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Abstract The development of bipedal humanoid robots is a very prevalent area
of research today. Legged robots have many advantages over wheeled robots on
rough or uneven terrains. Due to the rapid growth in robotics, it is unavoidable
that legged robots will be adapted for everyday household settings. However, the
agile bipedal robots possesses many design and control challenges. Model based
control of humanoid robots relies on the accuracy of the state estimation of the
model’s constituents. The spring loaded inverted pendulum (SLIP) is frequently used
as a fundamental model to analyze bipedal locomotion. In general, it consists of a
stance phase and a flight phase, employing different strategies during these phases
to control speed and orientation. Due to the underactuation and hybrid dynamics of
bipedal robots during running, estimating the state of the robot’s appendages can be
challenging. In this paper, various Kalman estimation techniques are combined with
sensor data fusion to predict the spatial state of a fast simulated planar SLIP model.

Keywords State estimation · Bipedal robot · Kalman filter

1 Introduction

Unlike fixed based robots, bipedal robots have a floating base and are high degree
of freedom dynamical systems. They can move around complex environments and
state estimation is a crucial part of controlling such a system. For a controller using
the model dynamics to compute feed-forward torques, the state estimator needs to
provide the orientation, linear and angular velocities of each component.
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The introduction of accurate full body state estimates as well as force interactions
with the external environment throughout the phases of rapid locomotion consider-
ably increases the agility of legged robots [1]. Empirical studies of proprioception
controllers relying on inertial measurement unit (IMU) feedback has resulted in sig-
nificantly improved performance of legged robots [2]. Performance improved on
varying terrain such as slopes and broken terrain [3], as well as introducing entirely
new behaviors such as flips [4] and unique gaits [5]. In mobile robotics, the concept
of sensor data fusion has already been widely used on wheeled vehicles. However,
in the field of legged robotics, there has only been limited study in applying sensor
fusion to control robot behavior. The implementation of a cost effective sensor suite
to deliver full body state estimation relevant to motor control remains a challenge in
legged locomotion, due to the severe drift and sensitivity of low cost IMU packages.
While sensor fusion has been applied to the estimation and control of walking bipedal
robots [6], it has yet to be tested on a biped undergoing rapid locomotion.

In this paper the effectiveness of state estimation of a rapid biped robot using
common IMU sensors will be tested in a simulated environment. Various methods of
integrating and filtering these sensors will be explored with the goal of providing a
basis for cost effective alternatives in researching rapid bipedal locomotion control.
Research in the development of agile bipedal robotics is rapidly growing, yet state
estimation remains difficult due to the hybrid dynamics and non-linearity inherit to
rapid locomotion [7]. The aim of this experiment is to demonstrate that accurate state
estimation of rapid locomotion robots can be done utilizing simple models and cost
effective sensor data fusion as opposed to closed form motion planning.

An overview of the background and previous works related to rapid locomotion
will be outlined. A framework of the design goals for a sensor based state estimator
will be extrapolated from previous works, as well as a description of the methods
and model to be used.

2 Background and Previous Work

2.1 Sensory Pose Estimation of Legged Robots

Due to the rapid development of modern legged robots, the underlying principles
of dynamically stable locomotion have been revealed. As a result, more research is
being done on how to increase a robot’s performance and agility through sensory
feedback and data fusion algorithms.

One of the earliest attempts [8] of estimating a legged robot’s global pose was
performed on a hexapod robot, the Ambler. The position of the feet was calculated
from the motor input commands and encoder measurements on the joints. More
recently, pose estimation techniques for a hexapod were developed by fusing IMU
data, vision and leg odometry [8]. Regarding dynamical gaits, an extended Kalman
filter (EKF) based body estimation approach only using proprioceptive sensors and
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leg kinematics was introduced in a hexapod [9]. With regards to biped robots, sensor
fusion utilizing observer based data and preview control has be utilized for stabilizing
walking motion on a 3 dimensional linear inverted pendulum model [10]. The use of
only proprioceptive sensor fusion has been applied to bipedal robots and feedback
control applications, but only in the context of stable walking and turning [6], and
not yet to rapid locomotion.

Based on an assessment of the previousworks, it is conjectured that a suitable filter
for general biped estimation should (1) only use proprioceptive sensors (2) make no
assumptions about the outside environment or gait and (3) be easily adaptable to any
general rapid bipedal locomotion platform.

