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The innovations propelling the manufacturing industry towards Industry 4.0 have begun to
maneuver into machine tools. Machine tool maintenance primarily concerns the feed drives
used for workpiece and tool positioning. Condition monitoring of feed drives is the interme-
diate step between smart data acquisition and evaluating machine health through diagnos-
tics and prognostics. This review outlines the techniques and methods that recent research
presents for feed drive condition monitoring, diagnostics and prognostics. The methods are
distinguished between being sensorless and sensor-based, as well as between signal-,
model-, and machine learning-based techniques. Close attention is given to the components
of feed drives (ball screws, linear guideways, and rotary axes) and the most notable param-
eters used for monitoring. Commercial and industry solutions to Industry 4.0 condition
monitoring are described and detailed. The review is concluded with a brief summary
and the observed research gaps. [DOI: 10.1115/1.4054516]
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1 Introduction
The manufacturing industry is rapidly adopting intelligent

methods and principles to optimize productivity. This is driven by
the advancements in information and manufacturing technologies
and is leading the way to a paradigm shift in manufacturing
called Industry 4.0. One of the primary aspects of this revolution
is the digitalization and networking of factories. Due to the strong
demands for improvements in quality, efficiency, and quick
market response, the manufacturing industry is in need of a revolu-
tionary upgrade in the form of cyber-physical systems [1]. The
purpose is to connect people to physical systems while sharing
in-depth information about those systems which is aided by the
use of artificial intelligence among other advanced technologies.
Industry 4.0 demands that machine tools keep up with the inno-

vation by employing a digital twin that can, for example, apply
advanced algorithms for prognostics and health management
(PHM), machining optimization, and augmented reality process
visualization [2]. Such innovations are being recognized in the
maintenance of machine tools as the industry moves away from
the dominant preventive maintenance (PM) strategies to predictive
maintenance and beyond.
The goal of maintenance is to improve the longevity of produc-

tion equipment and operations by repairing, replacing, or maintain-
ing equipment components. A timeline of the maintenance
strategies used throughout the various industrial revolutions is
shown in Fig. 1. The predominant maintenance strategies include
corrective maintenance and PM. Corrective maintenance, otherwise
known as run-to-failure or reactive maintenance, is when mainte-
nance decisions are based on the occurrence of failures of equip-
ment. Policies under this type of maintenance tend to result in
high maintenance related costs and lost production [4]. Preventive
maintenance aims to conduct maintenance actions before equip-
ment failure occurs thereby reducing equipment failure rates. This

improves the availability and reliability of equipment while contrib-
uting to minimizing failure costs and downtime [5]. PM is generally
based on scientific methods applied through experience or original
equipment manufacturer (OEM) recommendations [6]. PM includes
comprehensive strategies, such as reliability-centered maintenance
and total-productive maintenance, as well as the strategies of time-
based maintenance (TBM) and condition-based maintenance
(CBM).
Time-based maintenance is a strategy that relies on periodic

maintenance actions. These actions aim to avoid equipment failures
by replacing components before they fail. The success of TBM is
based on its foundation of predicting component reliability based
on analyses of failure data [7]. Though TBM has been the dominant
maintenance policy for decades, this strategy has limitations.
Replacing equipment at regular intervals ignores the current
health of the equipment. This leads to unnecessary downtime and
additional costs due to unnecessary maintenance actions. Another
limitation is that TBM assumes equipment failure characteristics
are predictable [6]. This lends to the so-called bathtub curves that
define three stages of failure. These being wear-in, useful life, and
wear-out. However, as noted by Hashemian [8], failures can occur
at seemingly random times and many failures are attributed to infant
mortality (i.e., premature failure).
The shortcomings of TBM have led to a maintenance strategy

that questions the health condition of equipment. By determining
the relative condition of machine components, an optimal time
for maintenance or component replacement can be determined.
Condition-based maintenance relies on the acquisition of real-time
and historic data representative of machine health to make these
informed decisions. The core foundation of CBM is thus condition
monitoring (CM). Developments in information and communica-
tion technologies (ICTs) have improved the prospects of CBM.
However, the conversion from TBM to CBM includes judging
whether the relative benefits of CBM outweigh the additional
costs [9]. These costs include the monitoring equipment and the
means of measuring, storing, and analyzing data.
Though some definitions put CBM under a PM paradigm, some

consider it to be either synonymous with predictive maintenance
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(PdM) [8,10] or a classification of PdM [11]. The purpose of PdM
policy is in the name: to predict faults or failures of a system such
that maintenance decisions and actions can be optimized. It is a
right-on-time maintenance strategy that involves evaluating the
state of a deteriorating system [10,11]. The evaluation of the
state, or “health,” of a system is performed via diagnostics and prog-
nostics, terms adopted from the healthcare industry. Diagnostics
involve the detection, isolation, and identification of faults. Fault
detection notifies that a problem has occurred, fault isolation
locates the faulty component or equipment, and fault identification
seeks to determine the nature of the fault [12]. Prognostics aim to
predict the future condition or health state of components or equip-
ment based on measured and available data. Both tasks can provide
valuable information for maintenance decisions, but successful
prognosis can prove to be superior in utility.
Diagnostics and prognostics require the intermediate step of con-

dition monitoring. Condition monitoring bridges the gap between
raw, complicated machine data and the useful information obtained
through health evaluation. The relationships between CM and diag-
nostics and prognostics is shown in Fig. 2. CM involves the analysis
of measured signals and data to detect changes that can reflect the
health of the system. Such analysis can include the calculation of
various features and model parameters. Diagnostics and prognostics
can further use these features and parameters for fault detection and
remaining useful life (RUL) calculation. The health evaluation can
then be monitored for significant changes that indicate a fault/failure
or to notify that a maintenance action is imminent.
Machine tools can be considered as the backbone of modern

manufacturing due to their complex machining capabilities. These
include production and computer numerical control (CNC)
machine tools. Production machine tools are composed of auto-
mated part transfer systems that move workpieces between
groups of simpler tools. Examples are rotary and conventional (or
in-line) transfer machines. CNC machine tools are among the

most common tools found in manufacturing. They provide the pre-
cision and speed of computers to machine intricate parts while
maintaining close tolerances. CNC machines include turning
centers that perform turning, boring, facing, threading, profiling,
and cutoff operations, and machining centers that are used for
milling, boring, drilling, and tapping [13]. Multi-axis machining
centers include horizontal, vertical, and universal spindle configura-
tions. Vertical gantry and bridge machine tool structures are used
for large workpieces as they yield improved stability of the
spindle. Horizontal machines are more versatile with the capability
to machine four sides of a workpiece when used with a rotary index-
ing table. Universal machining centers have spindle heads that can
rotate and effectively act as both horizontal and vertical machines.
Turning centers include CNC lathes and automatics which use live
tooling and can have multiple slides and spindles.
Common to nearly all machine tools are the systems and subsys-

tems that comprise the machine. The feed drives, guideways,
spindle and tooling systems, tool changer, hydraulic circuits, pneu-
matic circuits, and electrical hardware are all subject to degradation
and abrupt failures. As machine tools gain complexity, so do their
maintenance requirements. The maintenance of these systems can
be both expensive and time consuming. To maximize economic
profitability, the maintenance actions needed for these machines
and their systems need to be optimized. However, close attention
should be made to the critical systems that are the most costly to
maintain. These include feed drive systems that are composed of
either linear or rotary actuators and guideways or slides. Linear
feed drives typically use servo motors, ball screws, and linear guide-
ways to drive a worktable or tool to a position or follow a contour as
directed by the numerical controller (NC). Rotary axes commonly
use direct drives or worm drives to orient tooling and the worktable.
The control of these systems is made possible through sensors that
measure feedback signals. These components undergo natural wear
that affect the positioning accuracy and can lead to breakdowns and

Fig. 1 The four industrial revolutions including their predominant maintenance strategy, characteristics, inspection method,
overall equipment effectiveness, and the specialized personnel that aided the maintenance teams of the era. This timeline was
inspired by the work of Poór et al. [3].
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lost production. Monitoring the health condition of feed drives can
prove useful in optimizing maintenance actions. This is made pos-
sible by the rich amount of data being measured by the sensor
systems through which the health condition of the feed drive can
be estimated.
Due to the cost and downtime associated with feed drive dete-

rioration and failure, many CM methods have been developed
over the past two decades in an attempt to mitigate these factors.
Previous review articles that have covered machine tool feed
drive monitoring include Refs. [14–17]. These articles provide well-
organized information on this field of research but have their short-
comings. The advancements in sensor technology and data analysis
have outdated the review by Martin [14]. Goyal and Pabla [16]
provide detailed information on machine tool vibration monitoring
but exclude modern data analysis techniques such as machine/deep
learning. Teti et al. [15] and Baur et al. [17] lack a detailed and com-
prehensive approach to feed drive condition monitoring. This
review attempts to address these shortcomings by providing a com-
prehensive review of machine tool feed drive condition monitoring.
This paper presents a state-of-the-art review of condition-based

monitoring of machine tool feed drives. Due to the close relation-
ship with diagnostics and prognostics, these methods are also
included. The subject matter is dealt with by first observing condi-
tion monitoring applications and their challenges in Sec. 2. There-
after, an overview of machine tool feed drives is given in Sec. 3.
Condition monitoring, the sensors used, and computational
methods are described in Sec. 4. Condition monitoring of
machine tool feed drives is reviewed in Sec. 5. Commercial and
industry solutions to condition monitoring are given in Sec. 6.
Lastly, a summary of the reviewed research and the future
outlook of the field are presented in Sec. 7.

2 Applications and Challenges of ConditionMonitoring
Condition monitoring is an area of research with many applica-

tions beyond machine tools. These applications include the moni-
toring of wind turbines, trains, and railways [18–20]. This section
explores the condition monitoring of two areas closely related to

machine tools: rotating machines and machine/structure health.
Afterwards, background literature and information on the CM of
machine tools and machining processes are given.

2.1 Condition Monitoring of Rotating Machines. The con-
dition monitoring of electrical motors has seen a breadth of
research. The 2005 article by Nandi et al. [21] reviews the
common faults and symptoms of electrical motors as well as the
monitoring strategies developed to mitigate them. This work
surveys the signals used and the frequency contents of each. Alter-
native methods such as thermal measurements and chemical analy-
ses are also explored. The authors recognize the slow replacement
of human involvement in the monitoring process, and automated
artificial intelligence (AI)-based techniques such as neural net-
works, fuzzy logic systems, and expert systems are investigated.
Singh and Ahmed Saleh Al Kazzaz [22] see that an ongoing

problem with diagnostic techniques of induction motors is the
requirement for constant human interpretation. This suggests that
the logical progression is to automate the diagnostic process of
induction machines. Also noted is the need for real industrial solu-
tions as most solutions do not consider the non-ideality of environ-
ment variables on the measured parameters. Zhang et al. [23] review
medium-voltage induction motors stating that their breakdowns
lead to high repair costs and financial losses due to the subsequent
downtime. Condition monitoring and fault detection in the stator,
bearing, rotor, and air gap eccentricity are prevalent, as are the mon-
itoring of thermal protection and temperature estimation. The effec-
tiveness, robustness, accuracy, and complexity of induction motor
monitoring features are analyzed as well.
Kande et al. [24] consider the CM of electrical machines on a

plant-wide scale. The investment requirements and the complexity
of larger-scale monitoring strategies increase with the number of
measurements needed. This leads to only the most severe circum-
stances influencing the implementation of such monitoring strate-
gies. An inhibiting factor is the ratio of CM cost to equipment
cost which deters the use of monitoring to guide maintenance
teams over a large number of machines. With the development of
low-cost technology, a solution to plant-wide monitoring arises
with the use of integrated smart sensors embedded in the machines
(see Fig. 3). These sensors can monitor more variables than what
could otherwise be monitored, but likely with reduced accuracy
and precision. However, they offer a monitoring solution at the
plant scale.
A more narrow monitoring scope of electrical motors applies to

bearings [25]. This overview details that bearing faults count for

Fig. 3 The required investment into CM commissioning and
installation leads to only a subset of an entire plant being moni-
tored, often with less variables being monitored. New integrated
smart sensors embedded into machines can offer greater moni-
toring capacity at more affordable prices.

Fig. 2 The relationship between condition monitoring, diagnos-
tics and prognostics. The feedback from the health evaluation
box shows that diagnostic and prognostic characteristics can
be extracted and monitored, much like the raw data.
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about half of all electric machine failures. Seven different monitor-
ing schemes are shared with a focus on their implementation. The
fault modeling and predictive health monitoring of rolling
element bearings have been investigated extensively in general as
well [26].

2.2 Health Monitoring of Structures and Machines. In
structural health monitoring, vibrations are the chief data type for
analysis. In situ and non-destructive sensing methods and analyses
are used to detect damage and degradation of structures. Carden and
Fanning [27] review the methods in monitoring the vibrations of
structures. At the time of its publication, the majority of the litera-
ture had focused on modal analysis due to historical reasons and the
easily interpreted results.
Aside from rigid structures, Randall’s book [28] on condition

monitoring teaches the vibration analysis methods applied to
machines. Jardine et al. [12] explore machinery diagnostics and
prognostics. This article presents the monitoring of machines
through three main steps of CBM, namely, data acquisition,
signal processing, and maintenance decision-making. CBM is rec-
ognized to be the superior choice over the traditional maintenance
strategies of run-to-failure and preventive maintenance policies.
Despite this, CBM has not been widely implemented due to inade-
quate data collection and improper communication between theo-
rists and practitioners, among other reasons. The review
hypothesizes that future diagnostics and prognostics will focus on
continuous monitoring and automatic diagnosis/prognosis. A
recent review on machine health monitoring shows that hypothesis
may be correct. Zhao et al. [29] review deep learning and its appli-
cations to machine health monitoring. The authors state that deep
learning-based strategies require less human intervention and
expert knowledge, which would provide a solution that is not just
applicable to specific machines, but machines as a whole.
However, such methods have yet to be demonstrated under real
manufacturing variation. The progression of condition monitoring
from traditional methods to the methods of the future is depicted

in Fig. 4. The end-goal for CM is the complete autonomy of the
process which alerts for abnormal events and suggests the correct
maintenance action. As of today, we stand between the methods
that use signal characteristics and machine learning (ML).

2.3 Condition Monitoring in Machine Tools. The condition
monitoring of machine tools can generally be categorized as
process health monitoring or equipment health monitoring. The
former involves the monitoring of the cutting tool, part quality,
and process stability. The latter monitors the health condition of
the various systems of machine tools. However, these forms of
monitoring are not completely independent as the wear of equip-
ment can affect process stability, workpiece quality, etc., but a dis-
tinction is made to highlight their differences. A comparison
between the two methods is given in Fig. 5.

2.3.1 Process Health Monitoring. The early research in tool
condition monitoring (TCM) shows the usefulness of sensor
systems employed in machining. Byrne et al. [30] encapsulate the
adoption of these systems in industry in a 1995 review. Important
aspects of TCM are the development of multiple sensors for
increased reliability, intelligent sensors with better processing and
decision-making actions, and the integration of open architecture
NCs using these sensor systems. The developments aim towards
producing more stable processes, allowing to detect tool breakage
and optimizing tool usage.
Teti et al. [15] compiled a comprehensive review that captures the

state-of-the-art in advanced monitoring of machining operations.
Modern sensor systems are much more reliable and cost less than
they did in the past. Signal processing algorithms and decision-
making strategies have also been progressing quickly. However,
it is observed that few of these advanced methods have been
brought into the limelight of industrial application, regardless of
the amount of industry data available. This is attributed to the
complex implementation requirements which need an abundance
of human attention. If the goal going forward is to improve

Fig. 4 The progression from traditional condition monitoring to the future of
condition monitoring uses more autonomous methods. The current state of con-
dition monitoring falls between using collected data for diagnostic/prognostic
purposes and utilizing artificial intelligence and network or cloud-based solu-
tions to continually monitor systems. Condition monitoring in general is on a tra-
jectory to attain completely autonomous monitoring capabilities.
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autonomy and reduce machine tool operators from the monitoring
process, then the problems of sensor robustness and false positives
need to be addressed.
The specific application of TCM in milling operations shows its

implementation to be complicated. The general involvement of
TCM acceptable for all milling processes has been a reluctant
achievement. Zhou and Xue [31] describe that the challenges of
developing inexpensive TCM models for specific conditions, opti-
mizing multi-sensor/feature configurations, use of monitoring
models for prognosis rather than diagnosis, and the application of
more advanced AI-based monitoring methods are preventing
wider implementation of TCM in milling. More recently, Patil
et al. [32] note that deep learning can meet some of these challenges,
thus bringing the field of TCM closer to complete Industry 4.0
implementation.

