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A B S T R A C T   

The smooth variable structure filter (SVSF) is highly robust to modeling uncertainty and unknown disturbances. Recent developments to the SVSF have allowed for 
the creation of an adaptive estimation scheme termed the SVSF-KF, which balances the optimality of the Kalman filter (KF) with the robustness of the SVSF. The 
approach utilizes the KF estimate during normal operation, and utilizes the robust SVSF gain to estimate the states during the presence of a fault. However, the gain 
adaptation involved in detecting a fault and switching between the KF and SVSF estimates suffers from several limitations, including unwanted chattering. In this 
work, we review the original SVSF-KF approach and present two novel SVSF-KF strategies based on the normalized innovation square metric and the interacting 
multiple model strategy to address these limitations. Experimental simulations involving a simple harmonic oscillator subject to a fault condition are conducted, 
which verify the effectiveness of our proposed approaches.   

Index Terms—Smooth variable structure filter, Kalman filter, adap-
tive filtering, sliding mode concepts, interacting multiple models, 
modeling uncertainty, robust estimation. 

1. Introduction 

An estimator’s performance in the face of modeling uncertainty and 
system change is of particular interest in much of the existing literature. 
The Kalman filter (KF), which depends on an accurate system model, can 
be sensitive to uncertainty – and yield poor estimates or ultimately fail 
[1]. This is a real concern in many applications. Oftentimes, the com-
plete dynamics of a system is not well understood, and only limited 
modeling is possible. Even in situations where an accurate model is 
available, many systems change – either due to a fault condition, or 
because the system’s nature causes it to operate in more than one mode 
[2]. 

The smooth variable structure filter (SVSF) is a relatively new esti-
mation algorithm (at least compared to the KF) which was proposed in 
2007 and is based on sliding mode concepts [3,4,5,6,7]. The SVSF is 
structurally similar to the KF in its predictor-corrector arrangement, but 
it is a sub-optimal estimator. The SVSF gain uses a nonlinear switching 
action to drive the state estimates to within a region of the true states, 
known as the existence subspace. The width of the existence subspace is 
unknown but assumed to be bounded and relative to the level of un-
certainties and noise present in the system and measurements. Once 

within the existence subspace, the state estimates are forced to remain 
there throughout the estimation process. Because of the nature of this 
switching action, an artificial high-frequency noise known as chattering 
is introduced. To mitigate the effects of this chattering, a smoothing 
boundary layer (SBL) term is added. The width of the smoothing 
boundary layer determines the extent to which the chattering is atten-
uated, but at the same time can result in degradation of the filter’s 
overall performance in terms of estimation error [4,8]. 

Despite its lack of optimality, the SVSF has been shown to be highly 
robust to modeling uncertainty and system change, while still providing 
some reduction of measurement noise [5]. The SVSF proof of stability 
may be found in the Appendix. These properties render the SVSF an 
attractive option for many applications where sudden system change is a 
real concern. Indeed, the SVSF has been an active area of academic 
research with numerous improvements and applications advanced in the 
few years since its release [9–32]. The SVSF, unlike many estimation 
schemes, does not require a covariance calculation in its recursion 
process. This fact makes the SVSF naturally applicable to many 
nonlinear systems requiring only that the measurement model be linear 
and the nonlinear system equations be ‘smooth’ [4]. An early 
advancement to the SVSF was the derivation of a covariance calculation 
[33,34]. While not needed for the essential estimation process, it pro-
vides a useful measure of the estimator’s performance, and more 
importantly, opens the door to the SVSF’s integration with other existing 
algorithms [35]. 
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One of the first applications of the new SVSF covariance term was to 
derive an optimal time-varying smoothing boundary layer width (VBL) 
[34]. Prior to this approach, a conservative problem-specific fixed width 
for the SBL was used. The goal of the VBL was to provide an optimal 
amount of smoothing to the SVSF estimate. With the optimal VBL 
however, it was discovered that the SVSF was reduced to the KF, and its 
robust properties lost. Other sub-optimal VBL approaches were also put 
forward in the literature [8,36]. 

Given the optimal VBLs reduction of the SVSF to a KF, a hybrid 
approach was proposed. Termed the SVSF-KF, the resultant is an esti-
mation strategy that would provide the more optimal KF estimate during 
normal system operation and that of the SVSF in the presence of a fault. 
The VBL was used as a detection/switching mechanism, where a sudden 
increase in the VBL width beyond a designer specified threshold would 
control activation of the SVSF gain. The SVSF-KF was successfully 
demonstrated in multiple cases [16,19,34,37–42], and several 
non-linear extensions were advanced based on the extended Kalman 
filter (EKF), the unscented Kalman filter (UKF), and the cubature Kal-
man filter (CKF), termed SVSF-EKF, SVSF-UKF, and SVSF-CKF 
respectively. 

In this paper, we present a closer study of the SVSF-KF, particularly 
the mechanism to switch between the KF and SVSF estimates. Some is-
sues have been noted with the current VBL-based methodology, specif-
ically that chattering is often observed in the state estimates. Due to this 
chattering, the VBL at times fails to provide ongoing indication of a fault, 
resulting in an inability to switch to the SVSF gain. This paper aims to 
address and remedy this problem. In response, we propose two new 
alternative approaches to remedy these problems. The first exchanges 
the VBL with a simple threshold approach based on the normalized 
innovation square (NIS). In the second approach, we use the more so-
phisticated framework of the interacting multiple model (IMM) esti-
mator. A NIS-driven adaptive gain formulation of the SVSF-KF as well as 
one based on the IMM are hypothesized to have several advantages over 
the existing SVSF-KF – as shall be highlighted and discussed in later 
sections of this paper. 

This paper is organized as follows. In section II, we provide a basic 
mathematical background behind the KF, as well as the SVSF formula-
tion with covariance, and finally the SVSF-KF. We also summarize some 
of the issues with the existing SVSF-KF strategy and its use of the VBL to 
detect system change. In section III, we present two new approaches for 
detecting system change. In section IV, we present our simulation results 
and discussion, followed by the overall conclusions of this research 
paper in section V. 

