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Abstract
This study focuses on the application of Coulomb’s and Franklin’s laws algorithm (CFA) to solving large-scale optimal

reactive power dispatch (LS-ORPD) problems. The CFA optimizer acts on the basis of the charged particles interactions.

The ever-increasing effects of ORPD problems for safe and reliable operation of electrical power grids is an important area

of study. Such problems are classified as nonlinear optimization problems; the aim of which is to minimize the active

power loss through tuning of several control variables. Firstly, the performance of CFA optimizer in solving high-

dimensional problems is investigated using standard benchmark problems. Moreover, we apply the CFA optimizer for

solving large-scale ORPD problems based on different constraints in three IEEE standard power systems. According to the

results, the proposed optimizer offers a more accurate solution when compared with other methods found in the literature.

Finally, an early attempt is carried out for improving CFA optimizer, which is tested on benchmark and ORPD problems

and yields promising outcome in reaching a more powerful variant of CFA.

Keywords CFA optimizer � Optimization � Large-scale optimal reactive power dispatch (LS-ORPD) � Power grids

1 Introduction

Optimal reactive power dispatch (ORPD) problems have a

substantial role with regard to the security requirements

and energy management aspects of a power system. These

problems specify the optimal working conditions of the

system via providing the optimized power losses on the

transmission lines along with meeting several pre-deter-

mined constraints. A number of control variables are

utilized for this purpose, such as generator voltages, tap

ratios of transformers, and reactive power of shunt VAr

compensation devices. In its most general form, ORPD is a

mixed integer, large-scale, non-linear multimodal, static

optimization problem (Abido, 2006; Chen et al. 2017; de

Souza et al. 2012; Deeb & Shahidehpour, 1990; Huang

et al. 2012; Rojas et al. 2016).

During the last few decades, different evolutionary

algorithms (EA) have been studied to address ORPD

problems in various systems, including differential evolu-

tion (DE) algorithms (Ela et al. 2011; Liang et al. 2007;

Shaheen et al. 2016; Varadarajan & Swarup, 2008), a

hybridization of DE and evolutionary programming (EP)

(Chung et al. 2010), DE with an efficient constraint han-

dling (Mallipeddi et al. 2012), a modified DE (MDE) (Raha

et al. 2012), a DE algorithm for ORPD problem while

enhancing static voltage stability (Titare et al. 2014), a

hybridization of chaotic artificial bee colony and differ-

ential evolution (CABC-DE) (Li et al. 2017). Swarm

intelligence algorithms were also used for solving ORPD

problems in many articles such as multi-agent-based PSO

(MAPSO) (Zhao et al. 2005), a new improved PSO (ALC-
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PSO) (Singh et al. 2015), a new hybrid of PSO and

imperialist competitive algorithms (PSO-ICA) (Mehdine-

jad et al. 2016), a hybrid topology scale-free Gaussian-

dynamic PSO algorithm (Wang et al. 2014), the compre-

hensive learning PSO (CLPSO) (Mahadevan & Kannan,

2010), the ORPD within a wind farm using hybrid PSO

(Kanna & Singh, 2015), a new PSO for ORPD using a

novel fuzzy adaptive configuration (Naderi et al. 2017), an

improved PSO for ORPD with static voltage stability

(Hong-Zhong et al. 2010), PSO-based bio-inspired algo-

rithms (Bhattacharyya & Raj, 2016), an improved pseudo-

gradient search-PSO (IPG-PSO) to minimize real power

loss, voltage stability index, and voltage deviation as the

objective functions (Polprasert et al. 2016), seeker opti-

mization algorithm (SOA) (Chaohua Dai et al. 2009;

Shahbazi & Kalantar, 2013) using chaos scans in PSO

(Tang et al. 2013), ant lion optimizer (ALO) (Mouassa

et al. 2017), the enhanced Gaussian bare-bones water cycle

algorithm (NGBWCA) (Heidari et al. 2017), the differen-

tial search algorithm (DSA) for ORPD with voltage control

(Amrane et al. 2015), the biogeography-based optimization

(BBO) (Roy et al. 2012a, b), accelerating bio-inspired

optimizer (ABO) with transfer reinforcement learning

(TRL) (Zhang et al. 2017), hybrid algorithms for ORPD

with discrete control variables (M. Ghasemi et al.

2014a, b, c), an exchange market algorithm (EMA) (Rajan

& Malakar, 2016), the gravitational search algorithm

(GSA) (Duman et al. 2012; Roy et al. 2012a, b), a hybrid of

PSO and GSA (Radosavljević et al. 2016), an opposition-

based GSA (OGSA) (Shaw et al. 2014), an efficient hybrid

algorithm using Nelder–Mead simplex search and shuffled

frog leaping algorithm (Khorsandi et al. 2011), the har-

mony search algorithm (HSA) for ORPD and optimal

voltage control (Khazali & Kalantar, 2011), the grey wolf

optimizer (GWO) (Sulaiman et al. 2015), a hybrid Nelder-

Mead simplex-based firefly algorithm (Rajan & Malakar,

2015), a fuzzy optimization model (Moghadam & Seifi,

2014), the chaos embedded krill herd algorithm (CEKHA)

(Mukherjee & Mukherjee, 2016).

Moreover, optimal planning of different reactive power

resources with AC-DC and FACTS controllers for OPF and

ORPD problems was proposed in (Bhattacharyya &

Kumar, 2015; Chowdhury et al. 2014; Thukaram &

Yesuratnam, 2008). The multi-objective searching algo-

rithms for solving multi-objective ORPD problem are also

presented in the literature, some examples of which are a

non-dominated sorting genetic algorithm-II (Azzam &

Mousa, 2010; Jeyadevi et al. 2011; Ramesh et al. 2012;

Zhihuan et al. 2010), a new modified GSA using opposi-

tion-based self-adaptive learning strategy (Niknam et al.

2013), multi-objective DE (Basu, 2016; Roselyn et al.

2014), a stochastic approach under load and wind power

uncertainties (Mohseni-Bonab et al. 2016a, b), multi-

objective ORPD considering voltage stability (Saraswat &

Saini, 2013), a two-archive multi-objective grey wolf

optimizer (TAMOGWA) (Nuaekaew et al. 2017), the

adaptive multiple evolutionary algorithms (Hongxin et al.

2013), a multi-objective fuzzy-based procedure (Sehiemy

et al. 2013), a new multi-objective strategy (A. Ghasemi

et al. 2014a, b, c), a two-point estimate method for

uncertainty modeling (Mohseni-Bonab et al. 2016a, b),

strength Pareto multi-group search optimizer (SPMGSO)

(Zhou et al. 2014) and, etc.

So far, various stochastic optimization algorithms have

been employed to find solutions for miscellaneous opti-

mization problems having practical complications, such as

nonlinearity, non-convexity, mixed-integer nature, non-

differentiability. These algorithms are modeled by princi-

ples and concepts extracted from the real-world nature, like

collective birds and animal behaviors. For instance, some

of these inspired algorithms are genetic algorithm (GA)

(Mitchell, 1998), particle swarm optimization (PSO)

(Eberhart & Kennedy, 1995), differential evolution (DE)

(Storn & Price, 1997), imperialist competitive algorithm

(ICA) (Atashpaz-Gargari & Lucas, 2007), artificial bee

colony (ABC) (Karaboga & Basturk, 2007), intelligent

water drops (IWD) algorithm (Hosseini, 2007), cuckoo

search (CS) (Yang & Deb, 2009), gravitational search

algorithm (GSA) (Rashedi et al. 2009), a novel competitive

swarm optimizer (CSO) (Cheng & Jin, 2015), teaching–

learning-based optimization (TLBO) algorithm and its

modified versions (M. Ghasemi et al. 2015; M. Ghasemi

et al. 2014a, b, c; Rao et al. 2011), mine blast algorithm

(MBA) (Sadollah et al. 2013), and opposition-based algo-

rithm (OBA) (Seif & Ahmadi, 2015), which have been

proposed and applied for solving global numerical opti-

mization problems (in the power systems as an example).

This paper proposes an application of the CFA opti-

mizer, which is formed based on population and is inspired

by the electrical interactions, for solving large-scale opti-

mization problems including ORPD. The presented method

yields a highly accurate solution when applied on various

optimization problems. The efficiency of the proposed

method in finding global solutions of large-scale opti-

mization problems are examined with several benchmark

test functions. A comparative study is made between CFA

and other standard algorithms to discuss the basic aspects

of CFA. Furthermore, a new version of CFA is proposed

whose superiority over the original CFA was verified using

benchmark functions and ORPD problems. Hence, the

contributions of the paper are as follows:

• The application of CFA optimizer for solving ORPD

problems and comparing its results with those of other

recent methods in the literature.
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• Proposing an improvement strategy to achieve a more

efficient version of CFA optimizer and its verification

using benchmark functions and ORPD problems.

The paper is organized as follows. The formulation of

the ORPD problems is described in Sect. 2. The standard

framework of the suggested algorithms is discussed and

illustrated in Sect. 3. Section 4 summarizes the optimiza-

tion results. Finally, conclusions and a brief summary of

the study are provided in Sect. 5.

