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a b s t r a c t

The agricultural domain has been experiencing extensive automation interest over the past decade.
The established process for measuring physiological and morphological traits (phenotypes) of crops is
labour-intensive and error-prone. In this paper, a mobile robotic platform, namely The Autonomous
Robot for Orchard Surveying (AROS), was developed to automate the process of collecting spatial and
visual data autonomously. Furthermore, six different control frameworks are presented to evaluate
the feasibility of using a kinematic model in agricultural environments. The kinematic model does
not consider wheel slippage or any forces associated with dynamic motion. Thus, the following
six controllers are evaluated: Proportional-Derivative (PD) controller, Sliding Mode Controller (SMC),
Control-Lyapunov Function (CLF), Nonlinear Model Predictive Controller (NMPC), Tube-Based Nonlinear
Model Predictive Controller (TBNMPC), and Model Predictive Sliding Mode Control (MPSMC). This paper
provides insight into the degree of disturbance rejection that the mentioned control architectures
can achieve in outdoor environments. Experimental results validate that all control architectures are
capable of rejecting the present disturbances associated with unmodelled dynamics and wheel slip on
soft ground conditions. Additionally, the optimal-based controllers managed to perform better than
the non-optimal controllers. Performance improvements of the TBNMPC of up to 209.72% are realized
when compared to non-optimal methods. Results also show that the non-optimal controllers had low
performance due to the underactuated constraint present in the kinematic model.

© 2023 Elsevier B.V. All rights reserved.
1. Introduction

The high demands from the growing population and the en-
ironmental impact put pressure on agricultural productivity.
stimations show that by 2050, an additional 70% of food pro-
uction would be necessary to meet the future population [1].
he use of autonomous mobile robots has shown to have promis-
ng results with operations that require heavy workloads, and
epetitive processes and have shown to be more efficient than
umans. Field scouting and data collection is an application in
obile robots that seeks to gather phenotypic properties of the
lant to assess its genotype and environmental properties during
ts growth. The assessment allows farmers to understand the
mpacts on the breeding process of plants and make corrective
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decisions to optimize yield. However, for phenotypic evalua-
tions to provide a significant impact, timeliness and accuracy in
information are crucial [2]. Developments in technologies and
imaging and ranging techniques have allowed the new era of
high-throughput phenotyping [3]. Various phenotypic data can
now be gathered in sensory systems at high speeds without
disrupting the plant habitat. The automation of data collection
using a robotic platform is now emerging due to these recent
advances. Field-based phenotyping scouting robots are expected
to be flexible, multipurpose, and affordable to be viable on a
commercial-scale [4]. Some of the scouting techniques include
the use of 3D point cloud generation of plants and trees or
computer vision techniques to assess structural, morphological,
or physiological traits [5]. For instance, the Ladybird is a robotic
research platform equipped with data collection systems such as
LiDAR, stereovision, and thermal cameras to gather properties
of small crops [6]. Similarly, the Robotanist is a ground-based
robotic system equipped with a 3DOF manipulator and a force

gauge to determine the stalk strength of sorghum plants [7].
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ther high-throughput phenotyping systems include the BoniRob
hich is equipped with spectral imaging and 3D TOF cameras
o measure plant height, stem thickness, biomass, and spectral
eflection [8].

Skid-steer Mobile Robots (SSMR) are a common type of robotic
latform found in agricultural research environments [7,9]. They
nherit a simple mechanical composition and manoeuvrability
nd provide large traction forces, beneficial for rough terrains.
lthough the inherent advantages that the SSMR holds, it is
hallenging to control and predict the motion of the SSMR due
o its intrinsic nature of skidding when performing a turn [10].
ontrol strategies of SSMR typically utilize different aspects in
odelling the robot, such as kinematics or dynamics. Most of

he models used in control design feature the use of kinematic
odels, which omit the modelling of dynamic parameters such
s friction, mass and skidding off the robot [11]. This assumption
ssentially simplifies the model of the SSMR to a two-wheel
ifferential drive. Such an assumption imposes an array of un-
ertainties from unmodelled dynamic parameters such as mass,
kidding, or friction. Additionally, most methodologies that im-
lement kinematic models of the SSMR are typically observed in
ontrolled indoor environments where the surface remains planar
nd friction remains relatively constant [12,13]. Hence, for a kine-
atic model to be viable in outdoor environments, the controller
ust be designed to be robust against unmodelled dynamics of
utdoor conditions, as typically observed in agricultural terrains.
inematic models also have inherent performance limitations in
hich they may tend to overactuate the system and chatter often
o account for unmodelled dynamics. To address such limitations,
he use of dynamic models often alleviates the input strain in
inematic models requires.
Tracking control of SSMR has become increasingly popular

n various sectors such as mining [14], explorations [15], and
arming [16]. One of the popular control strategies includes using
Sliding Mode Controller (SMC). Applications of SMC in SSMR
ompositions can be seen in the implementation such as [17].
t uses the dynamic model of the vehicle to create the Fuzzy-
MC (FSMC) composition to achieve tracking. Two sliding surfaces
re designed for the yaw control and longitudinal velocity con-
rol of the SSMR, and the fuzzy controllers regulate the gain of
he sliding surfaces. Although the methodology achieved good
esults, the experiments are situated in a simulation environ-
ent. Similarly, [18] implements a path following SMC using

he dynamic model of the skid-steer system. The research uses
aracciolo’s derivation of the dynamic model and creates two
liding surfaces, which are then superimposed to match the di-
ension of the states. Results show that the SSMR can follow the
ath in a simulated environment with minor errors but does not
onsider more complex paths. Aside from the mentioned SMC
mplementations in SSMR, the majority of implementations of
MC are seen in differential drive compositions. Implementations
uch as the ones seen in [19,20], or [21] use the differential drive
inematic model to derive the SMC control regime. The design
nvolves the use of newly defined error equations that considers
he error of the SSMR relative to the path. Once formulated, the
rror dynamics may be differentiated to derive the control law.
rom the implementations of authors, the method proves to be
erformed adequately, but it lies mostly in simulated or real-
ife controlled environments. Furthermore, extensive research has
een observed on Model Predictive Control strategies for SSMR.
Model Predictive Control (MPC) is another robust path-

racking algorithm that creates an optimal control action while
ddressing set constraints and states. The controller uses a
iscrete-time finite-horizon optimization problem to solve for
ach time-step of the current state [22]. The horizon estimates

ive MPC the ability to forecast future trajectories to the control
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problem and provide optimal actuation under ideal conditions.
Hence, MPC can provide skid-steer systems with a smooth tra-
jectory by predicting skid behaviour and optimizing for any
foreseeable trajectories. However, control of skid-steer mobile
vehicles may be achieved by approximating the non-linearities
associated with the skid behaviour.