2. Estimation strategies 

2.1. The Kalman filter 

A linear system can be expressed in discrete state representation form 
as follows [43,34,44,45]: 

xk+1 = Axk + Buk + wk (1)  

zk =Hxk + vk (2)  

where x is the system state vector, A is the discretized linear system 
model matrix, B is the input gain matrix, u is the input vector, w is the 
system noise, z is the measurement vector, H is the linear measurement 
matrix, v represents the measurement noise, and k represents the current 
timestep. 

The KF assumes that the system model is well-known and linear, the 
initial states are known, and the measurement and system noise is white 
with zero mean and known respective covariance matrices (i.e., normal 
and Gaussian) [44]. The KF works as a predictor-corrector; the system 
model is used to obtain an a priori or predicted estimate of the states, 
whereupon measurements combined with the Kalman gain matrix are 

used to apply a correction term to create an a posteriori or updated state 
estimate. 

The a priori state estimate is first computed using the process model, 
as can be seen in (3). Then, the a priori state covariance matrix is 
calculated based on the process model and the associated modeling 
noise covariance matrix Qk, as shown in (4): 

x̂k+1|k =Ax̂k+1|k + Buk (3)  

P̂k+1|k =APk|kAT + Qk (4) 

The Kalman gain computation in (5) is based on (4), and is then used 
to update the state estimate in (6): 

Kk+1 =Pk+1|kHT S− 1
k+1 (5)  

x̂k+1|k+1 = x̂k+1|k + Kk+1νk+1 (6)  

where ν and S are two important terms known as the innovation (or 
residual), and the innovation covariance, respectively. In the equations 
below, R is the measurement noise covariance. 

νk+1 = zk − HAx̂k+1|k (7)  

Sk+1 =HPk+1|kHT + Rk+1 (8) 

The innovation, from (7), represents the difference between the 
actual measurements and the a priori estimate of the measurements. The 
innovation covariance, as in (8), characterizes the uncertainty in the 
measurement predictions. These two terms provide an important insight 
into the estimation process and are often used to assess the filter’s 
overall estimation ability. 

The a posteriori state error covariance matrix is then calculated in (9), 
and the process repeats iteratively: 

Pk+1|k+1 =(I − Kk+1H)Pk+1|k(I − Kk+1H)
T
+ Kk+1Rk+1KT

k+1 (9)  

where I is the identity matrix. In a successful application of the KF, the 
state estimates will rapidly converge, providing the optimal statistical 
estimate based on the given information. The a posteriori covariance 
update in (9) is known as the ‘Joseph covariance form’ and is often 
preferred due to its superior numerical characteristics. The Joseph form 
ensures that the covariance update remains positive-definite, a critical 
condition in the estimation process to produce meaningful results [44]. 

2.2. The smooth variable structure filter 

The SVSF uses a nonlinear switching gain to drive the state estimates 
to within a specific boundary of the true states – known as the ‘existence 
subspace.’ The width of the existence subspace fluctuates with time and 
is a function of the various 

System uncertainties – hence, its exact width at any point in time is 
unknown [4]. If a bound can be placed on the overall system un-
certainties, a bound for the existence subspace can be determined as 
well. During the initial estimation period, states outside existence sub-
space are forced toward the existence subspace by means of the SVSF 
gain. Once within the existence subspace, the estimates will be confined 
to the subspace throughout the estimation process, as shown in Fig. 1. 

Due to the nature of the SVSF’s formulation and the nonlinear 
switching gain, the state estimates are sensitive to an effect known as 
chattering. Unlike the KF, which under ideal conditions will converge to 
the minimum mean squared state estimate (MMSE) given a set of mea-
surements, the SVSF only converges to the previously mentioned exis-
tence subspace. 

Within this subspace, the state estimates chatter about the true 
states. Chattering in the a posteriori estimate eventually decays with time 
until the estimated state converges to the measured state. As such, the 
SVSF can be very sensitive to measurement noise. To reduce the effects 
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of chattering and sensitivity to measurement noise, a SBL is applied to 
the estimate. A SBL width is specified (one for each state) such that the 
corrective action of the SVSF gain is interpolated based on this width 
and the a priori estimation error [4,8]. As noted, in the initial formula-
tion of the SVSF the SBL width was defined to be constant throughout 
the estimation process. In more recent versions of the SVSF, various VBL 
approaches have been proposed [8,34,36,47]. The width of this 
boundary layer generally determines the overall performance of the 
SVSF. Too wide and the estimates become less accurate and/or diverge. 
Too small and chattering can become dominant, and the SVSF simply 
returns the measured state as its estimate. 

The SVSF can be applied to both linear systems modeled as in (1) or 
non-linear systems expressed as follows in (10). Note the measurement 
equation (11) must be linear or linearizable. 

xk+1 = F (xk,uk,wk) (10)  

zk = Hxk + vk (11) 

An important prerequisite of the SVSF is that the system in question 
be differentiable as well as observable. In addition, a full rank linear 
measurement matrix H is required for the SVSF to operate. In situations 
where full measurements are not available, an augmented measurement 
matrix can be constructed using a reduced order observer strategy. For 
nonlinear measurement equations, linearization strategies like those 
used in the EKF can be employed. 

The SVSF process is presented next. Note that the procedure is the 
same for linear or nonlinear systems and measurements. An a priori state 
estimate is determined in (12), similar to the KF process. The estimated a 
priori measurements are then calculated by (13) as follows: 

x̂k+1|k =Ax̂k+1|k + Buk (12)  

ẑk+1|k = Ĥ x̂k+1|k (13) 

If the measurement is nonlinear, it can be linearized to form a line-
arized measurement matrix as per the EKF process. The a priori output 
error estimate is calculated next as follows: 

ezk+1|k = zk − ẑk+1|k (14) 

The SVSF gain Kk+1 is calculated based on the a priori and a posteriori 

output error estimates. The a priori state estimate is then updated to the a 
posteriori state estimate using the SVSF gain: 

x̂k+1|k+1 = x̂k+1|k + Kk+1 (15) 

The a posteriori measurements are then calculated per (16) as follows: 

ẑk+1|k+1 = Ĥ x̂k+1|k+1 (16) 

The a priori output error estimate is updated to the a posteriori output 
error estimate. The process then repeats iteratively. 

ezk+1|k+1 = zk − ẑk+1|k+1 (17) 

The SVSF gain is derived based on Lyapunov stability condition [48]. 
It can be shown that to achieve a stable estimation process, the esti-
mation error must be reduced with each time step. A gain which meets 
these conditions can be shown to be: 

