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A B S T R A C T   

With the rise of technology and the continued economic growth evident in modern society, acts of fraud have 
become much more prevalent in the financial industry, costing institutions and consumers hundreds of billions of 
dollars annually. Fraudsters are continuously evolving their approaches to exploit the vulnerabilities of the 
current prevention measures in place, many of whom are targeting the financial sector. These crimes include 
credit card fraud, healthcare and automobile insurance fraud, money laundering, securities and commodities 
fraud and insider trading. On their own, fraud prevention systems do not provide adequate security against these 
criminal acts. As such, the need for fraud detection systems to detect fraudulent acts after they have already been 
committed and the potential cost savings of doing so is more evident than ever. Anomaly detection techniques 
have been intensively studied for this purpose by researchers over the last couple of decades, many of which 
employed statistical, artificial intelligence and machine learning models. Supervised learning algorithms have 
been the most popular types of models studied in research up until recently. However, supervised learning 
models are associated with many challenges that have been and can be addressed by semi-supervised and un-
supervised learning models proposed in recently published literature. This survey aims to investigate and present 
a thorough review of the most popular and effective anomaly detection techniques applied to detect financial 
fraud, with a focus on highlighting the recent advancements in the areas of semi-supervised and unsupervised 
learning.   

1. Introduction 

Anomaly detection is a broad field that addresses the problem of 
identifying instances of data or events that do not conform to expected 
behaviour (Chandola, Banerjee, & Kumar, 2009). The term outlier 
detection is frequently used interchangeably with anomaly detection. 
Many of the techniques employed for anomaly detection are funda-
mentally identical but are referred to differently depending on the 
application domain. Other such terms for anomalies are discordant ob-
jects, exceptions, aberrations, peculiarities or contaminants (Chandola 
et al., 2009; Aggarwal, 2013). This paper has chosen to use the term 
anomaly detection; however, outlier detection is also used where 
appropriate, depending on the problem’s approach. 

The significance of identifying anomalous patterns or events is their 
ability to translate to significant, actionable and commonly critical in-
formation for various applications (Chandola et al., 2009). Anomalies 
can be induced in data for various reasons, such as malicious activity or 

breakdown of systems, with the common characteristic that these rea-
sons are of interest to the analyst (Chandola et al., 2009). Anomalous 
behaviour in credit card data can signify identity theft or fraudulent 
transactions committed by an unauthorized party (Singh & Upadhyaya, 
2012). Traffic patterns that are anomalous in a computer network can 
indicate a malicious attempt to breach or compromise the system and 
lead to severe disruptions or even alert to a hacked computer that is 
sending sensitive data to an unauthorized destination (Chandola et al., 
2009; Singh & Upadhyaya, 2012). In the field of healthcare, anomaly 
detection techniques can identify malignant cells or regions in medical 
images, such as magnetic resonance imaging (MRI) scans (Spence, Parra, 
& Sajda, 2001; Han, Rundo, Murao, Noguchi, Shimahara, Milacski, & 
Satoh, 2020). Furthermore, anomalous measurements or readings from 
sensors within a spacecraft may indicate a faulty component, and in 
nature, earthquakes can be predicted by finding anomalies in precursor 
data (Fujimaki, Yairi, & Machida, 2005; Saradjian & Akhoondzadeh, 
2011). In all the applications mentioned, there is a notion of a “normal” 
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model of the data from which anomalies deviate (Aggarwal, 2013). 
In recent years, financial fraud, which includes but is not limited to 

credit card fraud, insurance fraud, money laundering, healthcare fraud 
and securities and commodities fraud, has garnered a great deal of un-
wanted attention from efforts and interests seeking to prevent them. 
Economically, serious concerns are posed by the alarmingly increasing 
rates of financial fraud. The total global losses annually due to financial 
fraud have been shown to be in the range of billions of dollars, with some 
figures suggesting the yearly cost to the US being in excess of $400 
billion (Bhattacharyya, Jha, Tharakunnel, & Westland, 2011; Kirkos, 
Spathis, & Manolopoulos, 2007). The types of crimes associated with 
financial fraud also have broader ramifications in industry and have 
been associated with funding illicit activities such as organized crime 
and drug trafficking (West & Bhattacharya, 2016). The losses associated 
with these crimes are typically worn by companies and merchants, who 
often end up responsible for all costs incurred from the fraud. For 
example, with credit card fraud, merchants end up with chargebacks, 
administrative costs, as well as the loss of confidence of consumers who 
have been victimized by these acts (Quah & Sriganesh, 2008; Sánchez, 
Vila, Cerda, & Serrano, 2009). Thus, the consequences of these types of 
frauds are dire, and the importance of developing strategies and tech-
niques to detect them is apparent. 

The purpose of this work is to review and provide a comprehensive 
and structured overview of the current state of research and literature 
published on anomaly detection techniques applied in financial fraud. 
By facilitating a clear discussion of the various directions of research and 
techniques developed, the goal is to provide a complete guide of the 
most recent contributions, advancements, and experimental results in 
the field. 

We organize the paper as follows: Section II presents an overview of 
related surveys in the field. The motivation behind this overview is to 
show that past survey papers have often maintained rather narrow 
scopes, and consequently highlight the need for a centralized source of 
information for anomaly detection in the financial fraud domain. Sec-
tion III of this paper defines the anomaly while detailing a high-level 
summary of the associated detection task and provides an overview of 
the nature of the problem and its associated challenges. In section IV, 
background information on fraud in the financial domain is contextu-
alized, with an outline of the different types of fraudulent acts 
committed and insight into how they occur. In section V, a detailed 
review of the surveyed literature studying anomaly detection techniques 
applied to detect financial fraud is presented, summarizing the key 
findings, limitations, and suggestions from published research. We 
conclude with final remarks on the key findings and provide suggestions 
for future research avenues in section VI. 

2. Related surveys 

A plethora of published research literature has studied applying 
anomaly detection techniques in various applications, which has been 
the topic of focus for many survey and review papers in recent years. Of 
those surveys, several have focused on a broad scope of applications, 
strategies, and techniques that have made a significant impact on further 
research in various fields. 

Hodge and Austin published one of the first surveys on anomaly or 
outlier detection methodologies in 2004, providing a comprehensive 
review on the subject (Hodge & Austin, 2004). The literature provides 
extensive background on outliers or anomalies and the challenges 
associated with detecting them and a thorough review of early statisti-
cal, machine learning and ensemble methods applied to the task. In 
2009, Chandola et al. also surveyed the various anomaly detection 
techniques proposed in research not previously covered by Hodge and 
Austin, providing more insight into the various real-life applications 
they are employed in (Chandola et al., 2009). In 2012, a survey pub-
lished by Zimek et al. reviewed unsupervised anomaly detection tech-
niques specifically for high-dimensional numerical data, discussing the 

aspects of the ‘curse of dimensionality’ in great detail (Zimek, Schubert, 
& Kriegel, 2012). The literature involved comparisons of two categories 
of specialized algorithms: ones that address the presence of irrelevant 
features or attributes and others that are more concerned with efficiency 
and effectiveness issues (Zimek et al., 2012). Temporal data poses 
another issue for anomaly detection, a problem surveyed extensively by 
Gupta et al. in 2014 (Gupta, Gao, Aggarwal, & Han, 2014). With the 
advances in computational capabilities enabling the availability of 
various forms of temporal data, the authors extensively review the 
techniques that have been enabled for anomaly detection in time-series 
data (Gupta et al., 2014). The authors provide significant insight into 
various applications of temporal anomaly detection and the associated 
challenges in each domain. 