2 ORPD problem

ORPD problem as an efficient implementation in energy

control and management of electrical power systems

specifies the optimal working conditions of the system via

providing an optimal value of PLoss (real power loss) while

meeting several constraints, with dependent variables x

(xT ¼ VL1:::VLNPQ;QG1:::QGNG; Sl1:::SlNTL½ �) and control

variables u (uT ¼ VG1:::VGNG;QC1:::QCNC; T1:::TNT½ �).
Roughly speaking, ORPD makes an effort to minimize the

active power loss via optimal tuning of control parameters

subjected to a number of constraints (Basu, 2016; Ela et al.

2011).

The formulation of the ORPD problem is defined as

follows (Ela et al. 2011; Wang et al. 2014):

MinJðx; uÞ ¼ Ploss ¼
X

k2NTL
gkðV2

i þ V2
j � 2ViVj cos dijÞ

ð1Þ
Subject to : gðx; uÞ ¼ 0 ð2Þ

and hðx; uÞ� 0 ð3Þ

where Ploss denotes the real power loss function of the

transmission lines, gk shows the conductance of branch k,

Vi and Vj are the voltages of ith and jth bus, respectively,

NTL gives the number of transmission lines, dij is the

voltage phase difference between bus i and bus j. Fur-

thermore, x is the vector of dependent variables (state

vector) and U is the vector of independent variables (de-

cision variables), which are introduced in Table 1:

As a consequence, vector x is written as (4), and vector u

is defined as in (5):

xT ¼ VL1:::VLNPQ;QG1:::QGNG; Sl1:::SlNTL½ � ð4Þ

uT ¼ VG1:::VGNG;QC1:::QCNC; T1:::TNT½ � ð5Þ

where NG shows the number of generators; NPQ denotes

the number of PQ buses; NT is the number of tap-regu-

lating transformers and NC is the number of shunt VAr

compensators.

2.1 Constraints

2.1.1 Equality constraints

Based on the ORPD formulation, g in (2) represents the

equality constraints, which are the power flow equations

(Basu, 2016; Ela et al. 2011) as follows:

PGi � PDi � Vi

XNB

j¼1

Vj Gij cosðdijÞ þ Bij sinðdijÞ
� �

¼ 0 ð6Þ

QGi � QDi � Vi

XNB

j¼1

Vj Gij sinðdijÞ � Bij cosðdijÞ
� �

¼ 0 ð7Þ

where NB denotes the number of buses in the system, PGi

represents the amount of produced active power, QGi is the

amount of generated reactive power, PDi and QDi denote

the active and reactive load demands, respectively, and Gij

and Bij express the conductance and susceptance values,

respectively.

2.1.2 Inequality constraints

Based on the ORPD formulation, h in (3) represents the

inequality constraints defined as follows:

i. Generator constraints: the active power generation of

the slack bus, voltage magnitudes and reactive power

outputs of the generation buses are constrained by the

associated lower and upper boundaries:

Pmin
G;slack �PG;slack �Pmax

G;slack

Vmin
Gi �VGi �Vmax

Gi ; i ¼ 1; :::;NG

Qmin
Gi �QGi �Qmax

Gi ; i ¼ 1; :::;NG

ð8Þ

where Vmin
Gi and Vmax

Gi denotes the minimum and max-

imum voltages of the ith generation unit; Pmin
Gi and Pmax

Gi

represent the minimum and maximum active power

outputs of the ith generation unit; and Qmin
Gi and Qmax

Gi

denote the minimum and maximum reactive power

outputs of the ith generation unit, respectively.

ii. Limitations on transformers: tap settings of trans-

formers are constrained via the corresponding lower

and upper boundaries as follows:

Tmin
i � Ti � Tmax

i ; i ¼ 1; :::;NT ð9Þ

where Tmin
i and Tmax

i are the minimum and maximum

boundaries, respectively, for tap settings of the ith

transformer.
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iii. Limitations on shunt VAr compensators: Shunt VAr

compensations are constrained based on the follow-

ing equation:

Qmin
Ci �QCi �Qmax

Ci ; i ¼ 1; :::;NC ð10Þ

where Qmin
Ci and Qmax

Ci represent the lower and upper

boundaries, respectively, for VAr injection of the ith

shunt compensator.

iv. Security constraints: These constraints are associated

with the voltage limits of the load buses and the

loading limit (capacity) of the transmission lines:

Vmin
Li �VLi �Vmax

Li ; i ¼ 1; :::;NPQ ð11Þ

Sli � Smax
li ; i ¼ 1; :::;NTL ð12Þ

where Vmin
Li and Vmax

Li represent the lower and upper

voltage limits of the ith load bus, respectively. Fur-

thermore, Sli is the apparent power flow on the ith

branch and Smax
li represents the upper limit of the

apparent power flow on the ith branch.

It should be noted that in order to include the inequality

constraints into the objective function, the penalty terms

are defined and Eq. (1) may be rewritten accordingly

(Shahbazi & Kalantar, 2013):

FORPD ¼ PLoss

þ kV
X

i2N lim
V

ðVi � V lim
i Þ2þkQ

X

i2Nlim
Q

ðQGi � Qlim
Gi Þ

2

þ kS
X

i2Nlim
S

ð Sli � Slim
li Þ2

ð13Þ

where kV ,kQ and kS are the penalty coefficients, N lim
V ,N lim

Q

and N lim
S express the number of buses where voltage vio-

lates and exceeds the specified limits, the number of gen-

erator buses on which the injected reactive power violates

the specified limits, and the number of the transmission

lines on which the loading violates the defined limits.

Furthermore, V lim
i , Qlim

Gi , and Slim
li are defined as follows:

V lim
i ¼

Vi ; if Vmin
i �Vi �Vmax

i

Vmin
i ; if Vi\Vmin

i

Vmax
i ; if Vi [Vmax

i

8
<

: ð14Þ

Qlim
Gi ¼

QGi; if Qmin
Gi �QGi �Qmax

Gi

Qmin
Gi ; if QGi\Qmin

Gi

Qmax
Gi ; if QGi [Qmax

Gi

8
<

: ð15Þ

Slim
li ¼ Sli; if Sli � Smax

li

Smax
li ; if Sli [ Smax

li

�
ð16Þ

3 CFA optimizer

CFA is a powerful and efficient optimization algorithm

proposed by Ghasemi et al. in 2018 (M. Ghasemi et al.

2018), which is inspired by governing rules of nature on

charges and objects that constitute things and materials.

This algorithm is very robust and strong to deal with

optimization problems, especially high-dimensional classic

ones. In CFA, it is assumed that there are a certain number

of charged objects and each object is comprised of a def-

inite number of electrical charges, where each individual

electrical charge itself consists of a number of base charges

equal to the dimension of the optimization problem.

Objects, as depicted in Fig. 1, interact based on physics

laws according to their sign, whether positive or negative

(here they are modeled in the form of their objective

functions), and accordingly attract (the distance between

them decreases) or repel (the distance between them

increases) each other. A solution or individual with a better

objective value than the considered solution or member (xj)

is assumed as the attractor determined by an opposite sign

with respect to the considered solution

mean
Pa;a� amax

m¼12Obi

x
Better�than�xj
i

 ! !
and cause the considered

solution to move toward it. On the other hand, a solution

with a worse objective value is assumed as the repeller,

determined by the same sign as the considered solution

mean
Pr;r� rmax

m¼12Obi

x
Worse�than�xj
m

 ! !
and forces the consid-

ered solution or member to move away from it. Each object

Table 1 State and decision variables of ORPD problem

State variables Decision variables

VL Voltage of load buses VG Voltages of generator buses, (continuous decision variable)

QG Output reactive power of generators T Settings of transformer taps, (discrete decision variable)

Sl Loading (or line flow) of transmission lines QC Shunt VAr compensation (discrete decision variable)
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or solution always tends to move away from the solution

with the worst fitness value (xWorst) and approach the

solution with the best fitness value (xBest), and this is the

basis of the optimization approach in this algorithm.

Furthermore, the charged objects will have the same

electrical charge after they are contacted to each other.

Hence, the algorithm population is divided into several

groups/objects, where the transfer of any individual from

one group to another is equivalent to the electrical charge

transfer between two objects.

Mathematical descriptions of Coulomb’s and Franklin’s

laws (M. Ghasemi et al. 2018) are exploited here to explain

the procedure of the CFA optimizer. Figure 2 depicts the

steps of the optimizer, which are explained in the following

sub-sections.

3.1 Initial population

First, an initial population is formed by creating N elec-

trical charges. The charges are established as D-dimension

vectors. All elements of the vectors are constrained within

the limits of the corresponding decision variable. For

instance, the limits for the k-th element are denoted as

xmin
k ; xmax

k

� �
. Employing a uniform random variable gener-

ated in the interval of [0, 1], i.e. U[0, 1], we can obtain the

qij quantity over the feasible solution space:

qij;k ¼ xmin
k þ U 0; 1½ � � xmax

k � xmin
k

� �
; for k ¼ 1; � � � ;D

ð17Þ

3.2 Selecting the favorite objects for the number
of objects greater than one

In case Nob (the number of objects) is equal to one, the

whole population are allocated to a single group. When

there is more than one object, i.e., Nob is equal to or greater

than 2, the initial population is firstly arranged based on

their corresponding objective function values, ordered from

the best to the worst member. After that, these sorted

members are allocated to Nob distinct groups, where dif-

ferent groups represent different corresponding objects.