MPC-based linear models are not feasible as the process con-
trol must be operated at a set point such that it can be formulated
as a convex problem [23]. Hence, Non-linear MPC (NMPC) is
appropriate for stabilizing the non-linearities of the wheel. For
instance, [24] incorporates a point stabilization method to over-
come the non-linearities of the vehicle. The method proves that
the point stabilization of the nonlinear system achieves tracking
control of the path. However, since the model does not include
the behaviours of skidding in turns, it struggles to track the
trajectory during the start. Additionally, the model is only feasible
in indoor environments where the tire-surface friction does not
vary as much. Another application of NMPC is seen in [25].
Kayacan et al. use a centralized NMPC scheme for a tractor–
trailer system that considers forward and side slip parameters
and uses a Nonlinear Moving Horizon Estimation (NMHE) to
estimate non-linearities. Although good tracking is achieved by
the tractor–trailer vehicle, it is very computationally extensive,
which may pose difficulties in the real-time coordination and
optimization process. Similarly, [14] also incorporates an adaptive
NMPC, which considers a more simplified slip parameter with
NMHE. In comparison to [14,25] implements an adjustable model
which adapts depending on terrain changes. This method proved
to overcome the drawbacks of computational load and was tested
in rough outdoor terrains.

Unlike conventional approaches to NMPC, other variations of
NMPC may be proved superior. For instance, Tube-based NMPC
is robust against disturbances that may be present in traction
loss [26]. Tube-based NMPC uses an online optimization problem
transformed into a sequential control search rather than control
policies. Additionally, it holds an auxiliary controller that ensures
that the control problem remains bounded in the presence of
disturbance and uncertain model dynamics [27]. Prado et al. [26]
implement a tube-based non-linear model for skid-steer vehicles.
Results showed it could reduce errors up to 50% in different
terrains such as grass and gravel over conventional NMPC. An-
other variation on NMPC is Robust Constrained NMPC (RC-NMPC)
which guarantees constraint satisfaction when considering un-
certain systems [28]. RC-NMPC ensures constraint satisfaction by
considering a fixed estimate of the model uncertainty and evalu-
ates inputs using the estimate such that all plausible predictions
satisfy the constraint. The method allows for a more flexible con-
straint applied to the prediction horizon. Hence, the reduction of
conservatism associated with the constraint-tightening approach
allows for a more feasible optimization problem that is robust to
model errors [29]. An example of RC-MPC can be seen in [30]. The
research uses a learning-based model with the RC-MPC model
to achieve trajectory tracking in a skid-steer vehicle. The use of
a learning-based model proved to have reduced tracking errors
since it relies on real-world experience rather than mathematical
models. Combined with the RC-MPC, the vehicle could effectively
provide robust constraint satisfaction over various terrains. How-
ever, the model may be sensitive to the data to which the model
is exposed.

In this paper, we develop several nonlinear controllers for
the experimental robotic platform to perform trajectory track-
ing in agricultural terrain conditions. The first three controllers
consist of two conventional nonlinear controllers: the Propor-
tional Derivative (PD), the Control Lyapunov Function (CLF), and
the Sliding Mode Controller (SMC). The other two controllers

consist of a Nonlinear Model Predictive Controller (NMPC) and
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Fig. 1. Robotic platform used for orchard operations.

a Tube-Based Nonlinear Model Predictive Controller (TBNMPC),
optimal-based controllers. The last controller consists of a hybrid
approach between NMPC and SMC.

The research contributions for this work include the creation
of a robotic platform used for data collection in apple orchards
and the implementation of several nonlinear controllers. The
controllers use the kinematic model in their design to verify its
robustness against unmodelled dynamics. Typically, kinematic-
based controllers are implemented in two-wheel differential
drive robots in indoor environments. This work shows that the
presented six controllers can be applied to skid-steer composi-
tions in outdoor environments. The performance of the
controllers was validated through field experiments. The novel
controllers implemented in this work include the MPSMC and
SMC. The MPSMC uses a simplified variation of [31] which does
not require the dynamic model. Furthermore, a modified SMC
strategy is proposed using the kinematic model. The SMC im-
proves on the works of [21] by adding tuning gain for faster
tracking stability.

The rest of the paper is structured as follows. In Section 2, the
experimental platform and field site is presented. In Section 3, the
kinematic model is described. Section 4 presents the controllers
to be tested. The results of the experiments are then presented
in Section 5 and discussed in Section 6. Finally, the paper is
concluded in Section 7.

2. Robot platform & experimental site

2.1. Platform

The skid-steer platform used in the experiment consists of a
custom-built mobile equipped with individual motors on each
wheel, as shown in Fig. 1. Each motor features a 400 W Fal-
con 500 DC motor with embedded 2048 Counts Per Revolution
(CPR) encoders by Vex Robotics. The platform features a com-
plete aluminium structure measuring 31 × 38 × 75 in. in its
exterior dimensions with 13-in. agricultural tread wheels and 4
in. of ground clearance. The batteries feature two Lithium Iron
Phosphate (LiFePO4) with a total capacity of 110 Ah. The sensors
equipped in the SSMR include a Jetson AGX Xavier, EMLID Reach
RS+ RTK-GNSS, Pololu’s UM7 IMU, RPLiDAR’s S1 LiDAR as a hor-
izontal scanner, and Velodyne’s VLP-16 LiDAR as a vertical LiDAR
scanner. An overview of the sensor and communication networks
embedded in the system can be shown in Fig. 2. Additionally, the
robot’s communication features a WiFi modem to communicate
3

with the robot via SSH using Ubuntu Bionic. The software frame-
work of the robot was developed using Robot Operating System
(ROS). Each robot subsystem holds a node that holds its indepen-
dent software that communicates with other components. The
motors were programmed to be controlled using two inputs: the
linear velocity (vx), and angular velocity (ω), operating at 25 Hz.

.2. Experimental site

Experimental testing of the mobile platform system takes
lace at the University of Guelph’s Simcoe Research Facility lo-
ated in Simcoe, Ontario, Canada (42◦51′30.4562′′N, 80◦15′56.
1024′′W). The study area includes two tree rows spaced 2.7 m
apart and roughly 37 m long, with 104 trees per row spaced at
1 m. The final results of the controller were collected in mid-
March, 2022. During this time, the ground conditions were soft
due to the melting snow. The experimental site has an incline of
approximately 3 degrees in the middle of the rows and uneven
ground variations of 1–3 cm deep.

