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1 

Abstract – In this paper, a newly proposed implementation of an unscented smooth variable structure filter 

(UK-SVSF) is introduced. The method is combined with a sliding mode controller (SMC) to compensate for 

modeling uncertainties. The robustness and tracking accuracy of the proposed controller and estimation 

strategy are demonstrated on a four degree-of-freedom (DOF) robotic system with one prismatic and three 

rotary joints (PRRR). The effectiveness of the proposed combination is proven through comparisons with 

three types of nonlinear estimation strategies: the standard unscented Kalman filter (UKF), smooth variable 

structure filter (SVSF), and a previously published UK-SVSF. The robot’s trajectory following accuracy and 

efficiency are used as the performance parameters to study and compare the different strategies. Modeling 

uncertainties are added to the system to provide a more thorough evaluation of the robustness of the different 

nonlinear control and estimation strategies. 

Keywords—Sliding Mode Controller; Unscented Kalman Filter; Smooth Variable Structure Filter; Estimation; 

Modeling Uncertainties. 

1. INTRODUCTION 

The field of robotics is rapidly expanding into major aspects of modern life. Robotic arms are becoming 

commonplace in surgical theaters and space exploration, in prosthetics and life enhancement for the handicapped, 

as surrogates in dangerous military and safety operations, and most prevalently for repetitive high-precision 

industrial and manufacturing tasks. This has necessitated the development of control strategies that guarantee 

efficient, and more importantly, precisely accurate maneuverability of the robotics. Researchers have been working 

on control methods that enable a robot to follow a desired trajectory while minimizing the effects of external 

disturbances and modeling uncertainties.  

Versatile robots typically have multiple joints with multiple degrees of freedom. Because of this, they are 

classified as a multi-input, multi-output (MIMO) control problem. Due to the nonlinearities involved, linear control 

methods such as Proportional-Integral (PI), Proportional-Derivative (PD), and PID are rarely employed for MIMO 

robotic arms [1, 2]. Researchers have demonstrated robust behavior utilizing nonlinear controllers based on Fuzzy-

Logic [3-5]. Other researchers have proposed nonlinear sliding mode controllers (SMC). While these methods 

achieve robust control, the robustness comes at a cost of chattering or high frequency switching [1, 6-8]. Chattering 
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becomes pronounced especially when there is significant noise in the feedback signals from the sensors. Bear in 

mind that modern controllers employ a very large number of sensors to achieve better perception of the 

environment. The numerous sensor inputs, and their unavoidable associated signal noise, multiply the problem 

many fold. Because of that, feedback signals are now typically processed to reduce the noise and improve the 

stability of the controller. 

Estimation strategies have been proven instrumental in reducing the effect of noisy sensor measurements as 

well as in extracting non-measured state values at the same time. They have become common in the feedback of 

most controllers. In 1942, the Wiener Filter was introduced based on least square error method. It offered the first 

solution to dealing with stochastic noise [9-11]. Shortly after, the predictor-corrector Kalman Filter (KF) was 

introduced [9-13]. However, the Kalman Filter places strict restrictions on the estimation problem. The system 

needs to be known and linear, and the noise is assumed to be white and Gaussian. This is not necessarily the case 

in real-world systems, which causes the Kalman filter to fail in most practical applications. A number of extensions 

have been made on the KF in an effort to improve its robustness and stability for nonlinear systems. These 

adaptations include: the Extended Kalman Filter (EKF) [11, 14-16], the Iterated Extended Kalman Filter (IKF) [11-12, 

17-19], the Higher-Order Extended Kalman Filter (HOEKF) [11, 20-22], the Sigma-Point Kalman Filter (SPKF) 

variations which include the Unscented Kalman Filter (UKF) [11, 23-27], the Particle Filter (PF) [28], Sliding Mode 

Observers [29-37], and the Smooth Variable Structure Filter (SVSF) [38-46]. The SVSF is an estimation technique 

that was developed in 2007 and is used to estimate linear and non-nonlinear systems. It exhibits high resistance to 

uncertainties, but it is prone to sensitivity to measurement noise. The sensitivity becomes problematic as noise 

amplitude increases. Several variations have been proposed to address this issue [38-46], including the Unscented 

Smooth Variable Structure Filter (UK-SVSF) [47-51]. The benefits of the combination are to be stable and robust 

against the uncertainties in the model using the SVSF’s features, while reducing the noise sensitivity using the UKF’s 

features. 

In this work, we will introduce a new closed loop controller system that consists of a Sliding Mode Controller 

(SMC) combined with a newly proposed UK-SVSF as the feedback. The proposed method is considered stable, as 

per Appendix A3-2. The root mean square error will be significantly reduced compared with the original SVSF and 

the older version of the UK-SVSF in extreme cases (few measurements, high system and measurement noise 

amplitudes, and system modeling uncertainties). This proposed system will be evaluated using a four degree of 

freedom (DOF) robotic arm that has one planer and three rotary joints (PRRR). Matlab-Simulink simulations will be 

discussed to show the effect of noise on the performance of the filter and the overall control system. Section 2 of 

develops the mathematical derivations of the robotic arm’s forward and inverse kinematic solutions, joint space 

trajectories, and overall dynamics. The implemented Sliding Mode Controller (SMC) is discussed in section 3, and 

then section 4 describes the proposed implementation of the UK-SVSF and discusses its advantages compared to 

three other nonlinear estimation strategies: Unscented Kalman Filter (UKF), Smooth Variable Structure Filter (SVSF), 
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and the previously published Unscented Smooth Variable Structure Filter (UK-SVSF). Modeling uncertainty is added 

to the system to provide a more thorough comparison of control and estimation robustness and tracking accuracy. 

The results of applying the nonlinear controller and the four nonlinear estimation strategies are described in 

Sections 5 and 6, respectively. The paper is concluded and future work is discussed in Section 7. 

2. MODELING THE 4-DOF PRRR ROBOTIC ARM DYNAMICS 

As discussed in the previous section, we will use a 4-DOF PRRR robotic arm as the evaluation apparatus for the 

proposed control method as well as benchmarking with other control methods. Therefore, in this section, we will 

start by developing the mathematical model for the robotic arm’s dynamics. Figure 1 shows a pictorial view of the 

robotic arm under consideration and the diagrams in Figure 2 through Figure 4 outline the frame and joint 

assignments. Common parameters are listed in Table 1 and were determined using the procedure defined in [52]. 

Table 1 –Denavit-Harternberg (D-H) parameters for PRRR reference frame [53-57]. 
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Figure 1 – Pictorial impression of the PRRR robotic 

arm used in this work [53-57]. 
 

Figure 2 –Top view of PRRR robotic arm [53-57]. 

 
Figure 3 – Side view of PRRR robotic arm [53-57]. 

 
Figure 4 –Graphical solution of the inverse 

kinematics problem [53-57]. 
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2.1. Forward Kinematic Solution 

The forward kinematic solution provides dynamic equations that can be used to model and study the 4-DOF robotic 

arm. The solution is obtained using a transformation matrix  that provides the orientation and position of the 

end effector (arm) with respect to the base (or zero) frame. Equation 1 below shows the forward kinematic solution 

for our system where a subscript defines the reference frame’s number, while the superscript defines the frame in 

which the orientation is needed.  

 

(1) 

2.2. Inverse Kinematic Solution 

Suppose that the known transformation matrix , shown in equation 2 below, describes the desired position 

and orientation of the end effector. Using this matrix, we need to develop relationships to obtain appropriate values 

for the four parameters required to maneuver the arm correctly (𝑑ଵ, 𝜃ଵ, 𝜃ଶ, 𝜃ଷ). Based on the robot diagram shown 

in Figure 4 we can calculate the graphical inverse kinematic equations as shown in equations 3 through 10 below 

[53-57]. 

 

(2) 

First, we can apply Pythagoras  theorem to the right triangle made up of ℓ, ሺ𝑃௫ െ 𝑎ଵሻ and 𝑃௬, to obtain a 

relationship between extension ℓ and link length 𝑎ଵ and the position components 𝑃௫  and 𝑃௬: 

ℓଶ ൌ ሺ𝑃௫ െ 𝑎ଵሻଶ ൅ 𝑃௬ଶ (3) 

We can also develop a relationship between extension ℓ and link lengths 𝑎ଶ and 𝑎ଷ using the Cosine law: 

ℓଶ ൌ 𝑎ଶ
ଶ ൅ 𝑎ଷ

ଶ ൅ 2𝑎ଶ𝑎ଷ𝑐ଶ → 𝑐ଶ ൌ
ℓଶ െ 𝑎ଶ

ଶ െ 𝑎ଷ
ଶ

2𝑎ଶ𝑎ଷ
 (4) 

𝑠ଶ (defined in the glossary) can be obtained using the trigonometry relationship 𝑐ଶ
ଶ ൅ 𝑠ଶ

ଶ ൌ 1: 

𝑠ଶ ൌ േට1 െ 𝑐ଶ
ଶ (5) 

Using equations (4) and (5), 𝜃ଶ can be obtained as: 

𝜃ଶ ൌ 𝐴𝑡𝑎𝑛2ሺ𝑠ଶ, 𝑐ଶሻ (6) 

Graphically it is possible to determine that 𝑃௬ ൌ ሺ𝑎ଷ𝑐ଶ ൅ 𝑎ଶሻ𝑠ଵ ൅ 𝑎ଷ𝑠ଶ𝑐ଵ and ሺ𝑃௫ െ 𝑎ଵሻ ൌ െ𝑎ଷ𝑠ଶ𝑠ଵ ൅

ሺ𝑎ଷ𝑐ଶ ൅ 𝑎ଶሻ𝑐ଵ. Based on these values, 𝑠ଵ and 𝑐ଵ can be obtained as follows: 

𝑃௬ ൌ ሺ𝑎ଷ𝑐ଶ ൅ 𝑎ଶሻ𝑠ଵ ൅ 𝑎ଷ𝑠ଶ𝑐ଵ ൌ 𝑘ଵ𝑠ଵ ൅ 𝑘ଶ𝑐ଵ (7) 
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𝑃௫ െ 𝑎ଵ ൌ െ𝑎ଷ𝑠ଶ𝑠ଵ ൅ ሺ𝑎ଷ𝑐ଶ ൅ 𝑎ଶሻ𝑐ଵ ൌ െ𝑘ଶ𝑠ଵ ൅ 𝑘ଵ𝑐ଵ 

൤
𝑘ଵ 𝑘ଶ
െ𝑘ଶ 𝑘ଵ

൨ ቂ
𝑠ଵ
𝑐ଵ
ቃ ൌ ൤

𝑃௬
𝑃௫ െ 𝑎ଵ

൨ → ቂ
𝑠ଵ
𝑐ଵ
ቃ ൌ ൤

𝑘ଵ 𝑘ଶ
െ𝑘ଶ 𝑘ଵ

൨
ିଵ

൤
𝑃௬

𝑃௫ െ 𝑎ଵ
൨   

𝜃ଵ is then obtained as: 

𝜃ଵ ൌ 𝐴𝑡𝑎𝑛2ሺ𝑠ଵ, 𝑐ଵሻ (8) 

𝜃ଷ can be obtained analytically by comparing equations (1) and (2), which yields: 

𝜃ଵ ൅ 𝜃ଶ ൅ 𝜃ଷ ൌ 𝐴𝑡𝑎𝑛2ሺ𝑟ଶଵ, 𝑟ଵଵሻ → 𝜃ଷ ൌ 𝐴𝑡𝑎𝑛2ሺ𝑟ଶଵ, 𝑟ଵଵሻ െ 𝜃ଵ െ 𝜃ଶ (9) 

The remaining variable 𝑑ଵ can be obtained graphically from Figure 4 or analytically by comparing equations (1) 

and (2), which will result in the following: 

𝑑ଵ ൌ 𝑃௭ െ 𝑑ସ (10) 

2.3. Joint Space Trajectory Generation 

Suppose that the robot arm is used for picking and placing objects. The robot arm picks up products from a well-

defined initial position and orientation that must be defined by an initial transformation matrix . The robot 

then drops the product at another desired position and orientation described by the final transformation matrix 

. These two transformation matrices may be used to calculate the vector of initial joint space variables  

and the vector of final joint space variables . From the inverse kinematics solution derived above, we define 

the joint space variable vectors as follows: 

and  

It is assumed that the manipulator moves according to the following sequence: 

- First, link 1 extends to reach the length 𝑑ଵ. Other joints are kept stationary during this motion to ensure 

that the arm will not hit other surrounding boxes. 