2.3.2 Equipment Health Monitoring. The 1994 review of con-
dition monitoring and fault diagnosis in machine tools by Martin
[14] outlines the activity and excitement concerning condition mon-
itoring and its applications to CBM. This work focuses on equip-
ment health monitoring and distinguishes between soft faults, i.e.,
slowly developing faults, and hard faults. The former shows to be
a better candidate for condition monitoring while the latter can be
more easily diagnosed. Online and offline monitoring is discussed
as well as autonomous monitoring. This leads to decisions about
the parameters to be monitored and the method of data acquisition.
The research of condition monitoring is foreseen to be of increasing
importance and a request for more information on how faults arise is
asked.
Vibrations can give key insight into the health of machine tools.

Goyal and Pabla [16] review the research on the tools used for
vibration analysis concerning the CM of machine tools. These
tools include the sensors and signal processing algorithms needed
to extract meaningful quantities that represent the health of the
machine tool. The common signal processing techniques include

wavelet transforms (WTs), time series models, the Hilbert–Huang
transform (HHT), and combinations of these methods as well.
Contact type sensors are found to be the most prevalent in measur-
ing vibrations in machine tools. However, non-contact sensors
provide measurements with reduced mass-loading effects as they
are isolated from the machine dynamics. These sensors allow for
quicker and more accurate comparisons with theoretical models.
Concluding the review is the hypothesis that research may focus
on capitalizing on new information communication technologies.
Smartphone devices can be used for better access to the health con-
dition of the machine, improving maintenance decision-making.
PHM is noted to be the next maintenance strategy beyond CBM.

Baur et al. [17] give a survey on PHM applied to machine tools.
Much attention is given to prognostics and the different approaches
available including their shortcomings. These methods are
described for each of the main subsystems of machine tools,
those being the feed axis, spindle, cutting tool, and hydraulic
system. Similar to Ref. [16], limitations on current methods
include the need for improved information collection systems as
ICT becomes more prevalent in manufacturing. Another limitation
is the need for methodologies that can adapt prognostic models
through online data in order to remain relevant.
With the increasing implementation of smart sensors systems and

the use of artificial intelligence and machine learning algorithms,
manufacturing industries are moving towards the next generation
of manufacturing. Industry 4.0 and the digital realm of manufactur-
ing involve the integration of ICT and automation to improve effi-
ciency and decision-making. As will be seen in this article, much
research is conducted in laboratory settings where smart systems
and machine learning are used to monitor the condition of
machine tools. Some studies include the analysis and implementa-
tion of these methods on industrial equipment used in actual man-
ufacturing environments. This begins to pave the way for
industrial applications of CM. However, the complete merging of
Industry 4.0 and ICT in industry is still yet to be seen in this area.

Fig. 5 A comparison between equipment and process health monitoring of machine
tools. Equipment health monitoring includes the monitoring of feed axis components
such as ball screws and guideways. Process health monitoring involves the cutting tool,
cutting process, workpiece quality, and process stability.

Journal of Manufacturing Science and Engineering OCTOBER 2022, Vol. 144 / 100802-5

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/144/10/100802/6890714/m
anu_144_10_100802.pdf by guest on 27 February 2025



3 Machine Tool Feed Drives
The machine tools considered in this review generally consist of

CNC machining systems. Machine tool feed drives are the axes that
provide movement and positioning of a table and workpiece or the
spindle and cutting tool. An overview of machine tool feed drives is
given in this section.
Traditionally, CNC machine tools are categorized as machining

or turning centers, although multi-functional (mill-turn machines)
tools are becoming more common. Modern machine tools can
operate with five or more axes where each axis is composed of
either a linear or rotary drive. However, three-axis CNCs are not
uncommon. For example, a five-axis vertical machining center
can have three linear axes (x, y, and z) and two rotary axes (a
and b). The most common linear feed drive in machine tools is
the ball screw drive [33]. As such, linear motor drives are not con-
sidered here.

3.1 Ball Screw Drives. Ball screw drives translate the rota-
tional motion of a drive motor into the linear motion of the table.
The motor can drive the ball screw directly or through a gear
reducer or gearbox. The components of a ball screw drive include
the ball screw, ball nut, AC or DC drive motor, support bearings,
guideway or slide, the table, and encoder sensors as shown in
Fig. 6. AC permanent magnet synchronous motors are the most
common to drive ball screw axes in machine tools. A preload in
the screw nut is usually needed to eliminate backlash and increase
stiffness. Preload can be applied by the use of double-nut designs,
oversized balls, or shifting the pitch of the nut relative to the ball
screw.

3.1.1 Ball Screw Models. Ball screw drives deflect torsionally
due to the ball screw shaft, the screw nut, and the motor–shaft cou-
pling. Damping characteristics are also seen due to friction in the
motor, support bearings, and the screw nut. A dynamic model
that ignores the torsional flexibility (i.e., a rigid body model) can
be represented by the transfer function, G(s), relating the motor
position, θm, to the motor torque, Tm,

G(s) =
θm
Tm

=
K

s(Jes + B)
(1)

where K is a gain factor, Je is the equivalent inertia reflected onto the
motor, and B is the viscous damping coefficient.
When considering the inertial and cutting forces exerted on the

ball screw drive, a lumped mass model, such as that shown in
Fig. 7, can give more insight into the structural vibrations. In
such a model, the inertia of the drive motor, Jm, is connected to
the inertia of the ball screw, Jl, by the stiffness and damping ele-
ments Kt and Ct, respectively. The transfer function, G(s), of this
system is given as

G(s) =

Jls2 + Cts + Kt Cts + Kt

Cts + Kt Jms2 + Cts + Kt

( )

s2 JlJms2 + Ct(Jl + Jm)s + Kt(Jl + Jm)
( ) (2)

This then gives the following dynamic equation:

θm
θl

( )
= G(s)

Tm
Tl

( )
(3)

where θl is the angular position of the ball screw and Tl is the
applied torque seen by the ball screw. The linear position of the
table, xt, can be obtained by multiplying the angular position of
the ball screw by the transmission ratio, R,

xt = θlR (4)

For ball screws, the transmission ratio is R= l/2π, where l is the lead
of the ball screw. More complex dynamic models can include the
stiffness and damping seen between the table and the screw. See
Refs. [34,35] for applications of these models.
Finite element methods (FEMs) have also been used to model the

complexities of ball screw drives. An overview of FEM models
with respect to ball screw drives is given by Altintas et al. [33].

3.1.2 Control of Ball Screw Drives. A NC generates a trajec-
tory profile from a part program and provides the control algorithms
used for axis positioning. The trajectory profile consists of position,
velocity, acceleration, and jerk commands that are sent to the axis
controllers. The controllers in turn receive position feedback
signals from rotary and linear encoders. Such signals may be used
in combination with mathematical feed drive models to provide a
means of condition monitoring.
The general control method used in modern feed drives is cas-

caded proportional position and proportional-integral velocity
control, or P-PI control. In this control scheme, the reference posi-
tion, velocity, and acceleration are calculated by the NC and sent to
the controller via a field bus. The P-PI control method can be imple-
mented with the use of adaptive gains, online parameter estimation,
and feedforward compensation. Control laws may also use acceler-
ation and jerk feedback signals. This control scheme is used to
ensure stability against uncertain disturbances and changes in the
dynamics due to wear and increased friction. On a deeper level,
the motor drive current is also controlled via a PI control law.
However, this can often be modeled as unity or as a gain since
the bandwidth of the current control loop is much greater than
that of the velocity control loop. For instance, the bandwidth of a
current controller is typically 1 kHz while the bandwidth of the
velocity control loop is usually less than 10% of the current
control loop (i.e., 100Hz). The bandwidth of the position loop is
even smaller than that of the velocity loop being approximately
30% of the bandwidth [33]. An example of a control architecture
is given in Fig. 8. Feedback filters are also implemented to
remove noise from measured encoder signals.
The goal of rigid body controllers is to expand the positioning

bandwidth of the feed drive as much as possible [33]. However,
this can result in exciting the structural modes of the feed drive
axis. These classical control schemes may use lowpass or notch
filters in order to remove unwanted exciting frequencies in the
control signal. Lowpass filters provide good attenuation of problem-
atic high-frequency signals. However, the structural dynamics must
be known with certainty to properly implement notch filters.Fig. 6 Components of a ball screw drive

Fig. 7 Ball screw lumped mass model
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Control architectures that do account for the flexibility of the
drive can implement several methods to mitigate the resulting vibra-
tions. These include trajectory generation algorithms and active
damping. More information on this type of control can be found
in Ref. [33].
In condition monitoring, controller data (NC data) are often used

in physical, signal-based, and data-driven models. These include
encoder feedback signals, motor currents, and torques. More infor-
mation on the sensors and signals used in machine tools is given in
Sec. 4.

3.2 Rotary Axis Drives. Rotary axis drives include the a, b,
and c axes of machine tools. They can be driven directly or
through a gearbox, much like ball screw drives. Rotary axes can be
driven by AC servo motors or DC torque motors. The typical con-
struction of a rotary drive includes the motor, housing, bearings,
and position encoder(s). Drives that use torque motors are considered
to be direct drives as the load is directly connected to the rotor. Servo-
driven axes can often include the use of worm and gear mechanisms.
Rotary drives have similar dynamics to ball screw drives;

however, there is no conversion from rotary to linear motion. Like-
wise, the control of rotary drives is identical as a P-PI controller is
implemented for position and speed control. For the condition mon-
itoring of rotary axes, see Sec. 5.4.

3.3 Linear Guideways and Slides. Slides and guideways are
linear mechanisms that provide a path for which a table or tool may
travel. These mechanisms usually consist of one or more carriages
and linear rails on which the carriage(s) are mounted. Slides and
guideways can be driven by mechanical, hydraulic, or electrical
drives.
Different bearing systems are integrated into the carriages. Fric-

tion type bearings include sliding contact bearings (or hydrody-
namic bearings) and are the most common [13]. Friction bearings
can sometimes experience stick-slip or stiction phenomena, which
may occur when static friction is greater than the dynamic friction.
Friction is reduced on these guideways by coating the rails in a low-
friction material. Rolling element bearings are used in linear guides
which are another common guideway system. These bearings
include recirculating balls or rollers, or non-recirculating variants.
Hydrostatic and aerostatic bearings are used on precision machine
tools. The elements of these bearing mechanisms experience no
physical contact as they are supported by thin films of oil or contin-
uously flowing air providing low-friction travel. These bearing
systems require routine lubrication, among other maintenance
actions, to increase component longevity.
The monitoring of guideways typically includes identification of

degradation, preload, internal or external forces, and lubrication
states. Fault diagnosis can also be performed by recognizing pat-
terns from these monitoring parameters. More on guideway moni-
toring and diagnosis can be found in Sec. 5.2.

4 Condition Monitoring
Various definitions and descriptions of CM are proposed. Jardine

et al. [12] describe CM data as “measurements related to the health

condition/state of the physical asset.” Campos [36] details CM as a
process that “involves data acquisition, processing, analysis, inter-
pretation, and extracting useful information.”Ahmad and Kamarud-
din [6] report CM as two-fold: “First, it collects the condition data
(information) of the equipment. Second, it increases knowledge of
the failure causes and effects and the deterioration patterns of equip-
ment.” In a review on CBM of machine tools, Goyal and Pabla [16]
define CM as the continuous monitoring of parameters for the pre-
diction of component failures.
Common among these definitions is the notion of measuring data.

This section begins with the tools needed for data acquisition; those
tools being sensors. Next, the methods for processing and analysis
are given for signal-based, model-based, and data-driven methods.
All of these methods aim to extract useful information about the
health state of the machine.

4.1 Sensors and Signals. Sensors are an integral part of
machine tools that allow them to operate at the precision required
by modern manufacturing. Internal sensors are those that are built
into the machine tool by the OEM for positioning and control pur-
poses. The CM methods solely using internal sensors are described
as sensorless methods in this work. The methods using external
sensors are described as sensor-based. Note that methods using
both internal and external sensors are still deemed to be sensor-
based. Figure 9 depicts the similarities and differences between sen-
sorless and sensor-based signals.

4.1.1 Internal Sensors and Signals. The most important inter-
nal sensors are presented here. However, the sensors described are
not exhaustive in the application of machine tools.
Position measurement is needed for the precise machining oper-

ations conducted by machine tools. Linear encoders capture the
position of the table and workpiece and generally consist of
optical encoders. Position feedback signals measured by linear
encoders are also used within the position control loop. Rotary
encoders measure the angular position of servo motor shafts and
provide an indirect measurement of the table position.
The speed and acceleration of the feed drive are commonly mea-

sured using the first and second derivatives of measured position
signals, respectively. This is usually accompanied by lowpass filter-
ing to reduce the noise introduced by discrete differentiation. These
signals can also be measured directly, with tachogenerators and
eddy current sensors measuring speed, and pizeo-based sensors
measuring acceleration [13,33]. The velocity signal is used in the
speed control loop of the drive, while the acceleration is typically
used for the suppression of structural dynamics.
Motor drive current can be measured using shunt resistors.

Current feedback signals are used in the current control loop of
the drive and can be useful for compensating friction and cutting
force disturbances [33]. Related to the drive current is the drive
torque. In general, the drive torque, T, can be calculated by

T = Kti (5)

where Kt is the motor torque constant and i is the drive current. In
actuality, the NC and drive controller compute the torque using
dynamic values of the torque constant.
The temperature of various components of machine tools, such as

drive motors, is measured. Temperature can be used in condition
monitoring to give insight into the friction and heating characteris-
tics of machine tool components.
Sensorless machine tool data are captured via the NC. This is

generally achieved through electric circuitry, the programmable
logic controller (PLC), and various communication interfaces.
Modern machine tools have more open NCs where OEMs
provide development application programming interface (API)
packages and tools [37]. Popular communication protocols
include OPC UA and MTConnect. However, condition monitoring
research efforts sometimes use external data acquisition devices and

Fig. 8 The general control scheme for a feed drive
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counter cards as OPC UA and MTConnect are generally limited
(less than 1000Hz) in their data sampling rates.

4.1.2 External Sensors and Signals. External sensors are
widely used in CM. They are capable of measuring quantities of
interest directly, such as vibrations, whereas internal sensors
provide more indirect measurements. In this sense, external
sensors are more useful than internal sensors. However, external
sensors are not easily installed onto production machine tools.
For instance, measuring the vibrations of a ball screw nut via an
accelerometer can be difficult and is typically left to experimental
work. Data collection from external sensors is achieved through a
data acquisition device or a personal computer which can make
data collection during production hours difficult. For large manu-
facturers, the installation of hundreds or even thousands of external
sensors can be time consuming and extremely expensive as well.
The most commonly used external sensor is the accelerometer

which provides measurements of vibrations in machine tool struc-
tures and components [16]. Accelerometers contain piezoelectric
materials that produce voltage signals when experiencing mechan-
ical stresses. Vibrations can also be measured using displacement
transducers, proximity sensors or switches, capacitive sensors,
and velocity transducers. Micro-electromechanical system
(MEMS) sensors are also becoming more popular in the literature
[38–42]. These are outfitted with accelerometers and thermocouples
to measure vibrations and temperature. For machine tool feed
drives, the common mounting locations for accelerometers
include the ball screw support bearings, the screw nut, and the table.
External thermocouples and temperature sensors are used quite

extensively in machine tool CM [40,43–47]. These are usually
mounted onto support bearings and motor housings. Acoustic emis-
sion sensors are used to monitor linear guideways [48] and to detect
defects of ball screws [49]. The state of wear of a ball screw is mon-
itored using external current sensors [50]. Likewise, single-phase
spindle currents are measured to monitor the health state of a feed
drive [51]. Alternative sensing methods include the use of Hall

effect sensors [52], cameras [53], an inertial measurement unit
(IMU) [54–58], piezoresistive materials [59–62], strain gauges
[61,63,64], and tactile load cells [65].