2.3. Defined path

The path is designed to traverse inter-row routes between
the orchard. The planned path is set to start from the middle
of the two rows and finish at its starting position. T-shaped
turns are introduced to increase the complexity of the controller’s
manoeuvring of turns. The map shown in Fig. 3 illustrates the
recorded map from LiDAR scans and the generated path for
the experimentation. The black dots represent individual trees;
the white space represents the explored space, and the grey is
unexplored.

3. Skid-steering mobile robot kinematic model

In this section, the kinematic model for the SSMR and the lo-
calization framework of the model are presented. The localization
framework relies on the platform’s sensors, namely, RTK-GNSS,
encoders and IMU. The measurements are then fused to provide
state estimates of the platform using an Extended Kalman Filter
(EKF) [32].

3.1. Kinematic model

The kinematic model follows similar steps to the [33] ap-
proach. This model assumes that the vehicle experiences no
lateral or longitudinal slippage of the wheels and imposes the
nonholonomic constraint depicted in [34]. This assumption sim-
plifies the kinematic model of the SSMR to represent that of
a differential drive. Additionally, further assumptions are made,
such as the robot’s movement remains planar.

The development of the kinematic model considers that the
vehicle’s position is directed by the base link frame, which is
placed at the Centre Of Mass (COM) of the robot (assumed to be
the centroid of the SSMR). If motion is applied to the SSMR, the
position and orientation of the robot can be defined as the vector
q = [x, y, θ]

T , and q̇ = [ẋ, ẏ, θ̇ ]
T as the velocity vector. Using

the relation of the base link frame and the map frame, shown in
Fig. 4, the velocity of the SSMR can be defined by the following
matrix⎡⎣ẋ
ẏ
θ̇

⎤⎦ =

[ cos(θ ) sin(θ ) 0
−sin(θ ) cos(θ ) 0

0 0 1

][
vx
vy
ω

]
(1)

where vx is the longitudinal velocity, vy is the lateral velocity, ω
the angular velocity of the SSMR, and θ the heading angle of the
SMR. Note that the equation does not impose any movement
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Fig. 2. Sensor components of the robotic platform.
Fig. 3. Generated path of the experimental site.
Fig. 4. Free body diagram.
4

constraints; hence, it is necessary to associate the nonholonomic
constraint with the velocities. Therefore, the following velocity
constraint must be satisfied [33]:

vy + xICRθ̇ = 0 (2)

Since the model is simplified to assume that the COM is at the
centroid of the vehicle, the nonholonomic constraint simplifies
to vy = 0. Therefore, using Eq. (2) with the nonholonomic
constraint, the kinematic model becomes:[ẋ
ẏ
θ

]
=

[cos(θ ) 0
sin(θ ) 0

0 1

][
vx
ω

]
(3)

where η = [vx, ω]
T is the control input that considers the

nonholonomic constraint.

3.2. State estimation

State estimation of the SSMR is one of the most fundamental
aspects of motion control. All mobile systems that require track-
ing a certain trajectory must obtain its location with respect to
the desired trajectory. There are several localization techniques
with SSMR, however, in the present work, an EKF is used to obtain
the location estimates. The EKF used in this work is adopted from
a ROS package known as robot_localization, developed by [35].
The package uses an EKF to fuse three sensory components that
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efine the overall location estimate of the mobile robot. These
ensors are defined as IMU, wheel encoders and RTK-GNSS. The
MU provides orientation and angular velocity estimates; the
ncoders provide linear velocity and angular velocity estimates;
he GNSS provides globally accurate position estimates. The EKF
uns at a frequency of 14 Hz to provide estimates of the global
ocation with respect to its defined UTM zone. The accuracy of
he localization method shows to be in the range of ±5 cm.

. Control design

This section presents six controllers for a trajectory tracking
roblem design for an under-actuated SSMR model. Some con-
rollers feature the extension of a particular controller structure.
he main control structures include the Proportional-Derivative
PD) controller, the Control Lyapunov Function (CLF), the Sliding
ode Control (SMC) and the Nonlinear Model Predictive Control

NMPC). Variations of the NMPC include the Tube-Based NMPC
TBNMPC) and Model Predictive Sliding Mode Control (MPSMC).
n the design of the controllers, the trajectory tracking problem’s
bjective is to control the nonholonomic SSMR to follow the
eference path. Each trajectory point will hold spatiotemporal
nformation that contains positional and velocity profiles. In the
esign of the control architectures, the kinematic model will be
sed for all subsequent controllers. The problem is defined as a
onlinear, time-invariant system defined in Eq. (3) which can be
eneralized in the following form:

˙ = f (q, u) + d (4)

where q ∈ Rn is the state variable, u ∈ Rm is the control
nput of the system and d ∈ Rn is the bounded white noise
isturbance. The current state of the robot is defined as q =

x, y, θ]
T and the path planner in Section 2.3 generates the desired

rajectory providing the states qr = [xr , yr , θr , ẋr ]T . The input to
he kinematic model is dependent on the linear velocity vx and
he angular velocity ω, which can be summarized as u = [vx, ω]

T .
herefore, the control objective must be designed such that the
nputs u guarantee asymptotically stability to the error states
e = [xe, ye, θe]T . Note that the control problem presents an
nder-actuated system scenario. Two control inputs are needed
5

to track the three independent states defined in the vector qr .
The controller must also be robust against unmodelled system
dynamics, terramechanics, and uneven ground conditions. We
make the assumption that θe is bounded for |θe| ≤

π
2 . The overall

control structure is described in Fig. 5. Additionally, non-optimal
controllers such as the PD, SMC, MPSMC and CLF require redefin-
ing the error of the trajectory to be relative to the orientation
of the robot coordinate frame for the control system to use the
kinematics model.