- Once link 1 reaches length 𝑑ଵ, it will be held stationary at that position while the other three joints rotate 

with angles 𝜃ଵ,𝜃ଶ and 𝜃ଷ, simultaneously. 

- Once the desired angles are obtained, the motors are turned off, and the arm starts to descend to reach 

height 𝑃௭. Finally, the arm drops the box. 

- The arm retracts following a similar sequence. 

In order to describe the trajectory of each joint over a required operating time, the stationary periods will be 

assumed constant functions, while third-degree polynomials are generated to describe the movements for each 

joint. However, to solve the proposed polynomials, four initial conditions are needed for each relation. The 

calculated initial and final values for each joint provide two of the four conditions. The remaining conditions may 

be obtained by assuming zero initial and final velocities. As a result, a total of four functions consisting of 

polynomials and constants are obtained, refer to Figure 5. The four functions are referred to as , , 
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, and . These functions represent the desired joint space trajectories that a controller should follow in order 

to successfully pick-and-place an object with the robot. The controller needs to determine the required torque 

vectors for the robot joint motors, which can be calculated using dynamic models for the PRRR robot. 

 

(a) 

 

(b) 

Figure 5 – Desired prismatic and revolute joint trajectories over time. 

2.4. Dynamics of the Robotic Arm 

Assuming  is the total energy as defined in equation (11) below, and using the Lagrange-Euler relationship in 

equation (12), the PRRR dynamic behavior can be represented by the relationship in equation (13) [52]. Based on 

that, equations (14) through (16) describe the derivation of the equation of motion for the proposed manipulator.  

𝐿 ൌ ∑ሺ𝐾𝑖𝑛𝑒𝑡𝑖𝑐 െ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙ሻ ൌ ∑ ቀଵ
ଶ
𝑚௜ 𝑣௖೔

଴ ் 𝑣௖೔
଴ ൅

ଵ

ଶ
𝜔௖೔
଴ ்𝐼௜ 𝜔௖೔

଴ ൅ 𝑚௜𝐠଴
்
𝑟௖೔
଴ ቁ where 𝐠଴ ൌ ൥

0
0
െ𝑔

൩ (11) 
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ቆ
𝜕𝐿

𝜕Θሶ ௜
ቇ െ ൬

𝜕𝐿
𝜕Θ୧

൰ (12) 

𝛕 ൌ 𝐌ሺ𝚯ሻ𝚯ሷ ൅ 𝐕൫𝚯,𝚯ሶ ൯ ൅ 𝐆ሺ𝚯ሻ (13) 

൦

𝐹
𝜏ଵ
𝜏ଶ
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൪ ൌ ൦

𝑚்
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0
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𝐴ଵ
𝐴ସ
𝐴ହ
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𝐴ସ
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𝐴଺
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𝐴ହ
𝐴଺
𝐴ଷ

൪

⎣
⎢
⎢
⎢
⎡𝑑
ሷ
ଵ

𝜃ሷଵ
𝜃ሷଶ
𝜃ሷଷ⎦
⎥
⎥
⎥
⎤

൅ ൦

0
𝐴଻
𝐴଼
0

൪ ൅ ቎

െ𝑔𝑚்
0
0
0

቏ (14) 

For the Sliding Mode Control, equation (13) is rewritten to have the form of 

𝛕 ൌ 𝐌ሺ𝚯ሻ𝚯ሷ ൅ 𝐕𝐧൫𝚯,𝚯ሶ ൯𝚯ሶ ൅ 𝐆ሺ𝚯ሻ (15) 

Where  

𝐕𝐧൫𝚯,𝚯ሶ ൯ ൌ ൦

0
Bଵ
Bଷ
0

  

0
Bଶ
0
0

  

0
0
0
0

   

0
0
0
0

൪ (16) 

3( )t

L
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ΘΘ ,

2.5. Jacobian Matrix 

If the joint space trajectories 
 
are known, then the Cartesian space trajectories  can be 

computed as per equations (17) and (18) below: 

𝐗 ൌ ൦

𝑎ଵ ൅ 𝑎ଶ𝑐ଵ ൅ 𝑎ଷ𝑐ଵଶ
𝑎ଶ𝑠ଵ ൅ 𝑎ଷ𝑠ଵଶ
𝑑ଵ ൅ 𝑑ସ

ሺ𝜃ଵ ൅ 𝜃ଶ ൅ 𝜃ଷሻ

൪ (17) 

𝐗ሶ ൌ 𝐉ሺΘሻΘሶ → 𝐉ሺ𝚯ሻ ൌ ൦

0
0
1
0

  

െሺ𝑎ଶ𝑠ଵ ൅ 𝑎ଷ𝑠ଵଶሻ
ሺ𝑎ଶ𝑐ଵ ൅ 𝑎ଷ𝑐ଵଶሻ

0
1

  

െ𝑎ଷ𝑠ଵଶ
𝑎ଷ𝑐ଵଶ

0
1

   

0
0
0
1

൪ (18) 

3. SLIDING MODE CONTROL METHODOLOGY 

Sliding Mode Control (SMC) is a well-known nonlinear control strategy based on Variable Structure Control (VSC) 

theory. Variable Structure Control, in turn, is based on a discontinuous input gain that switches back-and-forth 

across a state space trajectory. Similarly, SMC uses a discontinuous control gain (i.e., a switching function) that 

keeps the state trajectory within a switching hyper-plane [58-61]. Both SMC and VSC are robust to unmodelled 

uncertainties and disturbances. An early and relatively crude example of SMC was presented in [58]. In that study, 

a rudder was used to force a ship to follow a pre-described path that was a function of the rudder angle 𝛿 and the 

course angle 𝜙. The SMC consisted of two phases: the reachability phase, where the system dynamics are forced 

towards the desired one; and the sliding phase, where the trajectory is maintained around the desired trajectory. 

The system had a stable response and was less sensitive to modeling uncertainties [58]. Note however that SMC 

has some drawbacks, which can be summarized as: 

 Chattering – High frequency switching across the hyper-plane. It can reduce accuracy of trajectory following, 

and increases wear on mechanical components [58, 62]. Fortunately, it is possible to reduce the effect of 

chattering by using a saturation function that smooths the chattering signal. 

 Hysteresis. 

 Delays caused by the switching signal. 

Figure 6 illustrates the SMC proposed for this work. The controller defines a hyper-plane that has the form of 

𝐒 ൌ 𝐞 ൅ 𝝀𝐞ሶ , where 𝐞 is the error between actual and desired trajectories. Note that these values include angles 

and displacements, as well as their derivatives. 

 

Figure 6 –A Schematic diagram for the proposed sliding mode controller [53-57]. 
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The reachability phase uses the following gain: 

𝐮 ൌ െ𝐌ሺ𝚯ሻ𝐊 𝑠𝑖𝑔𝑛ሺ𝐒ሻ  (19) 

And, the sliding phase has an equivalent control signal that is derived by setting 𝐒ሶ ൌ 𝟎 as follows: 

𝐮௘௤ ൌ  𝐌ሺ𝚯ሻ ቀ𝚯ሷ 𝒅 െ 𝝀ି𝟏൫𝚯ሶ െ 𝚯ሶ 𝐝൯ቁ ൅ 𝐕𝐧൫𝚯,𝚯ሶ ൯ ቀ𝚯ሶ 𝒅 െ 𝝀ି𝟏ሺ𝚯 െ 𝚯𝐝ሻቁ ൅ 𝐆ሺ𝚯ሻ  (20) 

Combining equations (19) and (20) creates the SMC input used by the PRRR system. Note that gain 𝐊 must be 

large enough to compensate for uncertainties. However, it is important to note that chattering increases with 

higher 𝐊 values. As such, the gain should be selected and designed carefully. Finally, note that the SMC response is 

found to be less sensitive to parameter changes; 𝝀ି𝟏. 

4. ESTIMATION METHODOLOGIES 

As it was mentioned earlier, estimation strategies have been proven instrumental in reducing the effect of noisy 

sensor measurements as well as in extracting non-measured state values at the same time. This section discusses 

a number of estimation methodologies and introduces our proposed UK-SVSF filter implementation. 

4.1. Unscented Kalman Filter 

The Kalman Filter (KF) has been shown as the optimal solution for linear and known systems with stochastic white 

noise. The KF was modified for nonlinear applications to the EKF, where the nonlinear functions are linearized to 

their corresponding Jacobian matrices [11]. Several other nonlinear methods have been developed, including: the 

Sigma-Point Kalman Filter (SPKF) family [11, 23-27] and the Particle Filter (PF) [28]. One of the varieties of SPKF is 

the Unscented Kalman Filter (UKF) chosen for this work. While the EKF utilizes a first-order Taylor series 

approximation, the UKF estimation strategy has been shown to be accurate up to the third-order [11]. The UKF 

defines sigma points that are drawn from the probability distribution function (PDF) projected for the states (as 

represented in Figure 7). These points are then propagated through the nonlinear model to obtain the a priori 

estimates. These values are combined together using tuned weight factors, and then they are refined to the a 

posteriori (or updated) estimates, which approximates the mean and covariance of the nonlinear distribution. The 

flowchart in Figure 8 summarizes the UKF estimation process. Note that: 

𝐏ଵ ൌ 𝐏௞ିଵ|௞ିଵ (21) 

𝐏ଶ ൌ 𝐏௞|௞ିଵ (22) 

൫𝝔௝൯௜ ൌ

⎩
⎪
⎨

⎪
⎧

0 𝑖 ൌ 0

൬ට𝑛𝐏௝൰
௜

்

1 ൑ 𝑖 ൑ 𝑛

െ൬ට𝑛𝐏௝൰
௜

்

𝑛 ൅ 1 ൑ 𝑖 ൑ 2𝑛

 (23) 

4.2. Smooth Variable Structure Filter 

The Smooth Variable Structure Filter (SVSF) makes use of VSC theory and may be applied to both linear and 

nonlinear systems [38-46]. The flowchart in Figure 9 summarizes the SVSF estimation strategy algorithm. The SVSF 

utilizes a switching term that forces the state estimate to within a region of the true state trajectory, known as the 
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existence subspace. Similar to the KF, the SVSF is formulated as a predictor-corrector, and has two indicators of 

performance assigned to each state [63, 64]. The predicted and updated existence subspaces are respectively 

defined as follows [63]: 

𝐞௫,௞|௞ିଵ ൌ 𝐞௭,௞|௞ିଵ െ 𝐯௞ (24) 
𝐞௫,௞|௞ ൌ 𝐞௭,௞|௞ െ 𝐯௞ (25) 

 
 

 
Figure 7 – (a) Actual system states and nonlinear 

measurements, and (b) the UKF’s estimates [24, 25]. 

 
Figure 8 – The Unscented Kalman filter (UKF) 

estimation process [11, 63]. 

 
Figure 9 – The Smooth Variable Structure Filter 

algorithm [9, 64]. 

where both existence subspaces are functions of modeling uncertainties and noise signals. To minimize the 

effects of SVSF chattering, the sign function in the SVSF gain equation is replaced by a smoothing function. It is 

described by equation (26) with an appropriate smoothing boundary layer (SBL). 

