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Abstract: Terahertz spectral acquisition has a fundamental limitation in implementation due to
long experimental acquisition time. The long experimental acquisition time in terahertz spectral
acquisition is a result of the required high integration time associated with usable dynamic
range signals acquired through delay stage interferometry. This work evaluates the effectiveness
of a non-linear version of the Kalman Filter, known as the extended Kalman filter (EKF),
and the recently developed extended sliding innovation filter (ESIF), for increasing dynamic
range in terahertz spectral acquisition. The comparison establishes that the EKF and ESIF can
reduce integration time (time constant) of terahertz spectral acquisition, with EKF reducing
the integration time by a factor of 23.7 for high noise signals and 1.66 for low noise signals to
achieve similar dynamic ranges. The EKF developed in this work is comparable to a nominal
application of wavelet denoising, conventionally used in terahertz spectral acquisitions. The
implementation of this filter addresses a fundamental limitation of terahertz spectral acquisition
by reducing acquisition time for usable dynamic range spectra. Incorporating this real-time
post-processing technique in existing terahertz implementations to improve dynamic range will
permit the application of terahertz spectral acquisition on a wide array of time sensitive systems,
such as terahertz reflection imaging, and terahertz microfluidics. This is the first implementation,
to our knowledge, of Kalman filtering methods on terahertz spectral acquisition.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Signal processing techniques for acquisition of spectral signals have become ubiquitous in the
measurement of sensitive signals [1–3]. By using signal processing techniques, system design
parameters can be less sensitive and instead rely on post processing data to achieve the same
dynamic range (DR) [4,5]. To improve system DR, signal processing removes noise that is
generated in the measurement process [6]. One conventional method to reducing noise generation
in a measured system is to increase the integration time during the measurement process [7,8].
However, increasing scan duration will affect the feasibility of a system design to be introduced
into industrial or commercial applications which require fast image scan times. Many optical
technologies that have mechanical components such as interferometers or convolution-based
detection can have limited applications due to high time constraints from the use of long time
constant integration [9,10]. These optical systems can also have high noise due to their reliance
on electrical components, which can output random gaussian noise [11–13]. Sliding innovation
and Kalman filtering have recently been demonstrated as a signal processing technique that has
been shown to reduce noise in optical systems with high noise, thereby reducing the integration
time required for a similar signal quality [14–17].
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An optical system that is sensitive to noise and therefore can particularly benefit from Kalman
filtering is terahertz spectral acquisition. This sensitivity to noise is due to the low power of the
signal and the large use of electrical components [1,7,9]. Terahertz spectral acquisition has been
shown to be an effective optical tool in ground-breaking technologies such as early skin cancer
detection, and gastrointestinal endoscopic diagnostics [18,19]. However, a flaw in using terahertz
spectral acquisition, is the high experimentation time requirement caused by the mechanical
convolution-based technique required for detection [9].

A common metric that is used to quantify noise in terahertz spectral acquisition is DR [20].
Many fields of Terahertz acquisition define DR using different methods of calculation [21]. In
this work DR is defined as,

DR function =
[Amplitude(frequency)]
[mean(noise floor)]

. (1)

The noise floor in this work, is defined as the integrated amplitude of the terahertz spectral
acquisition frequency domain response between 6.5 to 8.3 THz for data sets, ensuring no bias is
applied to any individual data set. The noise floor integrated frequency range strongly impacts
the scaling applied to the DR. Thus, if the noise floor is changed between data sets, the scaling
can appear to incorrectly increase the DR of a data set. The integrated frequency range values
were chosen as the best fit for how the effect of time constant should theoretically affect DR,
following the relationship provided by Vieweg et al. 2014 [7].