K = Ĥ
+
(⃒
⃒ezk+1|k

⃒
⃒+ γ

⃒
⃒ezk|k

⃒
⃒
)

∘sign
(

ezk+1|k

)
(18)  

where+denotes the pseudo inverse, ∘ denotes the Schur product, and γ is 
a diagonal scalar matrix such that 0 < γii < 1. As mentioned, to reduce 
the effects of chattering, as well as improve the overall quality of the 
state estimates, an SBL with width Ψ can be introduced to the SVSF gain 
calculation as follows: 

K = Ĥ
+
(⃒
⃒ezk+1|k

⃒
⃒+ γ

⃒
⃒ezk|k

⃒
⃒
)

∘sat
(

ezk+1|k,Ψ
)

(19) 

Note that the sign function in (18) has been replaced with a satura-
tion term in (19). For a priori errors smaller than the SBL width, the SVSF 
gain is interpolated. If the a priori error grows outside this bound, the full 
nonlinear switching gain is used. The saturation function can be defined 
element-wise for a given error vector e and SBL width Ψ as follows [49]: 

sati(e,Ψ ) =

{
(ei/ψi)

sign(ei/ψi)

for |ei/ψ i| < 1
for |ei/ψ i| ≥ 1 (20) 

It can thus be seen that the SVSF presented in Ref. [4] does not 
require or depend on a covariance term. The filtering qualities of the 
SVSF are essentially due to the action of the SBL reducing the energy of 
the measurement noise – which works under the assumption that the 
provided the noise is white. While. 

This method is not optimal in a classical sense, the SVSF can provide 
good noise reduction capabilities while remaining robust to modeling 
uncertainty. Certainly, a trade-off exists between optimality and 
robustness to uncertainties and disturbances. 

To incorporate a covariance for the purposes of providing a measure 
of estimation uncertainty, a revised form of SVSF update was proposed 
[34]: 

x̂k+1|k+1 = x̂k+1|k + Kk+1ek|k− 1 (21) 

The SVSF gain according to this formulation becomes slightly more 
complicated: 

Kk+1 = Ĥ
+

diag
[(

γ
⃒
⃒ezk|k

⃒
⃒+

⃒
⃒ezk+1|k

⃒
⃒
)

∘ sat
(

ezk+1|k ,Ψ
)][

diag
(

ezk+1|k

)]− 1

(22) 

In this form, a covariance derivation similar in structure to that of the 
Kalman filter is obtained. The SVSF a priori and a posteriori covariance 
calculation is determined respectively to be: 

Pk+1|k =APk|kAT + Qk (23)  

Pk+1|k+1 =(I − Kk+1H)Pk+1|k(I − Kk+1H)
T
+ Kk+1RKT

k+1 (24) 

Note that the covariance structure is identical to that of the Kalman 
filter. While the basic structure is the same, the SVSF covariance will 
differ from that of the Kalman filter, on account of the SVSF gain defined 
in (22). 

Fig. 1. Basic concept of the sliding boundary layer in SVSF [46,13].  

J. Goodman et al.                                                                                                                                                                                                                               



Results in Engineering 16 (2022) 100785

4

In the VBL strategy proposed in Ref. [34], the SVSF covariance is to 
be used to determine an optimal SBL width at each timestep. Using the 
form of the SVSF gain expressed in (22), and considering only the region 
within the saturation limits, the SVSF gain can also be written as: 

K =H− 1AΨ − 1 (25)  

where: 

A= diag
[(⃒

⃒ezk+1|k

⃒
⃒+ γ

⃒
⃒ezk|k

⃒
⃒
)]

(26) 

Using the gain in the form of (25), the proposed optimal SBL width is 
the one which minimizes the trace of the a posteriori covariance at each 
time step. This is determined to be [34]: 

Ψ =

(
A− 1HPk+1|kHT

HPk+1|kHT + R

)− 1

(27) 

It is noted that by incorporating the above optimal VBL into the SVSF 
gain, the SVSF gain reduces to the Kalman gain [34,50]. It was thus 
concluded that in a linear case, the optimal smoothing boundary layer 
reduces the SVSF to the Kalman filter, and thus the robust switching 
effect of the SVSF is lost. 

2.3. The SVSF-KF strategy 

While the VBL if directly implemented in the SVSF results in reduc-
tion to the KF, the VBL nonetheless provides a useful indication of a 
system fault. During normal operation, the VBL generally converges to a 
size proportional to the amount of assumed process noise. In the pres-
ence of a system change the VBL will rapidly expand. With this in mind, 
a hybrid strategy was proposed to combine the SVSF and KF using the 
VBL as a Mechanism to detect system change [51]. 

During normal operation, the VBL is expected to remain bounded to 
within a fixed region. In the presence of a system change, the VBL will 
begin to grow beyond this bound. In setting up the filter, the designer 
chooses a fixed VBL threshold based on the approximate level of noise or 
uncertainties present. This threshold is used to determine when the filter 
switches to the SVSF gain. The overall hybrid strategy is illustrated in 
Figs. 2 and 3. 

2.4. Observations on the SVSF-KF strategy 

In further exploring the SVSF-KF strategy, it has been discovered that 
under certain conditions, the calculated VBL will fail to provide an 
ongoing indication of a sustained fault condition. The gain switching 
approach results in alternatively updating the a posteriori state estimate 
with either the KF gain or the SVSF gain. The VBL width, being highly 
coupled to the 

Previously estimated state, will thus drop rapidly following an SVSF 
gain update, and remain below the triggering threshold until sufficient 
time has passed for the VBL to regrow. The result of this behaviour is 
that during an ongoing fault, the SVSF-KF will only sporadically update 

the state using the SVSF gain, and otherwise maintain operation with the 
less robust KF gain. 

To illustrate, we shall consider an underdamped simple harmonic 
oscillator subject to a fault condition. The system’s state space equations 
can be expressed as: 

[
ẋ
v̇

]

=

⎡

⎣
0 1

−
k
m

−
c
m

⎤

⎦

[
x
v

]

(28)  

where k is the spring constant, m is the mass, c is the damping coeffi-
cient, and x and v are the position and velocity states, respectively. 