 
𝑠𝑎𝑡൫𝑒௭೔,௞|௞ିଵ,𝜓௜൯ ൌ ቊ

𝑒௭೔,௞|௞ିଵ/𝜓௜ 𝑒௭೔,௞|୩ିଵ ൑ 𝜓௜
𝑠𝑖𝑔𝑛൫𝑒௭೔,௞|௞ିଵ൯ 𝑒௭೔,௞|௞ିଵ ൐ 𝜓௜

 (26) 

The SBL width should be chosen carefully. According to [64], large SBL values increase the estimation error, and 

may cause a slower convergence rate (refer to Figure 10 and Table 2). However, a small SBL width can lead to 

𝑃𝑟𝑒 െ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 
𝑓𝑜𝑟  𝑖 ൌ 0,1, … , 𝑞 

 𝐗෡௜ೖషభ|ೖషభ
ൌ 𝐱ො௞ିଵ|௞ିଵ ൅ ሺ𝛠ଵሻ௜ 

Calculate W୧ from table 2.1 

 𝐗෡௜ೖ|ೖషభ
ൌ 𝐟መ ቀ𝐗෡௜ೖషభ|ೖషభ

,𝑢௞ିଵቁ 

 𝑒𝑛𝑑 
𝐴 𝑃𝑟𝑖𝑜𝑟𝑖 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 
 𝐱ො௞|௞ିଵ ൌ ∑ 𝑊௜

௤
௜ୀ଴ 𝐗෡௜ೖ|ೖషభ

 

𝐏௞|௞ିଵ ൌ෍𝑊௜ ቆ
𝐗෡௜ೖ|ೖషభ

െ𝐱ො௞|௞ିଵ
ቇ ቆ

𝐗෡௜ೖ|ೖషభ

െ𝐱ො௞|௞ିଵ
ቇ
்௤

௜ୀ଴

൅ 𝐐௞ିଵ 

𝑢௞ିଵ 

𝑘 ൌ 𝑘 ൅ 1 

                       𝑃𝑟𝑒 െ 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  
𝑓𝑜𝑟 𝑖 ൌ 0,1, … , 𝑞 

 𝐗෡௜ೖ|ೖషభ
ൌ 𝐱ො௞|௞ିଵ ൅ ሺ𝛠ଶሻ௜ 

  𝐙෠௜ೖ|ೖషభ
ൌ 𝐠ො ቀ𝐗෡௜ೖ|ೖషభ

ቁ 

𝑒𝑛𝑑
   𝐳ො௞|௞ିଵ ൌ ∑ 𝑊௜

௤
௜ୀ଴ 𝐙෠௜ೖ|ೖషభ

 

𝐴 𝑃𝑟𝑖𝑜𝑟𝑖 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑖𝑜𝑛 

 𝐏௭௭ ൌ෍𝑊௜ ቆ
𝐙෠௜ೖ|ೖషభ

െ𝐳ො௞|௞ିଵ
ቇቆ

𝐙෠௜ೖ|ೖషభ

െ𝐳ො௞|௞ିଵ
ቇ
்௤

௜ୀ଴

൅ 𝐑௞ 

 𝐏௫௭ ൌ෍𝑊௜ ቆ
𝐗෡௜ೖ|ೖషభ

െ𝐱ො௞|௞ିଵ
ቇ ቆ

𝐙෠௜ೖ|ೖషభ

െ𝐳ො௞|௞ିଵ
ቇ
்

 

௤

௜ୀ଴

 

𝐊௞ ൌ  𝐏௫௭ 𝐏௭௭
ିଵ 

 𝐱ො௞|௞ ൌ 𝐱ො௞|௞ିଵ ൅ 𝐊௞൫𝐳௞ െ 𝐳ො௞|௞ିଵ൯ 

 𝑷௞|௞ ൌ ൫𝐏௞|௞ିଵ െ 𝐊௞ 𝐏௭௭𝐊௞
்൯  

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐱ො଴|଴ 𝑎𝑛𝑑
 
𝐏଴|଴ 

𝑘 ൌ 0 

𝑈𝑝𝑑𝑎𝑡𝑒  
𝑆𝑡𝑎𝑔𝑒 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛  
𝑆𝑡𝑎𝑔𝑒 

𝐳௞  

𝑘 ൌ 𝑘 ൅ 1 

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
𝑆𝑡𝑎𝑔𝑒 

𝑈𝑝𝑑𝑎𝑡𝑒 𝑆𝑡𝑎𝑔𝑒 
 

𝐳௞ 

𝐱ො௞|௞ିଵ ൌ 𝐀෡௞ିଵ𝐱ො௞ିଵ|௞ିଵ ൅ 𝐁෡௞ିଵ𝑢௞ିଵ 
𝐞𝐳ೖ|ೖషభ

ൌ 𝐳௞ െ 𝐇෡௞𝐱ො௞|௞ିଵ 

𝐊ௌೖ ൌ 𝐇௞
ିଵ ቀ𝛄 ቚ𝐞𝐳ೖషభ|ೖషభ

ቚ ൅ ቚ𝐞𝐳ೖ|ೖషభ
ቚቁ °𝐬𝐠𝐧 ቀ𝐞𝐳ೖ|ೖషభ

ቁ  

 𝐱ො௞|௞ ൌ 𝐱ො௞|௞ିଵ ൅ 𝐊௞, 𝐞𝐳ೖ|ೖ
ൌ 𝐳௞ െ 𝐇෡௞𝐱ො௞|௞ 

𝑢௞ିଵ 𝑘 ൌ 0 ,𝒙ෝ଴|଴ 
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chattering and increased sensitivity to noise (as shown in Figure 11 and Table 3). If the control gain is not increased, 

then the system performance becomes unstable. The SBL value should be selected larger than the noise and 

modeling uncertainties. 

 
Figure 10 – The effect of the smooth boundary 

layer on the overall performance. 

 
Figure 11 – The effect of measurement noise on 

the overall performance. 
 

Table 2 – The root mean square error of the PRRR robot with different smooth boundary layers. 

SBL zero v.v. small v. small small medium large v. large 

RMSE        

𝑑 ሺmሻ 0.00008 0.00123 0.00225 0.00374 0.00494 0.00652 0.00770 

𝑑ሶ  (m/sec) 0.00451 0.00804 0.01294 0.01847 0.02649 0.03215 0.03640 

𝜃ଵ (rad) 0.00006 0.00201 0.00351 0.00566 0.00530 0.00706 0.00856 

𝜃ሶଵ (rad/sec) 0.00673 0.01512 0.02063 0.02311 0.02798 0.02894 0.03582 

𝜃ଶ(rad) 0.00007 0.00246 0.00374 0.00667 0.00535 0.00671 0.00846 

𝜃ሶଶ(rad/sec) 0.00680 0.02062 0.02665 0.02516 0.03397 0.03047 0.02811 

𝜃ଷ(rad) 0.00006 0.00297 0.00489 0.00741 0.00762 0.01061 0.01184 

𝜃ሶଷ(rad/sec) 0.00461 0.02738 0.03672 0.04134 0.04405 0.04057 0.04793 

Table 3 – The root mean square error of the PRRR robot with different measurement noise amplitudes. 

SBL v.v.v. 
small 

v.v. 
small 

v. small small medium large v. large v.v. 
large 

v.v.v. 
large 

RMSE ൈ 10ିହ ൈ 10ିହ ൈ 10ିହ ൈ 10ିହ ൈ 10ିହ ൈ 10ିହ ൈ 10ିହ ൈ 10ିହ  

𝑑 ሺmሻ 8.8 7.5 7.6 6.3 8.4 190 260 350 

FA
IL 

𝑑ሶ  (m/sec) 540 540 440 500 510 1800 2300 3800 

𝜃ଵ (rad) 11 16 16 10 12 300 370 310 

𝜃ሶଵ (rad/sec) 820 830 840 860 840 3200 3600 4500 

𝜃ଶ(rad) 16 14 14 11 13 26 42 44 

𝜃ሶଶ(rad/sec) 820 840 930 870 860 2800 3500 4900 

𝜃ଷ(rad) 7.5 7.8 8.0 4.6 4.7 210 490 300 

𝜃ሶଷ(rad/sec) 460 450 460 490 460 1800 2200 3500 
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4.3. The Unscented Smooth Variable Structure Filter 

To improve the SVSF’s performance, it was combined with the UKF (as in Figure 12) and is referred to as the UK-

SVSF [65]. The algorithm in Figure 12 specifies that the UKF gain be used if no chattering occurs. However, if 

chattering is observed, the filter switches to the SVSF gain. Figure 13 illustrates the combined UK-SVSF estimation 

methodology [66]. Compared to both SVSF and UKF, the UK-SVSF estimation strategy offers improved estimation 

tracking, especially when modeling uncertainties and disturbances are present. 

 

Figure 12 – The UK-SVSF estimation process [65]. 

 

Figure 13 – Illustration of the combined UK-SVSF 
methodology [65]. 

4.4. The Proposed Unscented Smooth Variable Structure Filter 

A significant amount of work has been performed since 2011 in an effort to improve the performance of the SVSF 

by varying the SBL width [49, 63 and 67]. In this work, we propose combining a SVSF with a UKF by utilizing a time-

varying smooth boundary layer (SBL). In [49], two filters were implemented as shown in Figure 14. The first filter 

was implemented with a zero width SBL to maintain stability. The second filter was used to refine the estimate by 

using a time-varying SBL derived to satisfy equation (27). 

J ൌ ቀ𝐞௫,ଶೖ|ೖ
𝐞௫,ଶೖ|ೖ
் ቁ ൌ ቀ𝐞௭,ଶೖ|ೖ

െ 𝐯௞ቁ ቀ𝐞௭,ଶೖ|ೖ
െ 𝐯௞ቁ

்
 (27) 

Where 𝐞௭,ଶೖ|ೖ
 is the a priori measurement estimation error for the second filter and is defined as: 

𝐞௭,ଶೖ|ೖ
ൌ 𝐞௭,ଶೖ|ೖషభ

െ 𝐊ௌ௏ௌி ൌ 𝐞௭,ଶೖ|ೖషభ
െ ቀቚ𝐞௭,ଶೖ|ೖషభ

ቚ ൅ 𝜸 ቚ𝐞௭,ଶೖషభ|ೖషభ
ቚቁ °𝒔𝒂𝒕 ቆ

𝐞௭,ଵೖ|ೖషభ

𝚿୲୴ౡ
ቇ (28) 

Without losing generality, and for simplicity, assume 𝐞௭,ଶೖ|ೖషభ
ൌ 𝐞௭,ଵೖ|ೖషభ

 (they have the same a posteriori 

estimates, 𝐒௔௧ ൌ diagቆ
ቚ𝐞೥,భೖ|ೖషభቚ

𝚿౪౬ౡ
ቇ and 𝜸 ൌ 𝟎 yields 

𝐒௔௧ ൌ 𝑑𝑖𝑎𝑔 ቆ
𝐞௭,ଵೖ|ೖషభ

𝚿୲୴ౡ
ቇ ൌ ቀ𝐏௭௭భ,ೖ|ೖషభ

െ 𝐑௞ቁ °𝐈௡௫௡ ൬ቀ𝐏௭௭భ,ೖ|ೖషభ
°𝐈௡௫௡ቁ൰

ିଵ
 

(29) 

𝚿୲୴ౡ ൌ ቀ𝐏௭௭భ,ೖ|ೖషభ
°𝐈௡௫௡ቁ ൬ቀ𝐏௭௭భ,ೖ|ೖషభ

െ 𝐑௞ቁ °𝐈௡௫௡൰
ିଵ
ቚ𝐞௭,ଵೖ|ೖషభ

ቚ 
(30) 

where 𝐞𝐳,𝟏ೖ|ೖషభ
 and 𝐏𝐳𝐳భ,ೖ|ೖషభ

 are the a priori measurement estimation error and state error covariance matrix, 

respectively (for the first filter). In [49], a linear system was considered; whereas in this paper, the system is 

nonlinear. In order to implement the UK-SVSF on a nonlinear system, a modification to the method is required: 
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calculation of the required covariance matrix using the UKF. In this case, it is proposed that the a posteriori 

covariance matrix is reduced to the measurement covariance matrix (𝐑) only. The a priori state error covariance 

matrix can be obtained from Figure 8. The required SBL may be calculated using equation (30). Note that the 

proposed strategy makes use of an inversion applied to a diagonal matrix, which reduces computational time and 

removes any ill-matrix conditions. 