4.2 Signal Processing Methods. Signal processing is the next
step after data acquisition. This step in the monitoring process aims
to condition signals or extract signal features such that they better
represent the information contained in the data. This section out-
lines the signal processing methods most often used in the research
of machine tool CM. The most common signals used for the mon-
itoring of machine tools are encoder positions, drive motor currents
or torques and vibrations. These signals are typically pre-processed
before more advanced signal processing techniques are used;
however, this is not always the case. Signal pre-processing can
include filtering, analog-to-digital conversion, re-sampling,
de-trending, and segmenting the data. Signal processing techniques
are categorized into time domain, frequency domain, and time–fre-
quency domain analyses. It should be noted that sometimes a
spatio-temporal or a spatial frequency domain is used for analysis.
A summary of the signal processing methods described below

and their applications to machine tool CM literature are shown in
Table 1.

4.2.1 Time Domain Analysis. Statistical analysis is frequently
used to monitor signals. Parameters such as maximum, minimum,
peak-to-peak amplitude, mean, root-mean-square, variance, kurto-
sis, skewness, and other higher order moments are used. These
parameters can be determined during a machine’s healthy state to
represent threshold values. Continually monitoring these statistical
parameters can uncover potential faulty machine states. Further-
more, the parameters are also used as input features for machine
learning algorithms with the aim of condition monitoring, diagnos-
tics, or the prognostics of faults and failures.
Time series modeling is used in other condition monitoring

scopes [12,15]. This includes autoregressive and autoregressive

Fig. 9 Comparison of sensorless and sensor-based signals, sensors, and data. Sensorless data are obtained from built-in
sensors and signals (torque, current, position, etc.) while sensor-based data are measured from external sensors (accelerome-
ters, acoustic sensors, etc.). Temperature data may be regard as either sensorless or sensor-based given the manner in which
the data are measured.
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moving average models. However, these models are not been fre-
quently observed in the literature of machine tool CM.
Multi-scale entropy (MSE), first proposed by Costa et al. [90], is

a time series method that sees use in machine tool CM. MSE is a
quantity among many measures of complexity (or entropy) of a
finite time series signal. It is popular in the analysis of biological
and physiological signals, such as cardiac rhythms [91]. To calcu-
late the MSE of a one-dimensional discrete time series,
{x1, . . . , xi, . . . , xN}, one must first construct a coarse-grained
time series {yτ} with scale factor τ as defined in Eq. (6):

yτ =
1
τ

∑jτ
i=(j−1)τ+1

xi, 1 ≤ j ≤
N

τ
(6)

This process divides the original time series into non-overlapping
segments of length τ and then calculates the average of the data
in each segment. For τ= 1 (scale one), the constructed time series
{y(1)} is the original time series. After this procedure, an entropy
measure SE is calculated for each coarse-grained time series. The
entropy measure is then plotted versus the scale factor τ. For mon-
itoring applications, MSE is used to calculate the complexity of
vibration signals and drive motor currents in Refs. [72,74], respec-
tively. Motor torque signals are also analyzed using MSE in
Ref. [73]. Another uncommon time domain method is singular
spectrum analysis (SSA). This method is used to detect position
fluctuations caused by defects in a feed drive [84]. More informa-
tion on SSA can be found in the book by Elsner and Tsonis [92].

4.2.2 Frequency Domain Analysis. Frequency domain analy-
sis gives insight into the useful information contained in the fre-
quency components of signals. Among the most common
frequency domain transformations, the fast Fourier transform
(FFT) is the most popular. The FFT is an efficient algorithm that
calculates the discrete Fourier transform. Windowing functions
are typically used in conjunction with the FFT to reduce spectral
leakage caused by the finite-length sampling of signals.
Related to the frequency, content of signals is the autospectral

density or power spectral density (PSD). The PSD is a measure of
the spectral energy content of a signal per unit time. This quantity
can yield informative characteristics of time series signals. Some

CM research has used a vibration energy parameter, P, defined as

P =
∑imax

i=0

��������������������
(Sxx(fi) − S0xx(fi))2

√
(7)

where S0xx( fi) is the PSD of an initial measurement and Sxx( fi) is the
PSD of the current measurement. This quantity is used by Verl et al.
to study the relationship between positioning errors and ball screw
wear [66]. Maier and Heisel also use this parameter to monitor ball
screw drives [67].
Additional frequency domain methods include envelope analysis,

which is used extensively in rolling element bearing condition mon-
itoring and order tracking (OT). Order tracking involves the study
of the fundamental frequencies of a mechanical system that corre-
spond to rotating shaft speeds. These fundamental frequencies are
called orders. An order spectrum can characterize the
energy-intensive components of measured signals over certain fre-
quencies related to the primary rotating speed [93]. In machine tool
condition monitoring, OT is used to monitor the ball pass frequency
(BPF) of ball screws in Refs. [46,75].

4.2.3 Time–Frequency Domain Analysis. Advanced signal
processing techniques include time–frequency analysis. These
methods address the fact that regular frequency analysis cannot
properly handle non-stationary signals. Thus, methods such as the
short-time Fourier transform (STFT) and the WT are proposed.
The STFT divides a signal into segments corresponding to a short
time-frame windowing function. The Fourier transform is then
applied to each segment. Wavelet analysis has emerged as a
useful time–frequency method as well. Unlike the STFT, the
wavelet transform can be used for multi-scale analysis of a signal
[94]. This allows the WT to effectively extract time–frequency fea-
tures from a signal. However, the WT can experience low resolution
at higher frequencies. The wavelet packet transform (WPT) was
introduced to overcome this obstacle, allowing for an arbitrary
time–frequency resolution [95]. Similar to the WT is the chirplet
transform, and a more recent extension, the polynomial chirplet
transform (PCT) [96]. The PCT is used to identify faults in a ball
screw drive in Ref. [77].

Table 1 Summary of signal processing methods

Sensors and signals

Monitoring area Sensorless Sensor-based Signal analysis method

Ball screw
Wear/performance
degradation

Rotary encoder [44,66–68], linear encoder
[66,67,69], current [50,69], torque [70]

Vibration [44,71],
temperature [44]

Statistical [69], FFT [44,68,70], PSD
[50,66,67], WT [70,71], WPT [50,68]

Preload loss Current [72,73], torque [73] Vibration [38,40,74,75] PSD [40], OT [75], STFT [38,40], HHT
[74,72,73], MSE [74,72,73]

Backlash – Vibration [76], camera [53] Statistical [53], FFT [76]
Fault detection/
diagnosis

– Vibration [77] PCT [77]

Prognosis/RUL – –
Sensing methods/
technologies

– Wireless vibration [78],
hybrid sensor [46]

FFT [78], OT [46]

Other methods Linear encoder [79,80], torque [80,81] – Statistical [81], FFT [79,80]

Linear guide/slide
Wear/degradation Rotary encoder [82], linear encoder [82], current

[82,83]
IMU [56–58], ball-end probe
[83]

Statistical [56,58,83], EMD [82], filtering [57]

Preload and force – Vibration [42], optical [65],
force [65]

FFT [42], comparative analysis [65]

Lubrication – Temperature [47] Limit analysis [47]
Fault diagnosis – Vibration [48], acoustic [48] FFT [48]
Positioning accuracy
and error

Linear encoder [84] Vibration [85] SSA [84], FFT [85]
Rotary axis

Rotary encoder [86], current [87,88] Ball-bar [89] FFT [89], EEMD [87], WT [86,88]
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The time–frequency method introduced by Huang et al. [97], the
HHT, is a very useful contribution used in CM. The utility of the
HHT can be attributed to its use of empirical mode decomposition
(EMD). EMD is based on the local time scale of the data and further
decomposes complex data into finite intrinsic mode functions
(IMFs) which produce well-behaved Hilbert transforms. The
Hilbert transform of the IMFs yields instantaneous frequencies
that are functions of time. These instantaneous frequencies
contain useful information and are shown to detect the deterioration
in roller bearings among other monitored machine components
[98]. Wu and Huang [99] further built upon the deficiencies of
EMD, such as mode mixing that causes aliasing in time–frequency
distributions, with the advent of ensemble empirical mode decom-
position (EEMD). EEMD is used to diagnose faults in the rotary
axis of a machine tool in Ref. [87].

4.3 Model-Based Methods. Model-based methods are based
on physical assumptions to describe processes and systems. Empir-
ical or phenomenological models can also be built through correlat-
ing measured data and observations. Model-based methods
generally include deterministic and stochastic models as described
below.
The model-based methods used in the CM of machine tool feed

drives are summarized in Table 2.

4.3.1 Deterministic Models. Deterministic models assume that
the observed process or system has no stochastic, or random, vari-
ation in the parameters or observations.
In condition monitoring research, many works use analytical

models to monitor quantities of interest. These include derived rela-
tions from the feed drive dynamics. The leveling and misalignment
of a machine tool are monitored from the drive current through a
dynamic model [118]. In Ref. [122], the position reversal of a
ball screw drive is monitored using analytical descriptions of vibra-
tion amplitudes. Coordinate transformations are applied to machine

tool dynamics to monitor position and geometric errors in Refs.
[123,124]. Volumetric errors (VEs) are monitored in Ref. [125]
using the scale and master balls artifact method [130].
The BPF was adopted from roller bearing theory and applied to

the ball nut of ball screws. The BPF can be estimated using analyt-
ical equations [71]. This model is usually accompanied by fre-
quency analysis. The frequency of vibration of a machine tool
feed drive is also estimated using a derived relationship in Ref. [76].
Force and stress analyses are used to examine the relationship

between feed velocity and preload in ball screws [104] and the
use of piezoresistive films in linear guides [62].
Models of the backlash seen in feed drives are typically simplistic

and consist of measured errors [83,108,109,105]. However, some
works employ nonlinear models in their analysis such as in
Ref. [106]. An algorithm developed by Chandrasekar and Sriniva-
san measures backlash error using torque-limited positions [107].
Transient backlash error (TBE) models are also derived for both
linear and rotational machine trajectories [105].

4.3.2 Stochastic Models. Unlike deterministic models, sto-
chastic models incorporate randomness or can be described by
probability distributions. The Kalman filter (KF) and its variants
(extended KF and unscented KF) are popular state estimation algo-
rithms that compute an efficient solution to the least-squares method
[131]. In condition monitoring of machine tools, the KF is used for
fault detection of ball screw drives [111,115]. The KF algorithm
inherently involves Gaussian distribution assumptions. For non-
Gaussian problems, sequential Monte-Carlo methods, or particle
filters (PFs), are proposed [132]. From a machine tool perspective,
PFs are used for the prognosis and RUL calculation of ball screws
[112–114].
Exponential models are developed to monitor the RUL of ball

screws. In Ref. [113], the degradation process of a ball screw is
fit to an exponential model using a Weibull distribution shape
parameter [113]. Likewise, an exponential Wiener process is used
to predict the RUL [112].

Table 2 Summary of model-based methods

Sensors and signals

Monitoring area Sensorless Sensor-based Model

Ball screw
Wear/performance
degradation

Rotary encoder [67], linear encoder [67,100] Vibration [51,71,101,100],
current [51]

BPF [67,71], OMA [51,101,100]

Preload loss – Vibration [52,102,103], force
[104], Hall sensor [52]

EMA [102,103], OMA [52], analytic [104]

Backlash Rotary encoder [76,83,105–107], linear encoder
[76,108,109,105,106], NC data [105,110]

– Error [83,108,109,105], EMA [110], algorithm
[107], analytic [76,105], adaptive estimation
[106]

Fault detection/
diagnosis

Linear encoder [111] – KF [111]

Prognosis/RUL – Vibration [112–114] Exponential [112,113], PF [112–114]
Sensing methods/
technologies

– Vibration [115] KF [115]

Other methods Rotary encoder [116], linear encoder [116],
torque [116], NC data [117]

– Adaptive estimation [116], parameter estimation
[117]

Linear guide/slide
Wear/degradation Current [118] Vibration [119], strain [64],

capacitance [119]
Analytic [62,64,118,119]

Preload and force – Vibration [102,120], strain
[63], piezoresistive [62]

EMA [102], OMA [120], empirical [63],
analytic [62]

Lubrication – – –
Fault diagnosis – Ball-bar [121] Analytic [121]
Positioning
accuracy and error

Rotary encoder [122–124], linear encoder
[123,124], torque [122]

Ball probe [125] Analytic [123–125], dynamics [122]

Rotary axis
Rotary encoder [109,126] Custom [127], various [128],

ball-bar [129]
Error [109,127], analytic [126,129]
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To accurately model a process or system, the model parameters
must be estimated with precision. This can be done using measured
data and a least-squares fit, as in the machine tool friction model of
Reuss et al. [117]. However, for general machine tool models, the
external excitation must be chosen carefully to adequately capture
the dynamics of the machine. This lends itself to the study of
system identification and frequency response functions (FRFs)
[133]. Identification of mass, inertia, damping/friction coefficients,
and stiffness is possible with system identification methods.
More often the modal parameters are estimated directly. Two prom-
inent methods for modal parameter estimation include operational
modal analysis (OMA) [134] and experimental modal analysis
(EMA). Both of these methods are often used in conjunction with
FEM to estimate the natural frequencies of the machine and subse-
quentlymeasure them.OMAhas the benefit of estimating parameters
during the actual working conditions of the machine and sees the use
in condition monitoring of machine tools [51,52,67,120,101,100].
The online estimation of parameters in nonlinearly parameterized

systems can be challenging. Papageorgiou et al. [106] designed
online adaptive estimators to estimate the backlash and friction
parameters [116] in ball screw drives.

4.4 Data-Driven Methods. In general, data-driven methods
cover a wide area that includes the analysis and collection of
data. The scope of this section is primarily on statistical learning
methods, otherwise known as ML. ML models can be categorized
as supervised or unsupervised learning. Broadly speaking, unsuper-
vised learning deals with model training that uses unlabeled data,
while supervised learning uses labeled data. There do exist
methods that use both labeled and unlabeled data, and these are
deemed to be semi-supervised learning.
The models and methods outlined in this section are summarized

in Table 3.

4.4.1 Feature Extraction and Feature Learning. Much like
signal processing methods, ML begins with data pre-processing.
This may include data fusion, or the combining of measured data.

For example, in Ref. [135], frequency spectra measured from differ-
ent vibration sensor signals are combined using parallel superposi-
tion. After data pre-processing, features are extracted and selected.
It is also possible that features are learned through the ML
algorithm.
Feature extraction is used to provide meaningful representations

of data such that ML algorithms can identify commonalities and
relationships among the features. Feature engineering is the
process of using specific domain knowledge to create features.
This is usually performed using the signal processing methods pre-
sented in Sec. 4.2, with the addition of statistical moments of fre-
quency spectra often included. All of the computed features may
be used in the ML method, or a select few can be chosen using
various criteria. For example, the Fisher criterion can be used to
select the features most representative of the data as in Ref. [136].
ML algorithms are often better suited to work with lower dimen-

sional data. The high-dimensional data that are measured can be
sparse which lead to undesirable computation times. Dimensional-
ity reduction is a method used to represent high-dimensional data on
a low-dimensional space such that meaningful representations are
maintained in the data. A widely known reduction method is prin-
cipal component analysis (PCA) [137]. An extended method is
kernel PCA (KPCA) [138]. These methods are used for the health
assessment of ball screws [139,140]. A common reduction tech-
nique in machine tool CM includes the calculation of the Mahala-
nobis distance (MD) [141]. MD is also used for the health
assessment of ball screws [45,140,142,143]. Similar to the MD,
the cosine distance (CD) is used to detect early faults in machine
tools [101].
Beyond regular dimensionality reduction techniques, feature

learning, otherwise known as representation learning or deep
learning, is the subject of significant interest in ML research.
Feature learning is an unsupervised method where the ML algo-
rithm extracts important features from the data. Such methods
include autoencoders (AEs), manifold learning, and deep networks
[144]. AEs and the variational AE (VAE) are used to monitor faults
and the health of ball screws in Refs. [101,145], respectively.