We simulate this system with an initial mass of 15 kg, 5 N/m spring 
constant, and 0.5 Ns/m damping coefficient. After 30 seconds, a sudden 
system change occurs and the mass increases to 35 kg and the damping 
coefficient to 2 Ns/m. Artificial measurement noise is simulated that is of 
Gaussian distribution with zero mean and a variance of 0.001, and 
otherwise, we assume no significant process noise. 

The behaviour of the VBL calculated by the SVSF-KF estimation 
process throughout the simulation is shown in Fig. 4. The VBL in this 
simulation is based on the position state, and the fault detection 
threshold was set to a value of 50. This threshold value was manually 
determined through trial and error and demonstrated the lowest root 
mean squared error (RMSE) of the state estimate. It can be seen from 
Fig. 4 that the VBL can detect the onset of the fault or modeling change 
by rapidly growing past the threshold, thus triggering the activation of 
the SVSF gain. The modeling change is detected within 2 s of its 
occurrence. However, as anticipated, the activation of the SVSF gain 
results in the VBL to rapidly drop below the detection threshold. The 
VBL is not able to compensate for this drop immediately, and instead 
requires time to grow beyond the threshold again. Consequently, the 
SVSF gain is triggered sporadically, despite the continuous presence of 
the system fault at 30 s, as demonstrated clearly by the gain activation 
plot in Fig. 5. Furthermore, it is evident from this figure that the SVSF 
gain was only triggered three times throughout the entirety of the fault’s 
presence. The obvious remedy to this problem may be to lower the 
detection threshold of the VBL from 50. However, this may exacerbate 
the effects of the chattering as the VBL displays more volatile behaviour 
at lower detection thresholds. This may result in more unwanted chat-
tering near the detection threshold, and as such more rapid triggering of 
the activation gain. 

Fig. 6 shows a plot of the SVSF-KF position state estimate. As can be 
seen, the filter estimates diverge and fail to track the states upon the 
introduction of the fault at the 30th second. While it may be possible to 
further adjust the VBL threshold according to the observed phenomena, 
the underlying problem remains unresolved. The coupling of the VBL 
width to the most recent state estimate renders it sensitive to the 
intrinsic gain-switching approach utilized by the SVSF-KF. 

3. Proposed SVSF switching methods 

While the VBL-based SVSF-KF may be suitable in some cases, 

Fig. 2. Overall procedure of the SVSF-KF strategy with the VBL.  
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alternative approaches to the detection strategy may prove to improve 
the SVSF-KF’s versatility across a wider range of circumstances. 
Although the concept of adaptively switching between an optimal KF 
estimate and a robust SVSF estimate has great potential, the limitations 
of the VBL-based detection approach must be addressed. 

In response to this issue, we propose and consider two general al-
ternatives to the existing VBL-based SVSF-KF. The first alternative in-
volves an adaptive gain adjustment, just as the existing approach, albeit 
using a different mechanism for detecting the system change. The sec-
ond alternative makes use of a multiple model approach, whereby the KF 
and SVSF estimate are independently calculated, and a framework is 
subsequently used to choose between or weight each of the estimates for 
the final output estimate. 

In the first alternative, several mechanisms exist in the literature 
which may be considered. In this paper, we propose using the NIS and a 
basic threshold approach for the SVSF-KF. In the second alternative, we 
investigate and explore using the framework of the IMM estimator. The 
theory and methodology of both approaches will be covered in the next 
subsections. 

3.1. Normalized innovation square 

The NIS is simply the square innovation vector at a given time-step, 
normalized by the innovation covariance. It can be expressed as follows 
in (29): 

rk = νT
k S− 1

k νk (29) 

Under the assumption of white Gaussian noise, with an accurately 
modeled system, a Kalman filter’s innovations are characterized by 
several important statistical properties. These properties of the in-
novations are that they are white, zero means and have a known 
covariance. When the filter’s model no longer accurately represents the 
system’s dynamics in reality, the innovations will violate these condi-
tions. Consequently, the innovations will, in many cases, begin to grow, 
and thus can be used a means of detecting filter divergence [43,45,52, 
53]. 

In this paper, we shall consider the basic threshold approach outlined 
in Ref. [43] for target maneuver detection. In tracking filters, a target 
maneuver represents a sudden change to the system model, which if 

Fig. 3. Behaviour of the time-varying smoothing boundary layer under faulty conditions.  

Fig. 4. VBL computed by the SVSF-KF for the position state.  
Fig. 5. SVSF-KF gain activation plot.  
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unaccounted for can lead to filter divergence. Methods used for target 
maneuver detection are readily applicable to other estimation applica-
tions where system change is a concern. 

An NIS-based SVSF-KF involves monitoring the innovations, such 
that if they grow beyond a designer defined limit, a system change is 
assumed and the SVSF gain is triggered [53]. A reasonable threshold can 
be defined based on the knowledge that the NIS in an optimal, matched 
filter, and characterized by a chi-squared distributed with the number of 
degrees of freedom equal to the number of measurements N. 

r ∼ χ2
N (30) 

The robustness can further be improved by averaging a sequence of 
the innovation history. This will help smooth out any ‘noise’ in the in-
novations and avoid false detections. In addition, to avoid an erratic 
switching effect across a single threshold line, two thresholds with a 
hysteresis approach can be arranged: a higher “on” threshold such that 
false triggers of the SVSF are avoided, and a lower “off” threshold, to be 
triggered once the innovations drop back to normal. 

Two basic sequence averaging techniques may be considered: the 
sliding window average, and the fading memory average. In the sliding 
window average, the most recent w innovations are averaged, with all 
prior innovations being ignored. In a fading memory average, the entire 
innovation history is included, with the more distant innovations 
weighted exponentially lower. The weights are determined by a 
forgetting factor α where 0 < α < 1. 

The sliding window and fading memory average approaches can be 
expressed mathematically in (31) and (32), respectively [43,34]: 

rw
k =

∑k

j=k− w+1
rk (31)  

rα
k =αrα

k− 1 + rk (32) 

In our studies, we make use of the fading memory average. In an 
optimally modeled filter, the fading memory average of the NIS will also 
have an approximately chi-squared distribution with number of degrees 
of freedom related to N and α as follows [43]: 

dof χ = N
1 − α (33) 

The thresholds can then be defined based on an appropriate chi- 
squared tail probability. For example, a system with three states and a 
memory factor of α = 0.965, will result in an expected chi-squared 
distribution with 92◦-of-freedom. A tail probability of 0.001, reflecting 

an unexpected innovation sequence, would translate into an “on” 
threshold of about 140. 

