൅ 𝑲௞ାଵ𝒆𝒛ೖశభ|ೖ
, it leads to: 

𝑲௞ାଵ𝒆𝒛ೖశభ|ೖ
ൌ 𝒙ෝ௞ାଵ|௞ାଵ െ 𝒙ෝ௞ାଵ|௞. Substituting this relation into (16) leads to: 

𝒆𝒛ೖశభ|ೖ
െ 𝑯෡ሺ𝒙ෝ𝒌ା𝟏|𝒌ା𝟏 െ 𝒙ෝ𝒌ା𝟏|𝒌ሻ ൌ ሺ𝜸 ൅ 𝜦ሻ𝒆𝒛ೖ|ೖ

െ 𝜸𝜦𝒆𝒛ೖషభ|ೖషభ
 (17) 

The a priori and the a posteriori measurement errors at time step k are obtained from equations (6) and (7) as: 

𝒆𝒛k൅1|ೖ
ൌ 𝒛௞ାଵ െ 𝑯෡𝒙ෝ௞ାଵ|௞ ,

 
and 𝒆𝒛k൅1|k൅1

ൌ 𝒛௞ାଵ െ 𝑯෡𝒙ෝ௞ାଵ|௞ାଵ. Subtracting the a priori error from the a posteriori 

error leads to: 

𝒆𝒛k൅1|k൅1
െ 𝒆𝒛k൅1|ೖ

ൌ െ𝑯෡ሺ𝒙ෝ௞ାଵ|௞ାଵ െ 𝒙ෝ௞ାଵ|௞ሻ (18) 

From equation (19), it is possible to restate equality (17) as: 

𝒆𝒛ೖశభ|ೖశభ
ൌ ሺ𝜸 ൅ 𝜦ሻ𝒆𝒛ೖ|ೖ

െ 𝜸𝜦𝒆𝒛ೖషభ|ೖషభ
 (19) 

Equality (19) can be restated in terms of its entries 𝑒௜,௭, where γ and Λ are diagonal matrices, as: 

𝑒௜,௭ೖశభ|ೖశభ
ൌ ሺ𝛾௜௜ ൅ 𝜆௜௜ሻ𝑒௜,௭ೖ|ೖ

െ 𝛾௜௜𝜆௜௜𝑒௜,௭ೖషభ|ೖషభ
 (20) 

In order to show negative definiteness of the Lyapunov function candidate defined by (13), equality (20) is 

substituted into (14). Expanding the result: 

𝛥𝑉௞ାଵ ൌ ሺ𝛾௜௜ଶ െ 1ሻሺ1 ൅ 𝜆௜௜ሻଶ𝑒௜,𝑧𝑘|𝑘
ଶ ൅ ሺ𝛾௜௜ଶ െ 1ሻ𝑒௜,𝑧𝑘െ1|𝑘െ1

ଶ െ 2ሺ𝛾௜௜ଶ െ 1ሻሺ1 ൅ 𝜆௜௜ሻ𝑒௜,௭ೖ|ೖ
𝑒௜,௭ೖషభ|ೖషభ

 (21) 

Rearranging equality (21) results in: 

𝛥𝑉௞ାଵ ൌ ሺ𝛾௜௜ଶ െ 1ሻ ቂሺ1 ൅ 𝜆௜௜ሻ𝑒௜,௭ೖ|ೖ
െ 𝑒௜,௭ೖషభ|ೖషభ

ቃ
ଶ

 (22) 
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Since the convergence rate matrix 𝜸 ൌ 𝑫𝒊𝒂𝒈ሺ𝛾௜௜ሻ ∈ ℝ௠ൈ௠is defined such that 0 ൏ 𝛾௜௜ ൏ 1, it leads to 𝛥𝑉௞ାଵ ൏
0 which proves stability of the dynamic second-order filter under gain (12).                      □ 

Remark 2: If the Lyapunov function (13) is satisfied, then |𝝈௞ାଵ| ൏ |𝝈௞|. Since 𝝈௞ ൌ 𝛥𝒆𝒛ೖ|ೖ
൅ 𝑪𝒆𝒛ೖ|ೖ

, it shows 

that the summation of the measurement error and its time difference is decreasing over time. 

Remark 3: The corrective gain (12) actually represents a second-order Markov process that is formulated in 

terms of the measurement error at time steps k and k-1. Using a second-order corrective gain in the update step 

results in updating the state estimates based on information available from the last two steps. Having access to 

higher amount of information from the past intuitively increases smoothness of state estimates in comparison to 

estimates generated from a first-order filter. 

Lemma 1: The state estimation error 𝒆𝒙ೖ|ೖ
ൌ 𝒙௞ െ 𝒙ෝ௞|௞ generated form the dynamic second-order filter remains 

norm-bounded given norm-bounded process and measurement noise. 

Proof: The state estimation error 𝒆𝒙ೖశభ|ೖశభ
is calculated by: 

𝒆𝒙ೖశభ|ೖశభ
ൌ 𝒙௞ାଵ െ 𝒙ෝ௞ାଵ|௞ାଵ (23) 

where 𝒙ෝ௞ାଵ|௞ାଵ ൌ 𝒙ෝ௞ାଵ|௞ ൅ 𝑲௞ାଵ𝒆𝒛ೖశభ|ೖ
. Moreover, 𝒙௞ାଵ and 𝒙ෝ௞ାଵ|௞ are obtained from equations (1) and (4), 

respectively. Hence, 𝒆𝒙ೖశభ|ೖశభ
 is given by: 

𝒆𝒙ೖశభ|ೖశభ
ൌ 𝒙௞ାଵ െ 𝒙ෝ௞ାଵ|௞ାଵ ൌ 𝑭𝒙𝒌|𝒌 ൅ 𝑮𝒖𝒌 ൅ 𝒘௞ െ ቀ𝑭෡𝒙ෝ௞|௞ ൅ 𝑮෡𝒖௞ ൅ 𝑲௞ାଵ𝒆𝒛ೖశభ|ೖ

ቁ (24) 

where the gain K is given by equation (12). Assuming 𝑯෡ ൌ 𝑯, 𝑭෡ ൌ 𝑭 and 𝑮෡ ൌ 𝑮, equality (24) may be simplified 

as: 

𝒆𝒙ೖశభ|ೖశభ
ൌ 𝑭෡ሺ𝒙௞ െ 𝒙ෝ௞|௞ሻ ൅ 𝒘௞ െ 𝑲௞ାଵ𝒆𝒛ೖశభ|ೖ

 (25) 

which is equal to 𝒆𝒙ೖశభ|ೖశభ
ൌ 𝑭෡𝒆𝒙ೖ|ೖ

൅ 𝒘௞ െ 𝑲௞ାଵ𝒆𝒛ೖశభ|ೖ
. By substituting K from equality (12) into the above 

equality and simplifying the resulting terms, it becomes: 

𝒆𝒙ೖశభ|ೖశభ
ൌ 𝑭෡𝒆𝒙ೖ|ೖ

൅ 𝒘௞ െ ቂ𝒆𝒛ೖశభ|ೖ
െ ሺ𝜸 ൅ 𝜦ሻ𝒆𝒛ೖ|ೖ

൅ 𝜸𝜦𝒆𝒛ೖషభ|ೖషభ
ቃ  (26)