 

Figure 14 – The proposed (new) UK-SVSF structure [49]. 

5. RESULTS OF COMBINED NONLINEAR CONTROL/ESTIMATION APPLIED TO THE PRRR ROBOT 

In this paper, a PRRR robotic system was used to study and compare estimation strategies combined with nonlinear 

control. The end effector of a robotic arm was designed to move from an initial position and orientation to a final 

position and orientation. The inverse kinematics solutions for the required start and end positions were calculated 

using equations (2 – 10). The desired prismatic and revolute joint trajectories are shown in Figure 5. 

This section discusses the results of applying the UKF, SVSF, UK-SVSF [65,66] and the proposed UK-SVSF to the 

nonlinear PRRR robot system. The estimation strategies were combined to the SMC and the overall performance 

was studied. The combined strategies were applied with and without the presence of modeling uncertainties at 

different noise level. Moreover, two scenarios were used, one with full rank measurement matrix and the other 

where only position and angles are measured. This leads to a total of 36 cases to be considered: 18 cases with 

modeling uncertainties (up to 50%), and 18 cases with no uncertainties. Each 18-case group has 9 cases with full 

ranked measurement matrix and 9 cases with only position and angles were measured. Each case represents a 

different combination of system and measurement noise’s maximum amplitudes. Those amplitudes are: 

ሺW୫ୟ୶, V୫ୟ୶ሻ ൌ ሺ10ି଺, 10ିଵଶሻ, ሺ10ି଺, 10ି଼ሻ, ሺ 10ିସ, 10ି଼ሻ, ሺ 10ିସ, 10ି଺ሻ, 
ሺ10ିଶ, 10ି଺ሻ, ሺ10ିଶ, 10ିଷሻ, ሺ10଴, 10ିଷሻ, ሺ10ଵ, 10ିଷሻ and ሺ10ଶ, 10ିଷሻ (31) 

The error between the desired and measured states and their corresponding derivatives for few cases; i.e. cases 

9, 18, 27, and 36 are illustrated in Figure 16 through Figure 31, and the root mean square error is computed for all 

cases is shown in Table 4. The results of the four implemented filter/control systems were similar when a small 

amount of noise was used and without the presence of modeling uncertainties. However, the UKF was unstable 

when only a few measurements were made available. i.e., the UKF became unstable under measurement 

uncertainties. The same result occurred when the noise amplitude was high. While comparing the standard SVSF, 

the previously published UK-SVSF, and the proposed UK-SVSF, the following observations were made: 

Filter 1 

Zିଵ 
𝑥ොଵ,௞|௞ 𝑥ොଵ,௞ିଵ|௞ିଵ 

𝑧௞ 𝑥ොଶ,௞|௞
௧௜௠௘ି௩௔௥௬௜௡௚ 

Filter 2 
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1- Increasing the noise amplitude (particularly the system noise) reduces the filters performance in terms of 

estimation accuracy. The SVSF and the previously published UK-SVSF become unstable when the noise 

amplitude was increased. However, the proposed UK-SVSF implementation showed a significantly improved 

resistance towards noise. 

2- Increasing the modeling uncertainty in the system improves the performance of the filters. This is due to 

the presence of chattering. When chattering is present, most of the signals are recovered and less filtering 

is required. In this case, the information provided to the controller will have more knowledge and 

information about the true status of the system. However, the performance decays with increasing the 

noise amplitude (as expected). 

3- Decreasing the number of measured states reduces the overall performance. In this case, the UKF did not 

yield a stable or reliable result. 

 

 

Figure 15 – Distribution of the 36 cases considered 

  
Figure 16 – The error in first state between the 
desired and the measured for cases 9 & 18 

Figure 17 – The error in second state between the 
desired and the measured for cases 9 & 18 

Results of 36 cases 

Modeling Uncertainties 
(MP) 9 cases 

No Modeling Uncertainties 
(NMP) 9 cases 

All States are Measured 18 cases Only Position and Angles are Measured - 18 cases 
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Figure 18 – The error in third state between the 
desired and the measured for cases 9 & 18 

Figure 19 – The error in fourth state between the 
desired and the measured for cases 9 & 18 

  
Figure 20 – The error in fifth state between the 
desired and the measured for cases 9 & 18 

Figure 21 – The error in sixth state between the 
desired and the measured for cases 9 & 18 

  
Figure 22 – The error in seventh state between the 

desired and the measured for cases 9 & 18 
Figure 23 – The error in eigthth state between the 

desired and the measured for cases 9 & 18 
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Figure 24 – The error in first state between the 
desired and the measured for cases 27 & 36 

Figure 25 – The error in second state between the 
desired and the measured for cases 27 & 36 

  

Figure 26 – The error in third state between the 
desired and the measured for cases 27 & 36 

Figure 27 – The error in fourth state between the 
desired and the measured for cases 27 & 36 

 

  
Figure 28 – The error in fifth state between the 
desired and the measured for cases 27 & 36 

Figure 29 – The error in sixth state between the 
desired and the measured for cases 27 & 36 
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Figure 30 – The error in seventh state between the 

desired and the measured for cases 27 & 36 
Figure 31 – The error in eigthth state between the 

desired and the measured for cases 27 & 36 

 
Table 4 – RMSE results for PRRR estimation. 

   No Modeling Uncertainties (NUP) ൈ 10ି଺   Modeling Uncertainties (UP) ൈ 10ି଺  
   State 

1 
State 

2 
State 

3 
State 

4 
State 

5 
State 

6 
State 

7 
State 

8 
State 

1 
State 

2 
State 

3 
State 

4 
State 

5 
State 

6 
State 

7 
State 

8 

First C
o

m
b

in
atio

n
 

A
LL M

easu
red

 

UKF 2.4 37 2.8 53 2.5 56 1.2 28 NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 2.4 37 2.8 53 2.5 56 1.2 28 0.9 32 7.2 200 17 340 6.5 180 

OLD 2.4 37 2.8 53 2.5 56 1.2 28 0.9 32 7.2 200 17 340 6.5 180 

NEW 2.4 37 2.8 53 2.5 56 1.2 28 0.9 32 7.2 200 17 340 6.5 180 

P
o

sitio
n

 &
 A

n
gle

s 
are M

easu
red

 

UKF NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 1 57 2.1 110 1.8 120 1 59 0.8 62 8.7 410 17 670 6.6 350 

OLD 2.6 62 3.1 110 1.7 110 1.8 60 0.9 61 8.8 420 18 680 6.1 340 

NEW 1.1 70 1.5 110 2.1 110 1 60 0.8 62 8.7 410 17 670 6.5 350 

Se
co

n
d

 C
o

m
b

in
atio

n
 

A
LL M

easu
red

 

UKF 3.1 76 7.7 160 2.9 76 1.8 38 NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 2.4 37 2.8 53 2.5 56 1.2 28 0.9 32 7.2 200 17 340 6.5 180 

OLD 2.4 37 2.8 53 2.5 56 1.2 28 1.1 31 8.2 200 15 340 7.6 180 

NEW 2.4 37 2.8 53 2.5 57 1.3 29 0.9 31 8.1 200 15 340 7.5 180 
P

o
sitio

n
 &

 A
n

gle
s 

are M
easu

red
 

UKF NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 1.1 70 1.5 110 2.1 110 1 60 0.9 61 8.7 410 18 680 6.1 330 

OLD 1.9 50 4.4 84 1.4 84 1.7 46 0.9 61 8.7 410 18 680 6.1 330 

NEW 0.8 52 1.3 100 0.8 120 1 68 1.1 61 9.1 420 17 680 6.2 330 

Th
ird

 C
o

m
b

in
atio

n
 

A
LL M

easu
red

 

UKF 2.4 37 2.8 53 2.5 56 1.2 28 NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 2.4 37 2.8 53 2.5 57 1.2 28 0.9 32 7.2 200 17 340 6.5 180 

OLD 2.4 37 2.8 53 2.5 56 1.2 28 0.9 32 7.2 200 17 340 6.5 180 

NEW 2.4 37 2.8 53 2.5 56 1.2 28 0.9 32 7.2 200 17 340 6.5 180 

P
o

sitio
n

 &
 A

n
gle

s 
are M

easu
red

 

UKF NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 1 69 2.1 110 1.8 110 1 58 0.8 62 8.7 410 17 670 6.6 350 

OLD 0.9 37 1.6 120 1.2 85 0.6 37 0.8 62 8.8 410 17 670 6.6 350 

NEW 1.9 59 1.8 110 1.5 110 1.9 61 1 60 9.4 410 17 680 7 330 
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   No Modeling Uncertainties (NUP) ൈ 10ି଺   Modeling Uncertainties (UP) ൈ 10ି଺  
   State 

1 
State 

2 
State 

3 
State 

4 
State 

5 
State 

6 
State 

7 
State 

8 
State 

1 
State 

2 
State 

3 
State 

4 
State 

5 
State 

6 
State 

7 
State 

8 

Fo
u

rth
 C

o
m

b
in

atio
n

 

A
LL M

easu
red

 

UKF 3.1 76 7.7 160 2.9 76 1.8 38 NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 2.4 37 2.8 53 2.5 57 1.2 28 0.9 32 7.2 200 17 340 6.5 180 

OLD 2.4 37 2.8 53 2.5 56 1.2 28 1.3 33 9.2 210 15 340 6.6 180 

NEW 2.4 37 2.8 53 2.5 57 1.3 29 0.9 31 8.1 200 15 340 7.5 180 

P
o

sitio
n

 &
 A

n
gle

s 

are M
easu

red
 

UKF NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 0.8 64 1.3 110 1.5 110 0.6 63 0.8 61 8.4 410 18 680 5.6 330 

OLD 0.7 62 2.3 110 1.4 110 0.6 55 0.9 61 7 420 20 680 5.6 340 

NEW 0.7 67 1.2 110 0.9 110 0.8 54 0.6 62 8.5 410 16 680 5.9 340 

Fifth
 C

o
m

b
in

atio
n

 

A
LL M

easu
red

 

UKF 2.3 38 3.1 55 2.6 54 1.3 30 NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 2.4 38 3.1 56 2.7 55 1.6 30 1.1 31 10 200 21 340 9.1 180 

OLD 2 39 3.2 55 2.6 55 1.4 30 1 31 9.9 200 21 340 9.1 180 

NEW 1.9 39 3.2 55 2.6 55 1.5 30 0.9 32 7.2 200 16 340 6.5 180 

P
o

sitio
n

 &
 A

n
gle

s 

are M
easu

red
 

UKF NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 1 57 1.7 110 1.6 120 0.7 60 0.9 60 8.2 410 20 680 7.4 330 

OLD 1.6 35 0.8 59 1.5 60 1.3 33 1 60 9 410 17 670 10 330 

NEW 0.7 66 1.4 110 1.1 110 0.5 65 0.7 61 9.6 410 17 680 6.1 340 

Sixth
 C

o
m

b
in

atio
n

 

A
LL M

easu
red

 

UKF 65 480 220 High 120 High 28 280 NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 1.3 36 1.8 61 1.9 59 1 32 0.8 35 3.6 200 2.8 300 4.9 150 