3.2. Interacting multiple model 

The NIS threshold approach keeps the essential structure of the SVSF- 
KF the same – an adaptive gain with a fault detection mechanism. A 
structurally different approach is the multiple model method, where 
independent filter estimates are calculated, and a decision framework is 
used to pick or weigh between the most likely estimate. 

In [51] we considered the use of a MMAE framework to develop an 
improved SVSF-KF. With the MMAE approach, the KF and SVSF filters 
are run in parallel, completely independent of one another. Both filters 
are equipped with identical system models. A Bayesian framework based 
on Gaussian likelihood functions of the innovation sequence is used to 
assess the probability of any given filter being correct. These probabil-
ities are then used to weight each of the respective individual estimates 
to form the final output estimate. 

The MMAE approach was shown to be effective in detecting the onset 
of a modeling change, and quickly switching from the KF estimate to the 
SVSF estimate. The MMAE SVSF-KF was also effectively able to track the 
system states in optimal fashion prior to the onset of the fault and did not 
exhibit any divergence after onset of the fault. However, the MMAE has 
some limitations, mainly that it is not well suited for systems which tend 
to exhibit mode switching [43,54,55]. Furthermore, the MMAE 
approach displayed significant delay in its ability to detect a fault or 
system change compared to the existing SVSF-KF approach. Ideally, it is 
desirable to have an SVSF-KF that can adaptively adjust to the system’s 
behaviour as needed, alternately switching between the KF and SVSF. 

To this effect, we consider the IMM estimator [43]. The IMM is 
designed to dynamically switch between a set of potential system models 
as time progresses. The IMM is a popular approach, particularly in target 
tracking applications, and has been shown to be very effective [43,46]. 
With the IMM approach, multiple system/noise models are defined 
across the range of possible system behaviour. Special care must be 
taken in choosing the models and the number to adopt, as having more 
models does not necessarily improve performance, and can add to the 
computational cost. For the purposes of this study, we will not be using 
the IMM to switch between two different system models, but rather two 
different filtering methods – the KF and SVSF. Both the internal KF and 
SVSF shall use the exact same system model. The IMM will be used to 
dynamically detect system change and choose the best estimation 
approach. While using an IMM is much more computationally intensive 
than the NIS threshold approach, it may prove more robust. 

The IMM works under the assumption that the transition from one 
system mode to another can be modeled as a Markov process with 
known, time invariant, mode transition probabilities. The IMM algo-
rithm consists of five basic steps in its recursion, which is then concluded 
by a final output update [43,34,56]. First, the mixing probabilities μi|j,k|k 

are calculated as per (34), which signify the probability that the system 
was in mode Mi at the previous time step and in mode Mj at the current 
time step, where i,j = 1, …,r for r number of possible modes: 

μi|j,k|k =
1
cj

pijμi,k (34)  

cj =
∑r

i=1
pijμi,k (35)  

where pij are the mode transition probabilities, μi,k is the mode proba-
bility from the previous time step, and cj is a normalizing constant. 

Secondly, the mixing probabilities are used to calculate the mixed 
initial conditions for the state estimate and covariance, as shown in (36) 
and (37), respectively: 

Fig. 6. Measurement and SVSF-KF estimate of the position state.  
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x̂0j,k|k =
∑r

i=1
x̂i,k|kμi|j,k|k (36)  

P̂0j,k|k =
∑r

i=1
μi|j,k|k

{
P̂i,k|k +

(
x̂i,k|k − x̂0j,k|k

)(
x̂i,k|k − x̂0j,k|k

)T
}

(37)  

where x̂i,k|k and P̂i,k|k are the mode matched state and covariance esti-
mate from the previous time step. 

Thirdly, the computed initial conditions are used for mode-matched 
filtering. Simply put, they are used as inputs to each individual filter 
alongside the current measurements zk and input uk. Then, each filter 
provides an updated mode-matched state and covariance estimate, 
x̂i,k+1|k+1 and P̂i,k+1|k+1. 

In the next step, a likelihood function based on the Gaussian 
assumption is defined for each filter, based on the mode-matched 
innovation and innovation covariance: 

Λj,k+1 =N
(
zk; υj,k+1,Sj,k+1

)
(38)  

which can be computed as [43,44]: 

Λj,k+1 =
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
det

(
2π

⃒
⃒Sj,k+1

⃒
⃒

ABS

)√ exp
[

−
1
2
υj,k+1S− 1

j,k+1υj,k+1

]

(39) 

In the fifth step, the computed likelihoods are used to update the 
mode probabilities: 

μj,k+1 =
1
c
Λj,k+1cj (40)  

c=
∑r

i=1
Λj,k+1cj (41) 

Finally, the output state and covariance are updated as a weighted 
sum of the mode-matched estimates and associated mode probabilities. 

x̂k+1|k+1 =
∑r

j=1
x̂j,k+1|k+1μj,k+1 (42)  

P̂k+1|k+1 =
∑r

j=1
μj,k+1

{
P̂j,k+1|k+1 +

(
x̂j,k+1|k+1 − x̂k+1|k+1

)(
x̂j,k+1|k+1 − x̂k+1|k+1

)T
}

(43) 

The algorithm outlined in this section is adopted in this study for the 
IMM SVSF-KF, with the SVSF and KF being the filters used in the third 
step. 

4. Simulation results and discussion 

The performances of our two newly proposed SVSF-KF approaches, 
which we call the NIS SVSF-KF and IMM SVSF-KF, are tested in exper-
imental simulations involving the simple linear situation described in 
(28). A linear simulation is considered in order to provide a detailed 
comparison of the SVSF (sub-optimal but robust) with the KF (optimal) 
strategies. The methods could also be extended and applied on a 
nonlinear system or measurement. We consider two basic test scenarios, 
one with a permanent fault, and one with just a temporary fault. 

In our simulations, we simulate the free response of a simple mass- 
spring-damper system. As in the previous simulation, after 30 seconds 
the mass suddenly increases from 15 kg to 35 kg, and the damping co-
efficient from 0.5 Ns/m to 2 Ns/m. Full measurements are available, and 
the measurement noise variance is 0.001 for both states. Otherwise, no 
significant process noise is considered. The sampling rate used for the 
simulation is T = 1 ms. 