Other survey papers exist that focus more specifically on the tech-
niques and applications of anomaly detection that have been researched 
in the context of financial fraud. Bolton and Hand, authors of some of the 
earliest and most influential surveys of statistical fraud detection, pro-
vide an in-depth background on the various types of financial fraud and 
how they are committed, such as credit card fraud, insurance fraud, 
money laundering, and others (Bolton & Hand, 2002). In their work, 
published in 2002, the authors also comment on the challenges of 
detecting fraud in different settings while reviewing the techniques 
applied to detect the different types of fraud in research. Kou and Huang 
also published a review similar in structure, but two years more recent, 
highlighting the attention received by deep learning techniques applied 
in financial fraud detection (Kou, Lu, Sirwongwattana, & Huang, 2004). 
Phua et al. examine fraud detection in their 2010 survey from a practical 
data-oriented, performance-driven perspective rather than application 
or technique-oriented views of previous survey papers (Phua, Lee, 
Smith, & Gayler, 2010). Furthermore, their work extends upon the types 
of frauds, methods and techniques covered than previous surveys with 
discussion on internal fraud and the implementations of hybrid 
approaches. 

A more methodological review of the available literature on financial 
fraud detection was presented by Ngai et al. in 2011 (Ngai, Hu, Wong, 
Chen, & Sun, 2011). Based on a conceptual framework for classifying the 
papers depending on their application and technique, it was demon-
strated that there is a lack of and need for studies on money laundering, 
mortgage and securities and commodities fraud (Ngai et al., 2011). West 
and Bhattacharya extended upon the previously mentioned framework 
of Ngai et al. in 2016 by further classifying the methods proposed in the 
surveyed literature based on their performance (West & Bhattacharya, 
2016). Research papers were compared and organized based on the 
accuracy, recall and specificity of the techniques outlined in their 
methodologies in a more quantitative approach than previous works. 

Pourhabibi et al. (Pourhabibi, Ong, Kam, & Boo, 2020) presented a 
systematic literature review of different graph-based anomaly detection 
techniques that have been studied in published literature in the context 
of financial fraud. The authors extensively surveyed the methods pro-
posed to analyze connectivity patterns in communication networks to 
identify suspicious behaviours (Pourhabibi et al., 2020). The framework 
of the review was very similar to that of the survey by Ngai et al. in (Ngai 
et al., 2011), covering the limitations associated with different tech-
niques and providing a general overview of the four graph-based ap-
proaches: community-based, probabilistic-based, structural-based, 
compression-based and decomposition-based (Pourhabibi et al., 2020). 
The applications of these approaches included banking fraud detection, 
insurance fraud detection, anti-money laundering and more. Highlights 
of each technique and any challenges faced were discussed, which the 
authors analyze thoroughly. Based on the investigation and analysis in 
the survey paper, directions for future research efforts were suggested 
based on the gaps identified by the authors from the academic papers 
reviewed. 

Most of the research efforts on detecting financial fraud in recent 
years have focused on credit card fraud detection techniques, which is 
apparent from the availability of literature on the matter, which exceeds 
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that of other financial fraud types by a significant margin. As such, many 
survey papers have been presented in the last decade evaluating the 
state of research in detecting credit card fraud. Delamaire et al. are 
among the first, in 2009, to review this specific topic, identifying in their 
work the different types of credit card fraud and the techniques that 
have been employed to detect them (Delamaire, Abdou, & Pointon, 
2000). The authors provide a comprehensive background on the stan-
dard terms in credit card fraud and the key statistics and figures in the 
field. Findings of published literature were also presented, compared, 
and analyzed with a discussion on the various measures that can be 
implemented and adopted depending on the type of fraud faced. 
Furthermore, ethical considerations are presented in the literature 
regarding the ethical issues that arise from the misclassifications of 
genuine transactions as fraudulent, as well as the costs associated with 
the misclassification of fraudulent transactions as genuine (Delamaire 
et al., 2000). 

In 2012, Zareapoor et al. conducted a survey focusing on the specific 
statistical and machine learning techniques most commonly used for 
credit card fraud detection (Zareapoor, 2012). In this literature, a his-
torical background is given on each technique and a high-level overview 
of how they work or operate in credit card fraud detection systems. 
Although the authors provide commentary on the performance of the 
techniques mentioned in comparison to each other, we identify a sig-
nificant weakness in this work: the lack of discussion on quantifiable 
performance measures produced by the papers reviewed by the authors 
in (Zareapoor, 2012). Literature published in 2017 by Adewumi and 
Akinyelu partially addresses the gaps in the previously mentioned works 
by briefly discussing the classification accuracies of techniques covered 
(Adewumi & Akinyelu, 2018). The authors also discuss the limitations 
such as high-dimensionality of data, imbalanced data sets and their 
impacts on the performances of reviewed research. Finally, the literature 
identifies a developing trend of using artificially generated data to 
overcome certain limitations of credit card detection systems and sug-
gests that it may be promising to explore such methods further. 

Most existing surveys provide a very general overview of the tech-
niques applied in financial fraud detection; however, many do not 
highlight in enough detail the challenges and issues faced by the pub-
lished research. Another significant issue is the lack of discussion on 
specifics relating to the performance measures employed in the methods 
reviewed, with many surveys only commenting on qualitative compar-
isons of different techniques. A lack of structure was also observed in 
most survey papers, many of which do not provide enough background 
on relevant aspects that require further understanding. Regardless of the 
different shortcomings of the available survey papers in the field, each is 
characterized by different strengths in various aspects, offering value to 
any audience. 

In this survey, we extend the work of previous authors by covering 
more state-of-the-art techniques that have been applied to detect various 
types of financial fraud in the most recent years. We hope to address 
each of the individual shortcomings of previous surveys to provide an 
overall more comprehensive, detailed, and complete review. We will 
achieve this by defining the notion of an anomaly and providing a 
thorough background and discussion on the various types of anomalies 
and the general challenges faced by anomaly detection tasks in different 
domains. The different types of learning used by anomaly detection 
models or methods are described and outlined, as well as the various 
performance measures employed to assess them. We also define finan-
cial fraud, outlining its history and the various acts of fraud that fall 
under that classification. Figures and statistics relating to financial fraud 
losses are detailed to justify the need to use anomaly detection tech-
niques to detect fraudulent financial activity. The different types of 
fraud are also summarized, highlighting how they are committed and 
the current measures in place to prevent them. Most importantly, we 
present a critical review of the research literature on financial fraud 
detection, with the focus on papers published from 2002 to 2020. An 
emphasis is placed on evaluating and comparing the limitations, 

challenges, and entire range of performance measures utilized to pro-
vide an informed commentary on current, state-of-the-art research 
findings. 

The techniques covered from the surveyed literature span deeply 
researched models like support vector machines (SVM), decision trees 
(DT), random forests (RF), hidden Markov models (HMM), multilayered 
perceptron networks (MLP) and more. Uniquely from other surveys, we 
cover novel research papers that employ models not previously studied 
for detecting financial fraud. The most prominent of these are deep 
learning architectures such as convolutional neural networks (CNN), 
autoencoders (AE) and generative adversarial networks (GAN). We 
conclude with a summary of this review’s key findings and provide 
suggestions for the direction of future research efforts. 