Since 𝒛௞ାଵ ൌ 𝑯𝒙௞ାଵ ൅ 𝒗௞ାଵ, and 𝒛ො௞ାଵ|௞ ൌ 𝑯෡𝒙ෝ௞ାଵ|௞, measurement errors 𝒆𝒛ೖశభ|ೖశభ
, 𝒆𝒛ೖశభ|ೖ

, and 𝒆𝒛ೖ|ೖ
 may be 

restated in terms of 𝒆𝒙ೖ|ೖ
and 𝒆𝒙ೖశభ|ೖశభ

, as follows: 

𝒆𝒛𝒌శ𝟏|𝒌శ𝟏
ൌ 𝑯෡𝒆𝒙𝒌శ𝟏|𝒌శ𝟏

൅ 𝒗𝒌ା𝟏 

𝒆𝒛𝒌శ𝟏|𝒌
ൌ 𝑯෡𝑭෡𝒆𝒙𝒌|𝒌

൅ 𝑯෡𝒘𝒌 ൅ 𝒗𝒌ା𝟏 

𝒆𝒛𝒌|𝒌
ൌ 𝑯෡𝒆𝒙𝒌|𝒌

൅ 𝒗𝒌 

(27) 

Substituting the above equalities into (26) and simplifying it, 𝒆𝒙ೖశభ|ೖశభ
is obtained as follows: 
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𝒆𝒙ೖశభ|ೖశభ
ൌ ሺ𝜸 ൅ 𝜦ሻ𝒆௫ೖ|ೖ

െ 𝜸𝜦𝒆𝒙ೖషభ|ೖషభ
െ 𝑯෡ିଵ𝒗𝒌ା𝟏 ൅ ሺ𝜸 ൅ 𝜦ሻ𝑯෡ିଵ𝒗𝒌 െ 𝜸𝜦𝑯෡ିଵ𝒗𝒌ି𝟏 (28) 

Following Assumption 1, v is a zero-mean noise with a truncated Gaussian distribution. Therefore, by taking the 

expectation of equality (28), the terms that contain the measurement noise v are cancelled and the state 

estimation error equation is obtained as follows: 

𝒆̄𝒙ೖశభ|ೖశభ
െ ሺ𝜸 ൅ 𝜦ሻ𝒆̄𝒙ೖ|ೖ

൅ 𝜸𝜦𝒆̄𝒙ೖషభ|ೖషభ
ൌ 0 (29) 

where 𝒆̄𝒙ೖ|ೖ
is the expectation of 𝒆𝒙ೖ|ೖ

. Taking the z-transform of equality (29), it becomes: 

ሾ𝑧ଶ െ ሺ𝜸 ൅ 𝜦ሻ 𝑧൅𝜸𝜦ሿ𝒆̄𝒙ሺ𝑧ሻ ൌ 0 (30) 

A necessary and sufficient condition for stability of the state estimation error (its expectation) is that γ and Λ are 

tuned such that poles of equation (30) are within the unit circle.                      □ 

4. The Optimal Second-Order Filter for State Estimation 

In order to optimize the dynamic second-order filter in terms of the mean squared error, it is necessary to 

introduce the state error covariance matrix into the filter formulation. The error covariance matrix provides 

additional information about the state estimate’s dispersion for the filter that in turns results in more accurate 

estimates. The calculation process of the a priori and a posteriori state error covariance for the new derivation is 

similar to what was presented by Gadsden and Habibi [12,14,20] for the SVSF method based on the Kalman filter 

[1,14]. The a priori state error covariance matrix is defined as follows [14]: 

𝑷௞ାଵ|௞ ൌ 𝐸൛ሺ𝒙௞ାଵ െ 𝒙ෝ௞ାଵ|௞ሻሺ𝒙௞ାଵ െ 𝒙ෝ௞ାଵ|௞ሻ்ൟ (31) 

Since 𝒙௞ାଵ ൌ 𝑭𝒙௞ ൅ 𝑮𝒖௞ ൅ 𝒘௞, and 𝒙ෝ௞ାଵ ൌ 𝑭෡𝒙௞ ൅ 𝑮෡𝒖௞, it leads to: 

𝑷௞ାଵ|௞ ൌ 𝐸 ቄ𝑭෡𝒆𝒙ೖశభ|ೖ
𝒆𝒙ೖశభ|ೖ

்𝑭෡
𝑇
൅ 𝑭෡𝒆𝒙ೖశభ|ೖ

𝒘𝑘
𝑇 ൅𝒘𝑘𝒆𝒙ೖశభ|ೖ

்𝑭෡
𝑇
൅𝒘𝑘𝒘𝑘

𝑇ቅ (32)

Further to Assumption 1: 

𝐸ሼ𝒘௞ሽ ൌ 𝐸ሼ𝒘௞
்ሽ ൌ 0 (33) 

𝐸 ቄ𝒆𝒙ೖశభ|ೖ
𝒘௞

்ቅ ൌ 𝐸 ቄ𝒘௞𝒆𝒙ೖశభ|ೖ
்ቅ ൌ 0 (34) 

𝐸ሼ𝒘௞𝒘௞
்ሽ ൌ 𝑸௞  (35) 

where Q is the process noise covariance. The a priori state covariance matrix is given by [14]: 

𝑷௞ାଵ|௞ ൌ 𝑭෡𝑷௞|௞𝑭෡் ൅ 𝑸௞ (36) 

Similarly, the a posteriori error covariance matrix is given by: 
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𝑷௞ାଵ|௞ାଵ ൌ ሺ𝑰 െ 𝑲௞ାଵ𝑯෡ሻ𝑷௞ାଵ|௞ሺ𝑰 െ 𝑲௞ାଵ𝑯෡ሻ் ൅ 𝑲௞ାଵ𝑹௞ାଵ𝑲௞ାଵ
் (37) 

where R denotes the measurement noise covariance [14]. 

In order to extract the optimal state estimates using the dynamic second-order filter, the optimal value of the 

cut-off frequency coefficient must be found at each time step. The proposed strategy for finding the optimal cut-

off frequency matrix is to calculate the partial derivative of the trace of the state error covariance matrix P with 

respect to the cut-off frequency matrix Λ. It results in determining the optimal value of the cut-off frequency at 

each time and calculates the filter’s bandwidth as a function of modeling uncertainties. In the Kalman filter, the 

gain is calculated to directly minimize the trace of the error covariance matrix. However, in the dynamic second-

order filter, the filter’s corrective gain is first derived to be within a range that preserves the Lyapunov’s second 

law, where the cut-off frequency matrix is assumed to be constant. Thereafter, the optimal value of the cut-off 

frequency matrix (filter’s bandwidth) is calculated using optimization. 