For the SVSF-based estimates, a smoothing boundary layer width 
vector is set based on trial-and-error tuning as: 

Ψ=

[
1

0.2

]

(44) 

For the VBL-based SVSF-KF, an SBL limit of 50 is used, based on the 
position state. For the NIS SVSF-KF, triggering thresholds of 140 for “on” 
and 120 for “off” were used. These values represent tail probabilities of 
0.001 and 0.05, respectively, which correspond to a memory factor of α 
= 0.965 and 92◦ of freedom as per (33). For the IMM SVSF-KF, initial 
mode probabilities of 0.95 for the KF and 0.05 for the SVSF were 
empirically determined. The mode transition probability matrix was set 
as: 

p=
[

0.98 0.02
0.02 0.98

]

4.1. Case one: permanent fault 

First under consideration is the performance of the filters upon the 
introduction of a permanent fault halfway through the simulation. The 
plots of the position and velocity state measurements and estimates are 
shown in Fig. 7 and Fig. 8, respectively. The filters under study include 
the original KF, SVSF and VBL-based SVSF-KF, as well as the newly 
proposed NIS and IMM variations of the SVSF-KF. For both the position 
and velocity states, it is clear that all of the filters under study manage to 
perform exceptionally well and can barely be differentiated from one 
another up until the introduction of the modeling change at 30 s. When 
the fault is introduced, there is significantly noticeable divergence in 
both state estimates by the KF and SVSF-KF. Both filters fail to demon-
strate robustness, and the accuracy of their estimates show significant 
degradation in the presence of the fault. This behaviour is expected with 
the KF’s lack of robustness, and as for the SVSF-KF, can be attributed to 
high frequency gain switching phenomena described in earlier sections 
of this study. As for the SVSF, it is shown effectively track the states 
throughout the simulation, but as previously discussed, provides a 
suboptimal estimate prior to the fault. Finally, both the NIS and IMM 
SVSF-KF demonstrate effective tracking of both states throughout the 
entire simulation with no signs of difficulty or compromise in 
performance. 

The gain activation of the NIS SVSF-KF is plotted in Fig. 9 for further 
examination of its switching performance. It can be seen in the figure 
that the NIS-based detection scheme can recognize and account for the 
fault shortly after its occurrence by switching to and maintaining the 
SVSF gain for the remainder of the simulation. In fact, the NIS-based 
approach detects the fault within approximately 2.3 s of its 

Fig. 7. Measurement and estimates of the position state (permanent fault).  
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occurrence. Furthermore, it can be observed that the NIS approach can 
maintain the SVSF gain and eliminate the high-frequency switching 
behaviour associated with the original SVSF-KF method. The actual NIS 
value of the position state across the entire simulation is plotted in 
Fig. 10, in which the red line indicates the “on” threshold for the SVSF 
gain activation, and the green line indicates the “off” threshold, further 
corroborating the validity and simplicity of the NIS. 

The mode probabilities of the IMM SVSF-KF throughout the simu-
lation are shown in Fig. 11. It can be seen from this figure that the IMM 
favours the KF prior to the fault’s occurrence, and then favours the SVSF 
upon the introduction of the fault. However, an overall combined 
weighting scheme is observed with the mode probabilities throughout 
the simulation. This combined weighting scheme is unlike the NIS 
approach, which outputs either a pure SVSF or KF estimate. Regardless, 
the IMM can detect the fault within 1.9 s, which is quicker than the 2.3 s 
taken by the NIS SVSF-KF. One issue that is readily apparent is the fact 
that the mode probabilities often remain close to the halfway point. 
Consequently, the less probable mode is significantly weighted and thus 
affecting the final output estimate. This may result in a less than optimal 
estimate by the IMM SVSF-KF. 

The overall performance of each filter is compared by simulating 500 
Monte Carlo runs of the scenario in study. The average RMSE of each 
filter for the position state estimate is recorded for three intervals of the 

simulations: prior to the fault t < 30s, after the fault t ≥ 30s, and 
throughout the entire simulation 0 ≤ t ≤ 60s. The results of the first test 
case, where a permanent fault is introduced, are presented in Table 1. 

It can be observed that the KF and SVSF-KF both perform poorly in 
the presence of the fault, despite having the best pre-fault performance. 
The NIS also has a pre-fault RMSE that is identical that of the optimal KF 
estimates. While the fault is introduced and after its conclusion, the IMM 
SVSF-KF has the best performance, with the NIS coming within fine 
margins in terms of performance. However, the IMM yields a suboptimal 
pre-fault estimate. The advantage of the NIS and IMM over the SVSF-KF 
is apparent in the fault stage. Whereas the advantage over the SVSF is 

Fig. 8. Measurement and estimates of the velocity state (permanent fault).  

Fig. 9. NIS SVSF-KF gain activation plot (permanent fault).  

Fig. 10. NIS of the position state (permanent fault). Red and green lines indi-
cate “on” and “off” thresholds for SVSF gain, respectively. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 11. IMM mode probability (permanent fault).  

Table 1 
RMSE results of various filters under permanent fault conditions.  

Time KF SVSF SVSF-KF NIS SVSF-KF IMM SVSF-KF 

t < 30s 0.0030 0.0064 0.0030 0.0030 0.0057 
t ≥ 30s 0.4398 0.0265 0.1599 0.0273 0.0263 
0 ≤ t ≤ 60s 0.3745 0.0218 0.1507 0.0225 0.0212  
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more obvious in the pre-fault phase. 
In summary, the IMM SVSF-KF performs the best during the faulty 

conditions but provides a suboptimal estimate prior to the fault. The 
reverse is true with the NIS, which provides an optimal pre-fault esti-
mate, and a robust estimate during the fault. Compared to the original 
VBL-based SVSF-KF, the NIS and IMM SVSF-KF represent an overall 
improvement in performance of 85.1 and 85.9%, respectively. 

4.2. Case two: temporary fault 

The next simulation considers a similar scenario to the one previ-
ously examined and discussed, except that the modeling change is 
temporary and resolved 30 s after its introduction. As in the previous 
trial, we plot the position and velocity and state estimates of each of the 
filters in Figs. 12 and 13, respectively. 