3. Problem description and formulation 

3.1. What are Anomalies? 

Many authors have proposed varying definitions for an anomaly; 
however, there has not been a universally adopted definition. Exact 
definitions of an anomaly depend on assumptions regarding the struc-
ture of the data and the application in consideration. However, defini-
tions exist that are considered general to most if not all cases, regardless 
of the setting or application. Of those definitions, the most widely 
recognized is by Hawkins, who defines the concept of an anomaly or an 
outlier in this case, as follows: “An outlier is an observation which deviates 
so much from the other observations as to arouse suspicions that it was 
generated by a different mechanism” (Hawkins, 1980). This definition 
refers to data from a statistics-based intuition, where normal data fol-
lows a generating mechanism and anomalies are samples or instances 
which deviate from this mechanism. Thus, anomalies often relay useful 
information about a system’s abnormal characteristics that are impact-
ing the generating mechanism (Aggarwal, 2013). For the remainder of 
this paper, we adopt Hawkins’ definition of the concept of an anomaly. 

A two-dimensional graph demonstrating the concept of different 
types of anomalies is illustrated in Fig. 1. As can be seen from this figure, 
the data elements form two norm al regions denoted by N1 and N2, as 
those are the regions where most of the events lie. Observations that are 
further away from most of the other observations, either individually or 
as a small collective, like points o1, o2 and the region O3, are anomalies. 

Anomaly detection bears similarities to noise removal, which deals 
with unwanted noise in data, but the two are distinct from each other 

Fig. 1. Graphical visualization of anomalous data in a simple two-dimensional 
representation. 
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(Chandola et al., 2009). In real-world applications, the data may be 
affected by a significant amount of noise, which may not be of interest to 
the analyst, but acts as a hindrance during the data analysis stage. It is 
usually only significantly interesting deviations that are of interest 
(Aggarwal, 2013). The detrimental effect of noise on data analysis drives 
the need for noise removal, as it removes any unwanted objects before 
data analysis (Xiong, Pandey, Steinbach, & Kumar, 2006). Novelty 
detection is another topic also related to but distinct from anomaly 
detection. Instead, these types of techniques detect previously unob-
served or novel patterns in the data, and generally, the main distinction 
from anomaly detection being that novel patterns are typically incor-
porated into a model after detection (Markou & Singh, 2003). 

Anomalies occur for various reasons such as human error, instrument 
faults, natural deviations in populations, fraudulent activity, behav-
ioural changes of systems or faults within a system (Hodge & Austin, 
2004). How the anomaly detection system deals with the anomaly is 
dependent on the application area. For example, suppose the anomaly 
indicates a typographical error entered by a data-entry clerk. In that 
case, a simple notification to the clerk to correct the error will help 
restore the anomalous data to a normal entry. Anomalous data from 
instrument readings can be simply be deleted once identified. Further-
more, anomaly detection systems in critical environments such as 
intrusion monitoring or fraud detection systems must be able to detect 
anomalies immediately and in real-time, with a suitable alarm to allow 
for intervention (Hodge & Austin, 2004). 

3.2. Types of Anomalies 

Anomalies can be classified into three different categories, and the 
type of anomaly being dealt with is a crucial aspect of consideration for 
any anomaly detection technique. 

Point anomalies are the simplest type of anomaly and are the focus of 
most research applying anomaly detection techniques. They are char-
acterized as individual instances of data or events significantly different 
from the rest of the data. In general terms, they are points that do not lie 
within the established normal or separating boundary, such as the points 
o1 and o2 in. To demonstrate with a real-life example, consider credit 
card usage data for individuals, defined with only one feature: the 
purchase amount. When compared, any transaction that is greater than 
the normal spending range for that individual would be considered a 
point anomaly. 

Contextual anomalies are instances of data that are anomalous in a 
specific context and not if otherwise. The data set structure induces the 
notion of the context for these types of anomalies, and the problem 
formulation strictly requires its specification. Two attributes are used to 
define each data instance, contextual and behavioural attributes. 
Contextual attributes determine the context for that instance, such as the 
time in time-series data. Behavioural attributes define non-contextual 
characteristics, such as the purchase amount in a credit card dataset. 
The anomalous behaviour is, in turn, determined using the behavioural 
attributes in a specific context. For instance, a contextual attribute in 
credit card fraud would be the time of purchase. Assuming an individual 
has a weekly spending bill of a hundred dollars, except for Christmas 
week, where it is a thousand dollars. A purchase of a thousand dollars in 
an average week in May would be considered a contextual anomaly 
because it does not conform to the typical behaviour in the context of 
time, even though spending the same amount in the week of Christmas 
would be considered normal (Chandola et al., 2009). 

Finally, collective anomalies are a collection of related instances that 
are anomalous with respect to the entire data set. The individual events 
or data instances within a collective anomaly may not necessarily be 
anomalies by themselves; however, their occurrence as a collection is 
anomalous. It is important to note that point anomalies can occur in any 
data set, and collective anomalies can only occur in data sets where 
there is a relation between data instances. Contextual attributes can only 
occur when there are contextual attributes in the data. Point or 

collective anomalies can even be contextual anomalies if observed with 
respect to a context (Chandola et al., 2009). 

3.3. Challenges in Anomaly Detection 

As defined earlier, an anomaly is an observation or event that does 
not conform to expected normal behaviour. Therefore, an intuitive 
approach is to define a region to represent the normal behaviour, such 
that observations not within the normal region’s boundary are labelled 
as anomalies, an example of which can be seen in Fig. 1. However, this 
seemingly simple approach is made much more challenging due to the 
unique nature of anomaly detection problems, which present complex-
ities distinct from most analytical and learning problems. These com-
plexities are attributed to several factors. 

It is very difficult to define a normal region or boundary to encom-
pass all possibilities of normal behaviour, and usually, the boundary 
between normal and anomalous behaviour lacks precision. As a result of 
this, observations of either the normal or anomalous class near the 
boundary may be misclassified. Furthermore, anomalies that arise due 
to malicious activity are often changing and adapting, driven by ad-
versaries of the anomaly detection system and their attempts to disguise 
anomalous events as normal, ultimately increasing the difficulty of 
detection. Generally, this is also the case in other domains where normal 
behaviour is continuously evolving, and the notion of normal behaviour 
now may not be sufficiently representative of future behaviours. 
Concept drift is the term used in most literature to refer to the phe-
nomenon of underlying models changing over time (Gama, Žliobaitė, 
Pechenizkiy, & Bouchachia, 2014). Anomalies are also heterogeneous, 
implying that they are irregular, meaning a class of anomalies could 
demonstrate very different characteristics suggesting abnormality from 
another anomalous class (Pang, Shen, Cao, & van den Hengel, 2020). 

Furthermore, the notion of an anomaly varies from different domains 
and applications. In the field of medicine, slight deviations from the 
baseline (such as fluctuations in body temperature) may be considered 
anomalous. In contrast, a similar degree of deviation in the financial 
domain, specifically in the stock market, might be considered normal 
(Chandola et al., 2009). For this reason, applying a technique that is 
developed for one domain may not be as straightforward to implement 
in another. 

Another factor contributing to the complexity of anomaly detection 
is the lack of labelled data for training and validation of models due to 
several reasons. One such reason is privacy concerns when dealing with 
sensitive data or the cost of labelling data if it must be performed by 
humans (Domingues, Filippone, Michiardi, & Zouaoui, 2018). Anoma-
lous instances are also rare in occurrence, contrasted by normal in-
stances, which often account for an overwhelming majority of the data 
(Pang et al., 2020; Boukerche, Zheng, & Alfandi, 2020). In such cases, 
standard classifier anomaly detection techniques tend to ignore the 
small classes due to being overwhelmed by the larger ones (Chawla, 
Japkowicz, & Kotcz, 2004). In normal data instances, the presence of 
noise, often acting similarly to anomalies, also introduces a challenge by 
making it more difficult to deduce clear boundaries or decision rules 
within the data set. 