The population grouping is performed as such the first Nob

best members (chosen from the sorted members) are allo-

cated to the Nob groups one by one, and then the second

Nob members are again dedicated to the Nob groups one by

one, and so on. This procedure is iterated until all members

are allocated to the corresponding groups.

3.3 The attraction/repulsion stage

In the attraction/repulsion stage, the objective function

values corresponding to the i-th group’s members are

used to sort the members. To find the new position of

the j-th member (xnew
j ) belonging to the i-th group (Obi)

using an attraction/repulsion-based mathematical

description, explained in the Subsection 3.1, a/r members

Fig. 1 Illustration of the i-th object containing positive and negative

charges

Generate the initial point charges (population) 
with initializing the parameters of algorithm

The attraction/repulsion phase is applied 
for point charges of objects (groups)

Fitness evalution

Selection of the best soulation

Stopping condition 
satisfied?

End

No

Initial fitness evalution

The probabilistic ionization phase is applied for 
elementary charges (control variables ) of point 

charge and Fitness Evaluation

The probabilistic contact phase is applied 
for objects

Iter=Iter+1

Output the best point charge (final 
sulation)

Yes

Initialization

Attraction/
Repulsion Phase

Probabilistic
Ionization Phase

Probabilistic
Contact Phase

Selection

Fig. 2 Steps of the CFA optimizer
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of the i-th object are selected in a random way. The

costs of these members for attraction/repulsion stage are

less/more than that of xj. Next, the average values of

attraction and repulsion vectors are obtained which are

equal to mean
Pa;a� amax

m¼12Obi

x
Better�than�xj
i

 !
and

mean
Pr;r� rmax

m¼12Obi

x
Worse�than�xj
m

 !
, respectively. Eventually,

xnew
j is found based on (18). Provided that the objective

function of xnew
j is more suitable (less for minimization)

than that of xj, f xnew
j

� �
� f xold

j

� �� �
, then the new

position of xj is acceptable; otherwise, the previous

position of xj., i.e. xold
j , is preserved.

xnew
j ¼ xold

j þ cos hnew
j

			
			
2

� xBest � xWorst
� �

þ sin hnew
j

			
			
2

� mean
Xa;a� amax

m¼12Obi

xBetter�than�xj
m

 ! 

�mean
Xr;r� rmax

m¼12Obi

xWorse�than�xj
m

 !!
ð18Þ

3.4 Probabilistic ionization stage

Probabilistic ionization stage is accomplished separately

for individual members. The ionization occurs merely for

the k-th decision variable of xj (xj,k). In case the amount of

normalized ionization energy, Pi, for the j-th member (xj)

surpasses a randomly selected value, rand, xj,k will be

chosen in a random way by utilizing

k ¼ round 1 þ rand � ðD� 1Þð Þ, where D denotes the

dimension of the problem. Two parameters are used to

attain the new control variable xnew
j;k , namely the k-th

decision variable and the best and worst members of an

identical group, xBest and xWorst
:

xnew
j;k ¼ xBest

k þ xWorst
k � xold

j;k ð19Þ

3.5 The probabilistic contact stage for a multi-
object CFA optimizer

For multi-object (or equally multi-group) optimizer, when

Nob is equal or greater than 2, specifically when dealing

with high-dimensional problems, provided that Pc (the

constant) is greater than rand (contact probability factor) in

any iteration, then the contact operation will be executed

for that iteration. After testing different values, Pc = 0.5

was found as the value that gives the best solutions for all

the performed simulations. Equation (20) expresses the

formulation of this stage:

4 A comparative study of CFA optimizer

To demonstrate the high performance and superiority of the

presented method, in this section the performance of CFA

optimizer compared to that of the classical algorithms

proposed in the preceding research studies for six con-

ventional standard test functions (benchmarks) listed in

Table 2. The chosen classical methods in this study include

the PSO (http://www.mathworks.com/matlabcentral/)

(Eberhart & Kennedy, 1995), DE (model DE/best/1)

(http://academic.csuohio.edu/simond/bbo/) (Storn & Price,

1997), ABC (http://mf.erciyes.edu.tr/abc/) (Karaboga &

Basturk, 2007), and CS (http://www.mathworks.com/

matlabcentral/) (Yang & Deb, 2009). It should be noted

that the parameters considered for these algorithms are

derived from the relevant references.

In the first sub-section, the single-object CFA optimizer

is used to attain the optimal solution for the above-men-

tioned benchmark functions with a population size equal to

5. Then, multi-object CFA optimizer model will be used to

solve the ORPD problem as a real-world case study.

4.1 Single-object CFA optimizer for traditional
test functions

In this sub-section, six high-dimensional unimodal and

multimodal benchmarks (with different number of dimen-

sions) are chosen to assess the efficiency and capabilities of

the suggested algorithm (CFA optimizer) compared to

other methods such as PSO, DE/best/1, ABC, and CS. In

this section, the presented single-object CFA optimizer

model with five-point charges is used (with Nob = 1 and

N = 5).

All algorithms were executed 30 times for each test

function (listed in Table 2) with different number of

dimensions and the means (Mean) and standard deviations

(Std.) of the optimal solutions are presented in Table 3. The

simulation results show that CFA optimizer is a powerful

xBest1 ¼ xBestNob ; :::; xBestiþ1 ¼ xBesti ; :::; xBestNob ¼ xBestNob�1

xWorst1 ¼ xWorstNob ; :::; xWorstiþ1 ¼ xWorsti ; :::; xWorstNob ¼ xWorstNob�1

�
if randIter �Pc and Nob� 2 ð20Þ
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tool to obtain the optimal solution for high-dimensional

problems (like D = 25,000) with very small population size

(N = 5), and provides a significantly better solution com-

pared to PSO, DE/best/1, ABC and CS algorithms. Con-

vergence performance of all algorithms are shown in

Figs. 3a–d and 4a–d for f1 and f5 with four different number

of dimensions. The results show that CFA optimizer is

capable of obtaining the global optimal solution in small

number of iterations even for D = 25,000 and N = 5; this

shows the fast convergence capability of CFA optimizer.

Overall, according to the experimental results presented

in Table 3 and Figs. 3 and 4, we may list the following

features for CFA optimizer:

1. CFA optimizer is able to provide global optimal

solution for the higher-dimensional test functions with

a small constant population N = 5 even for

D = 25,000.

2. The population size and iterations (convergence rate)

of CFA optimizer to achieve the global optimal

solution is almost independent from problems’ dimen-

sion for different test functions, and CFA algorithm is

stable and robust as well.

3. CFA optimizer has fast convergence rate and, conse-

quently, low computational cost even for high-dimen-

sional test functions.

4. CFA optimizer requires constant control parameters for

all test functions, i.e., Pi = 0.01 and Pc = 0.5.

4.2 Multi-object CFA optimizer

In this sub-section, the multi-object CFA optimizer is used

to obtain optimal solution for shifted benchmark functions.

4.2.1 Why multi-object CFA optimizer and shifted
benchmark functions?

In the second phase of the simulation, we evaluate the

performance of CFA optimizer for different number of

objects. In this regard, one may ask: what is the reason

behind assessing the effect of the number of objects? Based

on the results given in Table 3, when the population size is

increased the optimization power of CFA optimizer

decreases to some extent (see Fig. 5). Hence, it can be

concluded that the probability of trapping in the local

optima is greater than the case with smaller population; this

challenge may be encountered in the large-scale practical

optimization problems. Considering the same conditions

presented in the first phase of simulations, the optimal

results achieved after 30 runs are reported in Table 4, based

on which it can be deduced that the optimization power of

CFA increases by increasing the number of objects. In this

case, the algorithm avoids form being trapped in the local

optima specifically when N/Nob = 5. Note that this value is

not necessarily the best population size for each

object/group for any given functions. The convergence rate

of the multi-object CFA optimizer with respect to the

number of objects for the shifted Sphere function with

D = 600 is depicted in Fig. 6.

5 Multi-object CFA optimizer for large-scale
ORPD

To demonstrate the efficiency and superiority of the pro-

posed method, the CFA optimizer along with other algo-

rithms are applied to obtain the optimal solution for the

Table 2 The traditional test functions

Name Test function Search Range Global optimum

Sphere
f1 xð Þ ¼

PD

j¼1

x2
j

[- 100, 100]D 0.0

Rastrigin
f2 xð Þ ¼

PD

j¼1

x2
j � 10 cos 2pxj

� �
þ 10

� � [- 5.12, 5.12]D 0.0

Rosenbrock
f3 xð Þ ¼

PD�1

j¼1

100 x2
j � xjþ1

� �2

þ xj � 1
� �2


 �
[- 30, 30]D 0.0

Schwefel’s
f4 xð Þ ¼

PD

j¼1

�xj sin
ffiffiffiffiffiffiffi
xj
		 		

q� �� � [- 500, 500]D –418.9829*D

Griewank
f4 xð Þ ¼ 1

4000

PD�1

j¼1

x2
j �

QD

j¼1

cos
xjffi
j

p
� �

þ 1
[- 600, 600]D 0.0

Weierstrass
f7 xð Þ ¼

PD

j¼1

Pk max

k¼0

ak cos 2pbk xj þ 0:5
� �� �� �
 �

�D
Pk max

k¼0

ak cos pbk
� �� �

; a ¼ 0:5; b ¼ 3; k max ¼ 20:

[- 0.50, 0.50]D 0.0
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large-scale ORPD problems implemented on the standard

IEEE 57-, 118-, and 300-bus (large-scale) electrical power

grids (Zimmerman et al. 2011). All algorithms have been

coded in MATLAB 7.6 software and the simulations were

executed on a PC with Pentium IV E5200 CPU and 2 GB

RAM configuration. All algorithms have been executed 25

times for each large-scale ORPD problem. The information

of the IEEE large-scale power systems is given in Table 5.