In the stability-oriented design of the dynamic second-order filter, the cut-off frequency matrix is set to be 

diagonal. Each diagonal entry 𝜆௜௜ represents the cut-off frequency related to a measurement error which makes 

the cut-off frequency coefficients independent of each other. A direct consequence of this is that the 

measurement error of each state 𝒆𝒛ೖ|ೖ
is directly filtered out with a pre-determined bandwidth. Due to the 

diagonal consideration of the cut-off frequency matrix, coupling effects were neglected in the derivation of the 

dynamic second-order filter. In this context, only diagonal entries of the state error covariance matrix are 

minimized and the off-diagonal entries are neglected. Limiting the filter to having a diagonal cut-off frequency 

matrix precludes an optimal solution. As such, for optimizing the dynamic second-order filter, the cut-off 

frequency matrix 𝜦 ∈ ℝ௠ൈ௠ needs to be full with diagonal and off-diagonal entries as follows: 

𝜦௞ ൌ

⎣
⎢
⎢
⎡
𝜆ଵଵ,௞ 𝜆ଵଶ,௞ ⋯ 𝜆ଵ௠,௞

𝜆ଶଵ,௞ 𝜆ଶଶ,௞ ⋯ 𝜆ଶ௠,௞
⋮ ⋮ ⋱ ⋮

𝜆௠ଵ,௞ 𝜆௠ଶ,௞ ⋯ 𝜆௠௠,௞⎦
⎥
⎥
⎤
 (38) 

where 𝜆௜௜ is a diagonal entry and denotes the cut-off frequency applied on 𝑒௜,௭. Otherwise, 𝜆௜௝ is an off-diagonal 

entry and
 
corresponds to measurement errors 𝑒௜,௭ and 𝑒௝,௭. Theorem 2 is presented to introduce the optimal value 

of the cut-off frequency matrix at each time step. Thereafter, it is shown that the corrective gain of the optimal 

second-order filter collapses to the Kalman filter’s gain. 

Theorem 2: Assume a linear system described by the state and measurement models of equations (1) and (2). 

The state error covariance matrix P (trace) is minimized for the optimal second-order filter, if the cut-off frequency 

matrix is given by: 

𝜦௞ାଵ ൌ
ቂ𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘൅1|𝑘

െ 𝛾𝑒𝑧𝑘|𝑘
ቁ 𝑆𝑘൅1 െ𝑯෡𝑷௞ାଵ|௞𝑯෡

𝑇
ቃ

ቂ𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘|𝑘
െ 𝛾𝑒𝑧𝑘െ1|𝑘െ1

ቁ 𝑆𝑘൅1ቃ
െ𝟏
𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘൅1|𝑘

ቁ
  (39) 
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Proof: In order to minimize P
 
with optimal selection of the cut-off frequency Λ, its partial derivative (trace) with 

respect to Λ is calculated such that: 

𝜕ൣ𝑡𝑟𝑎𝑐𝑒ሺ𝑷௞ାଵ|௞ାଵሻ൧

𝜕𝜦௞ାଵ
ൌ 0 (40) 

The error covariance matrix P is presented by equation (37), where it contains the gain K (12). For calculating the 

partial derivative of equation (40), some relations from the gradient matrix rules are required, including [24]: 

𝜕ሾ𝑡𝑟𝑎𝑐𝑒ሺ𝑨𝑿𝑩ሻሿ

𝜕𝑿
ൌ 𝑨்𝑩் (41) 

𝜕ሾ𝑡𝑟𝑎𝑐𝑒ሺ𝑨𝑿்𝑩ሻሿ

𝜕𝑿
ൌ 𝑩𝑨 (42) 

𝜕ሾ𝑡𝑟𝑎𝑐𝑒ሺ𝑨𝑿𝑩𝑿்𝑪ሻሿ

𝜕𝑿
ൌ 𝑨்𝑪்𝑿𝑩் ൅ 𝑪𝑨𝑿𝑩 (43) 

Some matrices such as P are symmetric which simplifies calculations. Substituting the corrective gain (12) into the 

state error covariance (37) and expanding the resulting terms lead to the following four parts: 

Part 1: 𝐏௞ାଵ|௞ାଵ, (44)

Part 2: െ𝑯෡
െ1
ቂ𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘൅1|𝑘

െ 𝛾𝑒𝑧𝑘|𝑘
ቁ െ 𝜦௞ାଵ𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘|𝑘

െ 𝛾𝑒𝑧𝑘െ1|𝑘െ1
ቁቃ ቂ𝑫𝒊𝒂𝒈 ቀ𝑒𝑧𝑘൅1|𝑘

ቁቃ
െ𝟏

(45)

Part 3:  
െ𝐏௞ାଵ|௞𝑯෡

𝑇
൤𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘൅1|𝑘

െ 𝛾𝑒𝑧𝑘|𝑘
ቁ
𝑻
െ 𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘|𝑘

െ 𝛾𝑒𝑧𝑘െ1|𝑘െ1
ቁ
𝑻
𝜦௞ାଵ

்൨

ቂ𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘൅1|𝑘
ቁቃ
െ𝟏
𝑯෡
െ𝑇

 (46)

Part 4: 

𝑯෡
െ1
൤𝑫𝒊𝒂𝒈 ቀ𝑒𝑧𝑘൅1|𝑘

െ 𝛾𝑒𝑧𝑘|𝑘
ቁ
𝑻
െ 𝜦௞ାଵ𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘|𝑘

െ 𝛾𝑒𝑧𝑘െ1|𝑘െ1
ቁ
𝑻
൨

ቂ𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘൅1|𝑘
ቁቃ
െ𝟏
𝑆𝑘൅1 ቂ𝑫𝒊𝒂𝒈 ቀ𝑒𝑧𝑘൅1|𝑘

ቁቃ
െ𝟏

൤𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘൅1|𝑘
െ 𝛾𝑒𝑧𝑘|𝑘

ቁ
𝑻
െ 𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘|𝑘

െ 𝛾𝑒𝑧𝑘െ1|𝑘െ1
ቁ
𝑻
𝜦௞ାଵ൨𝑯෡

𝑇

 (47)

Note that 𝑫𝒊𝒂𝒈ሺ𝒆𝒛ሻ transforms the measurement error vector into a diagonal matrix. The partial derivative in 

equation (40) is calculated as a summation of the partial derivative of the four parts presented by (44-47). These 

derivatives are calculated as: 

𝜕ሾ𝑡𝑟𝑎𝑐𝑒ሺPart 1ሻሿ

𝜕𝜦௞ାଵ
ൌ 0, (48)

𝜕ሾ𝑡𝑟𝑎𝑐𝑒ሺPart 2ሻሿ

𝜕𝜦௞ାଵ
ൌ 𝑯෡

െ𝑇
𝐏௞ାଵ|௞𝑯෡

𝑇
ቂ𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘൅1|𝑘

ቁቃ
െ𝟏
𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘|𝑘

െ 𝛾𝑒𝑧𝑘െ1|𝑘െ1
ቁ
𝑻

 (49)
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𝜕ሾ𝑡𝑟𝑎𝑐𝑒ሺPart 3ሻሿ

𝜕𝜦௞ାଵ
ൌ 𝑯෡

െ𝑇
𝐏௞ାଵ|௞𝑯෡

𝑇
ቂ𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘൅1|𝑘

ቁቃ
െ𝑻
𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘|𝑘

െ 𝛾𝑒𝑧𝑘െ1|𝑘െ1
ቁ
𝑻

 (50)