Table 3 Summary of data-driven methods

Sensors and signals

Monitoring area Sensorless Sensor-based Models and methods

Ball screw
Wear/
performance
degradation

Rotary encoder [142,143], current
[143], torque [142]

Vibration
[101,135,139,140,145,152]

MD [140,142,143], CD [101], AE [101], VAE [145],
LE [142,143], PCA [139], KPCA [140], DFNN [139],
DBSCAN [140], LSTM-GRU [140], MCS [152],
BPNN [101,152], DBN [135]

Preload loss Rotary encoder [136,151,153],
linear encoder [136,151,153],
current [136,153], torque [151]

Vibration [40,45,103,148,151,153],
temperature [40,45]

MD [45], SOM [45], GMM [45], SVM
[40,136,151,153], GPR [103,151], GA/KNN [153],
GPC [103], CNN [148]

Backlash Rotary encoder [149,157], linear
encoder [149,157], torque [157]

– ANN [149], DBN [157]

Fault detection/
diagnosis

Rotary encoder [43], linear encoder
[43], torque [43,147], NC data [154]

Vibration [43,49,154,158,159],
acoustic [49], temperature [43]

MD [158], PCA [154], SOM [43,154], CNN [147,158],
BPNN [159], custom [49]

Prognosis/RUL – Vibration [114,156] Gray model [156], GRU-PF [114]
Sensing methods/
technologies

– Vibration [40], temperature [40] SVM [40]

Other methods – – –
Linear guide/slide
Wear/degradation Vibration [160] DFNN [160]
Preload and force – – –
Lubrication – Vibration [161] BPNN [161]
Fault diagnosis – Vibration [162], micrograph [155] CNN [162], SMMC [155]
Positioning
accuracy and
error

– – –
Rotary axis

– Various [150] ANN [150]
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Manifold learning aims to learn representations of data lying on a
low-dimensional manifold embedded in a high-dimensional
space. The method of Laplacian Eigenmaps (LEs) proposed by
Belkin and Niyogi [146] achieves this task. LE are used for the
health assessment of ball screws [142,143]. Deep learning
methods that represent feature learning include stacked restricted
Boltzmann machines, called deep belief networks (DBNs), and con-
volution neural networks (CNNs). The degradation of ball screws is
monitored using a DBN in Ref. [135]. Ball screw faults are identi-
fied using CNNs in Refs. [147,148].

4.4.2 Machine Learning Models. A number of ML models are
used in machine tool CM. Regression techniques are often used for
continuous parameter monitoring, such as RUL and backlash
values. These include the use of artificial neural networks (ANNs)
for the estimation of backlash [108,149]. ANNs are also used for
the classification of hydrostatic turntable performance [150]. Recur-
rent neural network structures, such as long short-term memory
(LSTM) networks with the use of gated recurrent units (GRUs),
called a LSTM-GRU network, are used to estimate the degradation
trends of a ball screw [140]. An ensemble gated recurrent unit par-
ticle filter (GRU-PF) method is also used to study the prognostics of
ball screws [114]. A regression method, called Gaussian process
regression (GPR), is used to study the prognostics of ball screws
in Refs. [103,151]. Ball screw performance degradation is evaluated
using a dynamic fuzzy neural network (DFNN) [139]. The modal
parameters of a ball screw drive are assessed with the supplementa-
tion of Bayesian ridge regression in Ref. [100].
Classification models are used to identify faults and classify

degradation levels in machine tools. A back-propagation neural
network (BPNN) along with a multiple classifier system (MCS) is
used to diagnose the level of degradation of ball screws [152]. A
BPNN is used to detect early faults caused by worn ball screws
in Ref. [101]. Gaussian process classification (GPC) is used to clas-
sify the wear states of a ball screw based on the identified natural
frequencies of the drive [103]. The preload of a hollow ball screw
is diagnosed using a genetic algorithm/k-nearest neighbor (GA/
KNN) method [153]. A support vector machine (SVM) model is
used to diagnose the health of a hollow ball screw drive [136].
Softmax classification is used with a DBN model to monitor the
degradation trend of a ball screw [135]. Likewise, a CNN architec-
ture with a Softmax classifier is used to identify faults in a ball screw
drive [147].
Several unsupervised clustering methods are used in the litera-

ture. Self-organizing maps (SOMs) are used for anomaly detection
and diagnosis in machine tools [43,154] as well as for ball screw
health assessment in Ref. [45] where a Gaussian mixture model
(GMM) is also used. The health status of a ball screw is evaluated
using density-based spatial clustering of applications with noise
(DBSCAN) in Ref. [140]. In Ref. [155], surface micrographs of
linear guideways are monitored using spectral multiple-manifold
clustering (SMMC). Beyond clustering, kernel density estimation
is used in Ref. [145] for the degradation assessment of a ball screw.

In addition to the above methods, some authors have devised
their own self-implemented classification algorithms, such as the
fault detection model presented in Ref. [49]. Another method is
the use of a multi-variable gray model to predict the RUL of ball
screws [156].

5 Condition Monitoring of Machine Tool Feed Drives
Machine tool feed drives are composed of components and sub-

systems that require frequent maintenance, repair, or replacement.
Identifying anomalous events or trends in wear patterns through
CM is integral to optimizing maintenance and spare parts schedul-
ing. This section focuses on four primary areas of feed drive condi-
tion monitoring research: ball screw axes, linear guidance systems,
positioning accuracy/error monitoring, and rotary axes.

5.1 Ball Screw Condition Monitoring. In many manufactur-
ing environments, the downtime due feed drive maintenance can be
very expensive and time consuming. Ball screws in particular are
critical components of feed drive systems that can be costly and
time-intensive to replace or repair. As noted by Yang et al. [163],
screw and guide systems require a long time to repair when failures
occur. However, these costs are not just incurred once components
fail. As the working condition of a ball screw begins to deteriorate,
the costs of out-of-spec and scrapped workpieces are accrued as
these positioning systems are directly responsible for the quality
of the machined workpiece. Thus, it is beneficial to monitor the
health of the ball screw to optimize the purchase of spare parts
and the scheduling of maintenance actions.
The phenomenon of wear-in ball screws is a tribological process.

This entails the friction, lubrication, and characteristics of the
sliding surfaces in the ball screw mechanism. The wear seen by a
ball screw also affects the dynamics of the feed drive. Thus, the
dynamic characteristics of the drive give insight into the health
state of the ball screw. Many of the CM solutions presented in
this section attempt to monitor wear through direct or indirect char-
acteristics through analyses related to the wear, friction, or lubrica-
tion state or through the dynamics of the feed drive.
The deterioration and wear of ball screws is often correlated to

the loss of preload in the nut. The preload effectively eliminates
the axial backlash seen in ball screws by the use of double-nut
designs with an adjustable spacer, lead/pitch offsets, or oversized
balls as shown in Fig. 10. However, the preload of the nut increases
the friction between the balls and the raceways of the screw and nut
resulting in increased wear [164]. The two modes of friction seen in
ball screw drives are the rolling and sliding of the balls relative to
the raceway. It is the sliding action that leads to adhesive wear
between the balls and the raceway and is a major factor attributing
to the loss of precision and performance degradation of ball screws
[165]. The wear pattern typically seen on ball screws is shown in
Fig. 11. A clear connection can be recognized between the ball
screw wear and both backlash and preload. The occurrence of

Fig. 10 Ball screw preload mechanisms and the contact points of the ball elements
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wear along the raceways leads to a loss of preload in the nut which
further increases the backlash of the feed drive. Therefore, monitor-
ing the wear, preload loss, or backlash can give insight into the
health condition of the ball screw.
General wear and performance degradation, preload loss, and

backlash monitoring are presented next. Afterwards, fault detection
and diagnostics are considered, as is remaining useful life and the
prognosis of ball screws. Then novel sensing methods and technol-
ogies used for health monitoring are explored. This section then
concludes with specialized condition monitoring methods such as
friction monitoring and the development of unique spatial domain
features.

5.1.1 Wear and Performance Degradation Monitoring. The
wear of a ball screw can be monitored by correlating various features
and data that are indicative of the wear of the screw. The methods
used to measure wear can be categorized as sensorless and sensor-
based, where both can be considered as indirect methods since
wear is typically a phenomenon that must be quantified directly. Sen-
sorless methods typically use drive motor current or torque and linear
or rotary encoder data to make correlations or derive features that are
representative of the wear. Sensor-based methods employ external
sensors, to measure acceleration, temperature, etc., that may be
more closely linked with the wear of the ball screw, but at a higher
cost to implement. For manufacturers, sensorless methods are very
attractive as little to no additional costs are needed to employ these
methods if the required computing architectures are present.
Early sensorless methods in monitoring the wear of ball screw

drives include those by Verl et al. [66] and Uhlmann et al. [69]. The
frequency and spatial domain characteristics of positioning error,
reversal error, and a vibration energy parameter using rotary and
linear encoders are proposed by Verl et al. [66]. The characteristics
reveal a relationship between the positioning errors and wear of the
ball screw. Three effects are analyzed with spectral analysis and
include: damage that causes impulse-like excitation; resonant frequen-
cies moving due to increased wear; and interference of excitation and
resonance can occur due to phase shifts. This work further recognizes
that the positioning accuracy of the feed drive is a crucial factor in
maintenance decisions. In Ref. [69], a decentralized datamanagement
system is used to measure trends in statistical features of feed drive
motor current. Bidirectional constant feed rate tests are performed to
detect changes in the dynamic behavior of the feed drive. Trends of
slowly progressing changes in the feed drive system are seen attribut-
ing to the wear of the drive on a centerless grinding machine.
Maier and Heisel [67] compare signal-based and a model-based

approaches to the monitoring of ball screw feed drive wear on a
lab setup. The study uses a testbed with a region of accelerated
wear on a ball screw. Two signal characteristics are derived includ-
ing the difference between the encoder signals and a vibration
energy parameter calculated using linear encoder data. It is
observed that the consideration of a single characteristic alone is
not useful and one must also consider the sensitivities and standard
deviations of the characteristics. For the model-based approach, it is

noted that the occurrence of wear (or reduction in contact stiffness
used in this work) does not proceed at a constant rate, as in their
computed simulations. The authors conclude that there are many
difficulties in estimating the lifespan of the ball screw from a model-
based approach due to the varying measurements and model inputs.
Lastly, the authors explore the ball pass frequency of the screw nut
with conclusions that the re-circulation of the balls is an important
aspect in the ball screw behavior.
Li et al. [68] analyze the instantaneous angular acceleration

(IAA) of a ball screw via the wavelet packet transform. The IAA
signals reflect the torsional behavior of the feed axis and its compo-
nents. Experimental results suggest that computed IAA features are
sensitive to the degradation of the feed axis, namely the wear on the
ball screw for this study. Another study uses wavelet bicoherence-
based quadratic nonlinearity to measure quadratic phase coupling
(QPC) in ball screw drives which occurs due to nonlinear behavior
in the system [70]. Experiments performed on a vertical machining
center show the robustness of the proposed feature compared with
commonly used time and frequency domain features. The merits
of this feature include its ability to exploit the QPC of a signal at
different frequencies, which is useful for detecting the quadratic
nonlinear behavior often caused by mechanical faults.
Zhang et al. [81] use NC-measured motor torque to monitor the

performance condition of rack and pinion and two different ball
screw feed drives. The data are analyzed for transient impacts, long-
term trends, and short-term fluctuations using least-squares. The
transient impacts represent mechanical clearances or hydraulic sta-
bility. The long-term trends represent the structural changes while
the short-term fluctuations reflect the dynamic performance of the
feed drives. Results show that this signal decomposition method
can monitor the long- and short-term performance of the drives.
Deep learning methods using Laplacian Eigenmaps and Mahala-

nobis distance are used to study ball screw wear. Shuai et al. [142]
use LE and MD to determine the nonlinear relationship between the
characteristics of speed and torque signals and the health of a ball
screw. The model shows to be more accurate and robust compared
to other dimensionality reduction techniques, such as PCA and
KPCA. Zhao et al. [143] propose a Laplacian Mahalanobis-Taguchi
system (LMTS). Speed and drive current signals are used for anal-
ysis as they correlate to feed drive performance. Speed signals in
particular reflect issues with the lubrication of the drive as this
induces more fluctuations in the signal. High-dimensional features
are extracted from the speed and drive current signals via the
wavelet transform. The dimensionality of these features is subse-
quently reduced using LE. Results show that the calculated health
value from the LMTS method follows the degradation trend
better than PCA and locally linear embedding techniques.
However, an arbitrary health threshold value is chosen.
The monitoring of ball screw wear using sensor-based methods is

also investigated. An offline method of monitoring the wear of the
nut balls is proposed in Ref. [166]. This method provides a correla-
tion between ball wear and the surface roughness of machined
workpieces and an empirical equation is derived to explain the
process. Results show that ball wear causes an increase in the
surface roughness of the machined workpieces. Liu et al. [50] inves-
tigate the use of drive motor currents (measured via external current
sensors) in monitoring the wear of a ball screw. Wavelet packet and
energy analysis of three-phase feed currents follows four stages of
wear. These being the initial wear-in, a general wear period, an
accelerated wear period, and then a final severe wear period. The
wavelet and energy analysis shows that increased wear causes an
increase in frequency band energy. Qualitative results from
Ref. [78] show that worn ball screw vibrations exhibit high ampli-
tudes around frequencies of 180–200Hz. Health monitoring criteria
are determined based on the specific process at hand; however, this
is subject to process norms. Overall, this sensor-based method is
capable of monitoring ball screws in an online fashion.
A hybrid model- and signal-based method for monitoring the fre-

quencies of defects and their positions on a ball screw test bench are
given by Lee et al. [71]. A model of the defect frequencies is derived

Fig. 11 Wear pattern seen on ball screws that leads to backlash
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from the ball pass frequency of the shaft (BPFS) using modified ball
pitch diameters and an effective number of balls. The BPFS is
obtained by

BPFS =
1

120
zn 1 +

Dw

dm
cos α

( )
(8)

where z is the number of balls, n is the rotational speed of the shaft,
Dw is the diameter of each ball, dm is the pitch diameter of the balls,
and α is the contact angle between the ball, nut, and screw shaft.
Modified ball pitch diameter, d′m, and an effective number of
balls, z′, are used to estimate the defect frequency:

defect frequency =
1
120

z′n 1 +
Dw

d′m
cos α

( )
(9)

The defect frequencies are easily distinguished from the rotational
speed of the ball screw, as is predicted by the model in (9). As
defects worsen, the amplitude of the defect frequency is seen to
increase. A defect position detection method is achieved by observ-
ing abrupt changes in measured vibrations. It is observed that the
shocks introduced by defects occur within high frequency ranges.
The proposed diagnosis system uses the WT as a bandpass filter
over the defect frequencies allowing for the detection of the defects.
Some researchers opt to study the natural frequencies of a feed

drive which can give insight into the health state of the machine.
However, regular changes in the operating conditions can affect
the natural frequencies which can hide the changes due to
damage and wear of the ball screw. A Bayesian ridge regression
model proposed by Li et al. [100] seeks to reduce the effects of dif-
ferent table positions and feed velocities on the natural frequencies.
Two criteria are created as damage indicators with the aim of reduc-
ing false alarms. These include the ratio of estimated mean values
between a reference state and a subsequent state and the percentage
of residual natural frequencies lying outside a defined limit of three
standard deviations. The health parameter investigated is the reduc-
tion in contact stiffness of the ball screw (due to increased backlash/
decreased preload) which affects the natural frequency of the drive.
Using vibration measurements, the two damage indicators are then
calculated and monitored for abnormalities. Jia et al. [51] provide an
analysis of long-term modal parameters and statistical characteris-
tics of a feed drive. By monitoring spindle current and vibration
data over the lifetime of the ball screw, it is shown that the standard
deviations of both the natural frequencies and the damping ratios of
two modes increase due to wear of the ball screw. An increase in the
dispersion of the measured parameters is seen at the onset of wear.
Data-driven approaches include that of Zhang et al. [139] where

ball screw performance degradation is monitored using a dynamic
fuzzy neural network which is initialized by a quantum genetic
algorithm (QGA). Vibration data are used as it is recognized that
the vibrations of a ball screw increase over its service life. Time
and frequency domain features are extracted from vibrations and
reduced through PCA. The ball screw performance degradation
trend is then obtained from the DFNN. Compared to a BPNN, a
radial basis function neural network, and an unoptimized DFNN
(no QGA), the proposed model outperforms the alternatives.
A ball screw degradation process can follow a decrease–increase–

decrease trend. Thismakes it difficult for a singlemodel to accurately
predict the degradation of the ball screw. The work by Wang et al.
[140] splits the degradation process into different trend regions
whereby a state-wise deep learning method, consisting of an
LSTM-GRU structure, is used to predict the performance state of
the ball screw. Different health indicators and trends are obtained
using KPCA and MD on vibration signals that reflect the health of
the ball screw. After which a density-based spatial clustering of
applications with noise process divides the MD data into different
states. These states and the corresponding data provide the labeled
data used to train the LSTM-GRU model. The method is then com-
pared to regular LSTMandGRU techniqueswhere it shows to have a
mean accuracy of 93.5% on test data compared to 91.5% and 92.6%
for the LSTM and GRU methods, respectively.