The number of iterations for all optimization algorithms are

set to 500. Furthermore, the permissible limits of the

decision variables of all chosen IEEE standard systems are

provided in Table 6 (Mouassa et al. 2017; Wang et al.

2014).

5.1 CFA optimizer-based methodology for large-
scale ORPD problems

In this sub-section, important aspects of the CFA optimizer

when solving large-scale ORPD problems for IEEE 57-,

118-, and 300-bus systems are assessed. The following

steps briefly summarizes the CFA optimizer-based large-

scale ORPD algorithm:

Step 1 Set initial population size (N), object size (Nob),

the maximum number of iterations (Itermax), contact

probabilistic value (Pc = 0.5), ionization probabilistic

value (Pi = 0.1), and input the required information for

large-scale systems, including decision variables uT ¼
VG1:::VGNG;QC1:::QCNC; T1:::TNT½ � with generator related

constraints, shunt VAr compensator constraints, and

transformer tap ratio limitations.

Step 2 Generate the initial randomly solutions matrix

(initial population matrix) X0

� �
of CFA optimizer based on

Eq. 7 and generator, shunt VAr compensator and trans-

former tap ratio limitations.

Step 3 Calculate the large-scale ORPD objective func-

tion FORPD (Eq. 13) by imposing the the equality (Eq. 6

and Eq. 7) and inequality (Eq. 8 to Eq. 12) constraints for

the initial population of CFA optimizer. In this paper, the

penalty factors, which are large positive numbers, are used

for constraint-handling procedure of the large-scale ORPD,

defined based on (Moghadam & Seifi, 2014).

Step 4 Produce new population of CFA optimizer uti-

lizing Eq. 18 through Eq. 20.

Step 5 Calculate the large-scale ORPD objective func-

tion values FORPD (Eq. 13) by imposing the equality (Eq. 6

and Eq. 7) and the inequality (Eq. 8 to Eq. 12) constraints

for the new population generated in step 4.

Step 6 In case a new individual outperforms the older

one, the latter will be replaced by the former.

Step 7 Generate a new population of the CFA optimizer

by ionization and contact probabilistic phase (for multi-
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object CFA optimizer) considering the large-scale ORPD

problem constraints.

Step 8 Repeat steps 4–7 of CFA optimizer until reaching

Itermax of the CFA optimizer.

5.2 Simulation results for the ORPD problem
of large-scale systems

5.2.1 IEEE 57-bus test system

The ORPD problem is solved for the standard IEEE 57-bus

system using CFA and other conventional algorithms. Four

(a) D=200 (b) D=1000
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Fig. 3 a–d Convergence performance of algorithms for f1 with different dimensions

Table 4 Solutions of the CFA

optimizer when different

number of objects (groups) is

used for shifted Sphere function

Nob D = 200, Itermax = 10,000 D = 600, Itermax = 10,000

Mean Std Mean Std

1 2.5011e ? 005 5.5079e ? 003 1.5588e ? 006 3.0483e ? 004

10 2.0634e ? 003 749.5308 3.3058e ? 005 1.5264e ? 004

20 386.1771 80.0162 1.5294e ? 005 2.3230e ? 004

40 53.2571 8.5992 7.1244e ? 004 1.8974e ? 004

200 10.6361 2.7227 6.6095e ? 003 479.8862

1000 0.2248 0.0456 2.3539e ? 003 5.8321
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scenarios are defined for solving the resultant ORPD

problem based on the population size. To prove that the

population size required for CFA is smaller than that of

other algorithms, the initial population size for different

scenarios is considered to be changed from 5 to 60

members.
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0 500 1000 1500 2000 2500 3000
-20

-15

-10

-5

0

5

10

Iteration

Be
st

 fi
tn

es
s v

al
ue

 (l
og

)

PSO
DE/best/1
ABC
CS
CFA

0 500 1000 1500 2000 2500 3000
-5

0

5

10

Iteration

Be
st

 fi
tn

es
s v

al
ue

 (l
og

)

PSO
DE/best/1
ABC
CS
CFA

0 500 1000 1500 2000 2500 3000

-4

-2

0

2

4

6

8

10

12

Iteration

Be
st

 fi
tn

es
s v

al
ue

 (l
og

)

PSO
DE/best/1
ABC
CS
CFA

0 500 1000 1500 2000 2500 3000
-2

0

2

4

6

8

10

12

14

Iteration

Be
st

 fi
tn

es
s v

al
ue

 (l
og

)

PSO
DE/best/1
ABC
CS
CFA

Fig. 4 a–d Convergence performance of algorithms for f5 with different dimensions
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Table 5 Description of test systems

Variables IEEE 57-bus test system IEEE 118-bus test system IEEE 300-bus test system

Number of control variables 25 77 190

Number of generators 7 54 69

Number of taps 15 9 107

Number of shunt VAr compensation 3 14 14

Number of branches 80 186 411

Continuous variable 7 54 69

Discrete variable 18 23 121

P0 Loss (MW) 32.512 132.863 408.316

Table 6 Control variables settings for the test systems

Control variables IEEE 57-bus test system IEEE 118-bus test system IEEE 300-bus test system Step

Vmin
Gi

0.94 0.94 0.9 Continuous

Vmax
Gi 1.06 1.06 1.1

Tmin
i

0.9 0.9 0.9 0.01

Tmax
i 1.1 1.1 1.1

Qmin
Ci

See in (Wang et al. 2014) See in (Wang et al. 2014) See in (Tang et al. 2013) 1

Qmax
Ci See in (Wang et al. 2014) See in (Wang et al. 2014) See in (Tang et al. 2013)

Table 7 Statistical detailed

results for IEEE 57-bus test

system

N.test N Algorithm Best (MW) Worst (MW) Mean (MW) Std Average times (s)

1 30 PSO 30.9438 34.7663 31.558 43.6e ? 00 28.15

DE/best/1 31.1432 39.954 34.8267 65.07e ? 00 26.47

ABC 29.1692 36.2353 31.4132 70.6e ? 00 26.81

CS 29.1442 38.4459 32.279 41.28e ? 00 27.63

5 CFA 25.0821 26.2319 25.5745 11.29e-02 3.16

2 60 PSO 29.9436 35.3792 31.6956 44.15e ? 00 48.22

DE/best/1 30.1415 34.2353 32.7316 26.84e ? 00 44.14

ABC 28.0228 32.75 30.9732 52.5e ? 00 43.8

CS 29.0936 33.4244 31.3515 31.17e ? 00 46.57

15 CFA 25.0041 25.2122 25.1451 5.66e-03 8.82

3 120 PSO 29.3118 33.7245 31.2987 16.83e ? 00 88.0

DE/best/1 27.6269 32.4757 29.6462 8.29e ? 00 80.19

ABC 27.6074 32.4628 29.5193 15.75e ? 00 79.84

CS 28.2915 32.3542 29.9384 18.59e ? 00 84.65

30 CFA 24.5630 24.8319 24.7743 5.78e-03 14.22

4 240 PSO 29.3117 33.5521 31.3962 20.7e ? 00 193.24

DE/best/1 27.6269 32.6903 28.8526 20.61e ? 00 172.75

ABC 27.6074 31.0432 28.8748 2.93e ? 00 170.33

CS 28.0005 31.354 29.3055 14.04e ? 00 182.04

60 CFA 24.5627 24.7271 24.5937 1.25e-03 31.7
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Table 8 Best decision variables settings and active power loss for IEEE 57-bus test system (p.u.)

Variable IWO (M. Ghasemi et al. 2014a, b, c) WCA (Heidari et al. 2017) DMO-ORPD (Mohseni-Bonab et al. 2016a, b) CFA

VG1 1.06 1.0605 1.013 1.06

VG2 1.05912 1.0602 1.0005 1.05082

VG3 1.04716 1.0497 0.9868 1.04533

VG6 1.03817 1.0018 0.9908 1.04094

VG8 1.05926 1.0600 0.9941 1.05984

VG9 1.02729 1.0589 0.9795 1.02551

VG12 1.0374 1.0538 0.9655 1.03209

T4-18 1.05 0.9923 1.0009 0.96

T4-18 1.0 0.9814 1.0009 0.99

T21-20 1.07 0.9354 0.9844 1.01

T24-26 1.02 0.9953 1.0022 1.01

T7-29 0.97 0.9963 0.9856 0.98

T34-32 0.99 0.9712 0.9519 0.98

T11-41 0.9 0.9865 0.9926 0.9

T15-45 0.96 0.9245 0.9836 0.97

T14-46 0.95 1.0345 1.0076 0.95

T10-51 0.98 1.0056 0.9946 0.96

T13-49 0.93 0.9825 0.9668 0.92

T11-43 0.99 0.9715 0.9000 0.95

T40-56 1.01 0.9923 1.0217 1.02

T39-57 1.04 1.0186 1.0320 0.97

T9-55 0.96 1.0024 1.0025 0.97

QC18 0.0442 0.0988 0.10 0.10

QC25 0.0433 0.0590 0.059109 0.059

QC53 0.0615 0.0629 0.063418 0.063

Ploss 0.245939 0.2482 0.250137 0.245627
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Fig. 7 The constraints of the

generated reactive power of

generators of the IEEE 57-test

system
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A summary of the results for the best, worst, and aver-

age values and the standard deviation (s.t) of results

obtained by 25 runs for each algorithm are presented in

Table 7. The obtained results, as given in the table, show

the performance, strength, and speed of CFA compared to

other conventional algorithms.