𝜕ሾ𝑡𝑟𝑎𝑐𝑒ሺPart 4ሻሿ

𝜕𝜦௞ାଵ
ൌ 2𝑯෡

െ1

⎣
⎢
⎢
⎢
⎢
⎡ 𝜦௞ାଵ𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘|𝑘

െ 𝛾𝑒𝑧𝑘െ1|𝑘െ1
ቁ 𝑆𝑘൅1

𝑇 ቂ𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘൅1|𝑘
ቁቃ
െ𝟏

𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘|𝑘
െ 𝛾𝑒𝑧𝑘െ1|𝑘െ1

ቁ
𝑻
െ 𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘൅1|𝑘

െ 𝛾𝑒𝑧𝑘|𝑘
ቁ
𝑻
𝑆𝑘൅1

ቂ𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘൅1|𝑘
ቁቃ
െ𝟏
𝑫𝒊𝒂𝒈ቀ𝑒𝑧𝑘|𝑘

െ 𝛾𝑒𝑧𝑘െ1|𝑘െ1
ቁ
𝑻

⎦
⎥
⎥
⎥
⎥
⎤

 (51)

where 𝑺 ∈ ℝ௠ൈ௠ is a symmetric matrix, called the innovation covariance matrix (similar to the Kalman filter), and 

given by: 

𝑺௞ାଵ ൌ 𝑯෡𝑷௞ାଵ|௞𝑯෡் ൅ 𝑹௞ (52) 

Adding equations (48-51) and rearranging the resulting terms, the partial derivative of P is obtained as: 

𝑷௞ାଵ|௞𝑯෡் െ 𝑯෡ିଵሾ𝑫𝒊𝒂𝒈ሺ𝒆𝒛ೖశభ|ೖ
െ 𝜸𝒆𝒛ೖ|ೖ

ሻሿ𝑺௞ାଵ
ൌ െ𝑯෡ିଵ𝜦௞ାଵሾ𝑫𝒊𝒂𝒈ሺ𝒆𝒛ೖశభ|ೖ

ሻሿିଵ𝑫𝒊𝒂𝒈ሾሺ𝒆𝒛ೖ|ೖ
െ 𝜸𝒆𝒛ೖషభ|ೖషభ

ሻሿ𝑺௞ାଵ ൌ 0 
(53)

Solving equality (53) in terms of Λ results in the optimal cut-off frequency matrix as: 

1| |1 1 1|
ˆ ˆ( )

k k k k

T
k k k k  

    z zΛ Diag e γe S HP H ቂ𝑫𝒊𝒂𝒈ሺ𝒆𝒛ೖ|ೖ
െ 𝜸𝒆𝒛ೖషభ|ೖషభ

ሻ𝑺௞ାଵቃ
ିଵ
𝑫𝒊𝒂𝒈ሺ𝒆𝒛ೖశభ|ೖ

ሻ that is equal to (39).            □ 

The optimal second-order filter is summarized as follows: 

1. Prediction Step: 

 Prediction of the a priori state vector, measurement vector, and state error covariance matrix are respectively 

calculated as follows: 

𝒙ෝ௞ାଵ|௞ ൌ 𝑭෡𝒙ෝ௞|௞ ൅ 𝑮෡𝒖௞ 

𝒛ො௞ାଵ|௞ ൌ 𝑯෡𝒙ෝ௞ାଵ|௞ 

𝑷௞ାଵ|௞ ൌ 𝑭෡𝑷௞|௞𝑭෡் ൅ 𝑸௞ 

(54) 

2. Update Step: 

 The innovation covariance matrix, cut-off frequency matrix, and corrective gain are respectively found by: 

𝑺௞ାଵ ൌ 𝑺௞ାଵ ൌ 𝑯෡𝑷௞ାଵ|௞𝑯෡் ൅ 𝑹௞ 

𝜦௞ାଵ ൌ ቂ𝑫𝒊𝒂𝒈 ቀ𝒆𝒛ೖశభ|ೖ
െ 𝜸𝒆𝒛ೖ|ೖ

ቁ 𝑺௞ାଵ െ 𝑯෡𝑷௞ାଵ|௞𝑯෡்ቃ

ቂ𝑫𝒊𝒂𝒈 ቀ𝒆𝒛𝑘|𝑘
െ 𝜸𝒆𝒛𝑘െ1|𝑘െ1

ቁ 𝑺௞ାଵቃ
ି𝟏
𝑫𝒊𝒂𝒈 ቀ𝒆𝒛ೖశభ|ೖ

ቁ

𝑲௞ାଵ ൌ 𝑯෡ିଵ ቂ𝑫𝒊𝒂𝒈 ቂ𝒆𝒛ೖశభ|ೖ
െ ሺ𝜸 ൅ 𝜦௞ାଵሻ𝑒௭ೖ|ೖ

ቃ ൅ 𝜸𝜦௞ାଵ𝑫𝒊𝒂𝒈ቀ𝒆𝒛ೖషభ|ೖషభ
ቁቃ ቂ𝑫𝒊𝒂𝒈 ቀ𝒆𝒛ೖశభ|ೖ

ቁቃ
ିଵ

(55)
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 Update of the a priori state vector and state error covariance matrix into the a posteriori estimates is 

calculated as: 

𝒙ෝ௞ାଵ|௞ାଵ ൌ 𝒙ෝ௞ାଵ|௞ ൅ 𝑲௞ାଵ𝒆𝒛ೖశభ|ೖ
 

𝑷௞ାଵ|௞ାଵ ൌ ሺ𝑰 െ 𝑲௞ାଵ𝑯෡ሻ𝑷௞ାଵ|௞ሺ𝑰 െ 𝑲௞ାଵ𝑯෡ሻ் ൅ 𝑲௞ାଵ𝑹௞ାଵ𝑲௞ାଵ
் 

(56)

Fig. 2 presents a block-diagram of the optimal second-order filter for state estimation. 

 

 

Fig. 2: The optimal second-order filter for state estimation 

It is interesting to note that the corrective gain of the optimal second-order filter with the cut-off frequency 

coefficient of (39) represents the Kalman filter gain in the absence of modeling uncertainties. In order to prove 

this equivalency, substitute the cut-off frequency coefficient (39) into the corrective gain equation (12) such that: 

𝑲௞ାଵ ൌ
𝑯෡
െ1
ቐ
𝑫𝒊𝒂𝒈 ቀ𝒆𝒛ೖశభ|ೖ

െ 𝜸𝒆𝒛ೖ|ೖ
ቁ െ ቂ𝑫𝒊𝒂𝒈 ቀ𝒆𝒛ೖశభ|ೖ

െ 𝜸𝒆𝒛ೖ|ೖ
ቁ 𝑺௞ାଵ െ 𝑯෡𝑷௞ାଵ|௞𝑯෡்ቃ

ቂ𝑫𝒊𝒂𝒈 ቀ𝒆𝒛𝑘|𝑘
െ 𝜸𝒆𝒛𝑘െ1|𝑘െ1

ቁ 𝑺௞ାଵቃ
ି𝟏
𝑫𝒊𝒂𝒈 ቀ𝒆𝒛𝑘|𝑘

െ 𝜸𝒆𝒛𝑘െ1|𝑘െ1
ቁ

ቑ

𝑫𝒊𝒂𝒈 ቀ𝒆𝒛ೖశభ|ೖ
ቁ ቂ𝑫𝒊𝒂𝒈 ቀ𝒆𝒛ೖశభ|ೖ

ቁቃ
ିଵ

 (57) 