In low-dimensional spaces, anomalies often display prominent 
abnormal features or characteristics. However, they become hidden and 
indiscernible in high-dimensional spaces, a longstanding and exten-
sively researched problem known as the curse of dimensionality (Zimek 
et al., 2012). A straightforward solution is to reduce the dimensionality 
of the data to a lower space spanned by a smaller subset of the original or 
newly constructed features such as in subspace and feature selection- 
based methods (Keller, Muller, & Bohm, 2012; Lazarevic & Kumar, 
2005). It is essential to identify intricate feature interactions in high- 
dimensional data, but it is still a significant challenge for anomaly 
detection. Besides, guaranteeing information preservation in the new 
feature space for relevant methods is vital to accurate downstream 
anomaly detection. However, it is made challenging due to the 
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heterogeneous nature of anomalies (Pang et al., 2020). 
Whether or not an anomaly detection technique can be applied to a 

problem is also influenced by the nature of the values of features in the 
input data. Numerical and categorical or symbolic data both require 
different statistical models when using different statistical or machine 
learning techniques. In some cases, it may be necessary to convert or 
encode symbolic data into numerical data by using various techniques. 
Varying distance measures are necessary when using distance-based 
techniques, depending on the nature of the input. Some techniques are 
only capable of processing image data, usually represented by matrices 
of real numbers flattened to a vector. There can even be a relationship 
between data instances, such as in spatial, temporal and graph data. This 
is another consideration that must be factored into the design stage to 
ensure the applicability, robustness and performance of the technique 
being used for that specific application. 

3.4. Data Labels and Output 

In any data set, the label associated with an instance of data denotes 
whether the instance is anomalous or normal. However, it is essential to 
note that obtaining accurately labelled data that is representative of all 
the types of behaviours is often challenging and costly. Labelling data 
requires substantial time and effort as it is usually done manually by an 
expert in the application domain (Chandola et al., 2009; Aggarwal, 
2013). Furthermore, it is much more challenging to obtain a set of 
labelled data that encompasses all different types of possible anomalous 
behaviour compared to obtaining labelled normal behaviour. Due to the 
dynamic nature of anomalies, as described in the challenges with 
anomaly detection, anomalous behaviour can change, resulting in new 
anomalies, for which there may not be any labelled data. 

The availability of labelled data is a significant consideration when 
deciding on the appropriate anomaly detection method to employ. 
Three categories that a method can be categorized in are supervised, 
semi-supervised or unsupervised anomaly detection. 

Supervised anomaly detection techniques work under the assumption 
that the data set used consists of labelled instances that fall under either 
a normal or anomalous class. Most approaches under this category 
construct a predictive model for the normal and anomalous classes, and 
new unseen data can be classified by comparing it against the deter-
mined model. A significant issue with supervised anomaly detection, 
which has been briefly discussed previously, is that the anomalous class 
is usually rare in occurrence compared to the normal class. It is also 
challenging to obtain accurate labels representative of the anomalous 
class. This is known as the class imbalance problem, and in practical 
applications, the ratio between the classes can be from 1 to 100 or as 
drastic as 1 to 10,000 (Chawla et al., 2004). Various literature has 
emerged over the last two decades addressing this issue (Chawla et al., 
2004; Phua, Alahakoon, & Lee, 2004). 

Semi-supervised anomaly detection techniques assume that the only 
instances in the data set that are labelled are the ones belonging to the 
normal class. Because of this, they are more applicable. A model is 
constructed only for the normal class and not the anomalous class, un-
like supervised anomaly detection. The test set of the data is then 
compared against the model to identify anomalous instances. This is 
useful in cases where it may be difficult or expensive to model an 
anomaly, such as a fault in large vehicles such as aircraft and spacecraft 
(Fujimaki, Yairi, & Machida, 2005). There is a very limited range of 
techniques and literature designed to work with data sets where only the 
anomalous class is available, as it is challenging to retrieve data that is 
representative of all anomalous behaviour. 

Unsupervised anomaly detection is the most widely applicable of the 
three categories as the techniques do not require any labels in the data 
set. An implicit assumption is made by unsupervised methods that 
anomalous events are far less frequent than normal events in the test set 
of the data; otherwise, these techniques’ false alarm rates will be higher 
than what expected. It is common practice to adapt semi-supervised 

methods to an unsupervised anomaly detection problem using an 
unlabelled sample of the train set of the data. An assumption is necessary 
in this case: that the test set has very few anomalous instances, and the 
model learned is robust to those few anomalous instances. 

It may seem straightforward enough that the output of an anomaly 
detection technique can be a label of either normal or anomalous for 
each respective instance. However, scoring techniques exist, which 
involve assigning a score to each instance that corresponds to a degree of 
anomalousness to produce an ordered list of anomaly scores. The 
choices are then to consider a few of the highest scores if the ratio of 
anomalous instances is known or assign a cut-off score such as an 
application-specific threshold for labelling the most relevant instances 
as anomalous. Binary classification techniques do not provide the same 
flexibility directly; however, each technique’s parameter choices allow 
for a degree of indirect control. 

3.5. Performance Measures 

The anomaly detection problem is often, but not exclusively, 
considered a classification task. An effective way of evaluating the 
performance of classification models is by inspecting their confusion 
matrix. The confusion matrix describes the difference between a data 
set’s ground truth and the model’s predictions. There are other metrics 
that are more concise and that can provide more specific information 
into the performance of a classifier. The precision is the accuracy of the 
positive predictions. The recall of a classifier, also known as sensitivity, 
is the proportion of positive instances that are correctly detected by the 
classifier. The accuracy is the number of correct overall predictions made 
by the model. The specificity of a classifier is a ratio between the correctly 
classified negative samples and the total number of negative samples. 
While one may, intuitively, try to maximize both recall and precision, 
there is an inverse relationship between the two values. Forcing a higher 
precision may result in a lower recall, and vice versa. This is known as 
the precision/recall trade-off. A better measure to maximize instead is 
the F-score (also known as the F1-score), which is the harmonic mean of 
the precision and recall. 

By tweaking the value of the decision threshold for a classifier, it is 
possible to monitor the performance change in terms of the trade-off 
between specific measures like recall and precision. This is known as 
parametric evaluation, which is an evaluation of all the possible 
confusion matrices that are produced from varying the decision 
threshold. And then plotting two curves known as the Receiver Oper-
ating Characteristic (ROC) curve and the precision-recall curve (Lucas & 
Jurgovsky, 2020). A way of comparing classifiers is by measuring the 
area under the ROC curve (AUC), where perfect classifiers will have an 
AUC equal to 1 and purely random classifiers have an AUC equal to 0.5. 
The axes are both proportional to the class they represent, and as such, 
the ROC curve is insensitive to imbalanced data sets (Lucas & Jurgovsky, 
2020). The precision-recall curve (PRC) plots the precision on the y-axis 
and the recall on the x-axis. The recall is a proportion of the positive 
class, representing the ratio of positive classes identified. The precision 
is based on both the positive and negative classes. Consequently, 
imbalanced data sets affect precision by making classification more 
challenging. Similarly, the area under the precision-recall curve 
(AUPRC) can be determined to compare the performance of different 
classifiers. 