4.1. Trajectory tracking errors

The robot that is controlled to track the desired trajectory
will exhibit an error which is expressed in terms of the robot’s
coordinate system, shown in Fig. 6. The error relative to the
robot’s orientation can be defined by the following:

qe =

[xe
ye
θe

]
=

[ cos(θ ) sin(θ ) 0
−sin(θ ) cos(θ ) 0

0 0 1

][xr − x
yr − y
θr − θ

]
(5)

Thus, the velocity error can be determined by the derivative
of Eq. (5) and using Eq. (3), giving the following:⎡⎣ẋe
ẏe
θ̇e

⎤⎦ =

[yeω − v + vrcos(θe)
−xeω + vr sin(θe)

ωr − ω

]
(6)

onsequently, the acceleration error can also be determined by
btaining the velocity’s error derivative as such:

ẍe
ÿe
θ̈e

⎤⎦ =

⎡⎣ẏeω + yeω̇ − v̇ + v̇rcos(θe) − vr θ̇esin(θe)
−ẋeω − xeω̇ + v̇r sin(θe) − vr θ̇ecos(θe)

ω̇r − ω̇

⎤⎦ (7)

.2. Proportional-Derivative controller

The Proportional-Derivative (PD) controller is a popular con-
rol algorithm that determines the control input based on the
rajectory errors of the system. By using only the system’s errors,
he system’s kinematic model is not required to derive the control
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Fig. 6. Relative errors in the lateral, longitudinal and yaw directions.

structure. Mathematically, the PD control inputs are described as

u(t) = KPe(t) + KD
de(t)
dt

(8)

where e(t) is the error between the estimated state and the
desired state, KP & KD are the tuning gains for the proportional,
and derivative errors, respectively. However, the control input
of the PD is generally designed for each state. In the case of
the SSMR, the underactuated constraint hinder the usage of a
conventional PD control. The two control inputs vx and ω would
need to control the tree states in the vector q. Two controllers
are defined to overcome the underactuated constraint; the first
controller stabilizes the longitudinal error (xe) through the linear
velocity input, and the second controller stabilizes both the lateral
(ye) and orientation (θe) error with the angular velocity input. The
linear velocity controller uses a traditional PD controller, which
tries to minimize the error and its derivative by the following
equation.

vx = KPxxe + KDx

dxe
dt

(9)

The second controller follows the derivation of a Lyapunov
candidate function to determine the necessary orientation er-
ror to stabilize the lateral error [21]. The following Lyapunov
candidate function is defined as:

Vy(ye) =
1
2
y2e (10)

ith its derivative being

˙y(ye) = yeẏe = −yexeω + yevr sin(θe) (11)

The derivative of the Lyapunov function can be further sim-
plified to V̇y(ye) = yevr sin(θe) since the controller ensures that
xe → 0. Hence, asymptotical stability may only be achieved if
yevr sin(θe) ≤ 0. The following equation is then defined to satisfy
the desired stability property [21]

θe = −arctan(ye) (12)

The equation above re-defines the derivative of the Lyapunov
candidate function to −yevr sin(arctan(ye)). Since it is known that
arctan(ye) ∈ (−π

2 , π
2 ), the value of sin(arctan(ye)) ∈ (1, −1).

Additionally, the sign of V̇y(ye) is not affected by the sign of ye.
If ye < 0 or ye > 0 the sign of V̇y(ye) still remains less than equal
to zero. Therefore, it is proven that the derivative of the Lyapunov
candidate function is bounded and non-increased which assures
the asymptotic stability of the lateral error. With the definition
6

of the orientation error in Eq. (12), the angular velocity controller
may then be defined as

ω = KPθ
θe + KDθ

dθe
dt

(13)

Eq. (13) is then extended to include the orientation error
in Eq. (12) as such

ω = KPθ
θe + KPyarctan(ye) + KDθ

dθe
dt

(14)

The newly defined equation will ensure that both the lateral
nd orientation errors are driven to stability.

.3. Control-Lyapunov Function

The Control-Lyapunov Function (CLF) is an extension of the
yapunov stability theory to derive the control inputs neces-
ary to drive the system to asymptotic stability. This requires
roof that the Lyapunov candidate function (V (xe)) will even-
ually drive the error states of the system to zero (xe → 0).
hus, the proof must satisfy two conditions: defining a positive-
efinite Lyapunov candidate function, and its derivative being
trictly negative or negative semi-definite. If the proof is satisfied,
he states are guaranteed to decrease the Lyapunov function,
hich would in return assure the reduction of the error states.
he works by Sontag [36] show examples of how the candi-
ate Lyapunov function may be designed to derive the control
nputs to drive the error trajectories to zero. Furthermore, al-
hough the method provides a convenient approach to deriving
he stability of the system, it becomes complex in finding the
dequate Lyapunov function to satisfy the conditions. The CLF
ontrol design used in this work is adapted from the formulation
resented in [37,38]. Consider the following positive definite
uadratic Lyapunov function:

(qe) =
1
2
x2e +

1
2
y2e + (1 − cos(θe))/Ky (15)

here its derivative can be expressed as
˙ (qe) = xeyeω − xev + xevrcos(θe) − yexeω

+yevr sin(θe) − ωr sin(θe)/Ky + ωsin(θe)/Ky (16)

To provide asymptotic stability to the system, the following
ontrollers are defined:

= vrcos(θe) + Kxxe (17)

= ωr + Kyvrye + Kθ sin(θe) (18)

here Kx, Ky, Kθ > 0. The new derivative of the Lyapunov func-
ion would then give the following function:

˙ (qe) = −Kxx2e − vrKθ sin2(θe)/Ky ≤ 0 (19)

The controllers shown above manage to provide asymptotic
tability to the error states of the trajectory. From Eq. (15), the
yapunov function is positive-definite bounded meaning that
(qe) > 0 and V (0) ̸= 0 for all x ̸= 0. The derivative of the
unction also shows that the Lyapunov function is non-increasing
r zero and V (qe) → 0. Hence, the states qe is guaranteed to
onverge to zero as t → ∞.

.4. Sliding Mode Control

The Sliding Mode Controller (SMC) attempts to solve the tra-
ectory tracking problem by controlling the linear and angular
elocity of the SSMR based on the robot’s relative errors in
he system. The design of the SMC includes defining continuous
unctions that map the states into a control surface which is
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inimized by the surface control law. Typically, a sliding surface
ould be designed for each system state. However, since the
SMR presents an underactuated system problem, two sliding
urfaces must be designed for each input. Thus, two surfaces are
efined to map the error states qe into the following:[
s1
s2

]
=

[
xe

θe +
λy
2 arctan(ye) +

λθ

2 |θe|sign(ye)

]
(20)

The first surface controller minimizes the longitudinal error
xe by controlling the linear velocity vx of the SSMR. The second
controller minimizes both the lateral error ye and yaw error θe
through the control of the angular velocity of the model. In the
second surface, two error variables are defined to satisfy the
asymptotic Lyapunov stability theorem. The Lyapunov candidate
function is first defined as [21]

Vy(ye) =
1
2
y2e (21)

ith its derivative being

˙y(ye) = yeẏe = −yexeω + yevr sin(θe) (22)