2.2 Estimation Framework

The Kalman Filter (KF) is an optimal state estimation strategy, and is widely used
in the field of control and estimation theory [11–14]. The Kalman filter provides an
estimate of the state along with a corresponding covariance matrix which outlines
the uncertainty of the estimate. The Kalman filter involves two steps, the prediction
step where the previous state estimates are propagated through the system to produce
a priori estimates, and the update step where the a priori estimates are combined with
the current observed measurements to refine the state estimate, referred to as the a
posteriori state estimate.

2.3 SLIP Model

To study running in its simplest form, a single legged planar running machine was
built [15] in 1984, to be later recognized as the Spring Loaded Inverted Pendulum
model (SLIP model). Although the robot only had one leg, the main principle is
identical to a biped, and the SLIP model is widely used today to study dynamically
stable running. The original machine used a pneumatic leg simulate a telescopic
passive spring and was capable of exerting a thrust force. A single running cycle
consists of a stance and flight phase. During the stance phase, the leg supports the
body and remains in a fixed position on the ground. In this phase, the robot tips
like an inverted pendulum while the spring undergoes compression and then thrust.
During stance, there is no chance to move the foot placement to control position. In
order to change the foot position, the robot jumps to flight phase where the leg is
unloaded and free to swing. Marc Raibert developed a simple control strategy for
simple legged robots which allowed them to perform dynamically stable running, as
well as regulate speed and body attitude. This controlmethod relied onmeasurements
of the forward speed and body attitude [16].
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3 Simulated Model

The model used in this paper was created in VREP and modelled after the Raib-
ert planar biped [17]. The model consists a rectangular main body, with two actu-
ated hip joints, which connect to telescopic legs (Fig. 1). The leg acts as a passive
spring/damper during the compression portion of the stance phase, and are capable
of applying a thrust force. The robot is attached to a spherical joint at the hip by a
5 m massless boom. This eliminates 3DOF from the model, its yaw, roll and lateral
movement. The feet consist of spheres and have perfect friction with the ground
(µ = 1) (Table 1).

Fig. 1 Simulated biped
model assembly

Table 1 Symbols and
descriptions

Symbol Description

θ Leg angle relative to body vertical

ϕ Body angle with respect to horizontal

ϕ d Desired body angle

r Leg length at equilibrium

z Body height from contact surface

x Body position on track

ẋ Body velocity

ẋd Desired body velocity

xr Foot distance from body CoG

MB Mass of body

ML Mass of leg

IB Body mass moment of inertia

g Gravity

Tst Time of Stance

KL Spring constant of leg

τ Control torque of active hip
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Fig. 2 Free body diagram (right) and illustration of how touchdown foot placement effects the
takeoff trajectory (left)

The simulation used Open Dynamics Engine as its physics engine due to its
accuracy modelling spring damper systems. The main control loop is implemented
directly in VREP via a child script. The running motion of the robot can be described
in 5 phases: flight, touchdown, compression, thrust and takeoff. The main working
principle behind the speed control is foot placement. Because the leg acts as a spring-
damper, the time of the stance phase (compression and thrust) can be approximated
by:

Tst = π

ω
= π

√
MB + ML

KL
(1)

Foot placement has a direct effect on the resultant velocity at takeoff (Fig. 2). If
the foot is placed directly at the halfway point throughout the stance (neutral point),
the stance phase is symmetric and the takeoff velocity is the same as the touchdown.

x f 0 = ẋTst
2

(2)

Any deviation from the neutral point results in a non-zero horizontal acceleration.
Placing the foot before the neutral point results in positive acceleration in the forward
direction, as more of the vertical velocity is converted to horizontal, and vice versa
(Fig. 2). Therefore, foot position on touchdown is used accelerate to a desired speed.
This is regulated by proportional control. The algorithms for foot placement and
corresponding hip angles are:

x f = ẋTst
2

+ kẋ (ẋ − ẋd) (3)

γd = ∅ − sin−1

(
ẋTst
2

+ kẋ (ẋ − ẋd)

r

)
(4)
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Body attitude is maintained by applying a torque about the hip during the stance
phase. Since angular momentum is conserved during flight, the friction between the
foot and the ground provides an opportunity to correct the angular momentum of the
entire system. To servo the body to a desired attitude, the control torque is applied
is:

τ = −kp(ϕ − ϕd) − kv(ϕ̇) (5)

where kp and kv are constants, set to 80 and 20 respectively. During the stance and
flight phases, the idle leg mirrors the active leg to cancel out angular momentum.