The proposed method provides a better solution with

less deviation and higher convergence rate for each sce-

nario making CFA a strong and powerful algorithm to

solve various optimization problems in the power systems.

The data presented in Table 7 clearly illustrates that CFA

with the population of 60 members reaches a significantly

better solution compared to other algorithms (population

size of CFA is four times smaller than that of the other

algorithms). Furthermore, the final solution obtained by

CFA is presented in Table 8 and is compared with several

solutions obtained by some recent researches, which

obviously demonstrates the superiority of CFA in solving

ORPD.

Figures 7 and 8 show the generated reactive power of

generators and bus voltages of the IEEE 57-bus test system,

respectively, for the best obtained solution by the proposed

method. According to these results, as observed, the
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Fig. 8 The constraints of bus

voltages of the IEEE 57-bus test

system

Table 9 Statistical detailed

results for IEEE 118-bus test

system

N.test N Algorithm Best (MW) Worst (MW) Mean (MW) Std Average times (s)

1 150 PSO 119.0045 146.6439 132.9114 95.72e ? 00 254.85

DE/best/1 119.8516 138.4557 126.1069 31.83e ? 00 236.08

ABC 121.9614 138.0602 127.2836 47.65e ? 00 234.97

CS 120.875 140.747 129.9342 98.54e ? 00 248.11

30 CFA 115.5627 118.9382 116.8973 8.25e-01 34.56

2 300 PSO 118.3369 123.7531 119.9905 37.86e ? 00 551.95

DE/best/1 117.3356 121.7954 119.2183 24.87e ? 00 515.74

ABC 119.2148 126.6823 122.2755 20.63e ? 00 510.45

CS 118.6402 128.8526 124.088 16.19e ? 00 537.66

60 CFA 115.4597 116.3178 115.9865 1.28e-01 65.19

3 600 PSO 116.7624 117.5013 117.1217 6.9e-01 905.92

DE/best/1 116.9541 118.8652 117.2498 9.16e-01 856.82

ABC 119.2036 121.4173 120.6704 7.94e ? 00 842.6

CS 117.9885 118.5917 118.735 5.5e ? 00 885.93

90 CFA 114.8262 114.9175 114.8998 9.15e-02 82.05

4 1000 PSO 116.755 119.4836 118.1051 1.21e ? 00 1629.46

DE/best/1 116.7784 117.0018 116.8954 9.37e-01 1386.35

ABC 118.1923 118.9602 118.349 7.58e-01 1373.57

CS 117.9761 119.9985 118.9894 1.45e ? 00 1464.63

150 CFA 114.7666 114.8412 114.8003 5.00e-03 138.81
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Table 10 Best control variables settings (p.u.) for active power loss for IEEE 118-bus test system (p.u.)

Variable GWO

(Sulaiman et al.

2015)

FF (Rajan &

Malakar, 2015)

FAHCLPSO

(Naderi et al.

2017)

PSOGSA

(Radosavljević et al.

2016)

KHA (Mukherjee &

Mukherjee, 2016)

NGBWCA

(Heidari et al.

2017)

CFA

VG1 1.0204 1.021665 1.0120 1.0299 1.0211 1.0215 1.02714

VG4 1.0257 1.043732 1.0523 1.0598 1.0476 1.0431 1.05817

VG6 1.0208 1.0334 1.0666 1.0529 1.0314 1.0312 1.0506

VG8 1.0419 1.05013 1.0597 0.9888 1.1000 1.0539 1.04007

VG10 1.0413 1.026539 1.0725 0.9408 1.1000 1.0271 1.05734

VG12 1.0232 1.01976 1.0333 1.0508 1.0478 1.0316 1.04744

VG15 1.0207 1.021911 1.0012 1.0235 1.0356 1.0129 1.04655

VG18 1.0270 1.03564 1.0058 1.0211 1.0298 1.0075 1.04926

VG19 1.0204 1.001754 1.1000 1.0187 1.0245 1.0102 1.04538

VG24 1.0137 1.058576 1.0971 1.0231 1.0349 1.0208 1.05185

VG25 1.0270 1.081467 1.0899 1.0281 1.0787 1.0531 1.05993

VG26 1.0386 1.088557 1.1000 1.0599 1.0014 0.9941 1.06

VG27 1.0188 1.059599 1.0654 1.0228 1.0345 1.0291 1.04477

VG31 1.0138 1.030586 1.0318 1.0143 1.0249 1.0275 1.04037

VG32 1.0135 1.051383 1.0322 1.0194 1.0349 1.0201 1.04323

VG34 1.0261 0.985175 0.9999 1.0207 1.0749 1.0014 1.05688

VG36 1.0261 1.043302 0.9998 1.0183 1.0749 1.0412 1.0551

VG40 1.0125 1.009106 1.0501 0.9935 1.0245 1.0400 1.03571

VG42 1.0233 1.014088 1.0231 0.9886 1.0249 1.0512 1.03731

VG46 1.0272 0.986644 1.0005 1.0357 1.0469 1.0170 1.04611

VG49 1.0401 1.045022 0.9897 1.0538 1.0549 1.0510 1.05942

VG54 1.0230 1.044307 0.9998 1.0436 1.0457 1.0392 1.03629

VG55 1.0221 0.999572 1.0222 1.0404 1.0274 1.0331 1.03511

VG56 1.0226 0.994247 1.0008 1.0410 1.0249 1.0372 1.0354

VG59 1.0379 1.047607 1.0731 1.0600 1.0289 1.0564 1.05928

VG61 1.0241 1.030507 1.0258 1.0600 1.0789 1.0565 1.06

VG62 1.0199 1.03358 1.0059 1.0566 1.0659 1.0489 1.05604

VG65 1.0465 1.06538 1.0630 1.0239 1.0991 1.0435 1.06

VG66 1.0378 1.028989 1.0312 1.0600 1.0451 1.0435 1.06

VG69 1.0501 1.046139 1.0636 1.0600 1.0359 1.0489 1.06

VG70 1.0243 1.07727 1.1000 1.0350 1.0542 1.0113 1.03518

VG72 1.0187 1.022816 1.0500 1.0302 1.0511 1.0382 1.04059

VG73 1.0397 1.031771 1.0981 1.0587 1.0459 0.9926 1.0351

VG74 1.0170 1.030611 1.0444 1.0066 1.0359 0.9934 1.02239

VG76 1.0080 1.015462 1.0037 0.9957 1.0259 1.0324 1.00482

VG77 1.0192 1.051973 1.0559 1.0382 1.0280 1.0185 1.04569

VG80 1.0329 1.039807 0.9999 1.0542 1.0421 1.0021 1.05981

VG85 1.0224 1.077938 1.0882 1.0446 1.0353 1.0312 1.05103

VG87 1.0361 1.002763 1.0303 1.0515 1.0963 1.0212 1.05786

VG89 1.0558 1.074747 1.0001 1.0600 1.0759 1.0387 1.06

VG90 1.029 1.047818 1.0018 1.0323 1.0425 1.0071 1.04222

VG91 1.0127 1.048983 1.0298 1.0273 1.0358 0.9989 1.04552

VG92 1.036 1.047601 1.1005 1.0431 1.0516 1.0001 1.0485

VG99 1.0297 1.042693 1.0498 1.0072 1.0415 1.0467 1.05421

VG100 1.036 1.038511 1.0565 1.0522 1.0426 1.0213 1.05881

VG103 1.0232 1.022228 1.0413 1.0480 1.0220 1.0416 1.04916

VG104 1.018 1.03061 1.0189 1.0353 1.0041 1.0174 1.03833
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constraints of the ORPD problem have suitably been sat-

isfied and thus the obtained results are acceptable.

5.2.2 IEEE 118-bus test system

In order to show the accuracy and performance of the

proposed method for large-scale power systems, the CFA-

optimizer is applied to solve the ORPD problem formu-

lated for the IEEE 118-bus system. The same scenarios as

presented in the previous sub-section are considered for the

118-bus system as well. The conditions for all algorithms

are identical except the population size of CFA. Table 9

presents the statistical data obtained from 25 independent

runs for all algorithms. According to the results given in

this table, the proposed method provides a better perfor-

mance as the problem becomes larger. For small population

size, the results obtained by the proposed method are in an

acceptable range, and when the population size increases

from 30 to 150, the results do not noticeably change in

comparison to those of other methods; this improves the

run time (computational cost) of the proposed CFA to solve

ORPD. Moreover, the best solution obtained by CFA

optimizer and some other conventional methods are given

in Table 10. One can observe that the proposed method

provides a better solution in comparison to some other

recently proposed algorithms.