Inspecting the plot of the position state estimates in Fig. 12, several 
observations can be made. Prior to the fault’s incidence at 30 s, all filters 
exhibit the ability to accurately track the true state, with no discernible 
difference between any of the filters. Upon the introduction of the fault 
at 30 s, both the KF and the SVSF-KF can be seen diverging from the true 
state and failing to provide an accurate estimate. Upon the conclusion of 
the faulty conditions, the KF fails to recover to provide an optimal es-
timate, whereas the SVSF-KF is shown to recover after approximately 15 
s. The SVSF, NIS SVSF-KF and IMM SVSF-KF, however, display no 
noticeable divergence and instead, qualitatively prove to accurately 
track the state throughout the entirety of the simulation. The velocity 
state estimates are consistent with the findings of the position state, with 
a slight exacerbation to both the KF and SVSF-KF’s degradation in 
performance. 

Fig. 14 shows the NIS SVSF-KF gain activation plot. In this figure, the 
NIS approach is evidently effective in rapidly detecting the onset and 
departure of the fault or modeling uncertainty. There is a 2.1 s delay in 
the detection of the 

Fault until the SVSF gain is activated, and a subsequent 12.8 s delay 
from the fault’s passing until the KF gain is activated. Regardless, the 
NIS SVSF-KF can maintain steady operation of the SVSF gain throughout 
the entirety of the fault’s presence without any switching or chattering. 
In Fig. 15, the NIS values of the position state are shown, along with the 
mechanism behind the detection of system change. From this figure, the 
effectiveness of the gain activation scheme is further validated, espe-
cially in the rapidness of its detection of the fault. However, as already 
inferred, the NIS is somewhat slow in determining the fault’s cessation. 
Approximately 10 s elapse before the NIS value crosses below the “off” 
threshold to switch to the KF gain. Thus, it may prove worthwhile for 

future research effort and attention to be directed towards the adjust-
ment of the NIS thresholds to further improve the performance of the 
approach in this regard. Albeit, careful consideration is required for this, 
as the risk of increased false positives or negatives is not negligible. 

The mode probabilities as dictated by the IMM SVSF-KF are plotted 
in Fig. 16. From this figure, the IMM can be seen to have a combined 
weighting scheme for both filters. Despite the combined weighting, a 
clear trend is visible in the IMM’s choice of the most probable mode. For 
example, during the period prior to the modeling change or fault’s 
introduction, the KF mode is generally determined to be the heavier 
weighted filter operating. Upon the fault’s introduction at 30 s, the SVSF 
becomes more heavily weighted, and subsequently, the KF is more 
dominant again upon the fault’s exit at 60 s. While this combined 
weighting scheme may negatively impact the final weighted estimate, 
the IMM is superior to the NIS approach when it comes to the rapidness 
of detecting the onset and departure of the fault. The IMM SVSF-KF 
detects the modeling change with a delay of 1.9 s, compared to the 
2.1 s by the NIS SVSF-KF. The conclusion of the fault is detected with a 
delay of 2.9 s by the IMM SVSF-KF, compared to a delay of 12.8 s by the 
NIS SVSF-KF. 

As in the previous trials, 500 Monte Carlo runs of the scenario in 
study were carried out and the RMSE results of the. 

Position estimates for all filters are recorded, as can be seen in 
Fig. 12. Measurement and estimates of the position state (temporary fault).  

Fig. 13. Measurement and estimates of the velocity state (temporary fault).  

Fig. 14. NIS SVSF-KF gain activation plot (temporary fault).  
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Table 2. Note that this table also considers the RMSE value after the 
fault, where 60 ≤ t ≤ 100s. From Table 2, it is clear that the KF performs 

the worst overall for the entire course of the simulation, followed by the 
SVSF-KF. Despite this, the KF demonstrates the lowest RMSE prior to the 
fault or modeling change, tied with both the SVSF-KF and the NIS SVSF- 
KF. The best overall performer is the NIS SVSF-KF, closely followed by 
the IMM SVSF-KF, and the SVSF. 

It can thus be inferred that despite the NIS SVSF-KF’s slower response 
to detecting the start and end of the modeling change, it is still able to 
perform robustly enough to outperform all the other filters, including 
the IMM SVF-KF. Furthermore, it is interesting to observe that the IMM 
SVSF-KF fails to return the optimal KF estimate prior to the fault and 
after it concludes even when it is deemed to be the more probable filter. 
This can be explained by the IMM’s weighted final output scheme, and 
the fact that a mix of both filters is determined throughout the entire 
simulation, as previously observed in Fig. 16. This limitation of the IMM 
SVSF-KF may be mitigated in future studies by enforcing a condition to 
allocate the full weight to one filter if it is determined more probable, 
and a weight of zero to the other filter. Regardless, the IMM SVSF-KF 
yields the best results during the fault’s presence, but by a non- 
significant margin when compared with the NIS SVSF-KF. Overall, the 
NIS and IMM SVSF-KF represent an improvement of 88.9 and 88.6%, 
respectively, compared to the VBL-based SVSF-KF. 

5. Conclusion 

The results of our simulations demonstrate that the newly proposed 
NIS- and IMM-based SVSF-KF outperform the existing SVSF-KF ap-
proaches in detecting faults and reducing chatter. The NIS also has the 
benefit over the traditional SVSF of having the ability to provide an 
optimal estimate prior to the occurrence of a fault. Between the two 
newly proposed approaches, the NIS is considered more favourable due 
to its lower computational complexity despite performing with slightly 
less robustness as the IMM in the presence of a fault. However, further 
improvements to the NIS SVSF-KF may also be realized by future 
research directed towards a more careful approach to the tuning of the 
fading memory parameter and switching thresholds for more rapid 
detection of faults. Future work also includes the application of the 
proposed methods to a nonlinear system which is being built for 
experimentation. 
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VI.Appendix: SVSF Proof of Stability 

The smooth variable structure filter (SVSF) guarantees stability by making use of a Lyapunov stability condition. According to Lyapunov stability 
theory, a Lyapunov function V is said to be stable if V is locally positive definite and the time derivative of V is locally negative semi-definite. Let V be a 
Lyapunov function defined in terms of the SVSF a posteriori estimation error, such that: 

Fig. 15. NIS of the position state (temporary fault). Red and green lines indi-
cate “on” and “off” thresholds for SVSF gain, respectively. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 

Fig. 16. IMM mode probability (temporary fault).  