Applications with low peak dynamic range in terahertz spectral imaging are abundant due
to the sensitivity of terahertz systems [22–24]. Recent advances in applications of terahertz
detection such as terahertz microfluidics and, characterization of photoconductive antennas have
suffered from low DR (as low as 6 dB) [25,26]. Alternatively, applications of terahertz spectral
imaging such as terahertz reflection imaging are currently impeded by high measurement times
[27,28]. Additionally, higher frequencies at the edge of the terahertz spectral image bandwidth
will have a low DR. This low DR is caused by a decrease in amplitude as frequency approaches
the upper range of the bandwidth [20,29]. The high frequencies of a terahertz spectral image
contain extremely useful material information such as identifying chemical components [8]. Thus,
increasing the DR is of vital importance to these applications to increase information retrieved
from each spectral acquisition. To achieve acceptable DR in terahertz spectral acquisition
applications, integration time is often increased and therefore imaging duration is also increased
[7]. An integral improvement that must be accomplished before a viable application of terahertz
spectral acquisition is achieved, is reduction of acquisition duration [30].

In this work we reduce the requirement of high integration times by using a recently developed
extended sliding innovation filter (ESIF), and a non-linear version of the Kalman filter, the
extended Kalman filter (EKF) [14]. The envisioned impact of this implementation is to help
alleviate time constraints on impractical real-time applications of terahertz spectral imaging. A
secondary goal of this work is to provide a comparison between these two filtering methods.
Extending on the procedures in Gaamouri et al. 2018, these filters are compared to a Haar
wavelet denoising method, and a nominal implementation of a tailored Daubechies (Db) wavelet
denoising method [10]. A tertiary goal is to establish that EKF or the ESIF perform comparably
or favorably to the wavelet denoising methods, as the Kalman and sliding innovation filtering
methods can be implemented in real time [10,31]. The comparison is accomplished by taking
several measurements at varying acquisition time constants. These measurements are then
processed by each filter, whereby the system is modelled as two Gaussian functions, with
alternating positive and negatives amplitudes, to approximate the bipolar THz waveforms seen in
the time-domain.
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2. Terahertz spectral acquisition experimental parameters

In this section the parameters of each terahertz spectral acquisition scan, and the model used
for the EKF are discussed. In Fig. 1 the terahertz spectral acquisition system used in the
experimentation is depicted using a schematic. Eight terahertz spectral acquisition scans are
produced using a gallium arsenide (GaAs) photoconductive THz antenna (i.e., Auston switch) for
emission, and a ⟨110⟩ zinc telluride (ZnTe) crystal for electro-optic detection. Each terahertz
spectral acquisition scan is conducted at a different acquisition time constant (τ) to provide a
baseline for increasing integration time. The time constants used for the baseline are τ = 100
µs, 300 µs, 1 ms, 3 ms, 10 ms, 30 ms, 100 ms, and 300 ms, and are recorded using a lock-in
amplifier (Stanford Research Systems SR830). The time resolved time window of each scan is
15 ps (corresponding to 4.5 mm) with a step size of 0.05 ps (corresponding to 15 µm). Terahertz
spectral acquisition scans are conducted in a non-Nitrogen purged environment, with ambient
conditions such as vapor absorption lines observable in the scans.

 

Fig. 1. A schematic of the terahertz time domain spectral acquisition set-up where BS is a
beam splitter, M is a mirror, PC THz emitter is a photoconductive terahertz emitter, PC is
a personal computer, PM is a parabolic mirror, and ZnTe crystal is a ⟨110⟩ Zinc telluride
crystal.