Although the mentioned performance measures are the most 
frequently and popularly used for evaluating classifiers, there are many 
more, and the list of metrics discussed here is not exhaustive. Clustering 
algorithms that group similar data points based on relevant features 
employ various distance measures such as the mean squared error 
(MSE), Euclidean distance, Manhattan distance and others to quantify 
the similarity or dissimilarity between samples or observations. These 
unsupervised techniques divide a set of data into meaningful subsets or 
groups, where entities within a group are similar, and entities of 
different groups are dissimilar (Sabau, 2012). 
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4. Financial fraud 

Financial fraud has garnered much more attention in the past decade 
due to the potential consequences of undetected anomalies to the in-
dustry and to everyday life. These crimes can vary in nature and have the 
effect of possibly destabilizing economies, increasing the cost of living 
and impacting the consumer’s sense of security (Syeda, Zhang, & Pan, 
2002). There is no universally accepted definition for financial fraud; 
however, we adopt the definition from the Association of Certified Fraud 
Examiners (ACFE) as “any intentional or deliberate act to deprive 
another of property or money by guile, deception, or other unfair 
means” (Association of Certified Fraud Examiners, 2004). 

With the rapid expansion and advancement in modern technology 
such as the Internet, hardwire devices like phones and laptops and social 
media, there has also been an increase in fraudulent activity (Kou, Lu, 
Sirwongwattana, & Huang, 2004). This has resulted in billions of dollars 
of losses to business, which has consequentially motivated extensive 
efforts towards exploring anomaly detection techniques for the detec-
tion of fraud. It is imperative to be able to identify fraud as quickly as it 
occurs, as there is a cost incurred over time by undetected cases (Asso-
ciation of Certified Fraud Examiners, 2020). It is not just individual 
fraudsters and perpetrators who take advantage of these advances in 
technology. Well-developed organized perpetrators and crime commu-
nities have also been investing in expanding and evolving their tech-
niques (Bhattacharyya et al., 2011). Therefore, it is imperative to 
continuously evolve and improve these fraud detection techniques as 
fraudsters are always adapting and innovating strategies and methods to 
breach them (West & Bhattacharya, 2016). 

It is reported by the Internet Crime Complaint Center (IC3) that 
467,361 complaints of internet crimes were reported in the US, with 
reported losses exceeding $3.5 billion, which is an increase of nearly 
30% from the previous year (Center, 2019). These losses involved 
various acts such as compromising business e-mails to conduct unau-
thorized transfers of funds, cases of identity fraud involving fraudulent 
cheques and credit card applications and much more. In the ACFE’s 
2020 Report to the Nations, investigations have led to the estimates that 
globally, organizations lose 5% of revenue to fraud annually and that the 
typical fraud case goes undetected for 14 months, costing an average of 
8,300 dollars per month (Association of Certified Fraud Examiners, 
2020). Table 1 presents the reported complaints and total loss reported 
annually by the IC3 from the year 2015 to 2019. It is evident from 
Table 1 that the total losses reported have been increasing at an accel-
erating rate each year since 2017, which further highlights that fraud-
ulent efforts persist in adapting and evolving to circumvent systems in 
place to prevent them. 

Financial fraud has been classified under a framework by the Federal 
Bureau of Investigations (FBI). The crimes have been characterized by 
deceit, concealment, or violation of trust regardless of whether accom-
panied by the threat of violence or physical force (Bureau, 2011). 
Various types of fraud exist under that classification; one such example 
is bank fraud, which consists of credit card fraud, money laundering and 
mortgage fraud. Insurance fraud is another common type of financial 
fraud that can involve a variety of claims covering crops, healthcare, 
automobiles, and others. Other types of financial fraud exist, such as 
securities and commodities fraud and insider trading. However, in this 
survey, we focus mainly on covering the application of anomaly 

detection techniques to credit and debit card fraud, as well as insurance 
fraud. The survey also covers the recent advances in the few papers 
found covering anti-money laundering research. We note that there is a 
lack of available research literature on other types of financial fraud 
such as mortgage fraud, commodities & securities fraud, and insider 
trading. As such, the types of fraud were beyond the scope of this survey 
paper. 

4.1. Credit Card Fraud 

The widespread use of credit cards as the primary method of trans-
acting is a striking example of the digitalization of everyday life and 
society over the past couple of decades. This adoption also presents the 
problem of credit card fraud, which involves sophisticated strategies and 
techniques employed for the theft of money and assets. According to 
(Report, 2020), card transactions’ fraudulent losses reached $28.65 
billion in 2020, with the US accounting for a third of that gross loss with 
$9.62 billion. As credit cards gain popularity and their use is becoming 
even more prevalent, there is also a concern about the increase in 
fraudulent efforts (Bhattacharyya et al., 2011). There are significant 
ramifications associated with undetected credit card fraud, as the crimes 
have even been exploited for funding organized crime, narcotics traf-
ficking and even financing terrorists (Bhattacharyya et al., 2011). 

There are two ways of classifying credit card fraud, either as appli-
cation or behavioural fraud, which are sometimes also referred to as 
offline and online fraud, respectively (Kou, Lu, Sirwongwattana, & 
Huang, 2004; Bolton & Hand, 2001). Application fraud is often associ-
ated with identity fraud, as it usually involves fraudsters attempting to 
issue new cards from credit companies using other people’s private in-
formation. Behavioural fraud is comprised of four different acts, which 
involve mail theft, stolen or lost cards, counterfeit cards, ‘cardholder not 
present’ fraud or bankruptcy fraud (Bhattacharyya et al., 2011; Bolton & 
Hand, 2001). Mail theft fraud primarily involves fraudsters intercepting 
other people’s mail to obtain physical credit cards or personal banking 
information, which they then use to commit application fraud. Stolen or 
lost credit card related fraud typically occurs when physical cards are 
stolen from individuals either with or without their knowledge or when 
fraudsters find or gain access to lost cards. Bankruptcy fraud is consid-
ered one of the most challenging types of fraud to detect and generally 
entails people using a credit card with no intention of ever paying back 
the balance and then filing for personal bankruptcy, as defined by Ghosh 
and Reilly in 1994 (Ghosh & Reilly, 1994). 

With the rapid digitization of everyday life, more information is 
available online that is subsequently vulnerable to attack or exploitation 
by criminals and fraudsters. Fraudsters rely on these vulnerabilities to 
obtain credit card information through illegal means, which they could 
then implement into a fake or counterfeit card. All the mentioned 
methods can also be involved in ’cardholder not present’ frauds, which 
only require the credit card details to conduct transactions remotely, 
such as by mail, phone, or the Internet. There are many ways that the 
information necessary to commit these types of fraudulent acts 

is obtained, like online ’phishing’ scams to trick unaware in-
dividuals, or by intrusions of company’s networks and computer sys-
tems, or even by physical devices known as ’skimmers’ installed on the 
card readers of tampered ATMs to steal people’s card information 
(Bhattacharyya et al., 2011; Quah & Sriganesh, 2008). 

It has been noted by Bolton and Hand that there has been a dearth of 
published literature in the study of credit card detection in earlier years, 
which was attributed to two reasons (Bolton & Hand, 2002). First of 
which was that the exchange of ideas in fraud detection is usually very 
limited as it may be counterintuitive to describe the detection tech-
niques with detail to the public domain, which may provide the 
knowledge and information required to devise new tools and techniques 
to bypass these detection techniques (Bolton & Hand, 2002). They also 
state that data sets of these types of fraudulent data are often kept pri-
vate and censored in the rare instance they are made public (Bolton & 

Table 1 
Annual complaints received and total loss reported by IC3 (Center, 2019).  

Year Complaints received Total losses (USD) 

2015 288,012 1,070,700,000 
2016 298,728 1,450,700,000 
2017 301,580 1,418,700,000 
2018 351,937 2,706,400,000 
2019 467,361 3,500,000,000  
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Hand, 2002). As previously discussed, there is also a cost for undetected 
fraud over time, which means that the value of fraud detection is a 
function of time (Bhattacharyya et al., 2011). The sooner the detection 
of fraudulent activity, the less the potential losses by individuals and 
companies. This is especially important to keep in mind as the typical 
fraudster has been known to exploit credit cards by spending as much as 
possible in as little time as possible until the fraud is detected and the 
card is deactivated (Bolton & Hand, 2002). 