A multiple classifier system with dynamic classifier selection
(DCS) is used to detect the severity of ball screw wear in
Ref. [152]. The performance of DCS is improved through a novel
local class accuracy (N-LCA) technique.
An experimental testbed is used to conduct accelerated life tests

of three ball screw states: healthy, having slight deterioration, or
having severe deterioration. Machine vibrations are measured for
model input as they correlate to the mechanical structure and
dynamics. A classifier pool of 10 BPNNs is generated via the Ada-
boost algorithm. The DCS chooses the classifier based on vibration
data features. Results show that the N-LCA method achieves a clas-
sification accuracy of 96.78% over 86.64% and 93.09% for Ada-
boost and LCA alone, respectively.
A method for early fault detection under time-varying conditions

is proposed by Luo et al. [101]. Impulse responses are extracted
from vibrations by a deep learning sparse autoencoder and a
BPNN. State transition matrices are identified yielding the natural
frequencies and the damping ratios of the machine tool. It is seen
that the natural frequencies are insensitive to time-varying condi-
tions, unlike the damping ratio. Lastly, a health index is developed
based on the similarity of the natural frequencies via the cosine dis-
tance between feature vectors and is subsequently used to monitor
the health of the machine tool.
Three ball screw wear indicators are developed using a signal-

based and data-driven approach by Pichler et al. [44]. The three indi-
cators related to abrasion are the ball screw, friction, and motor drive
power. Abrasion is detected from the spectral energy of screw nut
vibrations. The friction in the ball screw is indirectly detected using
the nut temperature. The drive power indicator is also related to the
presence of friction as increased friction leads to an increase in the
drive power. A combined damage indicator is defined as a weighted
sum of the three previous indicators. The method is tested on seven
different ball screwswith varying health states. For slowly deteriorat-
ing wear conditions, the indicators work as expected. Under abrupt
failures, the indicators are not able to detect the failure, although
the indicators are not designed to detect abrupt failures.
The issues associated with degradation assessment of ball screws

include the prior knowledge needed and manual construction of
health indicators and their sensitivity to external factors. In addition,
a large amount of failure data is usually needed for a reliable degra-
dation model. Wen and Gao [145] address these problems through a
model that operates on healthy ball screw data. A variational auto-
encoder is trained offline using operational data. Online data are
then fed into the VAE that constructs health indicators through
the reconstruction error. The probability distribution of the health
indicators is estimated by kernel density estimation which allows
for quantitative measures of the wear. Run-to-failure tests of a
ball screw lab setup show that the VAE reconstruction error is a sui-
table measure of the health indicators. The classification accuracies
for healthy, slight deterioration, and severe deterioration states are
96%, 85.5%, and 100%, respectively. It is noted that incipient
faults are easily mixed with the healthy state, thus reducing the
accuracy of the slight deterioration classification.
Multi-sensor data fusion is implemented by Zhang et al. [135] in

combination with a deep belief network to detect the degradation
of a ball screw. The method fuses the frequency spectra of vibration
signals through parallel superposition. The fused spectrum is used to
train the DBN in unsupervised and supervised stages where it then
estimates ball screw health using vibration inputs. Results show
that the classification accuracy of the DBN method is to be 99.53%
where comparisons to a BPNN and the DBN with unfused data
achieve accuracies of 92.01% and 85.69%, respectively.

5.1.2 Preload Loss Monitoring. The loss of preload can indi-
cate that the ball screw has undergone wear. Experimentally,
preload can be changed using different sized balls in the nut assem-
bly, by constructing specialized adjustable ball screw nuts or by
testing ball screws with different preload as designed by the manu-
facturer. In actual manufacturing environments, preload loss mainly
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occurs due to abrasion of the ball screw raceway, but the nut or the
balls can experience wear as well.
Chang et al. [73] compare ball screws with 2% and 4% preload

using a sensorless strategy. Torque signals are seen to be correlated
with the preload level of the ball screw. At constant speed, the ball
screwwith a 4% preload requires more torque. However, the starting
torques for each screwmaintain a linear relationship across themotor
speed range. Torque signals are processed via EMD where preload
features are extracted using the HHT and MSE. A distinction
between theMSE of the 4% and 2% preload ball screws is observed.
A similar comparison of 2%, 4%, and 6% preload of hollow, oil-
cooled ball screws is conducted by Huang et al. [72]. Patterns in the
motor current representative of preload loss are detected through
the HHT and MSE methods. Results also show that the method can
determine the prognostic state of the machine when in operation.
Another sensorless hollow ball screw study using encoder and

motor current data is developed for condition diagnosis [136].
Feature engineering using Fisher’s criterion is constructed to discri-
minate features from raw data for SVM classification. The condi-
tions examined include faulty ball screw preload and pretension,
faulty cooling system, and changing table loads. In terms of
the preload classification, motor current is seen to be affected by
the ball screw preload and thus varies when preload is lost. The
changes in preload and pretension levels are easily seen in the
motor current signal and thus more easily classified as compared
to the cooling system and table load.
Two studies compare sensorless and sensor-based strategies in

monitoring ball screw preload, both on experimental platforms. Li
et al. [151] investigate sensor-based and sensorless strategies for
the prognosis of preload. The sensorless strategy uses speed and
torque signals. The sensor-based method uses data from both the
NC and external accelerometers. The torque signal proves to be valu-
able for fault diagnosis and failure identification. Results indicate that
the sensor-based method is less sensitive and more robust than the
sensorless method. However, the sensorless method outperforms
the sensor-based method in the feature selection criteria, possibly
warranting further analysis into its use in monitoring. Huang et al.
[153] devise a machine learning approach for diagnosing preload
levels where feature extraction is based on NC and vibration
signals. Features based on motor current and encoder signals are clas-
sified using SVM. Using the motor peak current, the SVM method
achieves 100% classification accuracy. Features based on vibration
signals are classified using a GA/KNN method which also achieves
100% classification. However, using the SVM method, the vibration
features yield a low classification rate. With more sensory informa-
tion, the SVM method may achieve a higher classification rate.
Verl and Frey [104] investigate a linear correlation between feed

velocity and effective ball screw preload. A preliminary force anal-
ysis shows that the life of the ball screw is affected by the applied
loads on the screw, including the preload which is expressed by
the drag torque. An experimental testbed that measures the drag
torque and preload forces during tests is used. Preload is measured
using a sensor system installed within the screw nut. Tests reveal
that the effective preload (as opposed to the static preload measured
at rest) is proportional to the feed velocity. It is seen that as the rota-
tional speed increases, so does the effective preload and forces
inside the nut, perhaps providing a unique preload monitoring
strategy.
Huang and Shin [74] use a sensor-based method to diagnose

preload loss using the HHT and MSE of vibrations. Signal patterns
from 2%, 4%, and 6% preload ball screws are distinguished using
EMD with the Hilbert spectrum while preload features are extracted
using the HHT. Experimental results show that preload loss is iden-
tified by an increased MSE value, showing that preload can be

monitored through comparative analysis of MSE. It should be
noted that the research efforts that compare ball screws with prede-
fined preload as per the manufacturer (e.g., 2%, 4%, and 6%
preload) may not be very practical. For health monitoring and diag-
nosis applications, these methods have limitations in that they are
implemented on healthy ball screws that do not exhibit wear or
degradation characteristics. The practical value of these methods
is thus reduced when implemented in real industrial settings.
Tsai et al. [75] monitor the ball pass frequency order (BPO) of

varying preload ball screws using angular velocity Vold–Kalman
filter order tracking. The BPO in effect analyzes the change in the
ball pass frequency or the rate at which the balls pass through the
return tube of the nut. This method is less susceptible to noise from
other vibration sources in the machine tool. Preload loss increases
the ball pass frequency and introduces a side band around that fre-
quency. The onset of preload loss can also be detected based on
the level of BPO decrease and the appearance of the side bands.
Several novel sensing methods are proposed to monitor preload.

Ehrmann and Herder [59] describe that a piezoelectric self-sensing
actuator can be used to control the preload in a ball screw. They
propose the use of a power amplifier and signal processing system to
transmit high fidelity signals to the actuator, which are then used for
diagnosing preload faults in ball screws. Biehl et al. [60] measure
preload forces using piezoresistive films on sensor pins mounted in a
double-nut ball screw. Preload is measured during installation and
changes in thedynamic loadsduring feeddrivemovement aredetected.
Similarly,Möhring andBertram [61] use strain gauges and piezoresis-
tive thinfilms in a double-nut system tomeasure the preload of the nut.
Thestraingaugesmeasure thepreloadforceswhile the thinfilmsensors
measure force and temperature profiles. In addition, sensory electron-
ics are developed as a means for energy harvesting and hybrid energy
supply. During experimental tests, noticeable decreases in the mea-
sured preload forces are seen.
The preload of a ball screw directly influences the stiffness of the

nut which further affects the natural frequencies, and thus the
dynamics, of the ball screw drive. Thus, several studies propose
to monitor preload loss through vibration analysis. Feng and Pan
[38] show validation in using vibrations for monitoring preload
by studying a preload-adjustable ball screw drive with a MEMS
sensor [39]. Their dynamic model of the ball screw axis uses a man-
ufacturer’s empirical model that relates the nut stiffness to the
preload. Simulations show that a reduction in preload reduced all
three of the natural frequencies of the drive. The nut stiffness and
mass of the ball screw are also varied, showing that the second res-
onant frequency is most affected. Experiments show that the second
resonant frequency decreases with decreasing preload. The fre-
quency shift and variation in magnitude of the second resonant fre-
quency are proposed for monitoring preload.
FEM simulations by Ellinger et al. [102] reveal that decreased

ball screw and linear guide stiffness also reduces the natural fre-
quencies of the feed drive. The loss in stiffness of the ball screw
and linear guides each have more influence on the frequency
response over separate, independent frequency ranges. Thus, feed
drive wear can be monitored globally through changes in the
dynamics of the feed drive. Natural frequencies and their ampli-
tudes are extracted from the modal parameters of a ball screw
testbed with varying preload states. An analysis of variance
shows that the preload of the ball screw and the linear guides
have significant dependencies on these extracted features.
Nguyen et al. [52] propose real-time preload monitoring on a lab

setup. Motor currents and vibrations measured during operational
states are used to construct an FRF. Preload is monitored using
the natural frequency of the screw nut and the mass and position
of the table via the model given in Eq. (10).

P =
0.1Ca

0.8K −(4xt/πd2minorE) − (32R2L/πd4minorG) − (1/kbearing) − (1/kbracket) + (1/(2πf )2
∑

M)
[ ]{ }3 (10)
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In the model, Ca is the dynamic load rating of the screw, K is the
nut stiffness (from the manufacturer), xt is the table position, dminor

is the minor diameter of the screw, E is Young’s modulus, G is the
shear modulus, L is the screw length, R= l/2π is the transmission
ratio with l being the screw lead, kbearing and kbracket are the stiffness
of the bearing and bracket, f is the approximated natural frequency,
and

∑
M = mtable + mscrew + mnut + mbracket is the sum of the

masses.
Benker et al. [103] develop a hybrid data-driven and model-based

approach. Eigenfrequencies are extracted from an FRF from which
Gaussian process classification classifies ball screws with new and
degraded preload. In addition, the RUL is predicted by extending
the GPC into Gaussian process regression. The GPRmodel can esti-
mate the RUL of the ball screw very well, even up to the accepted
threshold of the RUL.
A data-driven diagnostic approach by Feng and Pan [40] uses

vibration and temperature to achieve 100% classification accuracy
with an SVM. A prototype sensing unit is developed and installed
on a preload-adjustable feed axis. It is found that the PSD of the
vibrations and the rising temperature clearly detect differing
preload levels.
One of the challenges of monitoring ball screw drives using

sensor-based methods is the placement of the sensors themselves.
Pandhare et al. [148] address the issue by presenting a deep learning
diagnostic model of ball screw preload using domain adaptation
across five accelerometer mounting positions. The method attempts
to map the relationship between fault critical and feasible sensor
locations while training the diagnostic model. A CNN extracts fea-
tures from data obtained through a healthy preload level of 4% and
naturally degraded ball screws. The trained network predicts the
labels of unlabeled target domain data using a Softmax classifier.
The proposed model achieves high accuracy (98.25%) with valida-
tion on 33 transfer tasks, although this was achieved on a lab feed
drive.
Jin et al. [45] devise a multi-failure classification system for ball

screw health. Failure modes include preload loss and a lack of lubri-
cation. Self-organizing map-minimum quantization error
(SOM-MQE) and MD are used to assign health values for lubrica-
tion failures while a Gaussian mixture model is used to identify
preload levels. The SOM-MQE method shows distinctive “tails”
in the health value that are comparable to a failed specimen with
backlash. These tails can be an indicator of backlash.

5.1.3 Backlash Monitoring. Traditionally, backlash (depicted
in Fig. 12) and other machine tool motion errors are measured by
circular profile tests with positional data being measured using a
telescopic transducer bar. This method was developed by Kakino
et al. [167] and became to be known as the double-ball-bar

method. Many methods are proposed to measure the motion
errors of machine tools, including backlash. However, most of
these methods are developed with the intention to compensate
motion errors to improve machining precision and accuracy. For
condition monitoring applications, the goal is to detect, measure,
or correlate backlash in order to optimize the maintenance actions
required to rectify the current issue or potential future issues. Sen-
sorless methods to monitor backlash are presented first followed
by sensor-based methods.
The models used to calculate backlash in the literature tend to

involve the difference between the following:

(1) Rotary encoder and linear encoder measurements [83].
(2) Position command and linear encoder (position error)

[108,109].
(3) Torque-limiting positions [107].
(4) Forward and reverse linear encoder positions (position rever-

sal) [105].
(5) The position of the screw when it begins to move and the

position of the screw when the table begins to move (see
Fig. 13) [149,157].

Figure 14 also shows a common feed drive model that uses backlash
within the position control loop. The backlash calculated by these
models includes more than just the backlash of the ball screw.
These models include the backlash seen by gear trains or other
loose components, which in effect is measuring lost motion or the
sum of backlash phenomena seen by the feed drive. This lost
motion diminishes the usefulness of backlash measurements in
monitoring the health of the ball screw directly.
Sensorless backlash monitoring methods extensively use linear

and rotary encoders. Plapper and Weck [83] monitor the backlash
injected into a feed drive by measuring the difference between the

Fig. 12 Backlash in a ball screw due to wear. The effect of back-
lash is seen when the motion of the screw reverses.

Fig. 13 Backlash measurement used in Refs. [149,157]. Back-
lash is measured as the difference between the screw’s position
at the time when the screw begins to move and its position when
the table begins to move.