Table 2 
RMSE results of various filters under temporary fault conditions.  

Time KF SVSF SVSF-KF NIS SVSF-KF IMM SVSF-KF 

t < 30s 0.0027 0.0102 0.0027 0.0027 0.0073 
30 ≤ t < 60s 0.4406 0.0214 0.1570 0.0216 0.0213 
60 ≤ t < 100s 0.0646 0.0103 0.0617 0.0029 0.0070 
0 ≤ t < 100s 0.2937 0.0171 0.1335 0.0148 0.0152  
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V = eT
z,k+1|k+1ez,k+1|k+1 > 0 (A.1) 

According to Lyapunov stability theory, the estimation process is stable if the following is satisfied: 

ΔV ≤ 0 (A.2)  

Where ΔV represents the change in the Lyapunov function, and in this case, is defined as follows: 

ΔV = eT
z,k+1|k+1ez,k+1|k+1 − eT

z,k|kez,k|k (A.3)  

Substitution of (A.3) into (A.2), and rearranging, yields the following 

eT
z,k+1|k+1ez,k+1|k+1 < eT

z,k|kez,k|k (A.4) 

Equation (A.4) is equivalent to the following, which is the stability condition for the SVSF: 
⃒
⃒ez,k+1|k+1

⃒
⃒

Abs <
⃒
⃒ez,k|k

⃒
⃒

Abs (A.5) 

To remove the absolute operator in (A.5), both sides are expressed in the form of diagonal matrices (i.e., diag(e)), as follows: 

diag
(
ez,k+1|k+1

)
diag

(
ez,k+1|k+1

)

< diag
(
ez,k|k

)
diag

(
ez,k|k

) (A.6) 

Assuming that the measurement function is well-defined (and it may be linearized as C), then the a posteriori measurement error may be calculated 
as: 

ez,k+1|k+1 = Cex,k+1|k+1 + vk+1 (A.7) 

Substitution of (A.7) into (A.6) yields: 

⎛

⎜
⎜
⎝

diag
(
Cex,k+1|k+1

)
diag

(
Cex,k+1|k+1

)

+diag(vk+1)diag(vk+1)

+diag
(
Cex,k+1|k+1

)
diag(vk+1)

+diag(vk+1)diag
(
Cex,k+1|k+1

)

⎞

⎟
⎟
⎠

<

⎛

⎜
⎜
⎝

diag
(
Cex,k|k

)
diag

(
Cex,k|k

)

+diag(vk)diag(vk)

+diag
(
Cex,k|k

)
diag(vk)

+diag(vk)diag
(
Cex,k|k

)

⎞

⎟
⎟
⎠

(A.8)  

If the measurement noise vk+1 is stationary white, then by taking the expectation of both sides in (A.8) and simplifying yields the following: 

E
[

diag
(
Cex,k+1|k+1

)
diag

(
Cex,k+1|k+1

)

+diag(vk+1)diag(vk+1)

]

< E
[

diag
(
Cex,k|k

)
diag

(
Cex,k|k

)

+diag(vk)diag(vk)

] (A.9)  

Where E[diag(Cex,k+1|k+1)diag(vk+1)] and E[diag(vk)diag(Cex,k|k)] vanish due to the white noise assumption. For a diagonal, positive and time-invariant 
measurement matrix, (A.9) becomes: 

E
[
diag

(
ex,k+1|k+1

)
diag

(
ex,k+1|k+1

)]

< E
[
diag

(
ex,k|k

)
diag

(
ex,k|k

)] (A.10) 

Note that the assumptions pertaining to the measurement matrix are realistic since most applications use linear sensors as feedback in their op-
erations. Moreover, these sensors are well calibrated and their structures are well-known. Finally, (A.10) becomes: 

E
( ⃒
⃒ex,k+1|k+1

⃒
⃒

Abs

)
< E

( ⃒
⃒ex,k|k

⃒
⃒

Abs

)
(A.11) 

Equation (A.11) is the proof of stability for the SVSF. It states that the expectation of the a posteriori estimation error is reduced over time (i.e., 
converges towards a region of the state trajectory referred to as the existence subspace). 

Furthermore, the proof of stability may be used to derive the SVSF gain KSVSF
k+1 . Define γ to be a diagonal matrix with elements 0 < γii ≤ 1, such that: 

⃒
⃒ez,k|k

⃒
⃒

Abs > γ
⃒
⃒ez,k|k

⃒
⃒

Abs (A.12) 

Adding the absolute value of the a priori measurement error 
⃒
⃒ez,k+1|k

⃒
⃒
Abs to both sides of (A.12) yields: 

⃒
⃒ez,k+1|k

⃒
⃒

Abs +
⃒
⃒ez,k|k

⃒
⃒

Abs

>
⃒
⃒ez,k+1|k

⃒
⃒

Abs + γ
⃒
⃒ez,k|k

⃒
⃒

Abs

(A.13) 

J. Goodman et al.                                                                                                                                                                                                                               



Results in Engineering 16 (2022) 100785

12

The absolute value of the measurement matrix multiplied with the SVSF gain 
⃒
⃒CKSVSF

k+1

⃒
⃒
Abs is set equal to the right side of (A.13): 

⃒
⃒CKSVSF

k+1

⃒
⃒

Abs =
⃒
⃒ez,k+1|k

⃒
⃒

Abs + γ
⃒
⃒ez,k|k

⃒
⃒

Abs (A.14) 

Next, consider the following definition: 
⃒
⃒CKSVSF

k+1

⃒
⃒

Abs = CKSVSF
k+1 ∘sign

(
CKSVSF

k+1

)
(A.15) 

Furthermore, the sign of the measurement matrix multiplied with the SVSF gain CKSVSF
k+1 is set equal to the sign of the a priori measurement error 

ez,k+1|k. This leads to the SVSF gain (with a sign function), as follows: 

KSVSF
k+1 = C+

( ⃒
⃒ez,k+1|k

⃒
⃒

Abs + γ
⃒
⃒ez,k|k

⃒
⃒

Abs

)
…

…∘sign
(
ez,k+1|k

) (A.16) 

Note that (A.16) satisfies and is derived from inequality (A.14), and for 0 < γii ≤ 1 it satisfies (A.14) with the stability condition (A.5). 
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