Most credit card fraud detection strategies involve creating a profiler 
for cardholders by analyzing individual spending behaviours and pat-
terns (Abdallah, Maarof, & Zainal, 2016). Chandola et al. classify profile- 
based approaches into two types: either a “by-owner” approach or a “by- 
operation” approach (Chandola et al., 2009). The “by-owner” approach 
profiles each credit card user based on their usage and spending history, 
comparing new transactions to the user’s profile and flagging the ones 
inconsistent from the profile as anomalies. 

The disadvantage of this approach is that it is typically costly as it 
requires a central data repository, which must be queried every time a 
user makes a transaction (Chandola et al., 2009). “By-operation” ap-
proaches detect fraudulent transactions from transactions occurring at 
specific geographic locations that are unlikely to be frequented by the 
genuine cardholder. The type of anomaly detected by both approaches 
are contextual anomalies, the contexts being the user for “by-owner” 
approaches and the geographic location for “by-operation” approaches. 
When constructing fraud detection systems or models using credit card 
datasets, the samples of transactions are described by an initial set of 
raw features that describe or depict information about each sample. 
From the inspection of the surveyed literature, it has been apparent that 
regardless of the study, the raw features describing datasets are often 
quite similar. After investigation, it has been found this is due to stan-
dards set by the International Financial Reporting Standards (IFRS) 
foundation that govern and regulate financial reporting practices that 
credit card issuers and financial institutions must adhere to (Institute, 
2011). The raw features common to most datasets used in the literature 
surveyed in this paper are summarized in Table 2. 

4.2. Insurance Fraud 

Insurance fraud is another type of financial fraud that involves some 
sort of trickery or deception committed throughout any point of the 
claim process by a claimant, healthcare provider, employee in the in-
surance company or even agents and brokers (Ngai et al., 2011). The 
primary industries targeted by fraudulent insurance claims are the 
healthcare and automobile insurance industry; however, crop and home 
insurance fraud also occurs, although there is a lack of literature on both 
(Abdallah et al., 2016). It is estimated that the total cost of insurance 
fraud in the US exceeds $80 billion annually and is ultimately passed on 
to consumers in the form of higher insurance premiums (Bureau, 2011). 

Of all the different types of fraud that fall under this category, 
automobile insurance fraud detection has attracted the most attention 
(Ngai et al., 2011). According to a study conducted on behalf of the 
Insurance Bureau of Canada by KPMG, an international accounting or-
ganization, the cost of fraudulent auto-insurance claims in the Canadian 
province of Ontario exceeded $1.6 billion in the year 2012 (KPMG, 
2012). Furthermore, elements of suspected fraud have been reportedly 
found in 21% to 36% of automobile insurance claims, and less than 3% 
of those suspected fraudulent claims end up being prosecuted (Derrig, 
2002; Viaene, Derrig, Baesens, & Dedene, 2002). 

Automobile insurance claims generally involve a contract between 
the insurance company and the insured individual or organization to 
cover the relevant costs of theft or accidental damage of a vehicle. 
Fraudulent claims can be perpetrated by individual fraudsters; one way 
this is achieved is by means of deception during the claim process. Ev-
idence also exists of organized groups collaborating together to commit 
insurance fraud, usually by staging or faking accidents, where in some 
cases an accident may not have even occurred; instead, the vehicles were 
transported to the scene (Šubelj, Furlan, & Bajec, 2011). Regardless, 
most fraudulent cases are opportunistic frauds in that they are not 
planned, and instead, the opportunity arising from an accident is seized 
by an individual by exaggerating the damages or statements made in a 
claim (Šubelj et al., 2011). Some of the schemes involved in automobile 
insurance fraud have been identified and defined by the ACFE, the most 
common of which are described in Table 3 (Association of Certified 
Fraud Examiners, 2019). 

In modern society, healthcare has become a significant concern that 
is tangled with political, social, and economic issues. The public demand 
for high-quality medical services and the technology necessary to pro-
vide them is met with a substantial financial cost. Also, the availability 
of government-sponsored healthcare insurance systems is critical for 
many low-income individuals and families depending on them for sup-
port to pay for the continually increasing costs of drugs and treatment 
(Yang & Hwang, 2006). A growing problem has been the abuse and 
exploitation of healthcare insurance systems by fraudsters for benefits 
they or someone else may not be entitled to. Healthcare providers have 
also been found to exploit the system for financial gain through practices 
inconsistent with sound fiscal, business, or medical practices. This re-
sults in unnecessary costs or reimbursements for services not medically 
necessary or that fail to adhere to professionally recognized standards 

Table 2 
Summary of typical raw features in credit card datasets (Bahnsen et al., 2016).  

Feature Description 

Transaction ID Transaction identification number 
Time Date and time of the transaction 
Account number Identification number of the customer 
Card number Identification of the card 
Transaction type Internet, ATM or POS 
Entry mode Chip and pin or magnetic stripe 
Amount Amount of transaction 
Merchant code Identification of the merchant type 
Merchant group Merchant group identification 
Country Country of transaction 
Country 2 Country of residence 
Type of card Visa debit, MasterCard, American Express 
Gender Gender of the cardholder 
Age Age of the cardholder 
Bank Issuer bank of the card  

Table 3 
Descriptions of different types of automobile insurance fraud schemes (Associ-
ation of Certified Fraud Examiners, 2019).  

Type of Fraud Description of Fraud 

Ditching Disposing or abandoning a vehicle to obtain claim 
payout from insurance policy. 

Past posting Obtaining insurance and filing a claim for a prior 
accident that occurred while uninsured. 

Vehicle repair Billing the price of brand-new parts when old parts 
were used for repairs, sometimes involving collusion 
between adjusters and body repair shops. 

Vehicle smuggling Involves the purchase of new vehicles that are 
shipped to foreign ports and reported stolen in claim 
applications. 

Phantom vehicles Use of legal ownership documents of a car as basis 
for insurance policy issuance to collect claims, even 
though the car may not really exist. 

Staged accidents Schemes in which the occurrence of accidents is 
planned, predetermined, or fabricated and never 
occurred. 

Vehicle Identification 
Number (VIN) switch 

Involves the sale of a wrecked vehicle and reporting 
it as being repaired. Instead, the VIN plate is 
switched with that of a stolen vehicle of the same 
make and model. 

Rental car fraud A person can perpetrate several schemes without 
owning a car by using a rental car. The most 
prevalent involve property damage, bodily injury, 
and export fraud.  
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for healthcare (Yang & Hwang, 2006). It has been reported by the Na-
tional Health Care Anti-Fraud Association (NHCAA) that the total losses 
due to fraudulent healthcare insurance claims in the United States are 
estimated, conservatively, to have exceeded $100 billion in 2018, 
approximately 3% of the total expenditure on healthcare that year 
which was $3.6 trillion (Association, 2018). However, some government 
and law enforcement agencies estimate the losses to reach as high as 360 
$ billion. Sparrow (Sparrow, 2000) was among the first to classify the 
various types of fraudster behaviours in healthcare insurance into two 
categories: “hit-and-run” or “steal a little, all the time.” With “hit-and- 
run” fraudsters, they simply submit as many fraudulent claims as 
possible, disappearing shortly after receiving payment for them. 
Fraudsters who “steal a little, all the time” try to ensure their actions go 
undetected so that they can continually make fraudulent claims or 
billings over long periods of time. The various types of fraudulent ac-
tivities that can take place to defraud healthcare insurance policies are 
outlined and described by the FBI (Bureau, 2011) in Table 4. 

