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Recent developments in the field of deep learning have led to the widespread integration of artificial 
neural networks in various domains of application. Prominent contemporary artificial neural network 
training techniques are based on first-order gradient computation. The emphasis on algorithmic 
performance has driven the emergence of variant artificial neural network training methodologies. 
Estimation theory, traditionally considered a sub-field of statistics and signal processing, has been 
explored by various researchers for the development of non-gradient based training methods. Articles 
published with the aim of utilizing estimation-based artificial neural network training techniques have 
shown promising results. We identify the integration of estimation theory within the artificial neural 
network training procedure as intelligent estimation. In this paper, the field of intelligent estimation 
is analyzed in greater depth with emphasis on the algorithmic performance of novel implementations. 
Intelligent estimation with applications in the professional domain is also considered, and will help lay 
the foundation for future research in the literature.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons .org /licenses /by-nc -nd /4 .0/).
1. Introduction

Estimation theory is a sub-section of the wide-ranging field 
of statistics and signal processing. Estimation methods attempt to 
predict, filter, or smooth the value of particular states of interest 
based on prior empirical data. The integration and application of 
these methods have spanned numerous fields, including signal pro-
cessing, control systems and machine learning. These applications 
are exceptionally accurate and reliable, facilitating their utilization 
in high-risk environments, such as air traffic control [1]. To esti-
mate system states and dynamics, estimation models are utilized 
[2–4]. The performance of these models when dealing with prac-
tical applications can be augmented with the introduction of non-
linear flexibility [5] and measurement noise robustness [6–8]. The 
Kalman filter is a prominently utilized estimation method, used for 
various applications, especially target tracking problems. Since the 
development of the Kalman filter in the 1960s, its integration into 
complex optimization problems has increased, with recent devel-
opments in the field of artificial intelligence and machine learning 
[9].
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With recent advances in deep learning, a major machine learn-
ing strategy, the employment of algorithms capable of precisely 
learning from prior data is occurring at an unprecedented rate. 
Deep learning algorithms utilize selected data to optimize network 
parameters to reduce output error [10,11]. Various factors influ-
ence the quality of the learning phase. The volume of training 
data and network architecture complexity play a crucial part in 
shaping the model learning characteristics [12]. The training algo-
rithm, which is applied to optimize network parameters, is critical 
to regulating algorithmic computational complexity and storage re-
quirements [13].

Network training algorithms are employed to locate model pa-
rameters that yield the minimum possible output error within 
the shortest time duration possible. These algorithms can be clas-
sified and assessed based on their generalization characteristics, 
which indicates how well the algorithm can perform provided vari-
ant datasets and model architectures, and their convergence rate. 
Algorithmic convergence characteristics can profoundly influence 
training time, positively and negatively. Contemporary research has 
been conducted on developing training algorithms that aim to de-
liver exceptional generalization and convergence characteristics.

Network training methods can be dichotomized into gradient-
based and non-gradient based approaches [14]. Gradient-based ap-
proaches compute the impact that slight variations in the param-
eter value have on the output error. To do such, gradient-based 
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Fig. 1. Non-Convex Loss Function.

methods employ the gradient of the loss function with respect 
to the selected parameters of interest. The computation can be 
carried out in parallel, therefore speeding up execution time. Non-
gradient based approaches avoid gradient calculations, such as ge-
netic algorithms and The Nelder-Mead Method [15–17].

Gradient descent remains the most prominent training loss op-
timization algorithm, however, it does not necessarily converge to 
the global minima. In numerous cases, gradient descent struggles 
to find global minima, only to achieve local convergence [18–20]. 
When employing a gradient descent-based optimization method-
ology for training a neural network, there are two common out-
comes. The first of which is the non-convex nature of the training 
criterion and the second is the magnitude of non-global local min-
ima [21,22]. These issues are visualized in the non-convex loss 
function displayed in Fig. 1. As a direct consequence of these two 
outcomes, the potential for local convergence becomes a seemingly 
indispensable characteristic of gradient descent.

The issue of local convergence has become known as the local 
minima problem, and there has been extensive work conducted 
on methods to avoid this complication when training neural net-
works [23]. Some authors have attempted to build upon gradient 
descent while introducing novel methods to the greater neural net-
work architecture. However, there is a steep cost associated with 
the reduction of local minima. Lo et al. advised that a methodol-
ogy grounded in convexification will ultimately lead to the lowest 
cost and greatest utility. The authors propose convexification of the 
sum of squared errors to solve the problem at hand [24].

Additionally, researchers have taken steps to replace gradient 
descent by employing variant optimization functions. F. Ahmad et 
al. propose the utilization of genetic algorithms to replace gradi-
ent descent, with the aim of locating a global optimal solution in 
a complex space [25]. The authors explored the potential advan-
tages of using variant optimization algorithms in numerous situa-
tions. The results show that the introduction of genetic algorithms 
yields a smaller classification error than gradient descent in spe-
cific applications. There is plenty of literature discussing numerous 
substitutes for gradient descent [26,27].

Researchers have endeavoured to explore the use of non-
gradient estimation-based training methods as a possible replace-
ment for gradient-based methods [14]. Estimation-based network 
training techniques have proven to produce accurate and reliable 
models [28]. These techniques have been tested across various 
applications, achieving similar or better results than other tested 
training algorithms.
2

The fundamental motivation behind this literature review is 
the exploration and analysis of the various heterogeneous estima-
tion techniques applied to neural network training as an efficient 
alternative to common contemporary methods, such as gradient 
descent. Over the last three decades, researchers have explored 
employing classical estimation techniques, like the Kalman filter 
and its variations, within the feedforward and recurrent neural 
networking training process.

This paper discusses the recent developments in intelligent es-
timation which includes any estimation-based techniques for the 
training of neural networks. Furthermore, contemporary trends in 
research and applications surrounding estimation theory and deep 
learning are considered. This paper provides a comprehensive sur-
vey of relevant research in the literature, and will serve as a 
foundation for future work. Section 2 gives a brief introduction to 
estimation techniques and backpropagation. Section 3 presents a 
full review of estimation-based network training techniques. The 
paper concludes with a discussion of the advantages and disad-
vantages of utilizing estimation-based training methods along with 
potential future applications and research.

2. Background

After systematically assessing the existing literature in the field 
of Intelligent Estimation, which entails the employment of esti-
mation methods in the process of training neural networks, it is 
clear that there is a set of central concepts and topics that lay the 
foundation for the majority of developments in the field. We iden-
tify these as the basic Kalman filter, feedforward neural network 
and recurrent neural network. Therefore, to provide the necessary 
background information, we introduce these topics in detail in the 
sections below. Note that the section on the Kalman filter also dis-
cusses why Kalman filter variations and other estimation methods 
have also been utilized by researchers.