OLD 1 40 2.1 63 1.8 61 0.7 36 1.1 37 2.4 210 17 320 1.2 170 

NEW 1 59 0.9 89 0.8 87 0.9 61 0.9 58 2.1 220 14 350 2.5 180 

P
o

sitio
n

 &
 A

n
gle

s 

are M
easu

red
 

UKF NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 36 240 33 360 37 350 26 220 40 240 35 760 49 990 27 530 

OLD 30 220 34 340 36 380 31 240 34 230 33 750 41 
100

0 
40 590 

NEW 28 210 28 340 37 330 28 210 30 210 33 720 38 930 29 510 

Seven
th

 C
o

m
b

in
atio

n
 

A
LL M

easu
red

 
UKF 1 55 0.7 84 0.8 85 0.9 58 NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 1.2 35 3.5 64 5.6 76 6.4 60 1.1 37 8.6 190 6.1 270 11 150 

OLD 1 56 0.7 84 0.8 85 0.7 57 1 56 5.1 210 12 350 4.1 180 

NEW 1.2 60 0.8 88 0.8 89 0.8 58 1.2 59 1.9 220 12 350 3.4 180 

P
o

sitio
n

 &
 A

n
gle

s 

are M
easu

red
 

UKF NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 53 330 51 510 47 450 41 290 53 330 54 900 56 High 54 640 

OLD 31 270 47 460 39 520 51 380 31 300 54 890 64 High 49 680 

NEW 32 210 33 340 40 340 18 200 34 210 34 710 39 940 34 510 
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   No Modeling Uncertainties (NUP) ൈ 10ି଺   Modeling Uncertainties (UP) ൈ 10ି଺  
   State 

1 
State 

2 
State 

3 
State 

4 
State 

5 
State 

6 
State 

7 
State 

8 
State 

1 
State 

2 
State 

3 
State 

4 
State 

5 
State 

6 
State 

7 
State 

8 

Eigh
th

 C
o

m
b

in
atio

n
 

A
LL M

easu
red

 

UKF 1.1 63 0.7 91 0.9 100 2 110 NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 31 170 43 260 46 330 65 430 31 170 44 300 32 320 64 500 

OLD 0.9 59 0.9 88 0.8 89 0.8 60 1 60 2 220 16 360 2.2 180 

NEW 1.1 59 0.9 88 0.9 87 0.8 59 0.9 60 3.1 220 12 350 4.3 180 

P
o

sitio
n

 &
 A

n
gle

s 

are M
easu

red
 

UKF NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 41 450 55 590 44 600 44 440 43 460 55 High 45 High 53 980 

OLD NaN NaN NaN NaN NaN NaN NaN NaN 58 250 45 680 100 High 150 High 

NEW 22 210 36 330 26 320 35 240 21 210 40 690 30 910 35 510 

N
in

th
 C

o
m

b
in

atio
n

 

A
LL M

easu
red

 

UKF NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF NaN NaN NaN NaN NaN NaN NaN NaN 290 940 210 High 230 High 890 High 

OLD 1.1 59 0.8 88 0.9 87 0.8 60 1 60 3.3 220 11 350 3 180 

NEW 1 60 0.8 88 0.9 88 0.9 60 1 58 2.4 220 13 360 2.2 180 

P
o

sitio
n

 &
 A

n
gle

s 

are M
easu

red
 

UKF NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

SVSF 130 700 130 High 150 High 510 High 120 680 110 High 86 High 520 High 

OLD NaN NaN NaN NaN NaN NaN NaN NaN High High High High High High High High 

NEW 27 240 33 360 29 330 33 230 29 240 39 720 29 900 35 510 

 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, a four-DOF robotic system was used as the testbed to evaluate a control system comprised of a 

nonlinear sliding mode controller (SMC) and four different estimation strategies. The four estimation strategies 

considered were: the unscented Kalman filter (UKF), smooth variable structure filter (SVSF), a previously published 

unscented smooth variable structure filter (UK-SVSF), and the proposed new version of the UK-SVSF. Modeling 

uncertainties were introduced in an effort to study and compare the performance of the control system. In the 

presence of modeling uncertainties and/or fewer measured states, the UKF failed to yield an estimate for the state 

trajectories. The other three filters showed relatively high resistance to modeling uncertainties. However, these 

methods were extremely sensitive to system and measurement noise. The SVSF and the previously published UK-

SVSF yielded good tracking results; however, the proposed UK-SVSF estimation strategy yielded the best estimation 

results in terms of RMSE when the noise amplitude became relatively high. Future work will look at implementing 

the SMC and UK-SVSF on an industrial PRRR robot currently being installed for experimentation. 
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APPENDIX 1 

Commonly used nomenclature in this paper is summarized as follows: 

. . : Inverse, pseudo inverse and transpose, respectively. 

|ABS|, ^: Absolute and estimated values, respectively. 

ሺ𝐚ሻ௜ : The 𝑖 row of 𝐚. 

: Schur product between A and B. 

: Link- length (m). 

: Link-  twist (rad). 

: . 

: . 

: Link-  offset (m). 

𝐞𝐦: The estimation error vectors. 

𝐟ሺ. ሻ: The system’s model function. 

: Prismatic joint-1 motor force (N). 

𝛄: The SVSF’s positive constant matrix. 

: Gravity acceleration (m/s2). 

𝐠ሺ. ሻ: The sensor’s model function. 

𝑖, 𝑗: Subscripts used to identify elements. 

𝐈௡ൈ௡: The identity matrix with dimensions of n ൈ n. 

𝑘: Time step value. 

𝑘|𝑘 െ 1: The a priori value at time k. 

𝑘|𝑘: The a posteriori value at time k. 

𝐊ௌ௏ௌி: The correction gain of the SVSF. 

1  T

BA 

1ia i

1i i

ic )cos(i

ijc )cos( ji  

id i

zF

g
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: Inertia matrix. 

: masses of links 1, 2, 3 and 4 respectively (kg). 

𝑚, n: Number of measurements and states, respectively. 

𝐏୸୸: The output’s error covariance matrix. 

𝐏: The error covariance matrix. 

: Cartesian coordinates of the E.E in world frame (m). 

𝑞 : The number of the sigma points, 2𝑛 ൅ 1. 

𝚿: The smoothing boundary layer vector. 

𝚿௧௩: The time-varying smoothing boundary layer vector. 

𝐐: The process noise covariance matrix. 

𝐑: The measurements noise covariance matrix. 

ℝ௔ൈ௕: Space dimension of size a ൈ b. 

𝑅𝑀𝑆𝐸: The root mean square error. 

: . 

: . 

𝐬𝐚𝐭ሺ𝐚,𝐛ሻ: The saturated function of 𝐚 using the BL 𝐛. 

𝑠𝑎𝑡ሺ𝑎, 𝑏ሻ: The saturated function of element a using the BL b. 

𝐒𝒂𝒕ሺ𝐚,𝐛ሻ: The absolute diagonal matrix of  𝐬𝐚𝐭ሺ𝐚,𝐛ሻ. 

𝐬𝐠𝐧ሺ𝐚ሻ: The sign function of the vector 𝐚. 

𝑠𝑔𝑛ሺ𝑎ሻ: The sign function of the element a. 

𝑇௦: Sampling time. 

: Joint-  angle (rad). 

: Joints force and torques vector. 

 M

521 ...,, mmm

zyx PPP ,,

is )sin( i

ijs )sin( ji  

i i

τ
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: Revolute joint-  motor torque (N.M). 

u: The input. 

𝑉൫Θ,Θሶ ൯: Viscous friction vector. 

𝐯,𝐰: The measurement and system noise, respectively. 

𝑊௜: The assigned weight, 𝑊௜ ൌ ቊ
0 𝑖 ൌ 0
ଵ

ଶ௡
𝑖 ് 0. 

𝐱: The state vector. 

𝐳௞: The output vector. 

𝐗𝒊,𝐙𝒊: The estimate and its measurement for the 𝑖௧௛ sigma point, respectively. 

𝚵௞: The alternative measurement vector. 

  

i i



 
Pre-Proof Version 

Page 22 of 34 
 

 

APPENDIX 2 

Additional equations that describe the robot dynamics are as follows: 

𝜏௜ ൌ
𝑑
𝑑𝑡
ቆ
𝜕𝐿

𝜕Θሶ ௜
ቇ െ ൬

𝜕𝐿
𝜕Θ୧

൰ (2.1) 

 
𝐿 ൌ ∑ሺ𝐾𝑖𝑛𝑒𝑡𝑖𝑐 െ 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙ሻ ൌ ∑ ቀଵ

ଶ
𝑚௜ 𝑣௖೔

଴ ் 𝑣௖೔
଴ ൅

ଵ

ଶ
𝜔௖೔
଴ ்𝐼௜ 𝜔௖೔

଴ ൅ 𝑚௜𝐠଴
்
𝑟௖೔
଴ ቁ where 𝐠଴ ൌ ൥

0
0
െ𝑔

൩ (2.2) 

 𝛕 ൌ 𝐌ሺ𝚯ሻ𝚯ሷ ൅ 𝐕൫𝚯,𝚯ሶ ൯ ൅ 𝐆ሺ𝚯ሻ (2.3) 

Assume that the links are homogeneous, where the center of any link’s mass located at the middle of that link. The 

location of each mass, 𝑟௖೔
଴ , 𝑖 ൌ 1, 2, 3, 4 and 5, with respect to frame 0 is then defined as follows:  

𝑟௖భ
଴ ൌ ൦

𝑎ଵ
2

 

0
𝑑ଵ

൪ (2.4) 

𝑟௖మ
଴ ൌ

⎣
⎢
⎢
⎢
⎡𝑎ଵ ൅

𝑎ଶ
2
𝑐ଵ

𝑎ଵ ൅
𝑎ଶ
2
𝑠ଵ

𝑑ଵ ⎦
⎥
⎥
⎥
⎤

 (2.5) 

𝑟௖య
଴ ൌ

⎣
⎢
⎢
⎢
⎡𝑎ଵ ൅ 𝑎ଶ𝑐ଵ ൅

𝑎ଷ
2
𝑐ଵଶ

𝑎ଵ ൅ 𝑎ଶ𝑠ଵ ൅
𝑎ଷ
2
𝑠ଵଶ

𝑑ଵ ⎦
⎥
⎥
⎥
⎤

 (2.6) 

𝑟௖ర
଴ ൌ ൥

𝑎ଵ ൅ 𝑎ଶ𝑐ଵ ൅ 𝑎ଷ𝑐ଵଶ
𝑎ଵ ൅ 𝑎ଶ𝑠ଵ ൅ 𝑎ଷ𝑠ଵଶ

𝑑ଵ
൩ (2.7) 

and 𝑟௖ఱ
଴ ൌ ൥

𝑎ଵ ൅ 𝑎ଶ𝑐ଵ ൅ 𝑎ଷ𝑐ଵଶ
𝑎ଵ ൅ 𝑎ଶ𝑠ଵ ൅ 𝑎ଷ𝑠ଵଶ

𝑑ଵ െ 𝑑ଶ
൩ (2.8) 

The velocity of each mass can be obtained by taking the derivative of equations (2.4 to 2.8) as follows: 

𝑣௖భ
଴ ൌ ൥

0
0
𝑑ሶଵ
൩ (2.9) 
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𝑣௖మ
଴ ൌ

⎣
⎢
⎢
⎢
⎡െ

𝑎ଶ
2
𝑠ଵ𝜃ሶଵ

𝑎ଶ
2
𝑐ଵ𝜃ሶଵ

𝑑ሶଵ ⎦
⎥
⎥
⎥
⎤

 (2.10) 