4 State Estimation

4.1 Body Pose Estimation

The body angle of the robot is determined using a KF. The measurements consisted
of a gyroscope located at the center of the body and the applied control torque during
stance phase. Force sensors located on the feet of the robot were also used to provide
a binary reading, indicating if the robot is making contact with the ground. The
gyroscope was simulated using a reference point where the Euler angles were read,
and simulation noise and drift was added. The control torque is an input based on the
current body angle and estimated angular velocity. These values were streamed from
VREP in real time to MATLAB using a remote API, where the Kalman filtering
occurred. The estimated state was then streamed back into VREP to compute the
control outputs for the next time step. The true body attitude and angular velocity
were also streamed to MATLAB for comparison at each time step (Table 2).

Table 2 Simulation
parameters

Parameter Value Description

t 0.001 Simulation time step, in s

I 4.708e−02 Body mass moment of inertia, in
kg m2

φd 0 Desired body angle, in rad

r 0.5575 Leg length uncompressed, in m

ẋd 2 Desired body velocity, in m/s

MB 9.246 Mass of body, in kg

ML 0.478 Mass of leg, in kg

Tst 0.178 Time of Stance, in s

KL 2700 Spring constant of leg, in N/m
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EstimationMethods. Three methods were used for comparison to estimate the pose
and angular velocity of the body. The first method was only using the gyroscope to
compute the current angle and angular velocity.

ϕi = ϕi−1 + t ϕ̇i (6)

The second method utilized the input torque applied during stance along with the
gyroscope. If the force sensor indicates the robot is currently in flight, the control
torque measurement is disregarded. The hip control torque only has a large effect on
body attitude when a foot is in contact with the ground.

ϕi = ϕi−1 + t ϕ̇i + τ

2I
t2 (7)

The third method was the implementation of the Kalman filter utilizing (7) as
the system model. Again the system changes during flight, the control torque is
disregarded.

[
ϕ

ϕ̇

]
=

[
1 t
0 1

][
ϕ

ϕ̇

]
+

[
t2

2I
t/I

][
τ

τ

]
(8)

C =
[
1 0
0 1

]
(9)

Measurement and system noise were then added to the system to simulate real
world conditions. These valueswere assumed to beGaussian andwhite. These values
were approximated, and it was assumed most of the noise would stem from the sen-
sors, so the system noise was several orders of magnitude less than the measurement
noise.

Results. The simulation ran for 3000 time steps, where the robot took six steps. The
KF performed the best with an RMSE approximately six times lower than that of
the gyroscope estimation alone, and approximately half that of the gyroscope and
the torque estimation (Table 3). As per the position estimation results, the gyroscope
estimation drifts over time, while the combined estimation overshoots the extreme tilt
angles (Fig. 3). The KF accurately accounts for these deviations and best represents
the true angle of the body. Although the Kalman filter is able to filter out most of
the noise in the angular velocity estimation, it does seem to have a bias. This may
be due to the Kalman filter counteracting the bias of the gyroscope, as the state error

Table 3 Root mean square
error of the three body angle
estimation methods

Gyroscope
angle
estimation
(rad2)

Gyro & Torque
angle
estimation
(rad2)

Kalman filter
angle
estimation
(rad2)

RMSE 0.031735 0.009148 0.005355
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Fig. 3 The estimated body angle according to the Kalman filter, the gyroscope, and the gyroscope
combined with the control torque model

Fig. 4 The estimated angular velocity of the model according to the Kalman filter

covariance of both the position and the velocity converge quickly over time (Figs. 5
and 6). The estimated state of the body was streamed back into the VREP simulation
to predict the next control outputs, and the robot performed just as well as if reading
the true states, running at its desired speed of 2 m/s with a standard deviation of
0.15 m/s (Fig. 4).

4.2 Leg State Estimation

The state of the leg is estimated using a sensor fusion between an accelerometer and
gyroscope located at the hip joint of the model. The virtual accelerometer consists of
a reference mass attached to a force sensor. These values were streamed from VREP
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Fig. 5 The Kalman filter state error covariance of the angle

Fig. 6 The Kalman filter state error covariance of the angular velocity

Fig. 7 The raw accelerometer data from the leg compared to the corrected data
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in real time to MATLAB using a remote API. They were then filtered and streamed
back into VREP to calculate the control inputs for the next time step. The true angle
and angular velocity of the leg were also streamed to MATLAB for comparison.