Rearranging (57), it becomes: 

𝑲௞ାଵ ൌ 𝑯෡
െ1
ቐ
𝑫𝒊𝒂𝒈 ቀ𝒆𝒛ೖశభ|ೖ

െ 𝜸𝒆𝒛ೖ|ೖ
ቁ െ ቂ𝑫𝒊𝒂𝒈 ቀ𝒆𝒛ೖశభ|ೖ

െ 𝜸𝒆𝒛ೖ|ೖ
ቁ 𝑺௞ାଵ െ 𝑯෡𝑷௞ାଵ|௞𝑯෡்ቃ

𝑺௞ାଵ
ିଵ ቂ𝑫𝒊𝒂𝒈 ቀ𝒆𝒛𝑘|𝑘

െ 𝜸𝒆𝒛𝑘െ1|𝑘െ1
ቁቃ
ି𝟏
𝑫𝒊𝒂𝒈 ቀ𝒆𝒛𝑘|𝑘

െ 𝜸𝒆𝒛𝑘െ1|𝑘െ1
ቁ

ቑ (58)

where equality (58) may be restated as follows: 

𝑲௞ାଵ ൌ 𝑯෡
െ1
ቂ𝑫𝒊𝒂𝒈 ቀ𝒆𝒛ೖశభ|ೖ

െ 𝜸𝒆𝒛ೖ|ೖ
ቁ െ 𝑫𝒊𝒂𝒈 ቀ𝒆𝒛ೖశభ|ೖ

െ 𝜸𝒆𝒛ೖ|ೖ
ቁ ൅ 𝑯෡𝑷௞ାଵ|௞𝑯෡்𝑺௞ାଵ

ିଵቃ (59) 

Simplifying equality (59), the corrective gain of the optimal second-order filter becomes: 
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𝑲௞ାଵ ൌ 𝑷௞ାଵ|௞𝑯෡்𝑺௞ାଵ
ିଵ (60) 

which is equal to the Kalman gain. 

As presented in (60), the corrective gain of the optimal second-order filter collapses to the Kalman filter’s gain 

and hence, its robustness is partially lost. In order to overcome this issue and preserve stability as well as 

optimality, a combined strategy is proposed similar to Gadsden’s combined strategy introduced in [14,17]. In this 

strategy, the dynamic second-order filter with the corrective gain (12) applies to systems with modeling 

uncertainties (e.g. systems under fault conditions). The optimal second-order filter with the gain of (55) applies to 

systems with a known model (e.g. systems under normal conditions). The combined strategy automatically 

switches between these two filters in order to preserve optimality for systems with a known model and at the 

same time preserves the stability for systems with uncertainties. Fig. 3 presents a flow-diagram of the combined 

strategy. The decision on the level of modeling uncertainties is made by comparing the statistical properties of 

the measurement error with the ones obtained for the system in the normal condition. In this context, there is a 

number of statistical tests that may be applied to the measurement error in order to evaluate modeling 

uncertainties. The easiest test for evaluating the level of uncertainties is to set a constant (or adaptive) threshold 

for the measurement error. If the error’s mean value exceeds this threshold, the dynamic 2nd-order filter is applied 

for state estimation. Meanwhile, there are more accurate tests performed on the probability distribution of the 

measurement error. Hwang et al. [25] summarized a number of these tests including: sequential probability ratio 

test, cumulative sum algorithm, and generalized likelihood ratio test. 

 

Fig. 3: Main concept of the combined strategy for state estimation 

5. The Dynamic Second-Order Filter for Systems with Fewer Measurements than States (m < n) 

The dynamic second-order filter method may be applied to systems with fewer measurements than states m<n. 

The process of calculating the gain for hidden states is similar to what was presented for the SVSF method in [12]. 

In this context, the corrective gain relating to hidden states is derived using the Luenberger’s observer [12]. 

Following Assumption 2, the linear system with equations (1) and (2) is completely observable. The state vector is 

decomposed into two parts 𝒙 ൌ ሾ𝒙𝒖 𝒙𝒍ሿ
்

, where the upper part 𝒙௨ ∈ ℝ௠ൈଵ
 
is directly measured and the lower 

part 𝒙௟ ∈ ℝሺ௡ି௠ሻൈଵ is not. Using the Luenberger’s transformation, a new measurement vector is obtained by [12]: 

𝑻𝒙௞ ൌ ሾ𝒚𝒖ೖ 𝒚𝒍ೖሿ் (61) 

where T is a transformation matrix. In this regard, a revised state vector is formulated in terms of measurements 

such that: 𝒚 ൌ ሾ𝒛 𝒚𝒍ሿ
்

, where 𝒛 ∈ ℝ௠ൈଵ denotes the direct measurement vector and 𝒚𝒍 ∈ ℝሺ௡ି௠ሻൈଵ denotes 
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an artificial measurement vector. The problem is to calculate values for entries of 𝒚𝒍 based on the partitioned 

model. The measurement model is [12]: 

൤
𝒛௞ାଵ
𝒚𝒍ೖశభ

൨ ൌ ൤
𝜱ଵଵ 𝜱ଵଶ
𝜱ଶଵ 𝜱ଶଶ

൨ ൤
𝒛௞
𝒚𝒍ೖ

൨ ൅ ൤
𝑮ଵ
𝑮ଶ
൨ 𝒖௞ ൅ 𝒘௞ (62) 

where 𝜱 ൌ 𝑻ି𝟏𝑨𝑻, and 𝑮 ൌ 𝑻ି𝟏𝑩. The a priori state estimate is given by [12]: 

ቈ
𝒛ො௞ାଵ|௞

𝒚ෝ𝒍ೖశభ|ೖ

቉ ൌ ቈ
𝜱෡ଵଵ 𝜱෡ଵଶ
𝜱෡ଶଵ 𝜱෡ଶଶ

቉ ൤
𝒛௞
𝒚ෝ𝒍ೖ|ೖ

൨ ൅ ቈ
𝑮෡ଵ
𝑮෡ଶ
቉𝒖௞  (63) 

Subtracting (63) from (62), the a priori and a posteriori measurement error vectors for the projected 

measurement vector 𝒚𝒍 
are calculated as: 

𝒆𝒚𝒍ೖశభ|ೖశభ
ൌ 𝜱෡ଵଶ

ିଵ
𝒆𝒛ೖశభ|ೖ

 (64) 

𝒆𝒚𝒍ೖశభ|ೖ
ൌ 𝜱෡ଶଶ𝜱෡ଵଶ

ିଵ
𝒆𝒛ೖశభ|ೖ

 (65) 

where 𝒆𝒚𝒍 ∈ ℝሺ௡ି௠ሻൈଵ is the projected measurement error vector and 𝒆𝒛 ∈ ℝ௠ൈଵ is the measurement error 

vector corresponding to measurable states. Equations (64) and (65) represent a mapping of the measurement 

error for calculating the filter gain. Further to equation (12), the corrective gain of the dynamic second-order filter 

for the lower partition of states is derived by substituting values of 𝒆𝒚𝒍ೖ|ೖ
 and 𝒆𝒚𝒍ೖశభ|ೖ

 into equation (12) as: 