 𝑣௖య
଴ ൌ

⎣
⎢
⎢
⎢
⎡െ𝑎ଶ𝑠ଵ𝜃ሶଵ െ

𝑎ଷ
2
𝑠ଵଶ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯

𝑎ଶ𝑐ଵ𝜃ሶଵ ൅
𝑎ଷ
2
𝑐ଵଶ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯

𝑑ሶଵ ⎦
⎥
⎥
⎥
⎤

 (2.11) 

𝑣௖ర
଴ ൌ ൦

െ𝑎ଶ𝑠ଵ𝜃ሶଵ െ 𝑎ଷ𝑠ଵଶ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯

𝑎ଶ𝑐ଵ𝜃ሶଵ ൅ 𝑎ଷ𝑐ଵଶ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯

𝑑ሶଵ

൪ (2.12) 

and 𝑣௖ఱ
଴ ൌ ൦

െ𝑎ଶ𝑠ଵ𝜃ሶଵ െ 𝑎ଷ𝑠ଵଶ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯

𝑎ଶ𝑐ଵ𝜃ሶଵ ൅ 𝑎ଷ𝑐ଵଶ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯

𝑑ሶଵ

൪ (2.13) 

The angular velocity of each link can be obtained as follows: 

𝜔௖భ
଴ ൌ ൥

0
0
0
൩ (2.14) 

𝜔௖మ
଴ ൌ ൥

0
0
𝜃ሶଵ
൩ (2.15) 

 𝜔௖య
଴ ൌ ൥

0
0

𝜃ሶଵ ൅ 𝜃ሶଶ
൩ (2.16) 

𝜔௖ర
଴ ൌ ൥

0
0

𝜃ሶଵ ൅ 𝜃ሶଶ ൅ 𝜃ሶଷ
൩ (2.17) 

and 𝜔௖ఱ
଴ ൌ ൥

0
0

𝜃ሶଵ ൅ 𝜃ሶଶ ൅ 𝜃ሶଷ
൩ (2.18) 

The energies of equation (2.2) can be obtained as follows: 

1
2
𝑚ଵ 𝑣௖భ

଴ ் 𝑣௖భ
଴ ൌ

1
2
𝑚ଵ𝑑ሶଵ

ଶ (2.19) 

1
2
𝑚ଶ 𝑣௖మ

଴ ் 𝑣௖మ
଴ ൌ

1
2
𝑚ଶ ቆ

𝑎ଶ
ଶ

4
𝜃ሶଵ
ଶ ൅ 𝑑ሶଵ

ଶቇ (2.20) 
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1
2
𝑚ଷ 𝑣௖య

଴ ் 𝑣௖య
଴ ൌ

1
2
𝑚ଷ ቆ𝑎ଶ

ଶ𝜃ሶଵ
ଶ ൅

𝑎ଷ
ଶ

4
൫𝜃ሶଵ ൅ 𝜃ሶଶ൯

ଶ
൅ 𝑎ଶ𝑎ଷ𝑐ଶ𝜃ሶଵ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯ ൅ 𝑑ሶଵ

ଶቇ (2.21) 

1
2
ሺ𝑚ସ ൅𝑚ହሻ 𝑣௖ర

଴ ் 𝑣௖ర
଴ ൌ

1
2
ሺ𝑚ସ ൅𝑚ହሻ ൬൫𝑎ଶ𝜃ሶଵ൯

ଶ
൅ ቀ𝑎ଷ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯ቁ

ଶ
൅ 2𝑎ଶ𝑐ଶ𝜃ሶଵ𝑎ଷ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯ ൅ 𝑑ሶଵ

ଶ൰ (2.22) 

1
2

𝜔௖భ
଴ ்𝐼ଵ 𝜔௖భ

଴ ൌ 0 (2.23) 

1
2

𝜔௖మ
଴ ்𝐼ଶ 𝜔௖మ

଴ ൌ
1
2
𝐼௭௭ଶ𝜃ሶଵ

ଶ (2.24) 

1
2

𝜔௖య
଴ ்𝐼ଷ 𝜔௖య

଴ ൌ
1
2
𝐼௭௭ଷ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯

ଶ
 (2.25) 

1
2

𝜔௖ర
଴ ்ሺ𝐼ସ ൅ 𝐼ହሻ 𝜔௖ర

଴ ൌ
1
2
ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହሻ൫𝜃ሶଵ ൅ 𝜃ሶଶ ൅ 𝜃ሶଷ൯

ଶ
 (2.26) 

and 𝑚௜𝐠଴
்
𝑟௖೔
଴ ൌ െ𝑚௜𝑔𝑑ଵ (2.27) 

Substitute equations (2.19-2.27) in equation (2.2) yields the following: 

𝐿 ൌ െ෍𝑚௜

ସ

௜ୀଵ

𝑔𝑑ଵ ൅

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 1

2
𝑚ଵ𝑑ሶଵ

ଶ ൅
1
2
𝑚ଶ ቆ

𝑎ଶ
ଶ

4
𝜃ሶଵ
ଶ ൅ 𝑑ሶଵ

ଶቇ

൅
1
2
𝑚ଷ ቌ

𝑎ଶ
ଶ𝜃ሶଵ

ଶ ൅
𝑎ଷ
ଶ

4
൫𝜃ሶଵ ൅ 𝜃ሶଶ൯

ଶ

൅𝑎ଶ𝑎ଷ𝑐ଶ𝜃ሶଵ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯ ൅ 𝑑ሶଵ
ଶ
ቍ

൅
1
2
ሺ𝑚ସ ൅ 𝑚ହሻቌ

൫𝑎ଶ𝜃ሶଵ൯
ଶ
൅ ቀ𝑎ଷ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯ቁ

ଶ

൅2𝑎ଶ𝑐ଶ𝜃ሶଵ𝑎ଷ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯ ൅ 𝑑ሶଵ
ଶ
ቍ
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

൅

⎣
⎢
⎢
⎢
⎢
⎡

1
2
𝐼௭௭ଶ𝜃ሶଵ

ଶ

൅
1
2
𝐼௭௭ଷ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯

ଶ

൅
1
2
ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହሻ൫𝜃ሶଵ ൅ 𝜃ሶଶ ൅ 𝜃ሶଷ൯

ଶ

⎦
⎥
⎥
⎥
⎥
⎤

  (2.28) 

Taking the derivative of equation (2.28) with respect to the variables leads to the following: 

𝜕𝐿
𝜕𝜃ଵ

ൌ 0 (2.29) 

𝜕𝐿
𝜕𝜃ଶ

ൌ െ൬
1
2
𝑚ଷ ൅𝑚ସ ൅𝑚ହ൰ 𝑎ଶ𝑎ଷ𝑠ଶ𝜃ሶଵ൫𝜃ሶଵ ൅ 𝜃ሶଶ൯ (2.30) 

𝜕𝐿
𝜕𝜃ଷ

ൌ 0 (2.31) 

𝜕𝐿
𝜕𝑑ଵ

ൌ െ෍𝑚௜

ହ

௜ୀଵ

𝑔 ൌ െ𝑚்𝑔 (2.32) 

𝜕𝐿

𝜕𝜃ሶଵ
ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

ቌ𝑚ଶ
𝑎ଶ
ଶ

4
൅𝑚ଷ𝑎ଶ

ଶ ൅
𝑎ଷ
ଶ

4
𝑚ଷ ൅ ሺ𝑚ସ ൅ 𝑚ହሻ𝑎ଶଶ ൅ 𝑎ଶ𝑎ଷ𝑐ଶ𝑚ଷ ൅ 𝑎ଷଶሺ𝑚ସ ൅𝑚ହሻ

൅2𝑎ଶ𝑎ଷ𝑐ଶሺ𝑚ସ ൅ 𝑚ହሻ ൅ 𝐼௭௭ଶ ൅ 𝐼௭௭ଷ ൅ ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହሻ
ቍ𝜃ሶଵ

൅൭
𝑎ଷ
ଶ

4
𝑚ଷ ൅

1
2
𝑎ଶ𝑎ଷ𝑐ଶ𝑚ଷ ൅ 𝑎ଷଶሺ𝑚ସ ൅𝑚ହሻ ൅ 𝑎ଶ𝑎ଷ𝑐ଶሺ𝑚ସ ൅ 𝑚ହሻ ൅ 𝐼௭௭ଷ ൅ ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହሻ൱ ൫𝜃ሶଶ൯

൅ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହሻ൫𝜃ሶଷ൯ ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (2.33) 
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𝜕𝐿

𝜕𝜃ሶଵ
ൌ 𝐴ଵ𝜃ሶଵ ൅ 𝐴ସ𝜃ሶଶ ൅ 𝐴ହ𝜃ሶଷ 

𝐴ଵ ൌ 𝑚ଶ
𝑎ଶ
ଶ

4
൅𝑚ଷ ቆ𝑎ଶ

ଶ ൅
𝑎ଷ
ଶ

4
൅ 𝑎ଶ𝑎ଷ𝑐ଶቇ ൅ ሺ2𝑎ଶ𝑎ଷ𝑐ଶ ൅ 𝑎ଶଶ ൅ 𝑎ଷଶሻሺ𝑚ସ ൅𝑚ହሻ ൅ 𝐼௭௭ଶ ൅ 𝐼௭௭ଷ ൅ 𝐼௭௭ସ ൅ 𝐼௭௭ହ 

𝐴ସ ൌ ቆ
𝑎ଷ
ଶ

4
൅

1
2
𝑎ଶ𝑎ଷ𝑐ଶቇ𝑚ଷ ൅ ሺ𝑎ଷଶ ൅ 𝑎ଶ𝑎ଷ𝑐ଶሻሺ𝑚ସ ൅ 𝑚ହሻ ൅ 𝐼௭௭ଷ ൅ 𝐼௭௭ସ ൅ 𝐼௭௭ହ 

𝐴ହ ൌ ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହሻ 

𝑑
𝑑𝑡
ቆ
𝜕𝐿

𝜕𝜃ሶଵ
ቇ ൌ 𝐴ଵ𝜃ሷଵ ൅ 𝐴ସ𝜃ሷଶ ൅ 𝐴ହ𝜃ሷଷ ൅ 𝐴଻ 

𝐴଻ ൌ െ൫𝑚ଷሺ𝑎ଶ𝑎ଷ𝑠ଶሻ ൅ ሺ2𝑎ଶ𝑎ଷ𝑠ଶሻሺ𝑚ସ ൅𝑚ହሻ൯𝜃ሶଵ𝜃ሶଶ െ ሺ𝑎ଶ𝑎ଷ𝑠ଶሻ ൬
1
2
𝑚ଷ ൅𝑚ସ ൅𝑚ହ൰ 𝜃ሶଶ

ଶ 

𝜕𝐿

𝜕𝜃ሶଶ
ൌ

⎣
⎢
⎢
⎢
⎢
⎢
⎡൭

1
2
𝑚ଷ ቆ2

𝑎ଷ
ଶ

4
൅ 𝑎ଶ𝑎ଷ𝑐ଶቇ ൅ ሺ𝑚ସ ൅ 𝑚ହሻ൫𝑎ଷ

ଶ ൅ 𝑎ଶ𝑐ଶ𝜃ሶଵ𝑎ଷ൯ ൅ ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହ ൅ 𝐼௭௭ଷሻ൱ 𝜃ሶଵ

൅൭𝑚ଷ
𝑎ଷ
ଶ

4
൅ ሺ𝑚ସ ൅ 𝑚ହሻ𝑎ଷ

ଶ ൅ ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହ ൅ 𝐼௭௭ଷሻ൱ 𝜃ሶଶ

൅ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହሻ൫𝜃ሶଷ൯ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 