Fig. 14 Ball screw feed drive with backlash included in the posi-
tion control loop
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rotary and linear encoders during movement reversals. With more
backlash in the feed drive, there is likely to be a larger discrepancy
between the encoder measurements. Results show that the encoder
signals can reveal backlash of less than 10 μm. Liu et al. [108]
monitor backlash through the difference between forward and
reverse position errors along the axes of a three-axis machining
center. The position errors are calculated as the difference
between the NC command and linear encoder positions. Results
show that backlash has a significant effect on the position error of
the machine axis. This work uses both ANN and polynomial
models to fit the backlash error profile for movement compensation.
The ANN performs better; however, it is only capable of offline
compensation while the polynomial models can be implemented
in an online fashion at the expense of accuracy. Zhou et al. [109]
performed multiple circular tests at discrete points along a ball
screw axis to measure backlash. The backlash is calculated as

B(t) = xs(t) − xcmd(t) (11)

where B(t) is the backlash at the ith feed axis position measured by
the linear encoder, xcmd(t) is the command position under
semi-closed-loop position control, and xs(t) is the feedback value
of the linear encoder. Data collected over a span of 12 months
show that backlash worsens over time, suggesting that backlash
can be used as an indicator of ball screw wear. Torque-limiting posi-
tions are used to monitor backlash in a prototype feed drive by
Chandrasekar and Srinivasan [107]. An iterative algorithm that
takes the difference between the torque-limited positions, measured
by a rotary encoder, quantifies the backlash in the feed drive.
Sliding-mode and adaptive estimation principles are used by

Papageorgiou et al. [106] for online sensorless backlash estimation
in a lab setup. The method includes two estimation stages: the first
for estimating the load-side perturbation torque using a super-
twisting sliding-mode observer and the second for estimating the
deadzone angle via an adaptive estimator. Simulations show excel-
lent performance from both estimators. The algorithm is tested on a
testbed with a modified coupling that introduced backlash. The esti-
mated backlash errors do not exceed 4 × 10−3 rad. The estimation of
backlash is definitely a vital tool in monitoring the wear of a feed
axis. Thus, this work shows a promising method in backlash mon-
itoring; however, drive model parameters are needed to use this
method.
In a sensorless, but offline fashion, Xi et al. [110] monitor the

effects of backlash on the first resonant frequency of the speed
control loop measured by the NC. Axial screw nut stiffness was
reduced and backlash added by the implementation of a custom
built sleeve mounted next to the nut. The monitoring strategy
includes using the first resonant frequency as a wear indicator.
Some drawbacks of this approach are the effects of changing
mass, such as tools and workpieces, on the dynamics of the feed
axis. Maintenance actions on the ball screw may also affect the mea-
sured dynamics as well.
Sato [122] uses frequency responses to estimate backlash or

deadband. This work reasons that when the vibration amplitude
of the motor torque is larger than the backlash, then the motor
torque depends on the dynamics of the table. Conversely, when
the vibration amplitude of the motor torque is less than the backlash,
the motor torque does not depend on the dynamics of the table and
thus the input vibrations will not move the table when sufficiently
small. The estimation principle compares the frequency responses
relating the command position to the linear encoder position and
that relating the command position to the motor torque. The back-
lash is taken to be the vibration amplitude of the encoder response
at the frequency with minimum motor torque amplitude. The meth-
odology provides estimates of the deadband within 5 μm.
TBEs are errors that persist after closed-loop compensation of

general backlash error. Shi et al. [105] derive analytical equations
for TBE for both straight line and circular trajectories. These equa-
tions are calculated using closed-loop control parameters and back-
lash widths. The backlash width is calculated as the difference

between the reverse and forward table positions, xt− and xt+, respec-
tively. Experiments show that measured TBEs are smaller than pre-
dicted TBEs, perhaps due to additional control elements not
considered in the feed drive model. However, this analytical
approach shows potential for the monitoring of TBEs in machine
tools.
Wang et al. [149] predict backlash errors using a back-

propagation ANN. The backlash errors are calculated as

B(p) = S(s∗) − S(p∗)
p = P(s∗)

(12)

where B(p) is the backlash at table position p, s* is the position
where the screw begins to move, and p* is the position where the
table begins to move. S(s*) and S(p*) are the displacements of
the screw in positions s* and p*, respectively, and P(s*) is the dis-
placement of the table at position s*. The training targets are the
backlash errors and the training inputs are linear encoder positions.
The ANN model predicts the backlash at a given table position
which can be used for compensation or monitored for increased
levels of backlash.
Several sensor-based methods exist for backlash monitoring,

detection, and prognosis. Moosavian and MohammadiAsl [76] esti-
mate the bandwidth of vibration frequencies due to backlash. Exper-
imentally obtained vibration frequencies of five different machining
centers are compared with simulations. Results show that the fre-
quency of vibration in a servo axis is not affected by the magnitude
of the backlash. The important factor with respect to the frequency
is the position control loop gain. Xing et al. [53] present a low-cost
monitoring solution that can be implemented in small and medium-
sized enterprises. A camera mounted on a machining center cap-
tures pictures of NC compensation parameters, such as backlash,
pitch, and straightness error compensation. The parameters are
tracked over time and various statistical features are calculated to
aid in the maintenance decision process. A recognized drawback
of this method is that it does not show the real-time state of the
machine tool or the ball screw.
Li et al. [157] develop a diagnostic and prognostic system for

backlash error detection and prediction in machining centers. The
backlash is estimated using linear and rotary encoder measurements
as per Eq. (13):

B(p) = x1(t
′) − x1(t

0)
[ ]

− x2(t
′) − x2(t

0)
[ ]

(13)

where x1(t
0) and x1(t′) are the position of the nut at an initial time of

measurement t0 and final time of measurement t′, respectively.
x2(t

0) and x2(t′) are the positions of the ball screw at their respective
times and p is a discrete point of measurement along the axis. A
prognostic layer is used to predict future backlash errors using a
DBN with temperature, torque, and machine working time as
inputs. Comparatively, this method outperforms a BPNN and
SVM regression. The method achieves very low errors, although
the DBN was trained for over 14,000 epochs. Thus, overfitting is
likely an issue with a practical implementation of this method.

5.1.4 Fault Detection and Diagnosis. Fault detection and diag-
nostics concern the identification of anomalous behavior and are
usually a classification problem. These anomalies can be attributed
to changes in operating conditions, such as wear or hard faults.
Diagnosing faults is also performed by identifying the faulty com-
ponent and the type of fault. Few model- and signal-based methods
are used for diagnostics. This area of ball screw condition monitor-
ing is more populated with machine and deep learning.
The model-based method by Huang et al. [111] detects and diag-

noses unsynchronized motion and encoder reading failures in a pro-
totype gantry stage. Two Kalman filters are designed to
accommodate each of the failure modes based on the multiple
observer method. Additionally, a fault-tolerant control scheme is
proposed. Upon a detected fault, this control method augments
the control law with the estimated fault. Under a mechanical
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failure, it is seen that the filter estimation and tracking error degrade
which cause a failure decision function to alert a failure in this case.
Similar results are seen with the sensor failure.
The signal-based work by Guo et al. [77] achieves adequate fault

identification and prediction of fault locations on an experimental
platform. The strategy uses nut vibrations and allows for estimating
the time of the fault. Fault locations are calculated using the esti-
mated fault time and the instantaneous rotational frequency (IRF)
of the ball screw. The IRF is calculated using a parameterized
time–frequency transform, called the polynomial chirplet transform.
This technique is shown to perform better than wavelet transforms
in terms of estimating the IRF. Once the fault time and IRF are
known, the fault location is identified using an integral operation.
Shan et al. [158] attempt to solve the problem of recognizing

multiple faults occurring at different positions on a lab feed axis
with high accuracy. Data collected from multiple vibration
sensors along a ball screw are weighted based on the Mahalanobis
distance and a sensitivity index that weighs the significance of each
sensor. The weighted data are then fed into a one-dimensional CNN
for classification. The method outperforms popular machine learn-
ing and deep learning methods, achieving 100% and 97.04% clas-
sification accuracy on two datasets.
D’Emilia et al. [49] develop self-implemented classification and

pattern recognition algorithms to detect and locate ball screw faults.
The algorithms operate on vibration and acoustic emission signals.
The pattern recognition algorithm includes calculating time and fre-
quency domain features for all damage classes/states. A feature
matrix is then built and suitable features that separate the damage
classes within the feature space are chosen and used for classifica-
tion. Results show that the feature selection algorithm is not able to
select adequate features from the acoustic sensor as the features
severely overlap in the feature space. The classification algorithm
shows similar performance to Bayes and nearest-neighbour classifi-
ers. However, each classifier shows poor classification accuracy,
except for one damage class, due to aforementioned inadequate
feature selection.
Liao and Pavel [154] propose a strategy to better use operational

data obtained from the machine NC and external sensors. This is
done to tackle the problems arising when machine usage patterns
and operating conditions have changed. Data collected from the
NC of a lab test bench are used to label datasets corresponding to
different operating conditions. PCA is used to identify sensors
that provide the most meaningful information. Anomaly detection
and diagnosis are performed using SOMs which convert the
complex data into readable health information for operators.
Several methods are compared and the proposed strategy shows a
higher false positive rate and less accuracy than the method
without dimensionality reduction. However, the use of operational
data is shown to improve the performance of the diagnostic method.
Liao and Pavel [43] and Siemens AG propose a plug-and-

prognose (PnP) technology that uses NC and external sensor data
to determine a machine’s normal operating characteristics and to
identify faulty operating conditions. PnP attempts to improve
upon conventional data-driven approaches to machine health by
supplying automated and customizable data-driven algorithms
that identify the best model parameters and adapt to different
machines. The methodology uses SOMwith minimum quantization
error for anomaly detection and diagnosis. Results determine that
temperature measurements of the ball screw support bearings
prove to be critical features for monitoring.
Huang et al. [159] diagnose normal and faulty states of a ball

screw drive using vibration measurements. A BPNNwith additional
data clustering is used to process the vibration data. The method is
tested with 25 groups of both normal and faulty state signals. The
proposed BPNN is capable of correctly classifying the normal
and faulty states.
Azamfar et al. [147] develop a deep learning architecture with

domain adaptation for cross-domain fault diagnosis of a laboratory
ball screw drive. This work seeks to improve fault detection when
changes in the ball screw drive are seen. A deep CNN is used for

feature extraction and health state classification using raw torque
signals. The ball screw underwent natural degradation and wear
for the collection of the data. The method achieves high accuracy
on unlabeled data when one set of labeled data is used for training
and results indicate that the method can effectively extract general-
ized features for cross-domain fault diagnosis. This method also
maintains a higher testing accuracy than comparable techniques.

5.1.5 Prognosis and Remaining Useful Life. Remaining useful
life is the common prognostic parameter when concerned with ball
screws. To accurately predict the end-of-life of a ball screw would
prove very valuable to manufacturers and could save excessive
maintenance costs. However, the reliability of these estimates has
not been established. The study of ball screw prognosis, in addition
to the diagnostics mentioned previously, is still very immature.
Only few model-based and data-drive methods exist for ball
screw RUL prediction and prognosis.
Zhang et al. [113] present an exponential model of a ball screw

degradation process that attempts to quantify the amount of wear.
The model uses the wear volume of the ball screw which is
derived as a function of the axial load and stroke number. The
actual level of degradation is measured using a degradation index
calculated using the Weibull distribution shape parameter for mea-
sured vibration signal envelopes. RUL is predicted using experi-
mental data and a PF algorithm while a comparison is made with
a linear model.
Wen and Gao [112] design a novel weighted Mahalanobis dis-

tance (WDMD) health indicator used with an exponential Wiener
process to map ball screw degradation. A PF is used for state esti-
mation and RUL prediction. Results show that the WDMD per-
forms better than the traditional MD and the exponential Wiener
process model provides better performance than a linear and nonlin-
ear Wiener process model. Despite that the method shows to be
more sensitive to the degradation process of a ball screw drive
than the traditional MD, the limitations of this approach are the
poor prediction in the early stages of degradation. However, the
model converges onto the actual degradation path much earlier
than the compared models. The method was also implemented on
a lab testbed.
Deng et al. [114] develop a hybrid data-driven and model-based

method to predict the RUL of a ball screw in real-time. An ensemble
GRU-PF model is designed such that the PF provides state measure-
ments beyond the available analytical measurements. Figure 15
shows an overview of the hybrid method. Experiments on a test
platform show that the model is superior in predicting RUL com-
pared to other hybrid models over different time scales.
Li et al. [151] use Gaussian process regression to predict the RUL

of a ball screw. Optimal features are selected based on a criterion
involving the signal-to-noise ratio of calculated health values. Mea-
sured vibrations are shown to be more valuable over all other NC
and external signals for degradation monitoring. The model predicts
the lifespan of the tested ball screw to be 780 h, close to the actual
800-h lifespan.
Zhao et al. [156] develop an online method to predict RUL using

a multi-variable gray model. Accelerometers are used to monitor
changes in ball screw performance under different machining con-
ditions. EMD is used to extract features. The multi-variable gray
model is used to establish the nonlinear relationship between the
life of the ball screw, the extracted features, and cutting parameters.

5.1.6 Sensing Methods and Technologies. The integration of
accelerometers and other external sensors with ball screw drives
can be difficult. For example, the long-range movement of ball
screws can interfere with wired sensor technology that attempts to
measure the characteristics of the screw nut. This leads to the
design and development of alternative sensing method and
technology.
One solution to the wired sensor issue is to implement wireless

sensors and wireless sensor networks (WSNs). Sudhawiyangkul
and Isarakorn [78] design a wireless data transmission sensor
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with energy harvesting and storage. The sensor harvests energy
from the linear motion of the feed drive while also measuring vibra-
tions. Uhlmann et al. [41] develop a smart WSN that uses Raspberry
Pi computers and MEMS vibration sensors. The aim is to create a
highly scalable CM approach using simple and cost-effective elec-
tronics. Chang et al. [46] propose a hybrid temperature and vibra-
tion sensor with wireless transceiver modules for data
transmission. Five of the hybrid sensors are mounted at various
locations including the nut, support bearings, the slides, and the
drive motor. Lee et al. [168] develop a wireless sensor that measures
operational data indicative of ball screw wear. The method empha-
sizes low-cost and low-power hardware design while focusing on
complete data transmission to a server with minimal data. The
sensor itself collects vibration, temperature, and preload pressure
signals. Zheng et al. [115] show that a wireless ad hoc network pro-
tocol, based on the internet of things (IoT), can monitor vibration
faults of a machine tool. Wireless acquisition nodes, capable of
measuring vibrations, send data from the ball screw to a sink
node. The sink node processes the data and further transmits to
both a local CNC system and to a remote fault diagnosis system.
Schmid et al. [169] develop a WSN that consists of a low-power
microcontroller, a transceiver, and an accelerometer. Vibration
data are collected and analyzed in a decentralized fashion by the
end-device. In addition to the data processing, minimum and
maximum values are also recorded. The data are then compared
to previously recorded datasets in order to estimate the deterioration
status.
As mentioned in Sec. 5.1.2, ball screw nut-embedded sensor

technologies are developed to measure, monitor, and diagnose
preload forces. Ehrmann and Herder [59] develop a piezoelectric
self-sensing actuator to control and monitor preload faults in ball
screws. Biehl et al. [60] and Möhring and Bertram [61] both
measure preload forces using piezoresistive thin films applied to
pins embedded in the screw nut. The work in Ref. [61] also uses
strain gauges.
Several alternative sensing methods and technologies include the

use of MEMS sensors for monitoring preload and machine tool
health [38–41] and the use of a camera for monitoring NC param-
eters related to the health of a ball screw [53].