2.1. Kalman filter

The Kalman filter (KF) is a prominent state and parameter es-
timation algorithm developed by Rudolf E. Kalman, which aims at 
utilizing a series of measurements, obtained across a known tem-
poral distance, to estimate the value of some unknown variables. 
The KF is commonly known as the optimal solution to various 
tracking and data prediction tasks [29]. An introduction to the for-
malization and utilization of the KF is presented below.

The KF is used to estimate states on the basis of linear dynamic 
systems in state-space format under the presence of white noise. 
The linear system can be represented with a state vector and a 
sensor yielded linear measurement matrix. The linear state vector 
and measurement matrix can be formalized as [30]:

xk+1 = Axk + Buk + wk (1)

zk+1 = Cxk+1 + vk+1 (2)

where xk is the system state at time step k, A is a constant linear 
system matrix, B is the input gain matrix, C is the linear mea-
surement matrix. uk is the system input at time step k, wk is the 
system noise at time step k, and vk is the measurement noise at 
time step k.

A nonlinear system can also be represented with the following 
state vector and measurement matrix [31]:

xk+1 = f (xk, uk) + wk (3)

zk+1 = h(xk+1) + vk+1 (4)

where f and h are nonlinear system and measurement models, 
respectively.
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Filtering is the process of estimating the current or future state 
of a specified dynamic system, which includes the process of fil-
tering out unwanted system noise [32]. The KF procedure is com-
prised of recursive stages, shaped in a predictor-corrector fashion. 
The first stage of the KF procedure is named the prediction stage, 
where the system states are estimated using a system model. The 
estimate achieved during the prediction stage is an a priori esti-
mate, due to being yielded prior to any system measurement. The 
second stage of the KF is the Update stage, where the states are 
updated based on the measurement error. Estimates obtained dur-
ing the Update stage will be a posteriori state estimates as a result 
of being produced after attaining system observations [33].

The KF is developed on a set of three core assumptions, namely 
a linear system model, known initial state values, and noise with 
zero mean Gaussian noise. The prediction stage can be formal-
ized with the following a priori state estimate and error covariance 
[34]:

x̂k+1|k = Ax̂k|k + Buk (5)

Pk+1|k = A Pk|k AT + Q k (6)

After the state prediction and error covariance matrix are pro-
duced during the respective Prediction stage, the update stage can 
be conducted with the following set of equations [35]:

Kk+1 = Pk+1|kC T (C Pk+1|kC T + Rk+1)
−1 (7)

x̂k+1|k+1 = x̂k+1|k + Kk+1(zk+1 − C x̂k+1|k) (8)

Pk+1|k+1 = (I − Kk+1C)Pk+1|k(I − Kk+1C)T + Kk+1 Rk+1 K T
k+1 (9)

where P is the approximate error covariance matrix, Q is the 
covariance of the process noise and R is the covariance of the ob-
servation noise.

The procedure is repeated iteratively, flowing from the predic-
tion to the update stage. If the fundamental assumptions listed 
prior are not met, the KF becomes sub-optimal and may even be-
come unstable. However, expecting a perfect linear system in a 
pragmatic implementation is unreasonable, especially when deal-
ing with real physical systems [36]. Variations of the KF have been 
developed to produce better results when dealing with nonlinear 
systems, such as the extended Kalman filter (EKF) and unscented 
Kalman filter (UKF) [37–39,31,40]. Other methods have been de-
veloped to improve KF-based methods in terms of overall accuracy 
or robustness to disturbances and uncertainties. These methods 
include the H-infinity filter [41], particle filter [42], and variable 
structure methods such as the smooth variable structure filter 
(SVSF) [43] and sliding innovation filter (SIF) [44]. The Kalman fil-
ter has been employed for a variety of purposes and it’s reliability 
and efficiency have made it a popular choice for it’s integration 
into the field of machine learning, which will be shown through-
out the remainder of this paper. For instance, Gaussian process 
regression models, which has made large waves in the field of 
machine learning, can be reformulated as a linear-Gaussian state 
space model, therein allowing them to be solved with a Kalman 
filter. The advantage of doing such is a dramatic reduction in the 
computational complexity of the model in comparison with direct 
Gaussian process regression methods [45–49].

2.2. Feedforward neural networks

Neural networks are algorithms which are developed to estab-
lish a relationship between a selected set of data input and out-
put. These algorithms are designed to mimic the biological neural 
connections found in the human brain [13]. The most fundamen-
tal variation of the neural network is composed of three layers, 
namely a input, hidden and output layer with a unidirectional flow 
3

Fig. 2. A Typical Feedforward Neural Network.

of data. This form of neural network, displayed in Fig. 2, is termed 
the feedforward neural network (FFNN) [50].

The prominent feedforward neural network training procedure, 
gradient descent, utilizes a gradient based approach to perform 
iterative updates to the network weights. Each iteration aims at 
improving network output and minimizing error. The training pro-
cedure begins with the initialization of network weights and bi-
ases. This random initialization process decreases the probability 
of early local convergence. Subsequently, a network output signal 
is produced and an output error is computed. Local gradients are 
then calculated and the network weights are respectively updated. 
This process repeats and the weights are continuously modified 
[51,52]. The cumulative feedforward neural network training pro-
cedure is detailed below.

Each layer of the network architecture is composed of various 
neurons. These neurons are fired with a selected activation func-
tion [53,54], which will produce a lower limit output when the 
input does not meet the threshold and an upper limit output when 
the input does. The rectified linear activation function, ReLU, is one 
of the most prominently utilized functions. The ReLU function is 
an identity function if the input is positive, otherwise it returns 
zero [55]:

ReLU = max(x,0) (10)

Each neuron will yield a preliminary output, z, which is a func-
tion of the input, x, achieved via the network’s weights and the 
connecting neuron’s output values and bias, b. The preliminary 
output of the neuron, which will be the input to the selected acti-
vation function can be formalized as such:

z = w T x + b (11)

The learning procedure is then employed to locate the optimal 
set of network weights with the aim of reducing the identified cost 
function. The gradient-based training algorithm, stochastic gradi-
ent descent, which may be the most widely-used network training 
algorithm, will update the weights on each iteration of the algo-
rithm on the basis of the average gradient on a mini-batch of m
samples [11].

g = 1

m

m∑

i=1

L( f (x(i); w), y(i)) (12)

The computed gradient is then multiplied by a learning rate. ε , 
which regulates the degree of change in the current weight val-
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ues. The learning rate is widely held to be the most important 
hyperparameter [11]. Selecting the optimal learning rate can pose 
various difficulties. A learning rate which is too small will slow 
down the learning phase, and a learning rate too high might skip 
over a desired local minima. The a priori computation of the op-
timal learning rate is not generally possible, further complicating 
the selection process [56]. A few methods can be used to attempt 
to locate an optimal learning rate. Manually tuning the learning 
rate according to obtained results is a method commonly utilized. 
Manually performing tuning, however, is time consuming and in-
efficient. Another method commonly utilized to locate an optimal 
learning rate is grid search. Grid search involves the use of a finite 
set of hyperparameter values, each of which will be used to train 
separate models. Subsequently, the performance of the models will 
be compared and the learning rate which generated the best per-
formance is selected. Typically the finite set of learning rate values 
is produced on a logarithmic scale, encompassing a range of values 
such as 10−5 to 10−1 [11].

wk+1 = wk − εg (13)

The described learning procedure is repeated until a stopping 
criteria is met, whether that be a selected number of iterations, 
epochs, or a specified threshold metric [57].