Traditionally, detecting fraudulent insurance claims relied heavily 
on manual auditing and inspection by experts in the field, which can be 
costly and inefficient, especially since these types of claims must be 
detected before they are paid out. As a result of this time sensitivity, the 
recognition and attention gained by techniques that fall under the um-
brella of machine learning and data mining for detecting insurance fraud 
have been steadily increasing in recent years. With the constant research 
and developments in computational capacity and power, these types of 
techniques demonstrate the potential to detect fraudulent cases in much 
less time and possibly greater accuracy than manual inspection, subse-
quently resulting in significantly reduced financial losses. This ulti-
mately translates to a decrease in costs and overall greater potential 
profits. 

4.3. Money Laundering 

The process used by criminal or terrorist individuals and organiza-
tions to legitimize or “clean” the proceeds of their crimes and disguise 
their origins is known as money laundering. These crimes are often 
linked with organized crime syndicates, drug trafficking, sex trafficking, 
and the financing of terrorists (West & Bhattacharya, 2016). Money 
laundering is a global problem that incurs significant costs to the world 
economy due to its destructive effects on national economies. Further-
more, it can jeopardize the stability of and increase the operational risk 
of financial institutions as money laundering often motivates and fosters 
corruption in both the public and private sectors (Schott, 2004). This 

makes countries rampant with money laundering and corruption less 
attractive to foreign investors, perpetuating the cycle of inequality faced 
by their citizens (Schott, 2004). 

Behavioural patterns of money laundering activity and structural 
network features are essential to anti-money laundering research. 
However, traditional research has focused on legislative considerations 
and compliance requirements and has been methodologically limited to 
incident identification, avoidance detection and suspicion surveillance 
(Gao & Ye, 2007). Thus, investigations are generally performed manu-
ally, which is time-consuming, resource-intensive, tedious. Therefore, 
applying anomaly detection techniques may reduce the time to process 
the voluminous datasets associated with these crimes and even lead to 
improvements in detection effectiveness and decrease false alarm rates 
(Gao & Ye, 2007). We note, however, a general lack of available liter-
ature studying applying anomaly detection techniques to anti-money 
laundering in published literature. 

4.4. Other Types of Fraud 

Another type of fraud encountered in the financial domain is secu-
rities & commodities fraud. This type of fraud can involve a variety of 
different schemes, the FBI describing some as pyramid schemes, Ponzi 
schemes, prime bank schemes, high yield investment fraud, advance fee 
fraud, hedge fund fraud, commodities fraud, foreign exchange fraud, 
market manipulation, broker embezzlement and late-day trading (Bu-
reau, 2011). With the continuing integration of capital markets, un-
precedented opportunities have been created for businesses to raise or 
access capital and for investors to diversify their portfolios. The 
increased opportunities also come with a commensurate rise in fraud 
risk, as such driving the need for research to detect these types of frauds. 

Mortgage fraud is defined by the FBI as a material misstatement, 
misrepresentation or omission by a debtor at any point of the process in 
which the information is relied upon by an underwriter or lender to 
obtain a loan (Bureau, 2011). Furthermore, corporate fraud involves the 
falsification of financial information, self-dealing by corporate insiders 
or obstruction of justice designed to conceal any of these types of 
criminal conducts. Finally, mass marketing fraud is a general term for 
crimes exploiting mass-communications media (Bureau, 2011). 

5. Anomaly detection for fraud 

Anomaly detection has a significant role in financial fraud detection 
and is used to identify and extract information from vast data quantities 
(Ngai et al., 2011). There have been significant amounts of literature 
applying statistical methods, as well as artificial intelligence and ma-
chine learning techniques to approach credit card and insurance fraud 
detection, the majority of which focus on the latter two. Also, most 
research papers have begun to shift their focus to unsupervised tech-
niques, many of which addressing imbalanced datasets and the lack of 
available data. 

Frequently used models for credit card fraud are decision trees (DT), 
support vector machines (SVM), logistic regression (LR), k-means clus-
tering, k-nearest neighbours (kNN) and more (Sahin & Duman, 2011). 
These techniques can be used individually, or an ensemble technique 
can be used by using more than one algorithm, which could result in 
better and more accurate detection. One such example of a popular 
ensemble learning method in anomaly detection is the RF algorithm. 
Deep learning anomaly detection techniques have emerged and gained 
prominence in the last few years, demonstrating significantly better 
performance than other techniques in addressing real-world problems. 
These include neural network (NN) architectures of various types, such 
as convolutional neural networks (CNN), long short-term memory net-
works (LSTM) and more. Other deep learning architectures gaining 
more prominence in recent literature are autoencoders (AE) and 
generative adversarial networks (GANs) (Fiore, De Santis, Perla, & 
Zanetti, 2019; Wang et al., 2020). 

Table 4 
Descriptions of different types of healthcare insurance fraud schemes (Bureau, 
2011).  

Type of fraud Description of fraud 

Billing for services not 
rendered 

Involves providers billing for services not rendered or 
services previously claimed. 

Upcoding of services Practice involving providers submitting claims with 
reimbursement values greater than the value of the 
services provided. 

Upcoding of items Billing practice by providers where value of items claimed 
is greater than value of actual items provided. 

Duplicate claims Services or items that have more than one claim filed for 
the same thing, changing a portion of the claim such as 
the date 

Unbundling Practice of submitting bills in a fragmented fashion to 
maximize reimbursement value for services that may 
have been billed at a reduced cost together 

Excessive services Involves the provision of medical services or items which 
are more than a patient’s actual needs 

Medically unnecessary 
services 

Services not justified by a patient’s medical condition or 
diagnosis. 

Kickbacks The offering, soliciting, or accepting of money or 
something of value in exchange for the referral of a 
patient for healthcare services or items  
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The range of techniques to detect insurance fraud has been found to 
be more limited than those for credit card fraud. In recent years, much of 
the research efforts to detect financial fraud seem to have been diverted 
to focus on the latter. We note that this is a recent change in trend, as it 
was shown by Ngai et al. that the most prominent area of research for 
financial fraud detection techniques was insurance fraud (Ngai et al., 
2011). Similar to credit card fraud, some of the earlier and most popular 
techniques applied to detect insurance fraud are naïve Bayes (NB) 
classifiers, LR, DT, SVM and more (Viaene et al., 2002). In recent years, 
deep learning models like MLPs have been gaining increased research 
attention for this task, and research efforts have even explored text 
mining and natural language processing (Wang & Xu, 2018). 

In this section, we classify and review the techniques in the surveyed 
published literature that have been applied to financial fraud detection 
in recent years based on their learning approach. The four approaches 
covered are supervised, unsupervised and semi-supervised methods, and 
briefly, graph-based methods. 

5.1. Supervised Methods  

i. Support Vector Machine (SVM) 

SVMs are promising non-parametric techniques based on statistical 
learning theory in machine learning that have shown use in classifica-
tion tasks (Cortes & Vapnik, 1995). These algorithms are especially 
suitable for binary classification problems like fraud detection due to 
their unique properties and features. A summary of the published 
literature employing SVMs surveyed in this paper applied to credit card 
and insurance fraud detection can be seen in Table 5. 

SVMs work by mapping the input space into a higher dimensional 
feature space to find an optimal separating hyperplane. They can ach-
ieve this without introducing any further computational complexity 
(Cortes & Vapnik, 1995). The ability of SVMs to work with many 

features has made them attractive for detection tasks involving a highly 
imbalanced data set due to their ability to extract relevant and important 
features. Kernel functions are the mechanism behind how this is made 
possible, thanks to the nature of SVMs possessing the property of kernel 
representation. Another property of SVMs is margin optimization, which 
results from the criteria that select the hyperplane, which minimizes 
overfitting by maximizing the margin of separation from the two classes. 