5.1.7 Other Condition Monitoring Methods. Specialized CM
methods include the development of unique features that represent
fault patterns, analyses on parameters such as efficiency, and fric-
tion monitoring.
Huang et al. [79] suggest that typical signal features represented

in both time and frequency domains do not represent any physical
significance. A pre-processing method that uses the linear encoder
position to re-sample the position error into a spatial domain is pro-
posed with the aim to provide the physical significance for fault or

failure patterns. Both frequency and spatial frequency domain FFT
analyses are compared on a lab test bench. For the frequency-based
analysis, it is difficult to determine a relationship among the fre-
quency components. However, in the spatial domain-based FFT
analysis, the frequency components are more easily recognized as
a defect in the ball screw or its harmonics.
Several friction-based monitoring approaches are seen in the lit-

erature. Chen et al. [80] estimate friction by analyzing the fluctua-
tions of encoder and motor torque signals. A polynomial fitting
algorithm is used to determine the instantaneous average friction
value (IAFV) and a fluctuating friction signal (FFS). IAFV is
used to represent the effects of the table position and the ball
screw pitch errors on the level of friction. Experiments on a CNC
lathe show that the characteristics of the FFS frequency spectrum
are described by the estimated friction. Non-conventional Stribeck
behavior is seen in the mean value of the IAFV for varying feed
rates at a given table position. However, the Stribeck effect
cannot describe the variations in the estimated friction with the
table position.
Offline identification of static friction parameters is generally

needed to develop accurate dynamic models for friction estimation.
Papageorgiou et al. [116] present an online adaptive estimation
method. The method describes the quasi-discontinuous characteris-
tics of friction while sustaining the required level of smoothness
needed for online estimation. The estimation strategy can be imple-
mented under normal working conditions of the machine tool. The
varying frictional phenomena that are seen in the different operating
regimes of the feed axis are segregated by the use of two parallel
adaptive estimators where smooth approximations account for stic-
tion, viscous friction, and bidirectional Coulomb friction. The
method implements a parameterization that connects the model
coefficients to the real properties of friction. In experiments, the
estimation algorithms perform exceedingly well with errors as
low as 1%.
Friction seen by feed drives is estimated using a friction model by

Reuss et al. [117]. From these estimates, certain conditions of the
feed axis are monitored. NC signals are measured during operating
regimes at rapid feed rates. The friction force, FR, is estimated as

FR = FC + fvv + fse
−(|v|/vs) + fw|v|k (14)

where FC is the constant Coulomb friction, fv is the viscous friction
coefficient, fs is the mixed friction coefficient, fw is the rolling fric-
tion coefficient, and v, vs, and k are the feed velocity, the Stribeck
velocity, and a constant, respectively. Results show that new
machines show higher levels of friction as compared to 4- and
7-year-old machines. This is attributed to the wear and natural
degradation of the machine tools.

Fig. 15 Hybrid data-driven and physics-based model used by Deng et al. [114]
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5.2 Linear Guide Condition Monitoring. Wear and degrada-
tion of guideways is an inevitable phenomenon. The condition mon-
itoring of linear guideway degradation is presented first. Preload
and force are monitored to indicate the degree of wear and misalign-
ment of guideways and are introduced next. Following this is lubri-
cation monitoring, which is an important parameter as proper
lubrication benefits the performance and lifetime of guideway
systems. Lastly, fault diagnosis methods for linear guideways are
given.

5.2.1 Wear and Degradation Monitoring. Degradation and
wear of linear guideways and slides can occur on the linear rails
(e.g., spalling and pitting). For rolling guideways specifically, the
bearings of the guides may experience flaking and cracking
among other damage (see Fig. 16). Slides also experience
changes in their level or inclination angle due to wear.
Extensive research into the use of IMU and similar sensing

systems is conducted for linear feed axis guideway degradation.
The early work by Vogl et al. [170] uses a multi-sensor-based
method to measure changes in linear and angular errors caused by
feed axis degradation. Measurements from inclinometers, acceler-
ometers, and rate gyroscopes are able to discern straightness and
angular errors with regard to reference measurements. IMU
sensors are used to measure geometric errors caused by artificial
damage and wear [54,56–58]. These works use a lab setup and
include the implementation of data fusion, statistical analyses, and
other signal-based methods.
Plapper and Weck [83] analyze changes in the axis drive current

due to the effects of pitting on linear guideways. Guideway surface
measurements and drive currents are correlated during slow speed
tests. A correlation of 0.56 is calculated, suggesting that special
care must be taken to use these signals reliably.
Zhao [119] examines the use of accelerometers and a capacitance

probe for monitoring wear on an experimental platform. The capac-
itance probe is capable of measuring deviations in the table position
as it traverses the linear rails.
Dumstorff et al. [64] integrate strain gauges to measure deforma-

tions in linear rails. By measuring the varying resistance across the
strain gauges, it is possible to monitor deformations in the linear
rails.
An important aspect of machine tool installation is leveling

which can influence the accuracy of the machine tool and its life-
span. The degradation of the machine tool slide level can also
reduce machining precision by introducing torsional vibrations in
the feed axis. Hun Jeong et al. [118] develop a sensorless method
to monitor the slide level by estimating the inclination angle
based on a dynamic model. Measured drive motor currents are
used to calculate the inclination angle with less than 3.0% error
using Eq. (15)

|i+| − |i−| = ρ

πηKt
Mtg sin θ ≈

ρ

πηKt
Mtgθ (15)

where the difference between the absolute value of the motor
current i, when the table moves in the positive (+) and negative
(−) directions, is related to the screw pitch ρ, screw efficiency η,
motor torque constant Kt, table mass Mt, acceleration due to
gravity g, and the inclination angle θ. Zhou et al. [82] also
monitor the slide level by estimating the inclination angle and
using EMD to filter vibrations from encoder signals. The sensorless
method is shown to accurately measure the slide level inclination
angle with little to no vibrations affecting the measurement. A
similar model to that of Ref. [118] was used with the exception
that the motor torque in the positive and negative directions was
considered:

T+ + T− = −
ρ

π
Mtg sin θ ≈ −

ρ

π
Mtgθ (16)

Huang et al. [160] estimate the RUL of linear rolling guides. A
DFNN is trained on empirical RUL estimates and extracts features
to provide a nonlinear mapping between measured vibration signals
and the RUL of the linear guides. The proposed RUL estimation
shows to be very precise.

5.2.2 Preload and Force Monitoring. Much like ball screws,
guideways require a preload to reduce play in the guidance
system. The work by Tsai et al. [120] monitors the preload loss
of a lab test bench and its effects on linear guideways using
OMA supplemented with modal assurance criteria (MAC). The
yawing mode of the table is found to be sensitive to preload loss.
MAC allows for extracting the natural frequencies of the yawing
mode despite the occurrence of mode switching due to preload
loss over time. Ellinger et al. [102] also determine that decreases
in linear guide stiffness reduced the natural frequencies of the
feed drive. The preload state of ball screw linear guideways is mon-
itored through its dependency on the amplitudes of the natural
frequencies.
Feng and Wang [42] monitor the alignment of linear guide rails

enduring varying preload on an experimental setup. Using a MEMS
vibration detection module, characteristic frequencies are deter-
mined which shows decreasing trends when misalignment deviation
is less than 40 μm while increasing trends are seen for deviations
between 40 μm and 120 μm. With the use of the MEMS modules
and signal processing techniques, the misalignment of linear guide-
ways can be monitored.
Integrated force and strain sensors are used to monitor preload

forces as well, albeit on laboratory setups. Denkena et al. [63]
apply strain gauge sensors to the side faces of guide carriages to
detect longitudinal and transverse forces. The sensitivity of the
approach is capable of measuring misalignment of the linear rails.
Disturbances such as constraint forces, preload, and roller circula-
tion have posed challenges for this method. However, signal pro-
cessing can be useful in attaining reliable force measurements.
Cheng et al. [65] use an optical mouse sensor and a tactile load
cell to monitor forces seen from the guideway. The straightness
of the guideway can be determined and the onset of preload loss
of the guide can be detected. Krampert et al. [62] apply a piezore-
sistive diamond-like-carbon (DiaForce®) coating to monitor the
stresses imparted on the contact side of the carriage runner block.
Measurements compared to FEM and analytical simulations show
good agreement.

5.2.3 Lubrication Monitoring. The lubrication of linear guides
can dramatically affect the performance of guideway systems and is
important for the longevity and efficiency of the machine. Monitor-
ing the condition of the lubricant in guideways can help optimize
and schedule maintenance actions. However, the opportunity for
missed maintenance actions or careless application of lubricant
can lead to non-ideal lubrication. An automatic lubrication system
proposed by Sparham et al. [47] seeks the goal of being a cost-
effective, less wasteful and flexible solution. Temperature signals
measured from the linear guideways are monitored to determine
failure thresholds. The temperature signals contain information

Fig. 16 Spalling/pitting of linear rails and flaking and cracking of
the ball elements of rolling guideways
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that relates to the state of friction, wear, and loading conditions on
the guideway. A lubrication control unit (LCU) uses these signals to
inject lubricant at the appropriate times. A control diagram of the
LCU is given in Fig. 17. An optimum oil injection time that mini-
mizes oil consumption is found to be 15 s for the application.
Feng et al. [161] investigate the relationship between “poor,”

“medium,” and “good” lubricant states and measured vibration
signals in a lab environment. Wavelet packet decomposition is
used to analyze vibration signals in the time–frequency domain.
The energy distribution of the vibration signals is then extracted
and used as features for classifying the condition of the lubricant.
Measured data of the lubrication states is analyzed and their
energy distributions extracted and fed into a feedforward BPNN
for classification. Greater than 95% average classification accuracy
using the energy distribution as input is achieved. Thus, the energy
distribution can be a useful feature for fault diagnosis of linear
guides.

5.2.4 Fault Diagnosis. Fault diagnosis of linear guideways is
quite limited in the literature. The early work by Lai et al. [121]
identifies and diagnoses nonlinear geometric errors in machine
tool guideways using higher order Taylor series approximations
of the guideway roll, yaw, and pitch motion errors. Using measured
motion data, the Taylor series model is fit using least-squares to
attain the errors in the guideway. Estimated errors are then com-
pared with double-ball-bar measurements. It is determined that
lower-order Taylor approximations may be suitable for a given
application; however, high-order approximations are more appro-
priate for high-precision machines despite being much more
complex.
Fault patterns of linear guideways are identified through the

vibration analysis of Hung et al. [48]. Changing preload is measured
through vibration and acoustic characteristics and is attributed to
variations in the structural stiffness, or contact stiffness, of the
linear guides. The analysis of vibration and acoustic spectra
shows that these signals can be used as fault indices and for moni-
toring fault states of the linear guides. However, the analysis of the
acoustic spectra shows that the acoustic characteristics prove to be
very distinct and unambiguous as compared to the vibration analy-
sis. This concludes that the acoustic analysis can prove to be more
useful in fault diagnosis than vibration analysis.
Kim et al. [162] develop a deep learning fault diagnosis model

composed of a one-dimensional CNN. The model is trained on
time domain vibrations; however, frequency data are maintained
during the learning process and classification is performed using
the frequency domain features. The classification method analyzes
frequency domain characteristics and is visualized using a
frequency-based gradient-weighted class activation mapping. The

method shows that the characteristic frequency of higher order har-
monics is more useful as the classification criteria for the normal
and fault states.
Zhou et al. [155] use an offline image processing method that

detects surface defects of linear guide rails. An adaptive clustering
method is developed that is based on multiple-manifolds and local
density peaks. The local tangent space for the individual pixels of
the images is calculated using mixtures of probabilistic principal
component analyzers. Furthermore, similarity matrices are calcu-
lated between the local tangent spaces. The proposed clustering
method is then improved based on the similarity matrices to deter-
mine the clustering center point.

5.3 Positioning Accuracy and Error Monitoring. The accu-
racy and precision of feed axis positioning depends on the state of
both the ball screw and the linear guideways/slide. Wear and
damage experienced by the ball screw or guideway system result
in motion errors. Monitoring these errors and the positioning accu-
racy of machine tool feed drives lead to informed decisions about
their maintenance.
Workpiece machining error can be monitored based on homoge-

neous coordinate transformations and sensorless signal measure-
ments as shown by Zhao et al. [123]. This work establishes
relationships between motor current, disturbances, and friction.
The difference between the rotary and linear encoder measurements
are taken to be the machining error. Under perfect conditions, ball
screw feedback signals are essentially the same as the motor posi-
tion with Rθm= xt. However, with deviations we get the error

E = Rθm − xt (17)

The components of the error E are mainly caused by errors in the
control, dynamics, and geometry

E = Δc + Δd + Δg (18)

where Δc is the control error, Δd is the error in the dynamic charac-
teristics, and Δg is the mechanical error. By using a coordinate
transformation from the machine coordinate system (MCS) and
the tool coordinate system to the absolute coordinate system, the
workpiece space error is obtained. Load and no-load data from a
five-axis gear grinding machine are transformed according to the
coordinate transformations. The space error is determined and
used to diagnose issues in the tooth alignment error of a grinding
process.
Xu et al. [124] present a sensorless approach to monitor machin-

ing error and source tracing using a similar method as in Ref. [123].
A coordinate transformation matrix is derived that relates the
cutting tool motion to the workpiece and is used to relate the posi-
tioning of the axes to the cutting path of the tool and workpiece.
Machining error is then modeled as the difference between the
real cutting tool path and the ideal cutting tool path.
Detecting position fluctuations caused by mechanical defects

gives insight into the health condition of the feed drive. Xu et al.
[84] decompose linear encoder signals via SSA yielding position
fluctuations. Comparisons are made with EMD, but SSA shows
improved performance and higher accuracy when large trends in
the encoder data are present. Experiments on a vertical machining
center show that the position fluctuations are mainly caused by
the ball screw and are constant at different feed rates.
Xing et al. [125] monitor the accuracy of a machine tool using

VEs, vector similarity measures, and an exponentially weighted
moving average control chart. It is found that the Euclidean distance
and the angle between two consecutive VE vectors provide ade-
quate performance for monitoring the faults and changes in the
system. The method can be used to detect accuracy changes
induced by machine errors including linear positioning, axis
straightness, and c-axis errors.
Wang et al. [85] investigate the alignment error of a ball screw

test bench due to vibrations caused by the rotational frequency ofFig. 17 Lubrication control unit as proposed in Ref. [47]

Journal of Manufacturing Science and Engineering OCTOBER 2022, Vol. 144 / 100802-21

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

anufacturingscience/article-pdf/144/10/100802/6890714/m
anu_144_10_100802.pdf by guest on 27 February 2025



the screw. The effect of the alignment error on the ball screw contact
angle, the deformation between balls and screw, and the contact
force is developed. Results show that the vibration magnitude of
the ball screw frequency increases with increasing alignment
error. This study also shows a method of monitoring ball screw
bending deflection and a potential method in measuring the square-
ness error between the ball screw and the linear guides.
Vogl et al. [55] use an IMU sensor to measure changes in the

linear and angular errors of a linear feed drive. The measured
errors are shown in Fig. 18. Compared to a commercial laser-based
measurement system, this method is capable of measuring linear
and rotary units at the microscale. Thus, it is possible to measure
linear axis degradation while revealing the locations and degree
of wear with the use of an IMU.