𝑲௞ାଵ ൌ ቂ𝜱෡ଶଶ𝜱෡ଵଶ
ିଵ
𝒆𝒛ೖశభ|ೖ

െ ሺ𝜸 ൅ 𝜦ሻ𝜱෡ଵଶ
ିଵ
𝒆𝒛ೖ|ೖషభ

൅ 𝜸𝜦𝜱෡ଵଶ
ିଵ
𝒆𝒛ೖషభ|ೖషమ

ቃ ቂ𝜱෡ଶଶ𝜱෡ଵଶ
ିଵ
𝒆𝒛ೖశభ|ೖ

ቃ
ା

 (66)

By combining the gains of each partition, the filter gain is obtained for systems with fewer measurements than 

states as: 

𝑲௞ାଵ ൌ ቎
𝑯෡ା ቂ𝒆𝒛ೖశభ|ೖ

െ ሺ𝜸 ൅ 𝜦ሻ𝒆𝒛ೖ|ೖ
൅ 𝜸𝜦𝒆𝒛ೖషభ|ೖషభ

ቃ ቂ𝒆𝒛ೖశభ|ೖ
ቃ
ା

ቂ𝜱෡ଶଶ𝜱෡ଵଶ
ିଵ
𝒆𝒛ೖశభ|ೖ

൅ 𝜱෡ଵଶ
ିଵ
ሾെሺ𝜸 ൅ 𝜦ሻ𝒆𝒛ೖ|ೖషభ

൅ 𝜸𝜦ିଵ𝒆𝒛ೖషభ|ೖషమ
ሿቃ ቂ𝜱෡ଶଶ𝜱෡ଵଶ

ିଵ
𝒆𝒛ೖశభ|ೖ

ቃ
ା቏ (67)

Lemma 2: The dynamic second-order filter under the corrective gain (66) is stable for the lower partition of 

states𝒚𝒍. 

Proof: Consider a positive-definite Lyapunov function as follows: 

𝑉௞ ൌ ሺ𝛥𝑒௝,௬೗,ೖ|ೖ
൅ 𝑐௝௝𝑒௝,௬೗,ೖ|ೖ

ሻଶ,  𝑗 ൌ 1, … ,𝑛 െ𝑚 (68)

where 𝑐௝௝ ∈ ℝሺ௡ି௠ሻൈሺ௡ି௠ሻ is an element of the cut-off frequency matrix for the lower state partition, and 𝑒௝,௬೗  
is 

an element of the measurement error vector for the lower partition state 𝒆𝒚𝒍 ∈ ℝ
ሺ௡ି௠ሻൈଵ. Steps (14) through 

(22) may simply be repeated for the above Lyapunov function. Following equations (64-65), since 𝒆𝒚𝒍ೖశభ|ೖశభ
ൌ
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𝜱෡ଵଶ
ିଵ
𝒆𝒛ೖశభ|ೖ

, and 𝒆𝒚𝒍ೖశభ|ೖ
ൌ 𝜱෡ଶଶ𝜱෡ଵଶ

ିଵ
𝒆𝒛ೖశభ|ೖ

, the corrective gain 𝐾௝,௟  for the lower partition states is restated 

as: 

𝐾௝,௟ೖశభ ൌ ቂ𝑒௝,௬௟ೖశభ|ೖ
െ ሺ𝛾௝௝ ൅ 𝜆௝௝ሻ𝑒௝,௬௟ೖ|ೖ

൅ 𝛾௝௝𝜆௝௝𝑒௝,௬௟ೖషభ|ೖషభ
ቃ ቂ𝑒௝,௬௟ೖశభ|ೖ

ቃ
ା

 (69)

Using the above relation for the corrective gain and following steps (14) through (22) of the previous proof of 

stability, the time difference of the Lyapunov function (68) is obtained as: 

𝛥𝑉௞ାଵ ൌ ሺ𝛾௝௝ଶ െ 1ሻ ቂሺ1 ൅ 𝜆௝௝ሻ𝑒௝,௬௟ೖ|ೖ
െ 𝑒௝,௬௟ೖషభ|ೖషభ

ቃ
ଶ

 (70)

Since the convergence rate matrix 𝜸 ൌ 𝑫𝒊𝒂𝒈ሺ𝛾௝௝ሻ ∈ ℝሺ௡ି௠ሻሺ௡ି௠ሻ is defined such that 0 ൏ 𝛾௝௝ ൏ 1, it leads to 

𝛥𝑉௞ାଵ ൏ 0 which proves the stability of the dynamic second-order filter under the gain (66) defined for the lower 

partition states.                                                     □ 

6. Experiments Using an Aerospace Electro-Hydrostatic Actuator 

In order to study the performance of the combined filtering strategy (dynamic second-order filter for uncertain 

systems and optimal version for normal systems) for state estimation, it is applied to an experimental electro-

hydrostatic actuator (EHA) setup. The EHA setup has been designed and built in the Center for Mechatronics and 

Hybrid Technology at McMaster University [26]. Fig. 4 presents the EHA experimental setup. Fig. 5 shows the circuit 

diagram of the EHA setup with numbered elements. The EHA system is used to compare the performance of the 

combined strategy to other estimation methods including the robust Kalman filter, and the SVSF. The test is 

composed of three scenarios including the normal EHA with a known model that contains noise and two faulty 

scenarios with unknown models that include the EHA with friction or internal leakage. 

 

Fig. 4: The electro-hydrostatic actuator (EHA) setup 
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Fig. 5: The circuit diagram of the EHA experimental setup (Upgraded from [17]) 

The EHA system shown in Fig. 5 uses pumping action (10) to create pressure and move piston A (3) and piston B 

(4). The EHA is composed of several components including: a symmetric linear actuator (8); a variable-speed 

electric motor (13); a bi-directional gear pump (10); a pressure relief valve (7); an accumulator (2); connecting 

tubes; and an inner circuit to prevent cavitation as shown in Fig. 5 by the dotted red line. The EHA setup includes 

complementary circuits that allow physical simulation of friction and leakage faults as shown in Fig. 5 by dotted 

black lines [17]. The hydraulic circuit of the EHA setup consists of two main parts. The first part is the inner low-

pressure circuit that filters the oil. It uses an accumulator (2) and filters and check valves (6) to keep the minimum 

system pressure at 40 psi. The inner circuit prevents cavitation and circulates oil for compensating leakage. The 

second part of the hydraulic circuit is the outer high-pressure circuit that produces actuation. The variable-speed 

electric servomotor, which is a SIEMENS 1FK7080-5AF71-1AG2, drives the bi-directional gear pump (10) and 

circulates oil into cylinder (8). This causes a pressure differential across the actuating cylinder and results in the 

motion of the load. The speed of the gear pump (10) regulates the actuation performance by changing the oil flow 

rate. An accumulator (2) is used to prevent cavitation and to collect the case drain leakage from the gear pump 

(10). The pressure relief valve (7) is used to limit the maximum system pressure to 500 psi during experiments. The 

EHA’s input is the voltage to the electric motor (13) that regulates the direction and the speed of the pump (10). 