𝜕𝐿

𝜕𝜃ሶଶ
ൌ 𝐴ସ𝜃ሶଵ ൅ 𝐴ଶ𝜃ሶଶ ൅ 𝐴଺𝜃ሶଷ 

𝐴ସ ൌ ൭𝑚ଷ ቆ
𝑎ଷ
ଶ

4
൅

1
2
𝑎ଶ𝑎ଷ𝑐ଶቇ ൅ ሺ𝑚ସ ൅ 𝑚ହሻ൫𝑎ଷ

ଶ ൅ 𝑎ଶ𝑐ଶ𝜃ሶଵ𝑎ଷ൯ ൅ ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହ ൅ 𝐼௭௭ଷሻ൱ 

 

𝐴ଶ ൌ ൭𝑚ଷ
𝑎ଷ
ଶ

4
൅ ሺ𝑚ସ ൅𝑚ହሻ𝑎ଷ

ଶ ൅ ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହ ൅ 𝐼௭௭ଷሻ൱ 

 
𝐴଺ ൌ ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହሻ 

𝑑
𝑑𝑡
ቆ
𝜕𝐿

𝜕𝜃ሶଶ
ቇ ൌ 𝐴ସ𝜃ሷଵ ൅ 𝐴ଶ𝜃ሷଶ ൅ 𝐴଺𝜃ሷଷ ൅ 𝐴଼ 

𝐴଼ ൌ െቆ
1
2
𝑚ଷሺ𝑎ଶ𝑎ଷ𝑠ଶሻ ൅ ሺ𝑎ଶ𝑎ଷ𝑠ଶሻሺ𝑚ସ ൅𝑚ହሻቇ 𝜃ሶଵ𝜃ሶଶ 

(2.34) 

𝜕𝐿

𝜕𝜃ሶଷ
ൌ ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହሻ൫𝜃ሶଵ ൅ 𝜃ሶଶ ൅ 𝜃ሶଷ൯ 

𝜕𝐿

𝜕𝜃ሶଷ
ൌ 𝐴ହ𝜃ሶଵ ൅ 𝐴଺𝜃ሶଶ ൅ 𝐴ଷ𝜃ሶଷ 

𝐴ଷ ൌ 𝐴ହ ൌ 𝐴଺ ൌ ሺ𝐼௭௭ସ ൅ 𝐼௭௭ହሻ 
𝑑
𝑑𝑡
ቆ
𝜕𝐿

𝜕𝜃ሶଷ
ቇ ൌ 𝐴ହ𝜃ሷଵ ൅ 𝐴଺𝜃ሷଶ ൅ 𝐴ଷ𝜃ሷଷ 

(2.35) 

𝜕𝐿

𝜕𝑑ሶଵ
ൌ 𝑚ଵ𝑑ሶଵ ൅ 𝑚ଶ𝑑ሶଵ ൅ 𝑚ଷ𝑑ሶଵ ൅ 𝑚ସ𝑑ሶଵ ൅ 𝑚ହ𝑑ሶଵ ൌ 𝑚்𝑑ሶଵ →

𝑑
𝑑𝑡
ቆ
𝜕𝐿

𝜕𝑑ሶଵ
ቇ ൌ 𝑚்𝑑ሷଵ (2.36) 
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Substitute equations (2.29 to 2.36) in equation (2.1) and rearrange to have the shape of equation (2.3) give the 

following parameters: 

𝛕 ൌ ൦

𝐹
𝜏ଵ
𝜏ଶ
𝜏ଷ

൪ (2.37) 

𝐌ሺ𝚯ሻ ൌ ൦

𝑚்
0
0
0

  

0
𝐴ଵ
𝐴ସ
𝐴ହ

  

0
𝐴ସ
𝐴ଶ
𝐴଺

   

0
𝐴ହ
𝐴଺
𝐴ଷ

൪ (2.38) 

𝐕൫𝚯,𝚯ሶ ൯ ൌ ൦

0
𝐴଻
𝐴଼
0

൪ (2.39) 

𝐆ሺ𝚯ሻ ൌ ቎

െ𝑔𝑚்
0
0
0

቏ (2.40) 

𝚯 ൌ ൦

𝑑ଵ
𝜃ଵ
𝜃ଶ
𝜃ଷ

൪ (2.41) 

𝚯ሶ ൌ

⎣
⎢
⎢
⎢
⎡𝑑
ሶ
ଵ

𝜃ሶଵ
𝜃ሶଶ
𝜃ሶଷ⎦
⎥
⎥
⎥
⎤

 (2.42) 

𝚯ሷ ൌ

⎣
⎢
⎢
⎢
⎡𝑑
ሷ
ଵ

𝜃ሷଵ
𝜃ሷଶ
𝜃ሷଷ⎦
⎥
⎥
⎥
⎤

 (2.43) 

For the Sliding Mode Control, equation (2.3) is rewritten to have the form of 

𝛕 ൌ 𝐌ሺ𝚯ሻ𝚯ሷ ൅ 𝐕𝐧൫𝚯,𝚯ሶ ൯𝚯ሶ ൅ 𝐆ሺ𝚯ሻ (2.44) 

Where  

𝐕𝐧൫𝚯,𝚯ሶ ൯ ൌ ൦

0
𝐵ଵ
𝐵ଷ
0

  

0
𝐵ଶ
0
0

  

0
0
0
0

   

0
0
0
0

൪ (2.45) 

𝐵ଵ ൌ  െ൫𝑚ଷሺ𝑎ଶ𝑎ଷ𝑠ଶሻ ൅ ሺ2𝑎ଶ𝑎ଷ𝑠ଶሻሺ𝑚ସ ൅ 𝑚ହሻ൯𝜃ሶଶ (2.46) 
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𝐵ଶ ൌ  െሺ𝑎ଶ𝑎ଷ𝑠ଶሻ ൬
1
2
𝑚ଷ ൅𝑚ସ ൅𝑚ହ൰ 𝜃ሶଶ (2.47) 

𝐵ଷ ൌ ൌ െቆ
1
2
𝑚ଷሺ𝑎ଶ𝑎ଷ𝑠ଶሻ ൅ ሺ𝑎ଶ𝑎ଷ𝑠ଶሻሺ𝑚ସ ൅ 𝑚ହሻቇ 𝜃ሶଶ (2.48) 
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APPENDIX 3 

A3-1 SMC DERIVATIVE 

The Sliding Mode Control is derived as follows: 

The first phase (reachability) uses the following gain: 

 𝐮 ൌ െ𝐌ሺ𝚯ሻ𝐊 𝑠𝑖𝑔𝑛ሺ𝐒ሻ  (3.1) 

The second phase (sliding) has an equivalent control signal that is derived by setting 𝐒ሶ ൌ 𝟎 as follows: 

 𝐒ሶ ൌ 𝐞ሶ ൅ 𝝀𝐞ሷ ൌ 𝐞ሶ ൅ 𝝀൫𝚯ሷ െ 𝚯ሷ 𝒅൯ ൌ 𝐞ሶ ൅ 𝝀 ቀ𝐌ି𝟏ሺ𝚯ሻ ቀ𝛕 െ 𝐕𝐧൫𝚯,𝚯ሶ ൯𝚯ሶ െ 𝐆ሺ𝚯ሻቁ െ 𝚯ሷ 𝒅ቁ ൌ 𝟎 (3.2) 

 െቀ𝝀𝐌ି𝟏ሺ𝚯ሻቁ
ି𝟏
𝐞ሶ ൅ ቀ𝝀𝐌ି𝟏ሺ𝚯ሻቁ

ି𝟏
൬𝝀𝚯ሷ 𝒅 ൅ 𝝀𝐌ି𝟏ሺ𝚯ሻ ቀ𝐕𝐧൫𝚯,𝚯ሶ ൯𝚯ሶ ൅ 𝐆ሺ𝚯ሻቁ൰ ൌ 𝐮௘௤ (3.3) 

 െቀ𝝀𝐌ି𝟏ሺ𝚯ሻቁ
ି𝟏
𝐞ሶ ൅ ቀ𝝀𝐌ି𝟏ሺ𝚯ሻቁ

ି𝟏
𝝀𝚯ሷ 𝒅 ൅ 𝐕𝐧൫𝚯,𝚯ሶ ൯𝚯ሶ ൅ 𝐆ሺ𝚯ሻ ൌ 𝐮௘௤ (3.4) 

 െ𝐌ሺ𝚯ሻ𝝀ି𝟏𝐞ሶ ൅ 𝐌ሺ𝚯ሻ𝚯ሷ 𝒅 ൅ 𝐕𝐧൫𝚯,𝚯ሶ ൯𝚯ሶ ൅ 𝐆ሺ𝚯ሻ ൌ 𝐮௘௤ (3.5) 

 𝐮௘௤ ൌ  𝐌ሺ𝚯ሻ ቀ𝚯ሷ 𝒅 െ 𝝀ି𝟏൫𝚯ሶ െ 𝚯ሶ 𝐝൯ቁ ൅ 𝐕𝐧൫𝚯,𝚯ሶ ൯𝚯ሶ ൅ 𝐆ሺ𝚯ሻ (3.6) 

Using 𝐒 ൌ 𝐞 ൅ 𝝀𝐞ሶ ൌ 𝟎 → 𝐞ሶ ൌ െ𝝀ି𝟏𝐞 → 𝚯ሶ െ 𝚯ሶ 𝐝 ൌ െ𝝀ି𝟏ሺ𝚯 െ 𝚯𝐝ሻ → 𝚯ሶ ൌ 𝚯ሶ 𝐝 െ 𝝀ି𝟏ሺ𝚯 െ 𝚯𝐝ሻ yields: 

𝐮௘௤ ൌ  𝐌ሺ𝚯ሻ ቀ𝚯ሷ 𝒅 ൅ 𝝀ି𝟏൫𝚯ሶ െ 𝚯ሶ 𝐝൯ቁ ൅ 𝐕𝐧൫𝚯,𝚯ሶ ൯ ቀ𝚯ሶ 𝒅 െ 𝝀ି𝟏ሺ𝚯 െ 𝚯𝐝ሻቁ ൅ 𝐆ሺ𝚯ሻ  (3.7) 

And 𝛕, the total control signal, is defined as: 

𝛕 ൌ െ𝐌ሺ𝚯ሻ𝐊 𝑠𝑖𝑔𝑛ሺ𝐒ሻ ൅  𝐌ሺ𝚯ሻ ቀ𝚯ሷ 𝒅 ൅ 𝝀ି𝟏൫𝚯ሶ െ 𝚯ሶ 𝐝൯ቁ ൅ 𝐕𝐧൫𝚯,𝚯ሶ ൯ ቀ𝚯ሶ 𝒅 െ 𝝀ି𝟏ሺ𝚯 െ 𝚯𝐝ሻቁ ൅ 𝐆ሺ𝚯ሻ  (3.8) 

 

A3-2 STABILITY OF OVERALL SYSTEM 

Knowing that 𝐳, 𝐳𝐝 and 𝐳ො are the actual, desired and estimated system measurement vectors, respectively, and defining 𝐞 ൌ 𝐳 െ

𝐳𝐝, 𝐞𝐜 ൌ 𝐳ො െ 𝐳𝐝, and 𝐞ො ൌ 𝐳ො െ 𝐳, then the sliding surface for the SMC is defined as: 

𝐒 ൌ 𝐞 ൅ 𝝀𝐞ሶ   (3.9) 

If the Lyapunov function 𝐕 is defined to be 𝐕 ൌ
ଵ

ଶ
𝐒𝐒் ൐ 0, then 𝐕ሶ  is defined as: 

𝐕ሶ ൌ 𝐒ሶ 𝐒𝑇 ൌ ሺ𝐞ሶ ൅ 𝝀𝐞ሷ ሻሺ𝐞 ൅ 𝝀𝐞ሶ   ሻ𝑻  (3.10) 

Where 𝐞 ൅ 𝝀𝐞ሶ  is defined as 

𝐞 ൅ 𝝀𝐞ሶ  ൌ 𝑯ቀ𝚯 െ 𝚯𝐝 ൅ 𝝀൫𝚯ሶ െ 𝚯ሶ 𝐝൯ቁ  (3.11) 