2.3. Recurrent neural networks

Recurrent neural networks are a category of artificial neural 
networks where a sequential connection is establish among nodes. 
Nodes will be connected to other nodes within variant layers in a 
unidirectional fashion. The flow of data is unidirectional, therefore 
the recurrent neural networks will contain input, hidden, and out-
put layers. The temporal flow of data from node to node allows 
previous outputs to be utilized as input for successive nodes. As 
a result, information from prior input is compiled and transferred 
to subsequent nodes, allowing for the model to dynamically learn 
from the past [58–60].

Classical neural networks work well on the presumption that 
the input and output are directly independent of each other, how-
ever, this is not always the case. This is crucial to the implemen-
tation of the proposed method and will be discussed in greater 
detail below [61–64].

Fig. 3 shows a labeled recurrent neural network diagram. At 
each time step t , a new input xt is provided to the network. The 
hidden section of the network, which compiles and stores all pre-
vious data, is calculated as [59]:

ht = f (W xxt + Whht−1) (14)

Conclusively, the output yt is sequentially generated at each 
node with:

yt = g(W y) (15)

where g(x) represents the selected activation function.

3. Estimation and feedforward neural network training

The first estimation method included in the artificial neural net-
works training process was in 1989, and the employment of var-
ious heterogeneous estimation methods directly followed. Kalman 
filters were the first estimation method to be utilized in the neural 
network training process. Since then, the H-Infinity, Smooth Vari-
able Structure, Particle, and Sliding Innovation filters have been 
used. In addition, diverse variations of these filters were utilized 
to further augment the method’s performance given the specific 
task of neural network training. A cumulative diagram of all the 
estimation methods employed in the field is seen in Fig. 4.
4

Fig. 3. A Typical Recurrent Neural Network Setup.

3.1. Kalman filters

In the late 1980s, Singhal and Wu presented an estimation-
based feedforward network training technique as an effective 
method for circumventing the issues encountered by numerous 
other training approaches (Table 1), in specific backpropagation 
[65]. In their seminal paper, the authors postulate that although 
backpropagation as a training algorithm has become widespread, 
complexity will ultimately bound convergence performance. Ac-
cording to them, the cumulative learning procedure can be mod-
eled as an “identification problem for a nonlinear dynamic system 
which can be solved using the extended Kalman algorithm.” Their 
paper states that introducing the EKF can decrease overall conver-
gence time. They conduct a comparative study on the EKF and 
classical backpropagation algorithm based on their convergence 
characteristics, reporting faster convergence and lower average er-
ror for the EKF. The training procedure can then be defined as 
locating the minimum mean square error (MMSE) of the state w
utilizing previous observations. The training problem can therefore 
be stated as [65]:

ŵk+1 = ŵk + Kk Ek (16)

Pk+1 = Pk − Kk H T
k Pk (17)

Kk = Pk Hk[Rk + H T
k Pk Hk]−1 (18)

E = yk − ŷk (19)

where ŵk represents the network weights at update step at k. K is 
the Kalman gain matrix. yk is the target vector, ŷk is the networks 
output vector and Ek is the error vector. Pk is the approximate 
error covariance matrix. Hk is the gradient matrix.

A five step procedure is reported during each training epoch. 
The input vector is initially propagated through the network and 
the respective output vector is produced. Subsequently, the deriva-
tive matrix Hk is calculated using backpropagation. Next, the 
Kalman gain matrix Kk is computed utilizing the approximate er-
ror covariance matrix Pk , measurement covariance matrix Rk and 
the calculated derivative matrix Hk . The state vector is updated 
with the Kalman gain matrix Kk , error vector Ek and current state 
vector wk . Lastly, the approximate error covariance matrix is up-
dated as a function of Kalman gain matrix Kk , the derivative matrix 
Hk and current approximate error covariance matrix Pk . The signal 
flow diagram for the training procedure is shown in Fig. 5.

To evaluate the performance of the algorithm, Singhal and Wu 
develop a four quadrant classification problem and compared the 
training results of the proposed algorithm with standard backprop-
agation. The outcome of the experiment displayed the superior 
performance of the model by achieving a lower average output er-
ror than standard backpropagation.
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Fig. 4. Summary of Intelligent Estimation Methods: Common Estimation Strategies used for Training of Neural Networks.

Fig. 5. Signal Flow Diagram for the Global Extended Kalman Filter.
The algorithm introduced by Singhal and Wu, termed the global 
extended Kalman filter (GEKF), yielded significant advantages in 
convergence speed; however, algorithmic computational complex-
ity limited practical implementation. The computational complex-
ity and storage requirement of the GEKF is directly associated to 
the number of model weights utilized in the architecture. There-
fore, when implementing the GEKF, a decrease in model perfor-
mance is expected as model architecture expands. Contemporary 
neural network applications will typically require deep and exten-
sive model architectures, which, as discussed prior, yield a non-
ideal environment for the employment of the GEKF. Consequently, 
researchers have endeavoured to modify the GEKF to avoid the 
aforementioned complexity and storage setbacks [66].

The GEKF entails a global update of the network weights. While 
being a crucial feature of the algorithm, this global update has 
led to an augmentation of algorithmic computational complexity. 
To solve this problem, Shah et al. suggest decomposing the global 
update policy into a collection of sub-tasks or sub-problems. The 
authors established a series of algorithms to update each neuron’s 
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weights independently at each time step to minimize the overall 
cost [67].