The input voltage adjusts the value of the flow rate that in turns result in controlling the piston’s position, velocity, 

and acceleration [17]. 

An optical linear encoder (12) attached to piston A is used to obtain position measurements. Two types of fault 

conditions may be physically induced including internal leakage and friction. To simulate a friction fault condition 

in the EHA setup, piston A is used as the driving mechanism while piston B acts as a load. By changing the orifice 

size of the friction control throttling valve (9), the load may be varied allowing the physical simulation of friction 

faults. The orifice opening determines the level of severity of the fault condition. Similarly, internal leakage fault 

conditions can be physically simulated by using the leakage control throttling valve (5). Opening throttling valve 
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(5) simulates cross-port leakage between the two chambers of cylinder (A). These simulated fault conditions 

change dynamics of the EHA system and inject modeling uncertainties in its state model. 

The EHA dynamics may be described by using three state variables that are the actuator position 𝑥ଵ ൌ 𝑥, velocity 

𝑥ଶ ൌ 𝑥ሶ , and acceleration 𝑥ଷ ൌ 𝑥ሷ . A nonlinear state-space model of the EHA is given by [17]: 

𝑥ଵ,௞ାଵ ൌ 𝑥ଵ,௞ ൅ 𝑇𝑥ଶ,௞ (71) 

𝑥ଶ,௞ାଵ ൌ 𝑥ଶ,௞ ൅ 𝑇𝑥ଷ,௞ (72) 

𝑥ଷ,௞ାଵ ൌ ൤1 െ 𝑇
𝑎ଶ𝑉଴ ൅𝑀𝛽௘𝐿

𝑀𝑉଴
൨ 𝑥ଷ,௞ െ 𝑇

൫𝐴ா
ଶ ൅ 𝑎ଶ𝐿൯𝛽௘
𝑀𝑉଴

𝑥ଶ,௞ ൅ 𝑇
𝐴ா𝛽௘
𝑀𝑉଴

െ 𝑇
𝑎ଵ𝑉଴𝑥ଶ,௞𝑥ଷ,௞ ൅ 𝛽௘𝐿൫𝑎ଶ𝑥ଶ,௞

ଶ ൅ 𝑎ଷ൯
𝑀𝑉଴

𝑠𝑔𝑛൫𝑥ଶ,௞൯ 

(73) 

where AE is the piston cross-sectional area, βe is the effective bulk modulus, L is the leakage coefficient, M is the 

load mass, and V0 is the initial cylinder volume. T denotes the sample time and is set at T=1 ms. Table 1 presents 

numeric values of these parameters. The input to the EHA system relates to flow and in a simplified form is given 

by [17]: 

𝑢 ൌ 𝐷௣𝜔௣ െ 𝑠𝑔𝑛ሺ𝑃ଵ െ𝑃ଶሻ𝑄௅଴ (74) 

where Dp
 
is the pump displacement, Ql is the leakage flow rate, and Ql0 is the parameter used to adjust offsets. 

𝛥𝑃 ൌ 𝑃ଵ െ 𝑃ଶ is the differential pressure and is measured by a pressure sensor. A detailed procedure for physical 

modeling, linearization, and parameter identification of the EHA is presented in [17]. 

Table 1: Numeric values of the EHA parameters [17] 

Parameter Physical Meaning 
Parameter 

Values 

a1 

a2 

a3 

Friction Coefficients 

6.589×104 

2.144×103 

436 

AE Piston Area 1.52×10-3 m2 

Dp Pump Displacement 5.57×10-7 m3/rad 

L Leakage Coefficient 
4.78×10-12 

m3/(sec×Pa) 

M Load Mass 7.376 Kg 
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QL0 Flow Rate Offset 2.41×10-6 m3/sec 

V0 
Initial Cylinder 

Volume 
1.08×10-3 m3 

βe 
Effective Bulk 

Modulus 
2.07×108 Pa 

 

In order to compare the performance of the dynamic second-order filter with the SVSF and the robust Kalman 

filter, the EHA normal model is used in the filters for state estimation under all conditions including the normal 

and faulty conditions. The duration of the experiment is 11 seconds. It starts with the EHA under the normal 

condition for the first three seconds, followed by the EHA under friction for the next four seconds, and ends with 

the EHA under leakage for the last 4 seconds. Fig. 6 presents profiles of the input voltage and the measured 

actuator position under these three normal and faulty scenarios. 

 

Fig. 6: Profiles of the input voltage and output position 

under three scenarios 

Initial values of states are assumed zero and the sample time for discretization is set to T=1 ms. The nonlinear 

model of the EHA, described by (71) through (74), may simply be linearized by calculating its partial derivatives at 

its equilibrium point: 𝒙ሺ0ሻ ൌ ሾ0 0 0ሿ். The linearized EHA model is hence given by: 

𝒙௞ାଵ ൌ 𝑨𝒙௞ ൅ 𝑩𝒖௞  (75) 

where, 

𝑨 ൌ ൥
1 𝑇 0
0 1 𝑇
0 െ60.303 0.708

൩ ,  𝑩 ൌ ൥
0
0

39497
൩ (76) 
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Accuracy, and smoothness of state estimates provided by the combined strategy (dynamic/optimal second-order 

filter) are compared with those obtained by the robust Kalman filter and the SVSF methods. Note that the EHA 

model is third order, and position is the only measured state. In order to estimate other states, the SVSF and the 

dynamic/optimal second-order filter need to use the strategy outlined in Section 5. All the inputs and initial 

conditions are the same for the three estimators. The initial state estimates 𝒙ෝ଴|଴ and error covariance matrix 𝑷଴|଴ 

for the robust Kalman filter and the optimal second-order filter are the same and are equal to 𝒙ෝ଴|଴ ൌ
ሾ0 0 0ሿ் , 𝑷଴|଴ ൌ 10 ൈ 𝒆𝒚𝒆ሺ3ሻ. The convergence rate factors for the SVSF, and the combined strategy are set 

to γ = 0.5 and γ = 0.1, respectively. The cut-off frequency matrix for the dynamic second-order filter is set to: 𝛬 ൌ
0.2 ൈ 𝒆𝒚𝒆ሺ3ሻ. For the SVSF, the smoothing boundary layer is set to 𝝋 ൌ ሾ10ିଵଵ 10ି଻ 10ିସሿ். The 

measurement noise covariance matrix R for the robust Kalman filter, and the optimal second-order filter is equal 

to 𝑹 ൌ ሾ10ିଵଷሿ. The process noise covariance matrix Q for these methods is moreover equal to: 

𝑸𝒓𝒐𝒃𝒖𝒔𝒕 𝑲𝑭 ൌ 𝑸𝒐𝒑𝒕𝒊𝒎𝒂𝒍 𝟐𝒏𝒅ି𝒇𝒊𝒍𝒕𝒆𝒓 ൌ ൥
10ଷ 0 0

0 10 0
0 0 10ଶ

൩ (77) 

The combined strategy automatically switches between the dynamic and the optimal 2nd-order filters to make 

more accurate state estimates. In the EHA case, the switching index is defined as the squared value of the 

measurement error, as follows: 

𝛯௞ ൌ 𝑒௭ೖశభ|ೖ
ଶ (78) 

Based on the prior knowledge about the EHA, a threshold is defined for the position error measurements. In this 

test, the threshold is set to 0.3×10-10 m. If the position measurement error is smaller than 0.3×10-10 m, this means 

that the uncertainty level is small, and hence, the combined strategy selects the optimal 2nd-order filter. Otherwise, 

if it is larger than the threshold, the uncertainty level is high, and the dynamic 2nd-order filter is automatically 

selected. Fig. 7 presents the switching index profile for the EHA under the described test scenario. 