3. Non-linear filter model parameters

To develop the model of the terahertz spectral acquisition scan, three gaussians are modeled to
match the pulse shape. The EKF developed in this work follows the mathematical model that is
provided in Spotts et al. 2020 [14]. The linearized model used in the EKF for the terahertz pulse
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is,

xk+1 =

|︁|︁|︁|︁|︁|︁ 1 dt

0 ∆

|︁|︁|︁|︁|︁|︁ xk + wk. (2)

where x is the subscript k time domain data point, dt is the temporal spacing of the data set,
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and
w = ∼ |Q|. (4)

Here Q is the iteratively tuned model system noise covariance, which is provided below,

Q =

|︁|︁|︁|︁|︁|︁ 10−2 0

0 10−2

|︁|︁|︁|︁|︁|︁ . (5)

The non-linear equation used in the EKF and the ESIF is

xk+1 =

|︁|︁|︁|︁|︁|︁ 1 dt(ẋ)

0 ∆

|︁|︁|︁|︁|︁|︁ xk + wk. (6)

The iteratively tuned parameter representing measurement error covariance R is

R =

|︁|︁|︁|︁|︁|︁ 25 0

0 25

|︁|︁|︁|︁|︁|︁ . (7)

The predictor-corrector model that the ESIF uses is different to the KF based model. The ESIF
is a non-linear version of the sliding innovation filter. The ESIF uses a sliding mode approach to
determine the true values of systems. To determine the gain of an ESIF filter Eq. (8) is used,
being,

Kk+1 = H+k+1sat
(︃
|z̃k+1 |k |

δ

)︃
. (8)

In Eq. (7)+ denotes a pseudoinverse, sat denotes a diagonal matrix of elements that are equal
to the saturated values, |z̃k+1 |k | denotes the absolute innovation or measurement error within a
system, and δ denotes a sliding boundary layer that is fundamental to the design of the filter and
signal parameters. The sliding boundary layer is a tuneable parameter that has been iteratively
optimised in this work to the values shown in (8) as

δ =

|︁|︁|︁|︁|︁|︁ 2.5 × 10−3 0

0 1.1

|︁|︁|︁|︁|︁|︁ . (9)

4. Dynamic range performance of non-linear filtering

In this section the performance of the EKF and the ESIF are evaluated and quantified by the
increase in DR in comparison to an increase in time constant. For comparison the two extreme
cases (low and high time constant) have been plotted in both the time domain and the frequency
domain (DR function). In the time domain the jagged oscillation located before the terahertz
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pulse (t∼ ≤2.0 ps) can be considered as noise in the terahertz spectral acquisition system. This
noise propagates throughout the entire signal, however, after the terahertz pulse there is also the
system response to the terahertz pulse (e.g., spectral features, etalon artifacts, etc.). The effect
that the jagged oscillations have on signal quality can be quantified using the DR function. The
DR of both the treated data and the untreated data at each time constant have been plotted to
provide insight into any trend that may occur. The single DR value presented is determined by
the integrated DR function in the frequency region between 0.2 and 1.0 THz. The average is
taken to account for local maximas or minimas caused by the reflections in the electro-optic
crystal detection terahertz detection method. These values are presented on a logarithmic scale,
however the DR quoted is not in units of decibels.

In Fig. 2 the low time constant (τ = 100 µs) is seen to have abundant jagged oscillations
before the terahertz pulse occurs. A decrease in amplitude of the jagged oscillations located
before the terahertz pulse occurs, is exhibited when the time constant is increased to τ = 300 µs.
The EKF visibly decreases the size of the jagged oscillations further than the increase in time
constant when applied to the τ = 100 µs data set. The EKF visibly has the highest reduction to
the jagged oscillations prior to the terahertz pulse. The Haar and tailored Db wavelet denoising
method follow a similar pattern to the ESIF and EKF, where the tailored Db decreases the jagged
oscillations further than the Haar wavelet denoising method.

In Fig. 3, we examine the frequency response of the low time-constant case. The increase in
time constant from τ = 100 µs to τ = 300 µs is shown to increase DR from DR100 µs= 7.74, to
DR300 µs= 12.0. In Fig. 3(b) the Haar wavelet denoising method is seen have an incremental
improvement to the DR (DRHaar= 80.9), whereas the tailored Db implementation led to a drastic
increase in DR (DRTailored Db= 16.4). Shown in Fig. 3(a) the τ = 100 µs data set treated with the
ESIF has an increase of DR100 µs= 7.74 to DRESIF= 11.2. The τ = 100 µs data set treated with
the EKF has the highest DR (DREKF= 22.8), which was more effective at increasing the DR
than the increased time constant or the ESIF. The EKF increased the τ = 100 µs data set DR by
a factor of 2.95. This increase in DR verifies the noise reduction in the time domain response
plotted in Fig. 2.