Shah et al. developed the neuron-level extended Kalman al-
gorithm (NEKA) approach based on the critical observation that 
weights belonging to the same neuron displayed a higher correla-
tion than weights that do not [68]. NEKA simplifies the GEKF into a 
set of decoupled algorithms. Each neuron can thus be assumed to 
be a sub-problem of the cumulative learning procedure. The NEKA 
approach can be formalized as:

ŵi
k+1 = ŵi

k + K i
k Ek (20)

P i
k+1 = P i

k − K i
k(Hi

k)
T

P i
k (21)

K i
k = P i

k Hi
k[I + (Hi

k)
T

P i
k Hi

k]−1 (22)

E = yk − ŷk (23)

where wi
k represents the ith group’s network weights at update 

step at k. K is the Kalman gain matrix. yk is the target vector, ŷk
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Table 1
Notable Approaches to Intelligent Estimation.

Authors Publication Year Fundamental Estimation Technique

S. Singhal and L. Wu (GEKF) [65] 1989 Extended Kalman Filter
G. V. Puskorius and L. A. Feldkamp (DEKF) [66] 1991 Extended Kalman Filter
S. Shah, F. Palmieri, and M. Datum (NEKA/MEKA) [67] 1992 Extended Kalman Filter
R. Zhan and J. Wan [69] 2006 Unscented Kalman Filter
He-Sheng Tang, Songtao Xue and Tadanobu Sato [70] 2007 H-infinity Filter
R. Ahmed, M. Sayed, S. A. Gadsden, J. Tjong and S. Habibi [71] 2016 Smooth Variable Structure Filter
Z. Darojah, E. S. Ningrum and D. S. Purnomo [72] 2017 Unscented Kalman Filter
M. Nazari and S. Shamshirband [73] 2020 Particle Filter
N. Alsadi, W. Hilal, O. Surucu and S. A. Gadsden (SIFNN) [74] 2022 Sliding Innovation Filter
Table 2
Comparison of Computational Complexity Per Iteration and Network Storage.

Algorithm Operation Count Storage Cost

BP 184 33856
GEKF 280996 1784
NEKA 22070 1784
MEKA 8074 1784

is the networks output vector and Ek is the error vector. Pk is the 
approximate error covariance matrix and Hk is the gradient matrix.

When employing the NEKA approach, each neuron will contain 
its own Kalman gain matrix and covariance matrix. While the ap-
proach improves on the issues faced by the GEKF, each neuron, at 
every time step, will be required to perform an LxL matrix inver-
sion, where L is the output vector dimension. This process is inher-
ently computationally expensive. The multiple extended Kalman 
algorithm (MEKA) is an algorithm advanced by Shah et al. that 
builds upon a local approach to the EKF. The MEKA is quite simi-
lar to the NEKA; however, it does not require a matrix inversion at 
each neuron. The MEKA is given by:

(qi
k)

T = yi
k(1 − yi

k)ui
k (24)

ŵi
k+1 = ŵi

k + K i
k Ek (25)

P i
k+1 = P i

k − K i
k(q

i
k)

T P i
k (26)

K i
k = P i

kqi
k[1 + (qi

k)
T (H j

k)
T P i

kqi
k]−1 (27)

E = yk − ŷk (28)

Shah et al. compared the performance of the GEKF, NEKA and 
MEKA. The authors report that the GEKF achieved the lowest error 
in all test cases; however, it yielded a considerably large compu-
tation and storage cost compared to the other algorithms, evident 
in Table 2. The MEKA achieved the overall best results by substan-
tially reducing computation and storage cost and obtaining a lower 
error than NEKA. Shah et al. conclude, perhaps with some bias, 
that MEKA is “among the most reliable algorithms for supervised 
learning.” However, they admit that while MEKA has achieved 
lower computational cost than the other algorithms, there are sig-
nificant opportunities for improvement.

The comparative study conducted by Shah et al. vividly de-
picts the improvements in computation and storage cost due to the 
global update policy’s partitioning, be it NEKA or MEKA. Yet when 
it came to analyzing output error, the partitioning of the global 
update policy did not fare too well. Both the NEKA and MEKA 
had higher average output error than the GEKF. The partitioning 
process itself may be a causative reason for the augmentation in 
output error. Puskorius et al. point to this observation and pro-
pose that the treatment of individual neurons as subsystems, while 
improving computational complexity, can ultimately lead to inade-
quate model output performance [75].

As discussed previously, the fundamentally computationally ex-
pensive aspect of the GEKF lies within the set of network weights’ 
6

consistent and uniform treatment. This uniform treatment was the 
core aspect that Shah et al. desired to build on to circumvent com-
putational and storage issues encountered by the GEKF. Puskorius 
et al. propose another strategy, comparable to the algorithms pro-
pounded by Shah et al., named the decoupled extended Kalman 
filter (DEKF). The core feature of the DEKF, which distinguishes 
it from alternative approaches, is its capability to group network 
weights. The grouping, or decoupling, of network weights, permits 
the disregarding of distinct elements in the error covariance ma-
trix, namely elements that stem from weights in separate groups. 
As a directly inherent consequence of decoupling, the larger the 
number of groups utilized, the larger the decline in computation 
and storage cost. Thus, the DEKF can be said to incorporate the 
dynamism and capacity for complexity regulation [76–78].

In their 1991 paper, Puskorius et al. present two variations of 
the DEFK algorithm. The first of the two is the node decoupled 
EKF (NDEKF), where the grouping of network weights is conducted 
based on node association. The second variation of the DEKF put 
forth by Puskorius et al. is the fully decoupled EKF (FDEKF), where 
each group comprises an individual network weight. The DEKF al-
gorithm can be expressed with [79]:

ŵi
k+1 = ŵi

k + K i
k Ek (29)

P i
k+1 = P i

k − K i
k(Hi

k)
T
k P i

k (30)

K i
k = P i

k Hi
k[Rk +

N∑

j=1

(H j
k)

T
P j

k H j
k]−1 (31)

E = yk − ŷk (32)

where N is the quantitative representation of the degree of decou-
pling. For the NDEKF approach, N is equal to the number of nodes 
and the FDEKF approach, N is set to the number of weights in the 
model. Note that when N is set to 1, the DEKF is reduced back to 
the GEKF. From this angle, the DEKF can be viewed as a unique 
instance of the GEKF.

It is crucial to note that unlike the local approaches discussed 
prior, NEKA and MEKA, the DEKF computes a global scaling ma-
trix. The global scaling matrix is calculated for all weight groups 
rather then uniquely for each weight group. The non-local ap-
proach, however, does not negatively impact the overall compu-
tational complexity of the DEKF and the weight group updates can 
be conducted in parallel. As discussed prior, the utilization of the 
DEKF will allow for the reduction in the error covariance matrix. 
Fig. 6 shows the representation of the error covariance matrix as 
a result of using the GEKF and DEKF variations. The computational 
complexity (Table 3) of the GEKF has been reduced by a factor of 
8 as a result of implementing the NDEKF.