5.4 Rotary Axis Condition Monitoring. Machine tools with
rotary axes are generally more complex and less rigid than linear,
three-axis machine tools. The additional rotary axes introduce geo-
metric errors and has warranted much research into quantifying
these errors [171–175]. Most of these methods have the purpose
to compensate the errors. This section focuses on the work that
aims to use these error measurements in a condition monitoring
capacity. Methods that do not involve geometric error monitoring
are also presented.
A lumped parameter model of a c-axis drive is derived by Szten-

del et al. [126]. Real-time data acquisition is performed using
dSpace and a strategy for monitoring machine tools during opera-
tional states is described. One monitoring solution includes compar-
ing the axis dynamics to historical data. The backlash seen by rotary
axes is monitored in a sensorless fashion by Zhou et al. [109]. Small
angle tests, as shown in Fig. 19, are used to develop a backlash
profile of the rotary axis by measuring the difference between the
encoder data.
Zhao et al. [86] deploy a sensorless signal-based method to

monitor the transmission error and vibrations of a rotary indexing
table. The transmission errors are localized via discrete wavelet
transform (DWT) analysis and calculated instantaneous angular
acceleration signals are used to identify the sources of vibration.
DWT analysis is also used by Zhou et al. [88] to monitor servo
current signals. A dynamic model is derived that relates incipient
faults to the servo current. Experiments show that the servo
current is useful in monitoring and diagnosing the fault state of
the rotary axis. The location of the fault is apparent from a polar
plot of the lower frequency band from the DWT. In Ref. [87],

EEMD is used to extract fault information from the servo current
in the worm mechanism of a rotary axis. A dynamic model estab-
lishes the relationship between the fault state of the axis and the
servo current. Results show that the servo current contains valuable
information to detect the faults of the rotary axis.
Wang et al. [128] develop an intelligent monitoring system based

on multi-source data. Hydrostatic turntable service performance is
monitored through analyzing static, dynamic, and thermal charac-
teristics via analytical equations. In Ref. [150], Wang et al. also pro-
posed a performance monitoring solution using an ANN with
over-determined nonlinear equation training. Input parameters
remain the same as in the previous study and comparisons are
made with back-propagation and particle swarm optimization.
Geometric errors are unavoidable. Lou et al. [127] introduce a

real-time sensor system to monitor radial, tilt, and angular indexing
errors of a lab setup. The sensor system uses a rotary encoder with
multiple scanning heads and a miniature autocollimator to measure
the motion errors. A model to monitor the radial errors is also pro-
posed. Results show that the model can predict the errors with less
than a 2μm deviation from linear variable differential transformer
(LVDT) measurements.
Zargarbashi and Mayer [129] develop a double-ball-bar method

to measure trunnion (a-axis) motion errors. The method examines
the radial errors projected onto the bearings of the axis. Five rota-
tional motion errors are measured. Using rigid body and small dis-
placement assumptions, the motion errors are reflected onto the
bearings via a transformation matrix. Root-mean-square and kurto-
sis are used as health indices and compared to baseline values to

Fig. 18 Linear and angular motion errors measured by an IMU
sensor in Ref. [55]

Fig. 19 Testing and measurement procedure for rotary axis
backlash in Ref. [109]. The axis is rotated over a short path, M-
N, that is less than the backlash (top). The axis is then rotated
in the opposite direction until the grid scale value has
changed, indicating that the length of backlash has been traverse
(bottom). The backlash is measured by the difference between
the grid scale, xs, and motor encoder, xme.
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identify gradually growing errors. In Ref. [89], Zargarbashi and
Angeles detail a predictive maintenance strategy using the fre-
quency spectrum of double-ball-bar measurements. Experiments
on the trunnion axis show that the rollers and the bearing cage
have the greatest influence on the errors. The authors propose that
a threshold on the amplitude of the monitored frequencies can
help recognize defective parts.

6 Commercial and Industry Solutions
With the advancement of computing technology and optimized

signal processing and machine learning algorithms, machine tool
OEMs are beginning to integrate Industry 4.0 principles into their
products and solutions. These systems can be categorized as system-
based and product-based solutions. System-based solutions include
hardware and software integration in machine tools with the
purpose of condition monitoring. Product-based solutions are com-
ponents manufactured with integrated sensor systems with the
purpose of providing users the data required for monitoring the
component.

6.1 System-Based Solutions. Siemens AG is one of the most
prominent providers of system-based CM solutions for machine
tools. The SINUMERIK CNC Automation System provides hard-
ware and software solutions for many manufacturing industries.
The Siemens Industrial Edge [176] for machine tools contains appli-
cations through the SINUMERIK CNC SHOPFLOOR MANAGEMENT Software
[177]. One such application is Analyze MyMachine/Condition
(AMM/C) [178] which is used to monitor the condition of CNC
machine tools that use the SINUMERIK 840D sl controller. AMM/
C creates a mechanical fingerprint by analyzing and tracking
machine axis characteristics such as stiffness, backlash, friction, sig-
nature, quadrant errors, and frequency response. These characteris-
tics are measured via programs run by the application and are
compared to reference measurements to detect deviations and poten-
tial faults.
FANUC has developed a monitoring solution using their MT-LINKI

software [179]. MT-LINKI can connect to CNCs and PLCs via OPC
UA or MTConnect protocols. The software has the potential to
collect and monitor alarm history, signal history, servo and
spindle motor currents and temperatures and more. FANUC has
also partnered with Preferred Networks Inc. (PFN) to develop a
servo and feed axis monitoring solution, called AI Servo Monitor
[180]. AI Servo Monitor measures controller data from feed and
spindle axes and applies deep learning algorithms to measure anom-
alies in the machine components. The models use operational
torque data as inputs and calculate an anomaly score based on
extracted features. As of Aug. 2019, FANUC and PFN have pro-
vided AI Servo Monitor as a proof of concept.
Bosch Rexroth’s Industry 4.0 solution includes their Online

Diagnostic Network (ODiN) [181]. This machine learning solution
uses operational data collected through application oriented sensor
packages. These data are used to train a machine learning model in
an unsupervised manner and compares reference data patterns with
new input operational data to detect and learn anomalous behavior.
Montronix® offers solutions for process monitoring and real-time

detection of machine tool collisions, tool breakage, overloading,
abnormal vibration of the spindle, and machine structure. These
solutions are offered for ball screws, linear guides, and spindles.
The machine diagnostic software PULSENG-DIAG [182] operates on
data from a PulseNG sensor and/or a WiFi BoxNG that measure
vibrations. PulseNG-Diag analyzes the signals to diagnose linear
axes and offers predictive maintenance information.
DTect-IT [183] is a condition monitoring sensor and software

suite by CARON Engineering that uses vibration, strain, power,
and analog sensors to monitor working limits, spindle bearing
health, barfeeder vibration, tool wear/breakage, etc. DTect-IT
allows users to monitor their CNC machine tools through various
modes. These include limit analysis, spindle bearing analysis,

fault detection, frequency analysis, and sensor data collection
analysis.
Artis Marposs (MARPOSS Monitoring Solutions GmbH) pro-

vides a line of monitoring hardware and applications. C-Thru4.0
[184] is a database management system that integrates with the
GENIOR™ MODULAR [185], an autonomous tool and process
monitoring system, and provides predictive maintenance informa-
tion about a process. Data collected by the GENIOR™

MODULAR is analyzed and show variations in vibration and
torque. This module also interfaces with the intelligent sensor
system GEMVM [186]. GEMVM measures vibrations and allows
for FFT analysis used for CM of drive axes.
Injection molding machines are subject to critical component

failures, much like machine tools. Two critical components
include the plasticizing screw and the ball screw. ENGEL Austria
GmbH provides a smart services platform, e-connect, and e-con-
nect.monitor, for monitoring the condition of these components in
addition to hydraulic oil and servo pumps [187]. Wear is monitored
during operational states through state-of-the-art sensor technology.
Sensor data are analyzed through mathematical models and algo-
rithms. The RUL is predicted for both the plasticizing screw and
the ball screw when conditions are measured periodically.
Sensors used on the plasticizing screw include an ultrasound
sensor, and for the ball screw, temperatures, frequencies, and
other performance data are measured. To measure the RUL of the
ball screw, a damage indicator is created through a clustering algo-
rithm [188]. These systems also allow maintenance personnel to be
notified when components reach a critical condition based on the
damage indicator.

6.2 Product-Based Solutions. In addition to system-based
solutions, component manufacturers have developed sensor-
integrated solutions that enable users to monitor the conditions of,
for example, ball screws and linear guides.
August Steinmeyer GmbH partnered with ifm electronic GmbH

to develop a preload-sensing system, called Guard Plus [189].
The sensor system is built into the nut of Steinmeyer’s ball
screws and interfaces with ifm VSE150 modules for vibration mon-
itoring. Measured sensor signals are correlated with torque mea-
surements to reveal characteristics about the level of preload. The
signals are monitored over time to indicate preload loss and wear.
This technology is applicable to precision ball screws with shaft
diameters within 40–80mm and ball diameters of at least 6mm.
Schaeffler DuraSense [190] monitors the tribological conditions

of linear guidance systems based on vibration signals. DuraSense
uses a pre-processing unit that analyzes the sensor signals as car-
riage lubricants age/deteriorate and the level of lubricant is lost
over time.
Bosch Rexroth has also developed an integrated linear guide

sensor system, the Integrated Measuring System (IMS) [191]. The
IMS provides linear feedback position using a contactless measur-
ing principle, comparable to glass scale encoders. The IMS-A
variant of the sensor system has additional temperature sensors
and accelerometers that form the foundation for Industry 4.0 appli-
cations such as linear guide condition monitoring [192].
The few system- and product-based monitoring solutions

described give insight into the state of conditionmonitoring in indus-
try. There is also a large body of work for the monitoring of system
performance, however that falls outside the scope of this review.
The monitoring of rotary and direct drive axes is closely related

to the monitoring of rotating machines, but manufacturers have yet
to even begin assessing the health condition of these axes. No indus-
try solutions exist for the monitoring of rotary axes which may stem
from the lack of research into this area, more work concerning
rotary axis monitoring is needed. Besides Siemens and FANUC,
all other solutions are sensor-based and require the installation of
external sensors and hardware. If manufacturers have the necessary
edge and cloud computing network architectures, then sensorless
methods may be implemented with ease. However, if they do not
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have these computing architectures, then sensor-based methods can
be more desirable.

7 Summary and Future Outlook
7.1 Summary. Condition monitoring of machine tool feed

drives is an expanding area of research that strives to analyze and
evaluate machine health. Ball screws, linear guideways, and
rotary axes are critical components in machine tools which
require accurate monitoring to optimize maintenance actions and
reduce operating costs. The methods available include signal pro-
cessing, model-based theory, and ML algorithms. These are per-
formed on sensorless or sensor-based data as defined by the use
of built-in sensors for the former and external sensors for the
latter. The most popular parameters to be monitored are wear and
degradation or those that are closely related, e.g., preload and back-
lash. Some CM methods have begun to be introduced in industrial
applications as described in Sec. 6. However, there still remain sig-
nificant gaps in the literature preventing the full adoption of Indus-
try 4.0 principles in modern manufacturing as shown in Fig. 20.

7.2 Key Feed Drive Components for Monitoring. Condition
monitoring of ball screws has received more research efforts than
those of linear guideways or rotary axes. This is due to the fact that
ball screws are a frequently replaced maintenance item that require
the longest repair times among other machine tool components and
systems. Ball screw CM mainly consists of sensor-based methods

that detect changes in wear/deterioration, preload, and backlash.
Fault detection and diagnosis, as well as prognostic techniques,
have also been explored but require more validation for their adop-
tion in industry. The costs of downtime and poor quality arising
from worn or damaged ball screws can be expensive for both small
and large manufacturers; the former may not have the operating
resources and the latter may have hundreds or thousands ofmachines
to maintain. The attention given to CM research of ball screw drives
is thus reflected onto the interests of these manufacturers as a worth-
while investment. In a research setting, ball screws are capable of
general, machine independent work. Thus, performing research
activities related to ball screw drives is made easier when experimen-
tal or prototype testbeds are available. This allows for performing
accelerated life tests under nomachining loads. Due to the frequency
and cost of replacement and the availability for research, ball screws
are given the most effort for CM applications.
Conversely, linear guides and rotary axes have received much

less attention. For linear guides, this is due to the lower replacement
rates. Furthermore, the condition monitoring parameters of linear
guides, such as vibration and deflection, are dependent on the spe-
cific machine structure. This makes the CM of linear guideways
more difficult to generalize as the proposed methods may not be
expandable to all machines, even those of the same make and
model. The monitoring of linear guideways is composed of wear/
degradation, preload/force, lubrication, and positioning accuracy/
error monitoring, in addition to fault diagnosis. Like ball screw
monitoring, sensor-based approach remains the most popular
among the cited works. Rotary axis and drive research have

Fig. 20 The future outlook on machine tool feed drive condition monitoring consists of more research in the CM of
linear guideways and rotary axes, developing CMmethods that capitalize on fundamental principles and sensorless
methods, improving the robustness of ML methods and investigating the use of in-process data and smarter data
acquisition to facilitate industrial application
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mostly consisted of geometric error measurements used for drive
compensation. Little of this research has carried over to CM. As
the research of these errors matures, it may begin to find its way
into CM of rotary drives.

7.3 Adoption of Condition Monitoring in Industry. The
reviewed CM methods seldom reach industrial settings. Those
that are used for industrial applications consist of either vibration
and FFT analysis or ML diagnostic methods. A good proportion
of the reviewed works is implemented on industrial machines, but
many are constrained to laboratory setups, test benches, and tailored
datasets. Those methods that are used on industrial machine tools
are highly tuned to a specific machine and application and are not
yet able to be scaled generally. One of the obstacles to successful
industrial adoption is the computing power needed for advanced
signal processing and machine learning algorithms. However,
with the wider implementation of higher level computing architec-
tures, such as edge and cloud computing, this road block may over-
come in the near future. In addition, the availability of industry data
is also a limiting factor as more data are either not accessible nor
collected for analysis and development of industrial CM solutions.
Another road block of industrial machine tool CM is the need to

handle varying working conditions. The conditions of industrial
manufacturing are chaotic and contrast the controlled environments
of machine tools in a laboratory setting. For example, experimental
setups often use accelerometers installed on the ball screw nut or
table, a sensing method that is difficult to achieve in industry. A
growing amount of machine tool CM research has begun to use
operational data or data collected during machine traverse periods
to mitigate the issue. Operational data contain the non-ideal
aspects of industrial environments, but it conveys the real condi-
tions of machine tool feed drives. Collecting data during machine
traverse periods, or periods of constant feed rate under no load,
allows to eliminate the more complex dynamics of the machine
drive, such as the inertia. These data acquisition methods can
provide solutions for CM methods to handle various working con-
ditions. However, many CM methods require specific test cycles to
be run on the machine to collect such data. Industrial solutions, such
as Siemens’ Analyze MyMachine/Condition application, require
this. Condition monitoring methods that can work off in-process
data that do not require test cycles can be highly sought after.
Lastly, condition monitoring systems implemented in industry can
show false alarms. Methods will need to be developed to reduce
the occurrence of false positives which is a major deterrent to the
adoption of CM in the industry.

7.4 Sensorless Condition Monitoring. Some researchers
have recognized the utility of sensorless CM. Sensorless methods
can provide users, who have the required computing technology
and hardware, the means to implement CM with ease as no external
sensors need to be installed. However, it is recognized that some of
the reviewed sensorless methods have used external data acquisition
devices and counter cards to measure high-frequency data (>10,
000 Hz). The future of sensorless methods will require CM to use
true NC data. This will require methods that concern lower fre-
quency data of less than 1000 Hz as limited by communication
protocols.
Sensorless methods also have the benefit of improved reliability

when it comes to installing sensors. In industrial settings, sensors
can be highly unreliable due to environment conditions and ulti-
mately reduce the reliability of the overall machine tool. Sensor-
based CM solutions may be accurate and precise, but when more
sensors are installed for monitoring purposes, the robustness of
the method may be diminished.

7.5 Advanced Analysis and Modeling Techniques. Data-
driven or machine learning methods are most widely explored
throughout CM, but more work is needed on the robustness of

ML. Much of the data collected for ML monitoring is sparse and
incomplete by nature, especially those that require manual input
and labeling. ML methods can also yield false positive results and
few of the reviewed methods have dealt with this issue. Avoiding
false positives will likely grow more complex as more data are
used in diagnostic and prognostic models. Methods that use data
fusion and hybrid techniques may allow for reduced false positive
rates. Other concerns include the lack of a consistent time record
between different components and equipment in feed drives and a
lack of confidence if ML algorithms suggest actions that are well
out of normal practice. It is difficult to discern if such suggested
actions are real insights or errors in the ML method. Lastly, the
use and appropriate selection of engineered features make ML
application highly specific to a given machine tool.
The challenges facing the condition monitoring of machine tool

feed drives are complex. However, some studies focus on engineer-
ing solutions that do not address the fundamental principles that
govern the specific issue. For instance, the wear and degradation
monitoring of both ball screws and linear guides is governed by tri-
bological effects and feed drive dynamics. Statistical and other data
analysis approaches have been implemented, but attention should be
made to methods that attempt to reveal the mechanisms of wear or its
effects on feed drive dynamics, and thus aim to monitor the problem
more directly. This is no doubt challenging, but it will grant accurate
and reliable feed drive condition monitoring.
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