Estimation Methods. Due to the impact forces of touchdown and the harmonic
motion of the robot, the calculated accelerometer angle of the leg is very noisy
and biased during the stance phase. The signal was processed through two correc-
tive algorithms before it was filtered to provide better estimations. The first uses
accelerometer data from the body rather than the leg. Because the body of the biped
remains relatively level (±5°) compared to the sweep range of the leg (±40°), the
calculated accelerometer angle of the body is subtracted from that of the leg to correct
for the rising and falling motion of the model. The data is then put through a low pass
filter to correct for the large spikes occurring during impact at touchdown. The angle
of the leg was estimated using two methods, a complimentary filter and a Kalman.
The complementary filter combined the calculated angle from the gyroscope sensor
and the accelerometer sensor.

θcomp = α
(
θgyro

) + (1 − α)(θaccel), α = 0.9 (10)

The state of the leg was also estimated using a Kalman filter. Measurement and
system noise were then added to the system to simulate real world conditions. These
values were assumed to be Gaussian and white. These values were approximated,
and it was assumed most of the noise would stem from the sensors, so the system
noise was several orders of magnitude less than the measurement noise.

[
θ

θ̇

]
=

[
1 t
0 1

][
ϕ

ϕ̇

]
,C =

[
1 0
0 1

]
(11)

Q =
[

t3

3
t2

2
t2

2 t

]
, R =

[
10−4 0
0 10−1

]
(12)

Results. As seen in Figs. 8 and 9, the KF outperformed the complementary filter
with an RMSE almost half that of the complementary (Table 4). The complementary
performed fairly well, however after a certain time the gyroscopic drift had too large
of an effect on the estimation. The KFwas able to filter out most of the noise from the
accelerometer reading (Fig. 8). While the position tracking estimation was smooth,
very little of the velocity estimation noise was filtered out. This is primarily due to
the low measurement noise covariance applied to the gyroscope data, and a large
noise covariance applied to the accelerometer. The estimated state of the active leg
was streamed back into the VREP simulation to predict the next control outputs in
real time. The robot performed just as well as if reading the true states, running at
its desired speed of 2 m/s with a deviation of 0.13 m/s (Fig. 7).
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Fig. 8 The estimated leg angle according to the Kalman filter and the complimentary filter

Fig. 9 The leg angle tracking error of theKalman filter and the complimentary filter over simulation
time

Table 4 Root mean square error of the Kalman and complimentary angle estimation methods

Complementary filter angle estimation
(rad2)

Kalman filter angle estimation (rad2)

RMSE 0.0658437 0.0388306

5 Conclusions and Future Work

5.1 Conclusions

Preliminary virtual experimentation showed that the implementation of a Kalman
filter in combination with proprioceptive sensors is very effective at estimating of
the states of the model constituents, outperforming other non-adaptive simple filters.
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Much of the sensor and system noise was filtered to provide accurate readings and
estimates. From these preliminary results, more extensive implementations of mul-
tiple Kalman filters could improve the overall performance of simple robotic bipeds.
The system matrix has the largest effect on the performance of the Kalman filter.
Overall, it has been successfully demonstrated to use Kalman filtering techniques to
estimate the state of a simple bipedal model undergoing fast locomotion just using
sensor data. The techniques outlined above would be suitable for many other biped
configurations and physical platforms in the real world.

5.2 Future Work

While Kalman filter estimations for the state of the body and the legs were suc-
cessful, the state estimation of the entire model dynamics of the with respect to the
world frame has yet to be implemented. More accurate linearized state equations
for the stance phase would be very useful in improving the filters, and allowing the
implementation of an extended Kalman filter. Multiple linearized models for the
different states would allow the implementation IMM-EKF strategy [18]. Although
the simulated model is easier to work with, a physical model would be the next step
in experimentally tuning the filtering techniques. Ideally, to minimize computation,
one filter would implement multiple system models for each phase of locomotion,
and accurately switch between them, accurately predicting the changing center of
gravity and accounting for the hybrid dynamics. With the multiple sensory readings,
this system also lends itself to a neural net configuration, either for the state estima-
tion or as a main control strategy. Applying a Kalman filter to adaptively train the
neural net may yield a more successful and adaptable control strategy compared the
Raibert controller implemented.
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