The authors compare the performance of the GEKF, NDEKF, 
FDEKF and standard backpropagation, utilizing variant classifica-
tion tasks. Fig. 7 illustrates how the algorithms performed on 
Singhal and Wu’s original 4-quadrant classification problem. The 
training result graph indisputably shows the superior performance 
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Fig. 6. Block-diagonal Representation of the Approximate Error Covariance Matrix 
for Variant Levels of Decoupling. The computational complexity of the GEKF has 
been reduced by a factor of 8 as a result of implementing the NDEKF [29].

Table 3
Comparison of Computational Complexity.

Algorithm Computational Complexity

BP O(M S)

GEKF O(M2 S2)

NEKA O(M2 S)

MEKA O(M2 S)

NDEKF O(S2 N + ∑N
i=1 mi)

FDEKF O(S2 N + M)

Fig. 7. Puskorius’ Reported RMSE for GEKF, NDEKF, FDEKF, SBP.

of the NDEKF, achieving the lowest average error and fastest con-
vergence time amongst the sampled algorithms.

The NDEKF and FDEKF performed excellently, with the NDEKF, 
on average, attaining exceptional convergence characteristics, sur-
passing all algorithms, including standard backpropagation. The 
authors state, “NDEKF’s trained networks exhibit superior gener-
alization and function approximation capabilities. Even in the limit 
of complete decoupling of weights (FDEKF), performance was often 
comparable to or better than SBP.”

The unscented Kalman filter (UKF) is a sigma point Kalman fil-
tering method proposed by Julier et al. to generalize the KF to 
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non-linear systems and measurements [38]. The UKF utilizes a 
deterministic sampling methodology, namely the unscented trans-
formation, to choose a set of sigma points around the mean. The 
selected sigma points are therein used to produced a new covari-
ance and mean estimate [80]. The UKF removes the necessity for 
the linearization of the system model by determining the Jacobian 
matrices. The calculation of the Jacobian matrices is computation-
ally expensive [81]. Literature shows that the use of unscented 
transforms provides a more accurate and reliable estimate of the 
system state covariance and mean than the EKF [82].

As asserted previously, when using the EKF to train a neural 
network, the process becomes that of nonlinear state estimation. 
The literature shows that when dealing with nonlinear state esti-
mation, the UKF yields better results than the EKF [37]. Various au-
thors, however, postulate that the superiority of the UKF not only 
lies within performance characteristics but rather within the im-
plementation itself. LaViola et al. pointed to an advantage, namely 
that when dealing with an UKF, there is no requirement for lin-
earizing with the use of Jacobian matrices [83]. The authors allude 
to the fact that the UKF will utilize a minimum set of sample 
points to locate the mean and covariance estimates. Furthermore, 
the paper affirms that the UKF is a superior alternative to the EKF 
for numerous applications, including neural networks. In addition 
to improved performance and non-complex implementation, the 
UKF does not increase computational complexity, rather it can op-
erate at the same level of computational complexity as the EKF 
[84].

In another study, Darojah et al. compared the results achieved 
in the previously mentioned paper, in which the EKF was used, 
to an UKF implementation [72]. The authors report that although 
for this specific implementation there was no significant variance 
in performance, the advantage held by the UFK was the lack of 
requirement for calculating the Jacobian.

Zhan et al. suggest that while the EKF provides a straightfor-
ward implementation, several drawbacks can be combated with 
the use of the UKF [69]. Some of these drawbacks include a biased 
nature of estimates, instability to linearization, and costly calcula-
tion of the Jacobian matrices. The authors show that when dealing 
with neural network training, an UKF implementation can outper-
form an EKF implementation.

3.2. H-infinity filters

H-infinity filters have received significant attention in recent 
years due to their ability to be employed across a wide range of 
domains, including signal reconstruction and neural network train-
ing. In distinction to Kalman filters, the H-infinity filter does not 
necessitate apriori knowledge of the noise statistics. H-infinity fil-
tering will attempt to minimize the impact of the worst possible 
disturbances on the estimation error, therein achieving higher ro-
bustness against model uncertainty.

To this end, the H-infinity filter has been considered a vi-
able alternative to training feedforward neural networks. Tang et 
al. present this concept in a paper published in 2007, where H-
infinity filtering is utilized for the task of neural network training 
and pruning. The fundamental motivation behind employing H-
infinity filtering was that it was more efficient and robust than the 
Kalman filter, which already successfully trained neural networks. 
Furthermore, unlike the Kalman filter, which is only optimal for 
normally distributed noise, the H-infinity filter circumvents making 
assumptions about the noise distribution. Consequently, employ-
ing H-infinity filtering to neural network training will augment 
robustness to deviations in network weight initialization and de-
terministic disturbance in observations. The results presented in 
the paper indicate that applying the H-infinity to feedforward neu-
ral network training and pruning achieved excellent generalization 
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results and reduced network complexity by decreasing overall net-
work weights.

3.3. Particle filters

The particle filter (PF), or sequential Monte Carlo strategy, is a 
method advanced by Pierre Del Moral for estimating the states of a 
dynamic system [85]. The algorithm put forth by Del Moral utilizes 
a set of particles, or samples, to generate a posterior distribution 
of a stochastic process given noisy observations. Each particle is 
therein designated a likelihood weight, which is a representation 
of the probability that the respective particle will be sampled from 
the generated probability density function [86,87]. The core con-
cept is therein to recursively update the particles, thus achieving 
an approximation of the posterior distribution at the following 
time step [88,89]. The KF can be seen as an implementation of 
the particle filter assuming a normal distribution of particles and 
a time series mapping which preserves the normality of the distri-
bution [90].

The PF is widely praised for its capability in handling non-
linearity. The PF has been shown to deliver exceptional perfor-
mance when implemented in machine learning systems.
Liangcheng et al. were among the first to propose the use of parti-
cle filters for parameter tuning [91–93]. The authors integrated the 
particle filter into the learning process of a support vector machine 
(SVM), achieving excellent results.

In more recent research, the implementation of PFs in neu-
ral network training has shown promising results. Nazari et al. 
used a particle filter to estimate and train neural network weights. 
Similar to KF algorithms, the authors used the weights to repre-
sent system states. They compared their results against standard 
backpropagation and a genetic algorithm utilizing an evapotranspi-
ration estimation problem. The PF-based training method achieved 
the best overall performance and generalization ability, achieving 
the second lowest training RMSE score and lowest test RMSE score 
than any of the tested algorithms on the selected problem [73].