In Fig. 4, we examine a high time-constant case in the time-domain. The high time constant
(τ = 100 ms) is seen to have almost no visible jagged oscillations before the terahertz pulse occurs.
When the time constant is increased to τ = 300 ms there is no visible change to the signal in the
time domain response. Additionally, when any filtering method is applied to the τ = 100 ms data
set there is no visible change to the signal in the time domain response.

In Fig. 5 the DR function of the high time constant data sets (τ = 100 ms, τ = 300 ms) indicate a
comparable increase in DR when compared to the low time constant data sets (DR100 ms = 72.6, and
DR300 ms = 126). The wavelet denoising methods manage to make an incremental improvement
to the DR (DRHaar= 80.9 and DRTailored Db = 115), lower than when applied to the high noise data
sets seen in Figs. 2 and 3. For the high time constant case the ESIF performs similarly to the
EKF (DRESIF= 135). The EKF has less of an increase in DR when treating high time constant
data, with a DR close to the increased time constant data set (DREKF= 130). However, the EKF
is still effective at increasing the DR with an increase in DR by a factor of 1.79.

In Fig. 6 we plot an exhaustive experimental analysis of the relationship between time constant
and DR in terahertz spectral acquisition. This figure shows that at each corresponding time
constant, the EKF will improve the DR greater than the increase in time constant, for the measured
data set. However, as indicated by Figs. 2 and 4, there is a decrease in filter improvement over
increasing integration time as the time constant increases. An experimental line of best fit is
determined (i.e., highest R2) to interpolate between time constant data points which produced an
R2 of 0.914. This experimental line of best fit was produced to determine the equivalent time
constant required for the increase in DR due to the treatment of each filter.
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 Fig. 2. The time domain of the τ = 100 µs, τ = 300 µs, and the treated τ = 100 µs terahertz
spectral acquisition data sets. The untreated τ = 100 µs data set has been plotted with an
(arbitrary) DC offset of 8.0 × 10−3 in both (a) and (b). The untreated τ = 300 µs data set
has been plotted with an (arbitrary) DC offset of 2.8 × 10−2 in both (a) and (b). The Haar
(a), and the ESIF treated (b) τ = 100 µs data set has been plotted with an (arbitrary) DC
offset of 4.8 × 10−2. The tailored Db (a), and the EKF (b) treated τ = 100 µs data set have
been plotted with an (arbitrary) DC offset of 6.8 × 10−2. The DC offsets are solely for
visualization purposes.
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 Fig. 3. The dynamic range function of the untreated τ = 100 µs (DR= 7.74), untreated
τ = 300 µs (DR= 12.0), the ESIF treated τ = 100 µs (DR= 11.2), and the EKF treated τ = 100
µs (DR= 22.8) terahertz spectral acquisition data sets. In (b) the untreated data sets are
compared to the Haar (DR= 10.6), and tailored Db (DR= 16.4) denoising methods.
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 Fig. 4. The time domain of the τ = 100 ms, τ = 300 ms, and all treated τ = 100 ms terahertz
spectral acquisition data sets. The untreated τ = 100 ms data set has been plotted with an
(arbitrary) DC offset of 8.0 × 10−3 in both (a) and (b). The untreated τ = 300 ms data set
has been plotted with an (arbitrary) DC offset of 2.8 × 10−2 in both (a) and (b). The Haar
(a), and the ESIF (b) treated τ = 100 ms data set have been plotted with an (arbitrary) DC
offset of 4.8 × 10−2. The tailored Db (a), and the EKF (b) treated τ = 100 ms data set have
been plotted with an (arbitrary) DC offset of 6.8 × 10−2. The DC offsets are solely for
visualization purposes.
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 Fig. 5. In (a), the dynamic range function of the untreated τ = 100 ms (DR= 72.6), untreated
τ = 300 ms (DR= 126), the ESIF treated τ = 100 ms (DR= 135), and the EKF treated
τ = 100 ms (DR= 130) terahertz spectral acquisition data sets. In (b) the untreated data sets
are compared to the Haar (DR= 80.9), and tailored Db (DR= 115) denoising methods. The
high frequencies of the DR function are not centered around the noise floor because the
range of frequencies chosen for the integration calculation remains constant between all data
sets (6.5 to 8.3 THz).
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Fig. 6. The averaged peak dynamic range plotted as a function of time constant using all
experimental terahertz spectral acquisition data sets (τ= 100 µs, 300 µs, 1 ms, 3 ms, 10 ms,
30 ms, 100 ms, and 300 ms), with an experimental line of best fit for the experimental data
DR = (τ(µs))0.402.