The derivative of the Lyapunov function can be further simpli-
fied to V̇y(ye) = yevr sin(θe) since the first sliding function ensures
hat xe → 0. Hence, asymptotical stability may only be achieved
f yevr sin(θe) ≤ 0. The following equation is then defined to satisfy
he desired stability property

e = −
λθ

2
|θe|sign(ye) −

λy

2
arctan(ye) (23)

here λθ ≤ 1, λy ≤ 1. By defining θe as the equation above, it
nsures that yevr sin(θe) is bounded and that Vy(ye) is non increas-

ing. Since it is assumed that θe ∈ (−π
2 , π

2 ) and it is known that
rctan(ye) ∈ (−π

2 , π
2 ), it ensures that |θe| ≤

π
2 . In return, sin(θe)’s

ign relies solely on the sign of ye proving that yevr sin(θe) ≤ 0. The
erivation of the controllers can then be defined by obtaining the
erivative of s as

ṡ1
ṡ2

]
=

[
ẋe

θ̇e +
λθ

2 θ̇esign(θe) +
λy
2

ẏe
1+y2e

]
(24)

The control law of the SMC uses the method proposed by
ao and Huang [39] in which the reaching law includes both a
onstant and proportional reaching law to attract the trajectories
nto the switching manifold. The general form of the control law
s

ṡ1
ṡ2

]
=

[
−P1s1 − Q1sign(s1)
−P2s2 − Q2sign(s2)

]
(25)

where the sign function is defined as

sign(s) =

{
1, if s > 0
−1, if s < 0

(26)

Through the Lyapunov proof, it can be further proof that the
control law would assure the asymptotic stability of the surface
functions. The proof can be proved by defining the Lyapunov
function of

Vs(s1, s2) =
1
2
s21 +

1
2
s22 (27)

here its derivative is given as
˙s(s1, s2) = s1ṡ1 + s2ṡ2 = −s21Q1 − s1P1sign(s1)

−s22Q2 − s2P2sign(s2) (28)

It is then proved that V̇s(s1, s2) is negative semi-definite only if
the constants Pi and Qi satisfy the bounds of Pi,Qi ≥ 0. Therefore,
the sliding surfaces would reach asymptotic stability such that
 N

7

si → 0. Trivially, this proves that from Eq. (20), xe → 0 and
θe → −

λy
2 arctan(ye) −

λθ

2 |θe|sign(ye). The convergence of θe also
mplies that ye → 0 which would lead to θe → 0.

The SMC is notorious for its chattering problem when imple-
ented with the sign function as described in Eq. (26). Authors
ave proposed methods that overcome such drawbacks by im-
lementing a lowpass filter structure to the surface variable s by
ntroducing a boundary layer thickness Φ through a saturation
unction [40]. The saturation function can be described as:

at
( s

Φ

)
=

{ s
Φ

, if |s/Φ| ≤ 1
sign

( s
Φ

)
, if |s/Φ| > 1

(29)

The saturation functions can then replace the sign functions
defined in Eqs. (24) and (25). Consequently, using Eqs. (6), (24)
and (25), the controllers of the kinematic SSMR model can be
defined as such:

vx = P1s1 + Q1sat(s1) + yeω + vrcos(θe) (30)

=

P2s2 + Q2sat(s2) + ωr (1 +
λθ

2 sign(θe)) +
λyvr sin(θe)
2(1+y2e )

(1 +
λθ

2 sign(θe)) +
λyxe

2(1+y2e )

(31)

where λθ ≤ 1, λy ≤ 1.

4.5. Nonlinear Model Predictive Control

The Nonlinear Model Predictive Control (NMPC) is used to
minimize the optimal policy of the controller and to solve for the
optimal input of the system. The optimal policy is set to minimize
the state trajectory error qe and input errors ue. Additionally,
he optimal solution is spanned across the prediction horizon
o anticipate future events and tune the optimal control action
ccordingly. The first input among the time horizon sequence
s executed, and the process re-iterates itself by providing the
pdated states to the controller. The design of the MPC is adopted
rom [24] which discusses the design of the optimal policy and
tability analysis. The optimal control problem is formulated to
inimize the cost function defined as

T (tk, qe(τ ), ue(τ )) =

∫ tk+T

tk

ℓ(qe(τ ), ue(τ ))dτ

+Jf (q(tk + T )) (32)

here ℓ(τ , qe(τ ), ue(τ )) = ∥qe(τ )∥2
QMPC

+ ∥ue(τ )∥2
RMPC

is the run-
ing cost of the MPC; qe is the error trajectory described in Eq. (5);
e = u − ur is the input error between the input and reference
nput; Jf = ∥qe(tk + T )∥2

PMPC
is the terminal cost; QMPC , PMPC and

MPC are positive definite symmetric weight matrices that tune
he states, terminal cost and control action respectively; and T
s the prediction time horizon. Terminal constraints are imposed
n the problem to assure stability of the system [41,42]. The NLP
roblem can then be defined as

in
u

JT (tk, q, u)

s.t. q̇(τ ) = f (q(τ ), u(τ )),
q(tk) = q̂(tk),
u(τ ) ∈ U,

q(τ ) ∈ Q,

q(tk + T ) ∈ Qf

τ ∈ [tk, tk + T ]

(33)

here Q ∈ Rn is the state constraints, U ∈ Rm is the input con-
traints, Qf ∈ Rn is the terminal constraints, and q̂(tk) denotes the
stimated state vector determined by the EKF after the optimal
nput from the previous instance (u∗(tk−1)) is given to the system.
ote that (·)∗ denotes the optimal solution.
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.6. Tube-Based Nonlinear Model Predictive Control

Tube-Based Nonlinear Model Predictive Control (TBNMPC) uti-
izes two controllers to mitigate the unmodelled dynamics of the
ystem and the disturbances. The first controller consists of the
ominal open-loop NMPC, which drives the undisturbed system
nto its desired trajectory. The second controller consists of an
uxiliary NMPC feedback controller, which tries to mitigate the
nmodelled dynamics and disturbances of the system. This is
one by driving the discrepancy between the nominal NMPC
utput and the real system states to zero. The formulation of
he auxiliary controller consists of a dual NMPC structure de-
cribed by [43]. The nominal model is initially described using
he kinematic model in Eq. (3) which can be expressed as

˙ = f (z, v) (34)

where z is the nominal state, and v is the nominal control input.
The optimal control input v∗ to drive the undisturbed system onto
the desired trajectory is determined by minimizing the following
cost function