3.4. Smooth variable structure filters

The smooth variable structure filter (SVSF) is a state and pa-
rameter estimation algorithm introduced in 2007 by Habibi et al., 
which is built upon variable structure theory and sliding mode 
concepts [94]. The SVSF, similar to the KF, is formulated as a 
predictor-corrector method, and has been utilized in various stud-
ies to train feedforward neural networks, providing low mean 
squared error and exceptional generalization [95,96]. The funda-
mental concept of the SVSF is to compel produced state estimates 
to converge within a specific true state trajectory boundary based 
on sliding mode concepts.

To utilize the SVSF for network training, the network needs to 
be framed as an iterative estimation problem, similar to the KF 
implementation methodology discussed prior. The algorithm be-
gins by randomly initializing the network weights. The Jacobian 
matrix is then computed by differentiating the networks transfer 
function with respect to the network weights. A state transfor-
mation is conducted on the weights using the Jacobian matrix, 
with the aim of linearly associating the output vector to the sys-
tem states, or network weights. The output vector can therein be 
calculated as the product of the Jacobian matrix and the network 
weights. The error is subsequently estimated as a function of the 
difference between the target output and computed network out-
put. Following the calculation of the error, the SVSF gain matrix is 
calculated as a function of the current and previous error measure-
ment, specified convergence rate, and smoothing boundary layer 
widths. The weights are updated using the weight estimate, SVSF 
8

Fig. 8. SVSF, DEKF and Standard Backpropagation MSE for a Cancer Classification 
Problem [98].

gain matrix and current estimated measurement error. After the 
updating of the weights, the a posteriori output vector is estimated 
as the product of an identity matrix and the updated weights. The 
a posteriori error is achieved as the difference between the tar-
get output and a posteriori output vector. Finally, the true network 
weights are computed by multiplying the Jacobian by the recently 
updated weight matrix. This process is repeated for each training 
epoch, finishing only when a specified stopping criteria has been 
met. The process described above can be formalized as [97]:

ŵk+1|k = ŵk (33)

x̂k+1|k = Ck|linearized ŵk+1|k (34)

zk+1|k = Ix̂k+1|k (35)

Ek+1|k = z − ẑk+1|k (36)

Kk+1 = diag[|Ek+1|k|+γ |Ek|k| ◦ sat(
Ek+1|k

ψ
)]diag(Ek+1|k)−1 (37)

x̂k+1|k+1 = x̂k+1|k + Kk+1 Ek+1|k (38)

ŵk+1|k+1 = Ck|linearizedx̂k+1|k+1 (39)

Ahmed et al. were among the first to publish the use of SVSF 
for neural network training. Using three variant classification tasks, 
the authors perform a comparative study on the performance of 
the SVSF, DEKF, and standard backpropagation. They report faster 
convergence using the SVSF, requiring less time to reach the same 
performance as the DEKF and standard backpropagation method-
ologies. Furthermore, the SVSF achieved minimum MSE and excel-
lent generalization capability. Fig. 8 depicts the performance of the 
selected algorithms on a cancer classification problem, showcasing 
the superior performance of the SVSF, achieving the lowest MMSE 
faster than any of the other tested algorithms [98].

The SVSF does not require as much storage as the EKF, due 
to not having to compute the covariance matrix. However, the 
SVSF necessitates additional forward computation to estimate the 
a posteriori error. Ismail et al. propose that performing a set of se-
lected modifications to the SVSF algorithm can drastically reduce 
the computational and storage requirements of the SVSF. The au-
thors name the modified algorithm the reduced-SVSF (RSVSF). The 
RSVSF utilizes a mini-batch training strategy to capitalize on par-
allel computation in an effort to improve computational time. The 
error size is scaled down to a scalar value with a static measure 
like MSE, in turn significantly decreasing the size of the Jacobian 
matrix. A tuning parameter is employed in the RSVSF, which when 
set to zero eliminates the a posteriori error calculation [99].

In the RSVSF, a learning rate is introduced to regulate weight 
modifications, allowing for larger step sizes and faster learning. 
Lastly, a decay option is added to decrease the variable boundary 
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Fig. 9. Sliding Innovation Filter Concept: Effects of the Switching Gain and Sliding 
Boundary Layer [100].

layers over numerous iterations to allow for smaller values which 
aid fine-tuning. These modifications substantially curtail computa-
tion and storage requirements for the SVSF. Ismail et al. perform a 
set of experiments on the RSVSF utilizing various selected datasets. 
They report excellent convergence characteristics and storage re-
quirements.

3.5. Sliding innovation filters

Within the greater scope of estimation theory, a comprise be-
tween optimality and robustness has always existed, as briefly 
discussed prior. The Sliding Innovation Filter (SIF) (Fig. 9), an esti-
mation strategy proposed by Gadsden et al., is sub-optimal insofar 
as it does not provide the optimal solution to a linear estimation 
problem. However, with the assistance of the switching gain, the 
SIF is much more robust to modeling disturbances and uncertain-
ties.

The structure of the SIF’s prediction stage is very similar to the 
KF and involves the calculation of a priori state estimates x̂k+1|k , 
state error covariance Pk+1|k and innovation z̃k+1|k . However, the 
fundamental difference between the formulation of the Kalman Fil-
ter and the SIF is the calculation of gain K. The prediction stage of 
the SIF is formulated as:

x̂k+1|k = Ax̂k|k + Buk (40)

Pk+1|k = A Pk|k AT + Q k (41)

z̃k+1|k = zk+1 − C x̂k+1|k (42)

Similar to the Kalman filter, after the prediction stage the up-
date stage occurs:

Kk+1 = C+sat(|z̃k+1|k|/δ) (43)

x̂k+1|k+1 = x̂k+1|k + Kk+1zk+1 (44)

Pk+1|k+1 =(I − Kk+1 Hk+1)Pk+1|k(I − Kk+1 Hk+1)
T

+ Kk+1 Rk+1 K T
k+1 (45)

where C+ represents to the pseudoinverse of the measurement 
matrix, sat refers to the saturation value of the diagonal of that 
term which is bounded between -1 and +1, z̃k+1|k is the absolute 
value of the innovation and δ signifies the width of the sliding 
boundary layer.

The KF and SIF strategies differ in terms of their gain struc-
ture and is considered the key difference between the two filters. 
Optimality is expected by the KF since the gain is derived as a 
function of the state error covariance, however the SIF gain relies 
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on the measurement matrix, innovation term and uniquely, a slid-
ing boundary layer term [29].