Furthermore, constraints pertinent to the output reactive

power of generators and bus voltage magnitudes, which are

Table 10 (continued)

Variable GWO

(Sulaiman et al.

2015)

FF (Rajan &

Malakar, 2015)

FAHCLPSO

(Naderi et al.

2017)

PSOGSA

(Radosavljević et al.

2016)

KHA (Mukherjee &

Mukherjee, 2016)

NGBWCA

(Heidari et al.

2017)

CFA

VG105 1.0176 1.053364 1.1000 1.0339 1.0147 1.0223 1.03531

VG107 1.0201 1.014579 1.0222 1.0422 0.9879 1.0340 1.02247

VG110 1.0207 1.034131 1.0115 1.0196 1.0120 1.0103 1.03178

VG111 1.0261 1.031144 1.1000 1.0270 1.0258 1.0345 1.03948

VG112 1.0066 1.011916 1.0500 1.0015 0.9928 1.0160 1.01614

VG113 1.0251 1.021931 1.0099 1.0337 1.0415 1.0181 1.0554

VG116 1.0342 1.053512 1.0500 1.0067 1.0254 1.0330 1.05743

T5-8 1.0208 1.002155 1.0214 0.9182 1.0740 1.0051 0.98

T25-26 1.0279 0.941079 1.0533 1.1000 1.0245 0.9614 1.06

T17-30 1.0323 0.974903 1.0555 0.9790 1.0456 0.9961 0.98

T37-38 1.0209 0.989385 0.9995 0.9759 0.9874 0.9523 0.99

T59-63 1.0091 0.992515 1.0619 0.9000 1.0389 1.0521 0.98

T61-64 1.0366 0.98305 1.0318 0.9287 1.0147 0.9520 1.00

T65-66 1.0301 0.971375 1.0490 1.0057 0.9245 0.9812 0.99

T68-69 1.0234 0.936734 0.9660 0.9715 0.9945 0.9510 0.95

T80-81 1.0211 0.979664 0.9732 0.9459 1.0780 0.9754 0.99

QC5 - 39.76 0.0 0.3500 - 33.5074 0.3979 - 0.0723 - 19.92

QC34 13.79 2.389537 10.1922 7.6243 0.0005 0.0483 7.47

QC37 - 24.73 0.0 1.7500 - 19.7317 0.2389 - 0.2390 - 5.06

QC44 9.9571 6.471033 4.4000 6.5258 0.0009 0.0032 4.46

QC45 9.8678 5.015351 6.9894 4.5300 0.0489 0.0372 1.63

QC46 9.9186 1.108324 7.1289 3.1784 0.0002 0.0624 9.55

QC48 14.89 6.989812 6.6668 11.8388 0.0005 0.0172 3.35

QC74 11.972 7.310902 11.0952 3.8061 0.0003 0.0013 0.0

QC79 19.649 9.132848 15.0000 13.9863 0.0008 0.0621 0.0

QC82 19.89 9.882076 10.5509 17.7504 0.0419 0.0463 0.0

QC83 9.9515 6.716357 5.5540 1.9938 0.0500 0.0560 0.0

QC105 19.968 10.66619 15.1895 6.8200 0.0010 0.0653 4.65

QC107 5.9136 4.262622 4.4140 6.0000 0.0076 0.0072 4.19

QC110 5.8834 2.402687 2.2310 4.4194 0.0222 0.0108 2.25

Ploss 120.65 135.42 116.2479 122.4709 118.85 121.47 114.7666
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Table 11 Statistical details for

IEEE 300-bus test system
N.test N Algorithm Best (MW) Worst (MW) Mean (MW) Std Average times (s)

1 300 PSO 398.2514 448.2514 425.5109 5.25e ? 02 5634.5

DE/best/1 403.7391 433.8953 412.2768 4.63e ? 02 4091.2

ABC 401.1106 441.5629 417.4354 3.12e ? 02 3886.8

CS 402.0142 435.4376 415.9743 7.45e ? 02 4706.6

60 CFA 377.2348 381.9188 379.0071 1.48e 1 00 265.4

2 450 PSO 398.6379 442.9142 424.7488 3.71e ? 02 8768.2

DE/best/1 397.405 405.3868 400.5007 2.46e ? 02 6107.9

ABC 395.1445 422.5629 413.62 2.00e ? 02 5940.0

CS 400.0142 430.8965 412.6103 1.83e ? 02 7643.9

120 CFA 375.1659 379.825 377.4413 8.75e-01 600.3

3 600 PSO 390.5690 427.1685 414.9492 8.26e ? 01 12,650.7

DE/best/1 387.2168 406.1 396.1453 1.71e ? 01 9120.6

ABC 392.753 419.9766 410.5515 2.68e ? 01 8269.1

CS 394.8636 430.4049 410.3805 3.13e ? 01 11,006.3

240 CFA 375.0025 377.4539 376.1123 6.81e-02 1140.7
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two main constraints of the problem, are given in Figs. 9

and 10, respectively. As observed, the final solution fully

satisfies the constraints meaning that the obtained optimal

solution is feasible.

5.2.3 IEEE 300-bus test system

The last test system investigated in this paper is the IEEE

standard 300-bus system, which is considered as a very

large-scale test system. All scenarios are assumed to be

similar to those presented in the above sub-sections under

identical conditions. A summary of the results obtained by

all algorithms for ORPD problem is given in Table 11.

Similar to the previous sub-sections, the proposed CFA

significantly performs better than the other algorithms.

Furthermore, Table 12 presents the results obtained by

CFA compared to those of recent studies, demonstrating

the supremacy of the method presented in this paper.

6 An early attempt for improving CFA
optimizer

In this section, as an early attempt for improving CFA

optimizer, various relationships are tested for the CFA’s

attraction/repulsion phase to select the best relationship to

increase the efficiency of this algorithm. For this purpose,

in relation (18), instead of using 2 as the powers of |cosh|

and |sinh|, P1 and P2 are used, respectively, as follows:

xnew
j ¼ xold

j þ cos hnew
j

			
			
p1

� xBest � xWorst
� �

þ sin hnew
j

			
			
p2

� mean
Xa;a� amax

m¼12Obi

xBetter�than�xj
m

 ! 

�mean
Xr;r� rmax

m¼12Obi

xWorse�than�xj
m

 !!

ð21Þ

For this supplementary study, 14 test functions of CEC

2005 (f1 to f14) (Suganthan et al. 2005) which have been

successfully implemented in many papers, are selected.

The population and the number of iterations of the algo-

rithm are set to be 20 and 15,000, respectively, giving the

number of the objective function evaluations (FEs) equal to

300,000.

Tables 13 and 14 show the mean and the standard

deviation of the results obtained from the different versions

of CFA for these functions, respectively. In Table 13, the

solutions that are better than the original version are shown

in boldface. Based on these results, it can be said that using

the values p1 ¼ 2 � Sin hð Þj j and p2 ¼ 2 � Cos hð Þj j are the

best choice for CFA. The convergence characteristics of

different versions of CFA for some of the test functions are

shown in Fig. 11.

Tables 15 and 16 demonstrate the results obtained from

different versions of CFA optimizer in solving the ORPD

problems in 118- and 300-bus test systems, respectively.

The selected conditions for the algorithms are the same as

the original conditions given in the article. It can be seen

that the new version with p1 ¼ 2 � Sin hð Þj j and p2 ¼
2 � Cos hð Þj j has achieved a better solution than other ver-

sions of CFA.

According to the studies, it is clear that the new version

with p1 ¼ 2 � Sin hð Þj j and p2 ¼ 2 � Cos hð Þj j is much better

and more suitable than the original version for the real-

world optimization.

7 Conclusions

An efficient algorithm, referred to as the CFA optimizer, is

presented in this paper. The aim of the current work is to

explore and find global solutions of various high-dimen-

sional ORPD problems of large-scale power systems

including the IEEE standard 57-, 118-, and 300-bus test

systems. In order to assess the efficiency and optimization

power of the CFA optimizer, a comparison was made

between the results of the proposed method and other

algorithms for high-dimensional optimization problems.