Vnom(tk, ze(τ ), ve(τ )) =

∫ tk+T

tk

ℓ(ze(τ ), ve(τ ))dτ

+Vf ,nom (35)

where ℓ(τ , ze(τ ), ve(τ )) = ∥ze(τ )∥2
Qnom

+∥ve(τ )∥2
Rnom is the running

cost; Vf ,nom = ∥ze(tk + T )∥2
Pnom is the terminal cost; ze is the error

between the nominal state and reference trajectories described
in Eq. (5); ve is the error between the nominal input; Qnom, Pnom
and Rnom are positive definite symmetric weight matrices that
tune the states; and T is the time horizon. The open-loop cost
function for the nominal state and input trajectories is

min
v

VN (tk, ze(τ ), ve(τ ))

s.t. q̇(τ ) = f (z(τ ), v(τ )),
z(tk) = z0,
v(τ ) ∈ V,

z(τ ) ∈ Z,

z(tk + T ) ∈ Zf

τ ∈ [tk, tk + T ]

(36)

here Z ∈ Rn is the nominal state constraints, V ∈ Rm is
the nominal input constraints, Zf ∈ Rn is the nominal terminal
constraints, and z0 denotes the is the initial state selected from
the solution of the previous sampling instant such that z0 =

z∗(tk, z(tk − 1), v∗(tk), v∗(tk − 1)). The nominal optimal control
input is expressed as v∗(tk), where it is applied to the nominal
kinematic model and determined at each sampling instance. The
states and inputs obtained from the nominal controller are then
passed to the auxiliary controller as the reference state and in-
puts. The design of the auxiliary NMPC follows a similar structure
to the nominal controller. Instead of driving the nominal system
to the trajectory, the cost function is designed such that the error
between the nominal states and the real system’s states is driven
to stability. Note that the nominal controller has no interaction
with the real system; it is an open-loop controller that provides
the desired solution of an undisturbed system. The loss function
of the auxiliary NMPC may then be defined as

Vf ,aux(tk, qe(τ ), ue(τ )) =

∫ tk+T

tk

ℓ(qe(τ ), ue(τ ))dτ

+Vf ,aux (37)

where ℓ(τ , qe(τ ), ue(τ )) = ∥qe(τ )∥2
Qaux

+∥ue(τ )∥2
Raux is the running

cost; V = ∥q (t + T )∥2 is the terminal cost; q is the error
f ,aux e k Paux e

8

between the estimated state and the nominal state; ue is the
error between the nominal input; Qaux, Paux and Raux are positive
definite symmetric weight matrices that tune the states; and T
is the time horizon. The open-loop cost function for the nominal
state and input trajectories is

min
u

VN (tk, qe(τ ), ue(τ ))

s.t. q̇(τ ) = f (q(τ ), u(τ )),
q(tk) = q̂(tk),
u(τ ) ∈ U,

q(τ ) ∈ X,

q(tk + T ) ∈ Xf

τ ∈ [tk, tk + T ]

(38)

here X ∈ Rn is the state constraints, U ∈ Rm is the input
onstraints, Xf ∈ Rn is the terminal constraints, and q̂(tk) denotes
the estimated state vector determined by the EKF after the opti-
mal input from the previous instance (u∗(tk−1)) is given to the
ystem. Additionally, to ensure robust constraint satisfaction, the
ightening of the nominal constraints is set as a simple scaling
actor of the initial constraint. This takes the form of Z = αX
or the nominal state constraints and V = βU for the nominal
nput constraints, where α and β are constants between the range
f 0 and 1. Terminal constraints are also imposed in both the
ominal and auxiliary controller for stability purposes, which can
e further assessed in [43].

.7. Model Predictive Sliding Mode Control

The Model Predictive Sliding Mode Control (MPSMC) follows
similar derivation to the TBNMPC. The first controller consists
f the same nominal open-loop NMPC discussed in Section 4.6.
he second controller uses a hybrid controller, which consists
f an NMPC and SMC, which is known as an MPSMC, described
y [31]. The MPSMC uses an NMPC to recast the SMC problem as
n optimization problem. The auxiliary controller goal would be
o maintain the sliding surface to zero. This is accomplished by
efining the following cost function for the auxiliary controller:

f ,aux(tk, s(τ ), u(τ )) =

∫ tk+T

tk

ℓ(s(τ ), u(τ ))dτ

+Vf ,aux (39)

here ℓ(τ , s(τ ), u(τ )) = ∥s(τ )∥2
Faux + ∥u(τ )∥2

Raux is the running
ost; Vf ,aux = ∥s(tk + T )∥2

Paux is the terminal cost; s is the sliding
urface variable defined in Eq. (20); u is the system control input;
aux, Paux and Raux are positive definite symmetric weight matrices
hat tune the controller; and T is the time horizon. If the optimal
ontrol input u∗ drives the sliding surface vector to zero, by
he Lyapunov proof in (21), one may assure that the states of
he disturbed system also reach stability. Thus, the optimization
roblem for the auxiliary controller is

in
u

VN (tk, s(τ ), ue(τ ))

s.t. s = s0
q̇(τ ) = f (q(τ ), u(τ )).
q(tk) = q̂(tk),
u(τ ) ∈ U,

q(τ ) ∈ X,

q(tk + T ) ∈ Xf

τ ∈ [tk, tk + T ]

(40)

here X ∈ Rn is the state constraints, U ∈ Rm is the input con-
traints, X ∈ Rn is the terminal constraints, and q̂(t ) denotes the
f k
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Table 1
Control parameters table.
PD parameters

Parameter Value

KPx 0.8
KPy 0.3
KPθ 0.6
KDx 0.1
KDθ 0.1

CLF parameters

Parameter Value

Kx 1
Ky 0.7
Ktheta 0.9

SMC parameters

Parameter Value

λy 0.6
λθ 0.9
Q diag[1e−1, 1e−1]
P [5e−1, 1e−1]

NMPC parameters

Parameter Value

Qmpc diag[1, 1, 1.3]
Rmpc diag[0.5, 0.5]

TBNMPC parameters

Parameter Value

Qt,nom diag[1, 1, 1.3]
Rt,nom diag[1, 1]
Qt,aux diag[1, 1, 1.3]
Rt,aux diag[1, 1]

MPSMC parameters

Parameter Value

Qm,nom diag[1, 1, 1.3]
Rm,nom diag[1,1]
Fm,aux diag[1, 1]
Rm,aux diag[1,1]
λy 0.6
λθ 0.7

estimated state vector determined by the EKF after the optimal
input from the previous instance (u∗(tk−1)) is given to the system.
he stability of the controller may follow the same routine as the
BNMPC [43] and an MPSMC-specific stability analysis may also
e explored in [31].
The tightening of the constraints revolves around the bound-

ry layer thickness Φ designed for the control law in Eq. (25).
he boundary layer is used to propagate the constraints of the
liding surface into the states and control inputs of the nominal
ontroller. However, the boundary layer is made time-varying
uch that it proportionally tightens the sliding surface instead of
t being a constant value. This is described as [40]:

˙ = −λΦ + γ (41)

here λ is the rate of convergence of the boundary layer, and γ is
the tuning parameter of the boundary layer. The boundary layer
of the surface is then propagated into the states of the nominal
controller by designing the tube size constraint. The tube size
defines the bounds between the nominal and true system such
that x(t) − z(t) ∈ S, ∀t ∈ [tk, tk + T ]. If the constraint sets are
rearranged for the nominal controller set using the Minkowski
set subtraction, the following can be obtained:

Z := X ⊖ S (42)

The tube size is designed to have a similar structure to the
surface boundary layer. The structure assures that the size of
9

Table 2
RMSE values.
Controller x y θ v ω Sum

PD 0.2484 0.2045 0.2144 0.0505 0.0499 0.7678
CLF 0.3181 0.1669 0.0669 0.0288 0.0263 0.6070
SMC 0.2447 0.2140 0.0636 0.02755 0.0337 0.5836
MPSMC 0.1750 0.1481 0.0766 0.0255 0.0327 0.4580
NMPC 0.1186 0.1087 0.01948 0.0320 0.0295 0.3083
TBNMPC 0.1015 0.0665 0.0230 0.0269 0.0300 0.2479

the tube size has more lenient constraints at the beginning and
reaches a tighter constraint over time. The equation can be rep-
resented as

Ṡ = −ρS + Φ (43)

here ρ is the rate of convergence of the tube layer. Furthermore,
he constraints of the nominal input are also designed based on
he surface boundary layer.

The input constraints are designed based on the upper bound
f the maximum control input introduced by the control law.
he statement may be denoted by u = û + uk, where û is
he equivalent control input necessary to keep the trajectory on
he sliding surface ṡ = 0 and uk is the switching control input
etermined by the control law such that the trajectory is driven
o the sliding surface. Note that only the switching control of
he SMC drives the uncertainties to stability. If the controllers
f Eqs. (30) and (31) are written in the form of u = û + uk, the
ollowing can be obtained:

= v̂ + vk = (yeω + vrcos(θe))
+(P1s1 + Q1sat(s1)) (44)

= ω̂ + ωk =

⎛⎝ωr (1 +
λθ

2 sign(θe)) +
λyvr sin(θe)
2(1+y2e )

(1 +
λθ

2 sign(θe)) +
λyxe

2(1+y2e )

⎞⎠
+

⎛⎝ P2s2 + Q2sat(s2)

(1 +
λθ

2 sign(θe)) +
λyxe

2(1+y2e )

⎞⎠ (45)

Thus, the bounds of the switching control vk & ωk are then
used to define the tube size of the control input. The bounds of
the control input tube size may be expressed as:

Vvx = P1Φ1 + Q (46)

Vω =
P2s2 + Q2Φ2

(1 +
λθ

2 sign(θe)) +
λyxe

2(1+y2e )

(47)

here Vvx is the constraint set for the nominal linear velocity
nput and Vω is the constraint set for the nominal angular velocity
nput.

. Results

The experimental results of the controllers are consistent with
he ones in the simulation, but only the field test experiments are
resented due to limited space. The parameters for the controllers
re provided in Table 1. Validation of the control structures are
ssessed using the generated path in Fig. 3. The path is set to for-
ulate T-shaped turns to introduce more complex manoeuvres in
hich the controllers will be assessed. Additionally, the optimal-
ased controllers use the CasADi toolkit to solve the optimization
roblem. The optimal control problem is cast as a Nonlinear Pro-
ramming (NLP) problem using multiple shooting. The sampling
ates of the controllers were T = 0.2 s, and the prediction horizon
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Table 3
IAC values for the field experiment results.
Controller PD CLF SMC MPSMC NMPC TBNMPC

vx 1212.1937 1190.0362 1188.0317 1181.8350 1189.6999 1183.1618
ω 221.2788 189.6777 187.9554 177.1346 176.1430 176.9600
Sum 1433.4725 1379.7139 1375.9871 1358.9696 1365.8429 1360.1218
Fig. 7. Tracking results.
for both the optimal controllers was set to N = 10. The total
execution time of the trajectory lasted approximately 25 min
or 1538 s. For the controllers without constraint tightening, the
control inputs are saturated to vx = 1 m/s for the linear velocity
and ω = 1 rad/s for the angular velocity. Starting position is also
set to zero for all states since the states all start at zero once the
EKF is initialized.

The overall tracking performance of each controller in the X-Y
axis is shown in Fig. 8, and its respective control inputs in Fig. 9.
The performance was evaluated using the Root-Mean-Square-
Error deviation analysis for each state and control input as shown
in Table 2. More specifically, the tracking performance of each
state may be assessed in Fig. 7. As for the assessment in control
effort, it is achieved by analyzing the Integral-Absolute-Control
(IAC) as shown in Table 3.
10
Results of the RMSE also show that when using the PD as
the benchmark, performance improvements of 26.49%, 31.56%,
67.64%, 149.04%, 209.72% are realized by the controllers CLF,
SMC, MPSMC, NMPC, and TBNMPC, respectively. As for IAC per-
formance, one can also notice the improvements from the PD
controller by 3.90%, 4.18%, 5.48%, 4.95%, 5.39% for the CLF, SMC,
MPSM, NMPC, and TBNMPC, respectively

The tuning parameters of the controllers in the field exper-
iments were moderately close to the simulated ones. The con-
trollers that required the least amount of tuning were the MPSMC
and the TBNMPC. The other controllers such as the SMC, the PD
and the CLF required tuning higher weights in the tracking of
orientation errors. This was found to be the case as it tended
to drive off the trajectory when performing T-shaped turns. As
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Fig. 8. Field experiment results.
Fig. 9. Control Inputs.
or the NMPC, the simulated parameters had significant actuation
ctivity in the field experiments. It required lowering the tracking
eights of all the states.
The T-turn analysis results of the controllers are determined

y taking one section of the small T-shaped turn trajectory and
omparing it against another section of a large T-shaped turn tra-
ectory. The comparison is made through the RMSE value of each
espective section. The analysis between large and small T-turns
howcases the robustness of the controllers in changing turn
adius. Results showed that most controllers performed better
uring small T-turns than large T-turns. However, the controllers
hat suffered the most when performing large turns were the
MPC, MPSMC, PD and CLF. The NMPC did 17.62% worse than
mall turns, MPSMC did 81.13% worse, the PD did 113.12% worse,
nd the CLF did 70.41% worse. Furthermore, the SMC and TBNPC
id not show significant changes between the large and small T-
urns in field experiments. Results showed that the SMC did 0.5%
orse than large turns and TBNMPC did 4.76% worse.