 

Fig. 7: State estimate profiles for the EHA under the 

leakage fault condition 
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In order to compare state estimation methods, the root mean square (RMS), and standard deviation of the state 

estimation error 𝒆𝒙 ൌ 𝒙 െ 𝒙ෝ are used. For comparing state estimation results against actual values pertaining to 

the velocity x2 and acceleration x3, these are obtained by taking the first and the second time-derivatives of the 

position measurement signal, respectively. Since differentiation results in added noise, a Butterworth filter is used 

to filter out the differentiation noise from the obtained velocity and acceleration signals. Tables 2 and 3 present 

the RMS and the STD indicators generated by the robust Kalman filter [5], SVSF [12], and the combined strategy. 

Table 2: RMS values of the state estimation error by different estimators 

RMS 
Robust Kalman 

filter 
SVSF 

Dynamic/optimal 

2nd-order filter 

Position (m) 3.35×10-19 5.78×10-21 1.24×10-23 

Velocity (m/s) 9.23×10-3 7.55×10-3 3.87×10-3 

Acceleration 

(m/s2) 
0.87 0.64 0.39 

 

Table 3: Standard deviations values of the state estimation error by estimators 

STD 
Robust Kalman 

filter 
SVSF 

Dynamic/optima

l 2nd-order filter 

Position (m) 4.11×10-19 7.09×10-21 1.23×10-23 

Velocity (m/s) 9.92×10-3 7.81×10-2 2.23×10-2 

Acceleration 

(m/s2) 
0.93 0.72 0.38 

As observed in Table 2, the RMS value of the error by the combined strategy is smaller than ones obtained by 

the SVSF, and robust Kalman filters. This shows that the combined strategy (dynamic/optimal 2nd-order filter) 

produces the most accurate estimates, followed by the SVSF and the robust Kalman filter. Under normal 

conditions, the combine strategy selects the optimal 2nd-order filter with a gain that is optimal in terms of the 

mean squared error. Moreover, for the EHA under friction or leakage fault conditions, the combined strategy 

selects the dynamic 2nd-order filter that produces with a robust corrective gain. This gain pushes the measurement 

error and its time difference to zero and this characteristic results in higher degrees of accuracy for state 

estimation. Following Table 3, the combined strategy produces the smallest STD, followed by the SVSF, and the 

robust Kalman filter. This confirms that the combined strategy can achieve smoother state estimates compared to 

other estimation methods. This is due to the second-order formulation of its corrective gain that provides further 

information for updating state estimates. Fig. 8 compares the state estimation profiles generated by the robust 
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Kalman filter, and the combined strategy (optimal/ dynamic second-order filter) with the actual state trajectories 

under the test scenario. Fig. 8 presents that until t = 3s (under normal condition) the estimated state profiles follow 

the actual ones and thus the linearized EHA model precisely describes the EHA dynamics. Fig. 9 presents profiles 

of the state estimation error generated by the robust Kalman filter and the combined strategy. Following Figs. 8 

and 9, it is deduced that the combined strategy produces more accurate state estimates under fault conditions in 

which the EHA model contains huge but unknown modeling and parametric uncertainties. 

 

Fig. 8: Profiles of the actual and the estimated states by 

different estimators 
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Fig. 9: Profiles of the state estimation errors generated 

by different estimators 

Fig. 10 presents phase portraits of the measurement error (innovation sequence) and its time difference 

generated by the dynamic/optimal second-order filter for the EHA under normal and fault conditions. According 

to these phase portraits, both the measurement error and its difference are decreasing over time below an upper 

bound (e.g.𝜀௦). However, due to the measurement noise and uncertainties, the measurement error cannot be 

cancelled completely and remains norm-bounded. An advantage presented by the dynamic 2nd-order filter is that 

it causes the measurement error and its difference to remain norm-bounded, even under uncertain faulty 

conditions. Note that following Lemma 1 and equality (30), where Λ = 0.2 and γ = 0.1, the state estimation error 

equation is obtained by: ሾ𝑧ଶ െ 0.3𝑧 ൅ 0.04ሿ𝒆̄𝒙ሺ𝑧ሻ ൌ 0. In this context, since the poles of this equation are within 

the unit circle, the state estimation error is stable given norm-bounded noise and uncertainties.

 

Fig. 10: Phase portraits of the measurement error and its difference by the dynamic/optimal 2nd-order 

filter under three scenarios 
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7. Conclusions 

In this paper, the dynamic second-order filter is firstly introduced for state estimation of systems with linear state 

and measurement models. Its corrective gain is obtained using a linear manifold defined in terms of the 

measurement error (innovation sequence) and its time difference. The stability and convergence of this method 

is then proven using the Lyapunov’s second law of stability. The linear manifold introduces a cut-off frequency 

matrix into the filter formulation that filters out high frequency dynamics. It operates like a first-order low-pass 

filter with an adjustable cut-off frequency that is related to the slope of the linear manifold. The gain of the 

dynamic 2nd-order filter updates the a priori state estimates based on available information of the measurement 

error from the last two steps. This yields smoother state estimates with smaller dispersions over the robust 

Kalman filter. 

In order to optimize the dynamic second-order filter, an optimal value of the cut-off frequency matrix is 

calculated such that the error’s covariance matrix is minimized. It is shown that the gain of the optimal second-

order filter is equivalent to the Kalman filter gain under ideal conditions at the expense of robustness. To achieve 

robustness and optimality, a combined strategy is presented that includes both the dynamic and optimal second-

order filtering methods. The switching criterion is designed based on statistical properties of the measurement 

error. The combined strategy automatically selects the optimal 2nd-order filter for systems with a known model 

and the dynamic 2nd-order filter for systems with modeling uncertainties. The combined strategy is applied to an 

experimental EHA setup for estimation under normal and faulty conditions. Its performance is then compared 

with the robust Kalman filter and the SVSF methods. Experimental results confirm the main advantages of the 

combined strategy over the other two in terms of its greater accuracy and smoothness. Experiments moreover 

verify that the combined strategy pushes the measurement error and its difference towards zero. It was shown 

that they remain norm-bounded under normal and uncertain faulty conditions. Future research involves 

application of the proposed second-order filter for other systems with unknown uncertainties. They include 

maneuvering target tracking, battery management systems, and fault-tolerant control systems. 
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