The simulation results demonstrate that the proposed CFA

optimizer is able to provide the global optimal solution of

many different types of high-dimensional test functions

and ORPD problems. Finally, an early attempt was carried

out for reaching a more powerful CFA optimizer, in which

the proposed modified versions were tested on benchmark

and ORPD problems. The simple study shows that the

optimization efficiency of CFA can be further improved

using some simple modifications. The more thorough

investigations about the best modifications to be done for

improving CFA optimizer can be the subject of future

Table 12 Comparison of CFA optimizer with the recently proposed methods in the literature for IEEE 300-bus system

ALO (Mouassa et al. 2017) A-CSOS (Yalçın et al. 2019) CFA

Losses Best (MW) 384.9224 380.5328 375.0025

Average times (s) 4022.9 – 1140.7

13916 M. Ghasemi et al.

123



Ta
bl
e
13

M
ea

n
o

f
th

e
re

su
lt

s
o

b
ta

in
ed

b
y

d
if

fe
re

n
t

v
er

si
o

n
s

o
f

C
F

A
fo

r
th

e
re

al
-p

ar
am

et
er

u
n

im
o

d
al

an
d

m
u

lt
im

o
d

al
te

st
fu

n
ct

io
n

s

P
1

O
ri

g
in

al
(2

)
2

si
n
h

si
n
h

|s
in
h|

2
*

|s
in
h|

|s
in
h|

?
|c

o
sh

|

P
2

O
ri

g
in

al
(2

)
co

sh
2

co
sh

|c
o

sh
|

2
*

|c
o

sh
|

|s
in
h|

?
|c

o
sh

|

T
es

t
fu

n
ct

io
n

s
M

ea
n

M
ea

n
M

ea
n

M
ea

n
M

ea
n

M
ea

n
M

ea
n

U
n

im
o

d
al

F
u

n
ct

io
n

s
f 1

0
.0

2
7

4
2

4
9

7
0

2
6

8
4

0
.2

3
9

1
4

1
0

4
4

4
0
.0
1
8
7
1
0
0
0
7
2
0
7

2
3

.6
5

3
0

8
5

7
5

8
2

0
.5

0
6

6
9

0
1

9
3

0
4

0
.0
1
4
0
2
0
6
5
3
5
9
3

0
.3

0
4

2
0

0
0

8
0

0
9

f 2
5

4
.6

6
6

9
2

2
3

0
9

1
4

1
0

.9
1

3
9

8
5

6
3

8
9

.7
4

8
2

6
6

5
3

3
1

4
9

2
.2

4
7

1
8

8
5

4
2

1
5

.5
2

6
2

9
5

7
6

8
2

.4
4

8
0

2
7

3
4

1
2

1
8

.9
9

7
9

5
0

4
4

f 3
5

,7
4

4
,3

1
8

.0
6

6
7

1
7

,6
4

1
,6

1
6

.2
5

8
9

5
,0
1
0
,5
4
9
.3
6
0
7

1
6

,5
1

8
,0

8
2

.7
4

8
7

8
,7

4
8

,0
1

7
.6

8
1

7
5

,9
6

4
,3

5
2

.5
2

3
2

6
,8

5
1

,2
9

1
.0

7
9

6

f 4
3

2
1

.9
0

8
4

2
7

7
1

1
1

3
0

.6
3

1
6

0
0

7
1

3
9

3
.1

7
7

3
1

9
9

3
1

3
8

4
.6

1
4

6
6

3
9

1
4

7
3

.9
6

7
2

5
2

1
7

2
6
8
.6
4
8
0
4
2
5
8

3
6

8
.3

7
3

1
5

4
2

2

f 5
8

7
5

0
.9

1
7

7
5

6
6

1
0

,1
5

1
.5

1
8

8
8

4
6

7
9
5
0
.8
7
3
2
2
0
9

1
0

,5
8

2
.1

2
0

6
4

1
2

8
3
1
9
.3
5
9
9
3
5
4

9
2

6
7

.3
2

9
0

8
2

4
9

4
4

6
.7

7
2

6
2

1
9

B
as

ic
M

u
lt

im
o

d
al

F
u

n
ct

io
n

s
f 6

1
5

7
1

.1
5

1
4

3
1

4
2

6
,2

8
1

.2
1

8
0

4
1

2
2

1
4

3
.0

6
4

9
7

1
1

2
6

,7
3

7
.1

3
8

8
7

9
4

1
3
4
3
.0
3
4
3
1
8
1

1
4
0
1
.8
3
6
0
2
3
4

4
1

7
8

.4
7

6
1

2
8

6

f 7
1

.0
0

8
6

6
2

2
6

4
8

4
.9

9
1

1
1

2
6

7
3

6
5

1
.0

7
4

8
9

4
6

7
4

1
6

.3
2

4
1

6
1

5
3

7
6

4
1

.4
4

8
0

0
2

9
5

4
2

0
.9
6
4
4
5
1
2
8
0
4
4

1
.2

8
1

4
8

2
2

9
2

9

f 8
2

0
.7

1
3

1
8

4
8

0
4

2
0

.8
7

3
4

2
8

7
6

6
8

2
0

.7
7

8
2

1
3

8
3

6
2

0
.8

1
0

6
2

4
4

5
6

4
2

0
.8

2
3

3
7

3
0

0
4

2
0
.6
8
9
3
6
6
7
4
4

2
0

.8
2

6
0

4
9

0
4

2

f 9
3

0
.6

0
8

1
1

2
8

2
1

8
8

.8
0

9
0

9
5

2
6

8
5

2
8
.6
1
2
3
1
0
6
8
3

7
9

.8
0

0
3

6
0

0
1

6
5

6
7

.0
9

6
8

4
5

6
5

8
3

4
.1

1
4

8
6

2
5

5
3

4
4

.6
8

3
1

0
9

5
4

4

f 1
0

2
4

4
.4

3
4

8
9

9
6

6
1
6
8
.8
5
6
4
2
8
0
3
8

3
0

3
.7

5
8

4
1

1
0

4
1
7
5
.1
9
1
5
0
5
3
8
5

2
2
8
.1
0
6
3
6
2
5
2

2
5

8
.2

4
3

0
5

5
9

3
2
2
1
.9
7
9
4
0
7
0
1

f 1
1

3
1

.3
1

8
2

8
0

4
2

3
3
1
.8
1
5
4
9
8
1
3
4
5

3
3

.7
6

3
5

7
9

4
6

7
3

1
.5

0
3

1
0

5
9

7
4

8
3
0
.4
6
9
2
6
8
6
7
2

3
1
.2
4
9
4
2
6
3
8
3

3
0
.1
9
7
6
6
3
3
3
2

f 1
2

1
6

,1
1

8
.6

3
9

5
3

3
4

9
,0

8
9

.3
0

9
6

3
9

4
1

9
,4

4
2

.1
5

2
7

1
6

4
7

,8
0

2
.5

4
1

7
3

0
2

2
8

,2
1

0
.0

5
4

8
6

8
8
8
0
7
.0
0
3
9
2
5
1

2
4

,6
1

2
.7

1
8

4
4

8

E
x

p
an

d
ed

M
u

lt
im

o
d

al
F

u
n

ct
io

n
s

f 1
3

4
.2

7
1

0
.7

2
3
.6
5

9
.6

5
5

.2
2

3
.4
6

6
.1

8

f 1
4

1
2

.9
6

1
2
.9
5

1
2
.9
0

1
3

.0
5

1
2
.8
1

1
2

.9
6

1
2
.9
2

–
/
=

#
/#

/#
3

/1
1

/0
6

/8
/0

1
/1

3
/0

5
/9

/0
8
/5
/1

3
/1

1
/0

Application of Coulomb’s and Franklin’s laws algorithm to solve large-scale optimal reactive power dispatch… 13917