. Discussion

The evaluation of control performance shows that the best
racking is achieved by the TBNMPC. The relatively low per-
ormance of the PD, CLF, SMC and MPSMC may be associated
ith the design of the controllers. These controllers require the

unction of both the ye and θe tracking error to control the angular
elocity of the SSMR. In the NMPC and TBNMPC, the controllers
o not need to account for the underactuated constraints on
he design of the controller architecture. In contrast, the other
on-optimal architectures need to consider the underactuated
11
constraint to design the linear and angular controller through
the stability analyses. Essentially, the angular controller would
need to balance between the lateral error and the orientation
error of the SSMR, which may ultimately hinder the longitudinal
tracking as well. One may also observe that the propagation of
such limitations is seen in the MPSMC. Although the MPSMC uses
an optimal control for minimizing the sliding surface, the design
limitation limits the tracking capabilities during complex turns.
For the non-optimal controllers and the MPSMC to achieve better
tracking results, it would require the independent tracking of the
lateral and orientation errors of the SSMR. This may be achieved
by using polar coordinates to reduce the number of states to
track. Further analysis was also made of the performance on large
and small T-turns of the controllers.

The turn analysis results of the PD, CLF, NMPC and MPSMC
showed to have poor performance when comparing small and
large T-shaped turns. The results of the PD and CLF show that
Lyapunov proof of angular velocity control is limited when the
disturbance of the system changes. Hence, it may be realized
that the method guarantees convergence to a certain degree but
does not guarantee robustness against changing disturbances.
On the other hand, the TBNMPC highlights the robustness of
the Tube-Based approach. When comparing the NMPC with the
TBNMPC, the NMPC performance suffers more than the TBNMPC
during large turns. The approach validates that the robustness of
the TBNMPC increases the turn performance over the NMPC by
270.2%. Furthermore, when doing a similar comparison between
the SMC and the MPSMC, the same results are not perceived. The
robustness of the SMC proves to be superior to the MPSMC. It is
important to note that although the SMC remained more consis-
tent during turns, the MPSMC had better RMSE performance in



C. Wen Zhu, E. Hill, M. Biglarbegian et al. Robotics and Autonomous Systems 162 (2023) 104364

b
i
t
(
s
t
r
s
c
t
l

b
c
q
t
a
p
W
n
c
s
m
l
b
h
c
a
t
c
l
w

7

m
(
P
(
P
t
(
t
t
s
o
p
F
T
a
f
t
t
l
a
d
i
a
t
s
t
l
S
l
M

oth small and large turns. The lack of consistency of the MPSMC
n small and large turns may be associated with the design of
he MPSMC. The MPSMC is derived from an open loop NMPC
nominal controller) followed by a reformulated NMPC which
eeks to minimize the sliding surface of the SMC through an op-
imization problem (auxiliary controller). The auxiliary controller
ejects the additional disturbances present through the sliding
urfaces. However, the sliding functions hold the underactuated
onstraint in the angular velocity control. Hence, depending on
he orientation and lateral weights, the optimization problem has
imitations in determining the best angular velocity.

The overall Integral-Absolute-Control (IAC) actuation effort
etween the controllers shows that the MPSMC had the lowest
ontrol effort in comparison to the other controllers. The subse-
uent controllers that did comparably well after the MPSMC were
he NMPC and TBNMPC. The relatively low IAC values may be
ssociated with the optimization of the control input. The model
redictive controls hold the penalization of both input and states.
hereas non-optimal controllers such as the PD, CLF and SMC, do
ot penalize the actuation input; instead, it is fully driven by the
ontrol law. Furthermore, the overall performance of the MPSMC
hows that the particular composition of the auxiliary controller
ay minimize the overall actuation effort. The optimization prob-

em of the sliding variable decreases the linear velocity actuation
y 2% in comparison to the NMPC and the TBNMPC. On the other
and, the angular velocity had increased activity of about 3% in
omparison to the NMPC and the TBNMPC. The increased control
ctivity in the angular velocity of the MPSMC may be related
o the underactuated constraint. Therefore, if the underactuated
onstraint is resolved through the use of polar coordinates, it is
ikely that the angular velocity actuation effort is minimized as
ell.

. Conclusion

This paper presented the experimentation and validation of
ultiple control architectures of the Skid-Steer Mobile Robot

SSMR) in agricultural environments. The controllers consist of a
roportional-Derivative (PD) controller, a Sliding Mode Controller
SMC), a Control Lyapunov Function (CFL), a Nonlinear Model
redictive Control (NMPC), a Tube-Based Nonlinear Model Predic-
ive Control (TBNMPC), a Model Predictive Sliding Mode Control
MPSMC). The PD controller uses a Lyapunov proof to determine
he angular velocity control and is set as the benchmark by which
he other controllers will be accessed. The SMC features a new de-
ign of the sliding surface functions which provides better tuning
f angular velocity control. The CLF uses an existing methodology
roposed by [37]. The TBNMPC uses the approach from [43].
inally, the MPSMC features a new method of implementing
BNMPC with SMC using the kinematic model. Results show that
ll controllers were able to achieve trajectory tracking success-
ully by mitigating the unmodelled dynamics of the vehicle and
ires in agricultural environments. Furthermore, the results show
hat the TBNMPC was the best-performing controller overall. The
ow performance of the non-optimal controllers may have been
ttributed to the underactuated system constraint present in the
esign of the controllers. This conclusion is further observed
n the MPSMC performance which also inherits the underactu-
ted constraint. Thus, implementing strategies such as trajectory
racking in the polar coordinate space may reduce the number of
tates, mitigating such problems. Additionally, the robustness of
he controllers was accessed by determining their performance in
arge and small T-shaped turns. The experiments show that the
MC and TBNMPC were more robust to changing disturbances in
arge and small turns. Furthermore, the IAC results show that the
PSMC had the overall lowest actuation effort. The results are
12
attributed to the optimization problem that provides the optimal
input based on state and input penalization. Future works on
the research include comparative experiments of the controllers
using the dynamic model of the SSMR. The prospective results
will allow for further validation of the degree of disturbance
rejection that is achieved by using such methodologies.
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