To achieve an equivalent DR for the low time constant data set treated with the ESIF, following
the experimental line of best fit, the time constant would need to be increased from τ = 100 µs
to 390 µs. To achieve an equivalent DR for the low time constant data treated with the EKF,
following the experimental line of best fit, the time constant would need to be increased from
τ = 100 µs to 2.37 ms. This represents an improvement in image acquisition time of a factor of
23.7. For a 625 spatial pixel image (i.e., a 25 by 25 spatial pixel image), with the same 750 time
increment scan as in our terahertz experiments, the overall imaging time would change from 19
minutes to less than one minute. To achieve an equivalent DR for the high time constant data set
treated with ESIF, following the experimental line of best fit, the time constant would need to be
increased from τ = 100 ms to 182 ms. This represents an improvement in image acquisition time
of a factor of 1.82. To achieve an equivalent DR for the high time constant data set treated with
EKF, following the experimental line of best fit, the time constant would need to be increased
from τ = 100 ms to 166 ms. This represents an improvement in image acquisition time of a
factor of 1.66. This indicates that the maximum DR improvement using the EKF occurs for
terahertz spectral acquisition performed with a low time constant, resulting in a diminishing
improvement for data sets acquired with a high time constant. The ESIF has a more consistent
improvement on DR than the EKF, as the time constant is increased. Figure 6 also demonstrates
that the implementation of the EKF is comparable to the tailored Db wavelet denoising method.

5. Dynamic range performance of non-linear filtering

In this paper, we introduced a novel application of EKF and the recently developed ESIF for
treatment of terahertz spectral acquisition. The ESIF managed to increase dynamic range in the
frequency domain, however, overall performed worse than the EKF. The EKF has the capability
of improving the DR in terahertz spectral acquisition by approximately a factor of 2.95 increase
at maximum and a factor of 1.79 increase at minimum for the presented data sets (τ = 100 µs to
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τ = 300 ms). Additionally, the EKF has shown to perform better than the Haar wavelet denoising
method and is comparable to a nominal implementation of the tailored Db wavelet denoising
method presented in the paper. Unlike the wavelet denoising methods, the EKF and ESIF also
have the capability of filtering data sets in real-time. The time domain implementation of this
filter has visibly shown a reduction in noise in the time domain, and drastically increased dynamic
range in the frequency domain response. The implementation of these versatile filters can reduce
experimentation times for a wide array of applications of terahertz spectral acquisition systems.
Terahertz spectral acquisition is an innovative field that can revolutionize multiple fields of science.
However, before implementation of terahertz spectral acquisition, fundamental limitations such
as experimentation time must be addressed. This work presented a method to drastically reduce
experimentation time (factor of 23.7) in terahertz spectral acquisition by reducing the required
integration time for an equivalent DR. We believe these results have important implications for
all terahertz imaging applications that require rapid scan times.
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