Alsadi et al. presented the concept of a feedforward neural net-
work optimization methodology utilizing the SIF. The authors build 
on the success of the non-linear estimation algorithm, the UKF, 
stating that existing literature has vividly depicted the accuracy 
and efficiency of employing the UKF for the purpose of feedfor-
ward neural network training. In addition, due to not requiring 
linearization, the UKF has been viewed as suitable for systems with 
unknown linearities. The authors postulate that the advantages of 
the UKF can be further augmented with the employment of the SIF. 
To this end Alsadi et al. train a feedforward neural network with 
a single hidden layer to solve a regression based problem using 
the SIF and perform a comparative analysis with the UKF. They re-
port excellent convergence characteristics for both the UKF and SIF, 
however the SIF was able to reach a similar mean squared error in 
substantially less time than the UKF, indicating the advantage in 
complexity and robustness of the SIF.

It is important to note that the SIF implementation discussed 
prior is based on a linear formulation. The non-linear formulation 
of the SIF, known as the Extended Sliding Innovation Filter (ESIF), 
can be introduced to further account for nonlinearities in the same 
manner the EKF was implemented.

The fundamental structure of the nonlinear SIF estimation pro-
cess is akin the linear SIF procedure, with the formulation of the 
gain being the principal difference. Take for instance a nonlinear 
system function f (x̂k|k, uk) and a nonlinear measurement function 
h(x̂k+1|k). Utilizing partial derivatives, the linearized forms of the 
aforementioned nonlinearities can be achieved as such:

Fk = ∂ f

∂x

∣∣∣
x̂k|k,uk

(46)

Hk+1 = ∂h

∂x

∣∣∣
x̂k+1|k

(47)

Subsequently the prediction stage can be formulated as:

x̂k+1|k = f (x̂k|k, uk) (48)

Pk+1|k = Fk Pk|k F T
k + Q k (49)

z̃k+1|k = zk+1 − h(x̂k+1|k) (50)

After the state prediction and error covariance matrix are pro-
duced during the respective Prediction stage, the update stage can 
be conducted with the following set of equations [35]:

Kk+1 = H+
k+1sat(|z̃k+1|k|/δ) (51)

x̂k+1|k+1 = x̂k+1|k + Kk+1zk+1 (52)

Pk+1|k+1 =(I − Kk+1 Hk+1)Pk+1|k(I − Kk+1 Hk+1)
T

+ Kk+1 Rk+1 K T
k+1 (53)

where H+
k+1 is the pseudoinverse of the linearized measurement 

matrix at time k + 1.
Although no research has been conducted on the practical em-

ployment of the ESIF for neural network training, we suggest that 
future research should be dedicated towards experimenting with 
the training of simple feedforward neural networks utilizing the 
ESIF with a focus on analyzing the complexity. In addition, the 
generalization capabilities of the training procedure can be further 
augmented with an adaptive variation of the SIF, proposed by Lee 
et al., which entails a time varying sliding boundary layer:

δk+1 = Sk+1(Sk+1 − Rk+1)
−1|z̃k+1|k| (54)
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The width of the time varying sliding boundary layer δk+1 is there-
fore a function of the innovation covariance matrix Sk+1, the mea-
surement noise covariance matrix Rk+1 and the absolute magni-
tude of the innovation z̃k+1|k .

Lee et al. present empirical evidence for the effectiveness of 
the adaptive SIF in maintaining accurate estimates in the face of 
system faults, therein translating to increased generalization and 
robustness in the presence of dataset outliers. The SIF can present 
massive advantages for neural network training and therefore fu-
ture research should be dedicated to advancing the current state 
of the SIF’s involvement in the field of intelligent estimation.

4. Estimation-based recurrent neural network training

In addition to the integration of estimation based training tech-
niques for feedforward neural networks, research has supported 
the utilization of these methods for recurrent neural networks 
(RNNs). Gradient descent has been widely overlooked as an ef-
ficient training algorithm for RNNs due to pragmatic difficulties 
such as being slow and ineffective in converging to an optimal 
solution. Various researchers have therefore explored the imple-
mentation of non-gradient training methods as a potential alter-
native for gradient-based approaches in RNN training. Simulation 
results for problems in function approximation and pattern clas-
sification indicate that training algorithms based on non-gradient 
methods require significantly fewer presentations of training data 
than gradient-based algorithms. Second-order training algorithms, 
such as the EKF, unlike higher-order training algorithms, do not 
necessitate batch processing. This makes them a powerful alterna-
tive to gradient-based methods for specific RNNs applications.

Puskorius et al. utilize a DEKF approach to tackle the problem 
of recurrent neural network training, applying their novel imple-
mentation to variant control problems. Using three different con-
trol problems, the authors compare the performance of the DEKF 
against a basic gradient training approach. They report back excel-
lent performance on behalf of the DEKF, which consistently out-
performed the gradient-based approach. Indicating that estimation 
based training techniques have a promising future within the re-
current neural network training procedure [101]. Sum et al. state 
that the recurrent neural network training problem, like the feed-
forward neural network training procedure, can be formulated as 
an EKF problem [102]. The introduction of the EKF is postulated 
by the authors to reduce computational complexity when training 
and pruning a recurrent neural network.

However, Wang et al. claim that various studies which aim 
at successfully implementing estimation based training methods 
with recurrent neural network training make numerous assump-
tions and need to be further developed theoretically and tested 
practically [103]. In their paper, Wang et al. attempt to develop 
an effective EKF-based RNN training approach with a controllable 
training convergence. The proposed algorithm is tested on a non-
linear dynamical benchmark system. The algorithm was successful 
in ensuring training convergence and improving on convergence 
speed. Other authors have also discussed the inherent disadvan-
tages of using gradient-based methods when training recurrent 
neural networks. They state that gradient-based approaches en-
tail slow convergence speed and extended training sequences for 
achieving satisfactory performance. As noted previously, the UKF is 
capable of handling non-linearities to a higher degree than the EKF. 
The result of UKF implementation for non-linear applications is 
typically an augmented standard of estimates, without the neces-
sity of numerical derivatives, therein popularizing the utilization of 
the UKF for non-linear systems [104].

While Wang et al. focused soley on the EKF, they add that 
the work can be further extended for an UKF-based training ap-
proach for better performance. Choi et al. compared the perfor-
10
Fig. 10. Vehicle Emission Prediction Diagram.

mance of an EKF and UKF algorithm for RNNs training on various 
time-varying channels [105]. The experimental results displayed 
that the UKF training procedure yielded uniformly superior per-
formance, although also increasing computational cost. In another 
paper, Choi et al. conducted further testing of both the EKF and 
UKF algorithms for RNN training utilizing a time-series prediction 
problem [106]. The results support the initial findings with the 
UKF achieving excellent performance; however, producing an in-
crease in computational complexity. Although there is currently no 
research conducted on the use of the SVSF in RNN training, theo-
retically the SVSF could perform better than the UKF and reduce 
computational cost.