And 𝐞ሶ ൅ 𝝀𝐞ሷ  
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𝐞ሶ ൅ 𝝀𝐞ሷ ൌ 𝑯ቀ𝚯ሶ െ 𝚯ሶ 𝐝 ൅ 𝝀൫𝚯ሷ െ 𝚯ሷ 𝐝൯ቁ  (3.12) 

Substitute (3.2) in (3.12), then (3.13) is obtained as follows: 

𝐒ሶ ൌ 𝐞ሶ ൅ 𝑯𝝀൫𝐌ି𝟏ሺ𝚯ሻൣ𝛕 െ 𝐕𝐧൫𝚯ሶ ,𝚯ሶ ൯𝚯ሶ െ 𝐆ሺ𝚯ሻ൧ െ 𝚯ሷ 𝒅൯  (3.13) 

𝛕 is defined by the estimated measurement vector as: 

𝛕 ൌ െ𝐌൫𝚯෡൯𝐊 𝑠𝑖𝑔𝑛൫𝐒෠൯ ൅  𝐌൫𝚯෡൯ ൬𝚯ሷ 𝒅 െ 𝝀ି𝟏 ቀ𝚯෡ሶ െ 𝚯ሶ 𝐝ቁ൰ ൅ 𝐕𝐧 ቀ𝚯෡ ,𝚯෡ሶ ቁ ቀ𝚯ሶ 𝒅 െ 𝝀ି𝟏൫𝚯෡ െ 𝚯𝐝൯ቁ ൅ 𝐆൫𝚯෡൯  (3.14) 

Substituting (3.14) in (3.13) and rearranging give: 

𝐒ሶ ൌ 𝑯൫𝚯ሶ െ 𝚯ሶ 𝐝൯ ൅ 𝑯𝝀

⎝

⎜
⎜
⎛
𝐌ି𝟏ሺ𝚯ሻ

⎣
⎢
⎢
⎢
⎢
⎡

⎩
⎪
⎨

⎪
⎧ െ𝐌൫𝚯෡൯𝐊 𝑠𝑖𝑔𝑛൫𝐒෠൯

൅ 𝐌൫𝚯෡൯ ൬𝚯ሷ 𝒅 െ 𝝀ି𝟏 ቀ𝚯෡ሶ െ 𝚯ሶ 𝐝ቁ൰ െ 𝐌ሺ𝚯ሻ𝚯ሷ 𝒅

൅ ቂ𝐕𝐧 ቀ𝚯෡ ,𝚯෡ሶ ቁ 𝚯෡ሶ െ 𝐕𝐧൫𝚯ሶ ,𝚯ሶ ൯𝚯ሶ ቃ

൅𝐆൫𝚯෡൯ െ 𝐆ሺ𝚯ሻ ⎭
⎪
⎬

⎪
⎫

⎦
⎥
⎥
⎥
⎥
⎤

⎠

⎟
⎟
⎞

  (3.15) 

For simplicity, (3.15) becomes (3.16). 

𝐒ሶ ൌ 𝑯𝝀𝐌ି𝟏ሺ𝚯ሻ

⎣
⎢
⎢
⎢
⎢
⎡

െ𝐌൫𝚯෡൯𝐊 𝑠𝑖𝑔𝑛൫𝐒෠൯ ൅

⎝

⎜
⎜
⎛

𝐌൫𝚯෡൯𝚯ሷ 𝒅 െ 𝐌ሺ𝚯ሻ𝚯ሷ 𝒅

െ𝐌൫𝚯෡൯𝝀ି𝟏 ቀ𝚯෡ሶ െ 𝚯ሶ 𝐝ቁ ൅ 𝐌ሺ𝚯ሻ𝝀ି𝟏൫𝚯ሶ െ 𝚯ሶ 𝐝൯

൅ ቂ𝐕𝐧 ቀ𝚯෡ ,𝚯෡ሶ ቁ𝚯෡ሶ െ 𝐕𝐧൫𝚯ሶ ,𝚯ሶ ൯𝚯ሶ ቃ

൅𝐆൫𝚯෡൯ െ 𝐆ሺ𝚯ሻ ⎠

⎟
⎟
⎞

⎦
⎥
⎥
⎥
⎥
⎤

 (3.16) 

Knowing that 𝑯,𝝀 and 𝐌ି𝟏ሺ𝚯ሻ are positive matrices, and choosing  𝐊 to be: 

𝑲 ൒

⎩
⎪
⎨

⎪
⎧

ተ

ተ
𝑴ି𝟏൫𝜣෡൯

⎝

⎜
⎜
⎛

𝑴൫𝜣෡൯𝜣ሷ 𝒅 െ𝑴ሺ𝜣ሻ𝜣ሷ 𝒅

൅𝑴൫𝜣෡൯𝝀ି𝟏 ቀ𝜣෡ሶ െ 𝜣ሶ 𝒅ቁ ൅𝑴ሺ𝜣ሻ𝝀ି𝟏𝒆ሶ ൫𝜣ሶ െ 𝜣ሶ 𝒅൯

൅ ቂ𝑽𝒏 ቀ𝜣෡ ,𝜣෡ሶ ቁ𝜣෡ሶ െ 𝑽𝒏൫𝜣ሶ ,𝜣ሶ ൯𝜣ሶ ቃ

൅𝑮൫𝜣෡൯ െ 𝑮ሺ𝜣ሻ ⎠

⎟
⎟
⎞

ተ

ተ

ெ஺௑⎭
⎪
⎬

⎪
⎫

 ሺ3.17ሻ 

Then 𝐒ሶ  will have the sign of ൣെ𝐌൫𝚯෡൯𝐊 𝑠𝑖𝑔𝑛൫𝐒෠൯൧, and 𝐕ሶ ൌ 𝐒ሶ𝐒் becomes 

𝐕ሶ ൌ െ𝑯𝝀𝐌ି𝟏ሺ𝚯ሻ𝐌൫𝚯෡൯𝐊𝑠𝑖𝑔𝑛൫𝐒෠൯𝐒் (3.18) 

The system is stable if 

𝑠𝑖𝑔𝑛൫𝐒෠൯𝐒் ൒ 0 ሺ3.19ሻ 

Which means that  

𝑺෡ ≅ 𝑺 𝒐𝒓 𝚯෡ ≅ 𝚯 ሺ3.20ሻ 

The proposed method is less sensitive to noise compared to conventional SVSF, and it is less sensitive to the covariance 

matrices compared to the older version of the UK-SVSF. This is why (3.20) is more achievable in the proposed method 

compared to the rest. Moreover, it needs less computational time compared to the last one.  
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APPENDIX 4 

The derivation of the smooth boundary layer of the proposed method is as follows: 

The cost function is defined by the following equation: 

 J ൌ ቀ𝐞௫,ଶೖ|ೖ
𝐞௫,ଶೖ|ೖ
் ቁ ൌ ቀ𝐞௭,ଶೖ|ೖ

െ 𝐯௞ቁ ቀ𝐞௭,ଶೖ|ೖ
െ 𝐯௞ቁ

்
 (4.1) 

Where 𝐞௭,ଶೖ|ೖ
 is the a priori measurement estimation error for the second filter and is defined as: 

 
𝐞௭,ଶೖ|ೖ

ൌ 𝐞௭,ଶೖ|ೖషభ
െ 𝐇𝐊ௌ௏ௌி ൌ 𝐞௭,ଶೖ|ೖషభ

െ ቀቚ𝐞௭,ଶೖ|ೖషభ
ቚ ൅ 𝜸 ቚ𝐞௭,ଶೖషభ|ೖషభ

ቚቁ °𝒔𝒂𝒕 ቆ
𝐞௭,ଵೖ|ೖషభ

𝚿୲୴ౡ
ቇ (4.2) 

Without losing generality, and for simplicity, assume 𝐞௭,ଶೖ|ೖషభ
ൌ 𝐞௭,ଵೖ|ೖషభ

 (they have the same a posteriori 

estimates), 𝐒௔௧ ൌ diagቆ
ቚ𝐞೥,భೖ|ೖషభቚ

𝚿౪౬ౡ
ቇ and 𝜸 ൌ 𝟎 yields 

𝐞௭,ଶೖ|ೖ
ൌ 𝐞௭,ଵೖ|ೖషభ

െ ቀቚ𝐞௭,ଵೖ|ೖషభ
ቚቁ 𝐒௔௧°𝒔𝒊𝒈𝒏 ቀ𝐞௭,ଵೖ|ೖషభ

ቁ ൌ 𝐞௭,ଵೖ|ೖషభ
െ 𝐒௔௧𝐞௭,ଵೖ|ೖషభ

 (4.3) 

Substitute equation (4.3) in equation (4.1) gives: 

J ൌ ቀ𝐞௭,ଵೖ|ೖషభ
െ 𝐒௔௧𝐞௭,ଵೖ|ೖషభ

െ 𝐯௞ቁ ቀ𝐞௭,ଵೖ|ೖషభ
െ 𝐒௔௧𝐞௭,ଵೖ|ೖషభ

െ 𝐯௞ቁ
்

 (4.4) 

Equation (4.4) is simplified to the following (after taking the expectation value and rearrange the terms): 

J ൌ E ൬ሺ𝐈௡௫௡ െ 𝐒௔௧ሻ𝐞௭,ଵೖ|ೖషభ
െ 𝐯௞൰ ൬ሺ𝐈௡௫௡ െ 𝐒௔௧ሻ𝐞௭,ଵೖ|ೖషభ

െ 𝐯௞൰
்

 (4.5) 

J ൌ E ൬diag ቀሺ𝐈௡௫௡ െ 𝐒௔௧ሻଶ𝐞௭,ଵೖ|ೖషభ
𝐞௭,ଵೖ|ೖషభ
𝐓 െ ሺ𝐈௡௫௡ െ 𝐒௔௧ሻ𝐯௞𝐞௭,ଵೖ|ೖషభ

𝐓 െ ሺ𝐈௡௫௡ െ 𝐒௔௧ሻ𝐞௭,ଵೖ|ೖషభ
𝐯௞
𝐓 ൅ 𝐯௞𝐯௞

𝐓ቁ൰ (4.6) 

J ൌ diag ቀሺ𝐈௡௫௡ െ 𝐒௔௧ሻଶ𝐏௭,ଵೖ|ೖషభ
െ 2ሺ𝐈௡௫௡ െ 𝐒௔௧ሻ𝐑௞ ൅ 𝐑௞ቁ (4.7) 

Taking the derivative of J with respect to 𝐒௔௧ yields: 

∂J
∂𝐒௔௧

ൌ diag ቀെ2ሺ𝐈௡௫௡ െ 𝐒௔௧ሻ𝐏௭,ଵೖ|ೖషభ
൅ 2𝐑௞ቁ ൌ 0 

(4.8) 

𝐒௔௧ ൌ 𝑑𝑖𝑎𝑔 ቆ
𝐞௭,ଵೖ|ೖషభ

𝚿୲୴ౡ
ቇ ൌ ቀ𝐏௭௭భ,ೖ|ೖషభ

െ 𝐑௞ቁ °𝐈௡௫௡ ൬ቀ𝐏௭௭భ,ೖ|ೖషభ
°𝐈௡௫௡ቁ൰

ିଵ
 

(4.9) 

𝚿୲୴ౡ ൌ ቀ𝐏௭௭భ,ೖ|ೖషభ
°𝐈௡௫௡ቁ ൬ቀ𝐏௭௭భ,ೖ|ೖషభ

െ 𝐑௞ቁ °𝐈௡௫௡൰
ିଵ
ቚ𝐞௭,ଵೖ|ೖషభ

ቚ 
(4.10) 
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