123



Ta
bl
e
14

S
ta

n
d

ar
d

d
ev

ia
ti

o
n

o
f

th
e

re
su

lt
s

o
b

ta
in

ed
b

y
d

if
fe

re
n

t
v

er
si

o
n

s
o

f
C

F
A

fo
r

th
e

re
al

-p
ar

am
et

er
u

n
im

o
d

al
an

d
m

u
lt

im
o

d
al

te
st

fu
n

ct
io

n
s

P
1

O
ri

g
in

al
(2

)
2

si
n
h

si
n
h

|s
in
h|

2
*

|s
in
h|

|s
in
h|

?
|c

o
sh

|

P
2

O
ri

g
in

al
(2

)
co

sh
2

co
sh

|c
o

sh
|

2
*

|c
o

sh
|

|s
in
h|

?
|c

o
sh

|

T
es

t
fu

n
ct

io
n

s
S

td
S

td
S

td
S

td
S

td
S

td
S

td

U
n

im
o

d
al

F
u

n
ct

io
n

s
f 1

0
.0

1
3

1
4

1
4

6
1

0
8

7
4

3
.1

7
8

1
1

1
4

9
3

0
.0

1
7

8
3

9
1

9
3

6
7

6
5

.7
4

8
2

5
9

4
5

3
9

0
.2

9
7

8
4

4
3

5
9

7
4

0
.0

0
7

0
4

9
1

1
5

4
1

0
.0

9
7

3
2

5
6

4
4

3
5

2

f 2
2

3
.2

8
9

1
3

7
7

1
3

7
4

6
.8

5
2

8
4

5
4

5
3

6
.6

8
0

5
1

4
2

3
1

1
1

3
5

.2
6

2
7

6
8

1
1

1
8

.4
0

0
6

2
6

1
9

3
6

.6
7

5
6

5
5

2
7

1
1

6
.8

7
9

1
3

9
8

8

f 3
1

,8
5

4
,3

4
8

.1
3

2
9

9
,4

5
2

,1
8

5
.7

9
6

4
3

,0
9

0
,1

8
1

.6
2

0
7

4
,6

2
5

,0
1

1
.7

6
5

6
3

,3
9

0
,1

4
8

.1
8

6
5

2
,1

1
4

,9
7

2
.8

6
2

3
2

,6
3

0
,8

6
1

.0
5

4
3

f 4
3

3
2

.1
0

4
2

5
5

6
7

4
9

2
.0

8
5

7
3

0
3

2
2

1
5

.5
8

5
1

1
2

7
6

9
4

1
.9

9
2

3
0

3
2

1
2

4
1

.2
8

9
5

8
7

5
4

1
4

4
.7

7
2

5
6

4
7

5
1

9
7

.3
0

0
2

4
1

6
5

f 5
2

5
0

0
.2

2
6

8
2

6
7

1
8

9
4

.4
6

2
5

8
1

5
2

5
7

7
.8

7
8

7
9

2
5

2
7

4
4

.6
1

2
7

2
0

5
1

5
9

8
.9

8
1

3
3

9
1

1
8

7
4

.3
1

8
7

7
7

9
2

8
0

9
.1

2
7

5
6

2
2

B
as

ic
M

u
lt

im
o

d
al

F
u

n
ct

io
n

s
f 6

2
3

1
6

.7
6

4
0

5
7

7
1

2
,4

8
5

.3
5

4
1

5
3

2
4

9
6

.1
7

7
1

6
3

6
3

0
,6

5
6

.3
2

4
6

5
5

1
3

9
7

.3
7

6
3

2
3

1
3

4
4

6
.0

4
4

5
6

3
5

4
9

6
.8

7
9

5
9

1
4

f 7
0

.1
1

6
6

7
3

0
9

4
0

9
1

.7
1

9
4

8
4

3
0

7
0

.0
4

7
1

8
7

2
4

0
9

6
5

3
.1

4
4

8
1

7
2

2
0

2
0

.1
8

3
3

4
8

1
4

7
2

9
0

.1
3

6
2

5
9

8
0

8
7

9
0

.1
6

8
8

3
0

6
9

7
7

4

f 8
0

.0
8

7
1

1
7

9
7

3
4

8
6

0
.0

6
3

3
7

4
3

9
3

8
7

8
0

.1
1

0
0

5
1

1
7

6
4

4
0

.0
5

7
9

8
9

3
6

8
9

7
7

0
.0

8
3

7
9

7
6

5
7

7
8

1
0

.0
8

2
1

9
2

9
8

2
1

3
9

0
.0

5
4

3
3

0
9

0
1

3
0

5

f 9
1

0
.9

5
0

7
4

7
1

6
2

1
.9

5
8

0
3

3
7

3
1

9
.3

4
1

3
2

3
8

6
9

9
2

4
.6

4
2

7
1

7
9

2
2

1
7

.7
0

8
7

6
6

9
1

1
1

9
.5

1
9

8
3

6
7

2
8

.8
7

0
8

7
9

7
1

4
3

f 1
0

6
6

.2
7

0
5

2
3

9
8

5
4

8
.6

1
9

4
0

5
7

0
3

8
6

.9
5

7
1

4
6

6
6

3
2

3
.9

5
2

9
6

9
1

2
7

5
5

.9
8

0
3

3
8

5
8

9
8

9
.8

6
2

2
9

6
9

7
8

4
2

.6
3

7
4

8
3

2
2

4

f 1
1

2
.7

4
5

8
2

0
1

0
1

3
2

.2
5

1
7

5
9

6
4

2
6

1
.9

7
1

7
4

9
0

5
8

7
3

.2
6

6
0

1
7

5
1

4
7

2
.5

5
9

8
0

8
2

7
7

4
3

.2
8

5
1

9
9

8
5

7
6

2
.4

5
1

1
0

3
2

7
4

8

f 1
2

1
2

,4
5

0
.8

5
1

3
2

2
2

3
,9

1
0

.7
7

5
8

0
9

8
6

5
7

.4
9

6
7

2
4

3
1

6
,1

6
7

.0
6

1
0

8
5

1
5

,9
2

4
.2

3
5

4
6

5
4

6
1

0
.6

0
9

8
6

0
8

1
5

,7
6

0
.1

8
6

6
6

6

E
x

p
an

d
ed

M
u

lt
im

o
d

al
F

u
n

ct
io

n
s

f 1
3

0
.8

0
3

2
2

8
5

8
4

0
7

2
.4

0
3

9
1

1
5

6
2

3
1

.0
5

3
0

1
7

5
0

3
3

2
.4

7
2

8
1

2
9

4
0

7
1

.7
3

4
1

6
3

3
4

9
2

0
.9

4
6

9
8

7
1

7
0

1
2

.1
8

6
2

2
8

7
9

7

f 1
4

0
.4

2
1

5
6

4
9

6
7

7
2

0
.3

6
4

5
4

9
8

4
5

2
4

0
.4

8
8

6
4

1
3

8
2

6
3

0
.4

1
0

5
1

4
8

5
6

8
3

0
.4

8
6

4
7

7
0

7
2

8
7

0
.3

4
0

2
0

0
8

4
4

8
0

.3
8

2
2

9
4

1
2

4
5

7

±
/

=
3

/1
1

/0
6

/8
/0

1
/1

3
/0

5
/9

/0
8

/5
/1

13918 M. Ghasemi et al.

123



f1 f3

f6 f7

f13 f14

0 5000 10000 15000
-5

0

5

10

15

Iteration

M
ea

n
 V

al
u

e 
of

 B
es

t (
lo

g)

 

 
p

1
=2, p

2
=2

p
1
=2, p

2
=Cos(delta)

p
1
=Sin(delta), p

2
=2

p
1
=Sin(delta), p

2
=Cos(delta)

p
1
=|Sin(delta)|, p

2
=|Cos(delta)|

p
1
=2*|Sin(delta)|, p

2
=2*|Cos(delta)|

p
1
=p

2
=|Sin(delta)|+|Cos(delta)|

0 5000 10000 15000
15

16

17

18

19

20

21

22

Iteration

M
ea

n
 V

al
u

e 
of

 B
es

t (
lo

g)

 

 
p

1
=2, p

2
=2

p
1
=2, p

2
=Cos(delta)

p
1
=Sin(delta), p

2
=2

p
1
=Sin(delta), p

2
=Cos(delta)

p
1
=|Sin(delta)|, p

2
=|Cos(delta)|

p
1
=2*|Sin(delta)|, p

2
=2*|Cos(delta)|

p
1
=p

2
=|Sin(delta)|+|Cos(delta)|

0 5000 10000 15000

8

10

12

14

16

18

20

22

Iteration

M
ea

n
 V

al
u

e 
of

 B
es

t (
lo

g)

 

 
p

1
=2, p

2
=2

p
1
=2, p

2
=Cos(delta)

p
1
=Sin(delta), p

2
=2

p
1
=Sin(delta), p

2
=Cos(delta)

p
1
=|Sin(delta)|, p

2
=|Cos(delta)|

p
1
=2*|Sin(delta)|, p

2
=2*|Cos(delta)|

p
1
=p

2
=|Sin(delta)|+|Cos(delta)|

0 5000 10000 15000

0

1

2

3

4

5

6

7

8

Iteration

M
ea

n
 V

al
u

e 
of

 B
es

t (
lo

g)

 

 
p

1
=2, p

2
=2

p
1
=2, p

2
=Cos(delta)

p
1
=Sin(delta), p

2
=2

p
1
=Sin(delta), p

2
=Cos(delta)

p
1
=|Sin(delta)|, p

2
=|Cos(delta)|

p
1
=2*|Sin(delta)|, p

2
=2*|Cos(delta)|

p
1
=p

2
=|Sin(delta)|+|Cos(delta)|

0 5000 10000 15000
1

2

3

4

5

6

Iteration

M
ea

n
 V

al
u

e 
of

 B
es

t (
lo

g)

 

 
p

1
=2, p

2
=2

p
1
=2, p

2
=Cos(delta)

p
1
=Sin(delta), p

2
=2

p
1
=Sin(delta), p

2
=Cos(delta)

p
1
=|Sin(delta)|, p

2
=|Cos(delta)|

p
1
=2*|Sin(delta)|, p

2
=2*|Cos(delta)|

p
1
=p

2
=|Sin(delta)|+|Cos(delta)|

0 5000 10000 15000
2.54

2.56

2.58

2.6

2.62

2.64

2.66

2.68

Iteration

M
ea

n
 V

al
u

e 
of

 B
es

t (
lo

g)

 

 
p

1
=2, p

2
=2

p
1
=2, p

2
=Cos(delta)

p
1
=Sin(delta), p

2
=2

p
1
=Sin(delta), p

2
=Cos(delta)

p
1
=|Sin(delta)|, p

2
=|Cos(delta)|

p
1
=2*|Sin(delta)|, p

2
=2*|Cos(delta)|

p
1
=p

2
=|Sin(delta)|+|Cos(delta)|

Fig. 11 Convergence

characteristics of different

versions of CFA for test

functions f1, f3, f6, f7, f13 and f14

Table 15 Comparison of the

ORPD solutions obtained by

different versions of CFA

optimizer for IEEE 118-bus

system

p1 p2 Best (MW) Worst (MW) Mean (MW) Std

2 2 114.7666 114.8412 114.8003 5.00e-03

2 Cosh 115.1705 118.2524 116.8162 3.15e ? 00

Sinh 2 114.7672 114.8605 114.8148 4.08e-03

Sinh Cosh 115.2294 117.4593 116.7465 1.90 ? 00

|Sinh| |Cosh| 114.7769 116.9315 115.9937 9.46e-01

2 * |Sinh| 2 * |Cosh| 114.7666 114.8415 114.7978 3.52e-03

|Sinh| ? |Cosh| |Sinh| ? |Cosh| 114.7745 115.0021 114.8926 8.34e-02
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studies. Furthermore, the proposed improved CFA opti-

mizer can be applied for solving other real-world and

engineering optimization problems.
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