5. Intelligent estimation in the professional domain

As discussed in the previous section, the integration of intel-
ligent estimation has the potential to enhance the overall neural 
network training process. While estimation methods, as a whole, 
have been applied to diverse fields such as telecommunications 
and air traffic control, there are many professional domains which 
can be aided with the deployment of intelligent estimation meth-
ods. The automotive domain has been extensively explored by 
researchers in aim of analyzing the effects and advantages of uti-
lizing intelligent estimation techniques.

Vehicle emission (Fig. 10) is a large issue with the state of 
contemporary cars and has been such for many decades. Emis-
sions released from motor vehicles have had a devastating effect 
on the environment and it inhabitants. Vehicle emission control 
aims at reducing motor vehicle pollution with emphasis on cen-
tral components, such as the internal combustion engine. Models, 
of which were mandated by the government, were developed in 
aim of estimating vehicle emission based on particular use pat-
terns. However, actual vehicle emission is dependent on real-world 
driving patterns. Neural networks have been utilized in the effort 
to accurately estimate these vehicle emissions. Specifically, using a 
small quantity of engine variables, recurrent neural networks have 
been utilized to estimate instantaneous engine-out emission. Re-
searchers found that recurrent neural networks trained with an 
intelligent estimation technique, namely GEKF, provided accurate 
and reliable results in estimating instantaneous emissions levels 
[107].

Intelligent estimation techniques have also been applied to var-
ious other issues in the automotive domain. The catalyst converter 
is a fundamental component of motor vehicles, which aims at 
converting unwanted and potentially environmentally damaging 
emissions into less-toxic pollutants. Control of the air to fuel ra-
tio is central to the conversion process, with the goal of regulating 
the ratio about stoichiometry. A binary sensor is utilized to mea-
sure the engine-out exhaust, indicating whether it is fuel or air 
dominant. The catalyst converter is prone to temporal degrada-
tion, necessitating constant performance monitoring (Fig. 11). Re-
searchers deployed neural networks trained with decoupled EKF’s 
in aim of analyzing conversion efficiency, utilizing engine operat-
ing conditions, pre and post catalyst sensors. The results indicate 
exceptional model performance while using intelligent estimation 
techniques [108].

Engine misfire detection is the process of detecting when a 
fragment of the air-fuel mixture fails to ignite. Engine misfires 
are common, however, consistently recurring engine misfires can 
significantly lead to the deterioration of the catalyst converter. 
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Fig. 11. Catalyst Converter Monitor Diagram.

Fig. 12. Engine Misfire Detection Diagram.

Therefore, the immediate detection of engine misfires is crucial 
to maintaining automotive integrity. Researchers approached this 
problem by utilizing basic engine variables and crankshaft acceler-
ation to train a recurrent neural network using the GEKF (Fig. 12). 
They report excellent performance with few classification errors 
[108].

Although the practical implementations provided above exclu-
sively revolve around the automotive domain, it is evident that 
intelligent estimation contains the potential for reliable pragmatic 
application in numerous other fields. The question must be posed, 
why aren’t intelligent estimation methods utilized in greater fre-
quency across various domains? This has to do with the level 
of research being conducted in the field of intelligent estimation, 
particularly concerning improving computational complexity. The 
largest drawback to deploying such techniques is the increased 
computational cost associated with these methods. Research has 
already endeavoured to improve computational cost with the in-
troduction of decoupling and other approaches. However, much 
more attention needs be driven toward algorithmic complexity 
prior to witnessing increased implementations. In addition, there is 
very little conversation on the impact of time delay and its conse-
quence on stability, see [109], as a result of the increased compu-
tational complexity. With the introduction of more research aimed 
at improving the computational complexity inherent in these tech-
niques, the more we can expect to see intelligent estimation meth-
ods utilized across professional domains.

6. Concluding remarks

Deep learning is a fundamental topic in the evolution of ma-
chine learning. The value of algorithmic performance has influ-
enced the development of novel model training methods, intend-
ing to augment model accuracy and reduce computational cost. For 
decades, the primary approach to artificial neural network train-
ing was a first-order-based gradient computation. However, due 
to inherent issues, such as local convergence, non-gradient-based 
training techniques have been investigated as an alternative to tra-
ditional methods.

Estimation-based training approaches are a form of non-
gradient-based training techniques. Initially appearing in the late 
1980s, estimation-based training methods were opted for to cir-
cumvent the convergence limitations of standard backpropagation. 
The extended Kalman filter (EKF) was an initial implementation 
which achieved excellent convergence speed; however, displayed 
poor scalability. Subsequently, numerous researchers endeavoured 
to modify the EKF implementation to reduce model complexity. 
Utilizing local approaches to training individual neurons in the 
network and decoupling to group network weights, researchers 
achieved excellent algorithmic computational characteristics. In ad-
dition to the EKF, various other filtering strategies were utilized, 
including: the unscented Kalman filter (UKF), the particle filter 
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(PF), the smooth variable structure filter (SVSF), and the sliding 
innovation filter (SIF).

Estimation-based training techniques have demonstrated
promising results when combined with machine learning. As ar-
tificial intelligence and machine learning continues to evolve, 
and its useful applications grow, estimation-based training meth-
ods present themselves as an alternative approach to traditional 
gradient-based methods. Furthermore, coupling estimation-based 
techniques with new research areas, such as physics-informed ma-
chine learning, will yield new insights and further improvements.

A series of crucial questions naturally arise concerning the im-
plementation of intelligent estimation methods. A primary ques-
tion being, what types of problems can intelligent estimation excel 
in? The literature displays that intelligent estimation achieves opti-
mal performance when dealing with classification-based problems, 
particularly when decoupling can be utilized to respectively scale 
applications. However, there is still a need for more research to 
be conducted on the application of intelligent estimation meth-
ods to variant problem types, as well as its adoption in industry. 
Exploring regression-based problems can further assist with diver-
sifying current knowledge of intelligent estimation performance. 
Future work needs to be conducted on the pragmatic implemen-
tation of these methods in specific fields of application, such as 
condition monitoring or healthcare. Furthermore, advancements in 
the field of estimation theory will provide more accurate filtering 
algorithms which can be implemented within the training proce-
dure with the goal of improving training execution.

Nomenclature

−1,+ ,T Notation denoting an inverse, a pseudo inverse and a 
transpose, respectively

A, B The system and input gain matrix, respectively
C The measurement matrix
K The filter gain matrix
P The state error covariance matrix
Q The covariance of the process (system) noise
R The covariance of the observation (measurement) noise
uk, zk The system input and measurement vectors at time k
wk, vk The system and measurement noise vectors at time k, re-

spectively
δ The width of the sliding boundary layer
sat The diagonal of the saturation value
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