With an input space X and a higher dimensional space H, a kernel 
function k is defined as k(x1, x2)= 〈(Φ(x1),Φ(x2)〉, where Φ : X→H is a 
mapping transforming the input space into a higher-dimensional space. 
The choice of kernel function is dependent on the application and nature 
of the task, and the most frequently used are polynomial functions, 
radial basis functions and linear functions. 

Sahin and Duman (Sahin & Duman, 2011) applied SVMs to detect 
fraudulent credit card transactions, noting the highly imbalanced nature 
of the data sets involved in their experimentation. To overcome this, the 
authors use stratified sampling to under-sample the data set’s legitimate 
cases to a meaningful number (Sahin & Duman, 2011). This consisted of 
preprocessing the data, which first involves determining the most suc-
cessful features in discriminating fraudulent and legitimate transactions. 
Stratified samples are then formed of legitimate records using these 
variables, then subsequently combined with the fraudulent records. 
Different choices of kernel functions were used to observe the variation 
in performance. Using data obtained from a national bank, the authors 
compared the proposed method with various types of DTs such as C&RT, 
C5.0 and CHAID (Sahin & Duman, 2011). Results showed that the DT 
models outperformed the SVM models over the test set with accuracies, 
but the opposite was true when compared with the training set accuracy 
(Sahin & Duman, 2011). The C5.0 had the overall best performance with 
a train and test set accuracy of 99.15% and 94.52%, respectively. The 
SVM models showed identical performance despite the choice of kernel 
function, with train and test set accuracies of 98.75% and 93.08%, 
respectively (Sahin & Duman, 2011). This difference in performance 
between the two sets of data led to conclusions in the literature that 
SVMs tend to overfit the training data. However, as the amount of 
training data was increased, this overfitting behaviour became less 
remarkable, and the performances become comparable (Sahin & 
Duman, 2011). The authors suggest exploring other techniques such as 
MLPs and expanding the performance measures to provide more 
detailed comparisons. 

Similar studies by Bhattacharyya et al. were published, implementing 
SVMs, LR and RF to detect fraudulent credit card transactions for 
comparison (Bhattacharyya et al., 2011). RF is a supervised ensemble 
method of DT for classification, which addresses the problems of insta-
bility and reliability in DT not previously discussed by Sahin and Duman 
(Bhattacharyya et al., 2011; Sahin & Duman, 2011). RF build ensembles 
of DTs combined with bagging and are noted to be the ensemble of 
choice for DTs (Bhattacharyya et al., 2011). Using a data set obtained 
from an international credit card company, the authors derive custom 
attributes that address the high dimensionality and heterogeneity issues 
with credit card data. The authors also suggest random undersampling 
of the data, specifically, the majority class, as it is generally better than 
other sampling approaches (Bhattacharyya et al., 2011; Van Hulse, 
Khoshgoftaar, & Napolitano, 2007). The data set’s anomalous labels 
totalled 2,420 and were split into two subsets of 1,237 and 1,183 
transactions, using the first set to populate four training sets with normal 
labels and the second set for testing. The four training sets were popu-
lated with varying amounts of legitimate transactions to create varying 
fraud rates of 15, 10, 5 and 2 percent for cross-validation and compar-
ison. Experimentation results lead to suggestions by the authors that RF 
showed overall better performance. However, SVM outperformed lo-
gistic regression on precision and F-score measures, the latter of which is 
the harmonic mean of precision and recall (Bhattacharyya et al., 2011). 
The accuracy of the SVM was 93.8%, trailing logistic regression at 94.7% 
and RF at 96.2%. The SVM had the lowest recall of the three techniques 
of 52.4%, compared to 72.7% by RF. 

Table 5 
Summary of published literature on SVM-based fraud detection.  

Year Reference Type of 
fraud 

Method Comments 

2011 (Sahin & Duman, 
2011) 

Credit 
card 

SVM SVM with stratified 
sampling overfit the data 
and outperformed by DT. 

2011 (Bhattacharyya 
et al., 2011) 

Credit 
card 

SVM LR outperforms SVM. As 
fraud rate decreases, 
results become 
comparable. 

2011 (Lu & Ju, 2011) Credit 
card 

ICW- 
SVM 

ICW-SVM superior to 
SVM and DT, and 
computationally more 
efficient. 

2013 (Hejazi & Singh, 
2013) 

Credit 
card 

OCSVM One-class SVM 
outperforms SVM in 
imbalanced data sets. 

2020 (Rtayli & Enneya, 
2020) 

Credit 
card 

RF and 
SVM 

RF-SVM ensemble 
accuracy comparable to 
but less than LOF-IF, 
however, demonstrated 
the highest AUC. 

2012 (Tao, Zhixin, & 
Xiaodong, 2012) 

Auto- 
insurance 

DFSVM DFSVM outperforms 
vanilla SVM in terms of F- 
score, recall and 
precision. 

2015 (Sundarkumar & 
Ravi, 2015) 

Auto- 
insurance 

kRNN- 
OCSVM a 

Notable increase in AUC 
and recall for SVM model, 
with loss in precision. 

2016 (Sundarkumar, 
Ravi, & 
Siddeshwar, 
2015) 

Auto- 
insurance 

OCSVM a kRNN identified to 
slightly limit overall 
performance, therefore 
eliminated.  

a The denoted methods proposed are SVM-based undersampling techniques 
augmented with a fraud detection system rather than actual classifiers. 
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Similar to previous findings, the performance of the SVM became 
comparable as the data set increased in size, and the fraud rates were 
lower (Bhattacharyya et al., 2011). Furthermore, all three techniques 
had notably better performance identifying and correctly classifying 
normal transactions than they did with the fraudulent class (Bhatta-
charyya et al., 2011). This is apparent from the range of specificity 
values witnessed, the lowest of which was 97.9% from the LR, then 
98.4% by the SVM, the highest by RF of 98.7%. Overall, RF showed 
better performance than other techniques across all performance mea-
sures, capturing more fraudulent cases with fewer false positives. The 
authors also note the attractiveness of RFs due to their computational 
efficiency and simplicity of implementation by having only two 
adjustable parameters (Bhattacharyya et al., 2011). 

Finally, the literature concludes by stating that these results were 
achieved without any parameter tuning of the SVM, which can have a 
significant effect on its performance. As such, suggestions for future 
research suggest further investigation of parameter tuning as well as 
examining differences in fraudulent behaviour among different types of 
fraud, for example between stolen and counterfeit cards, to derive at-
tributes capturing more comprehensive representations of fraud (Bhat-
tacharyya et al., 2011). 

Lu and Ju also proposed an Imbalance Class Weighted SVM (ICW- 
SVM) for credit card fraud detection, addressing the issue of large scale 
and dimensionality by utilizing principal components analysis (PCA), a 
dimensionality reduction technique (Lu & Ju, 2011). This involves 
extracting the principal components that capture the distribution of the 
original features of the data, retaining the key features of information. 
The proposed method uses a Gaussian kernel function to map the sup-
port vector. The ICW-SVM then handles the imbalanced data issue by 
allowing for the adjustment of weights of the normal and fraudulent 
classes, which alters the hyperplane position as needed (Lu & Ju, 2011). 
This eliminates the need to use sampling techniques such as SMOTE, 
random undersampling and others to balance the data set. 

For experimentation, the authors use an imbalanced credit card data 
set from a commercial bank in China, where there is a total of 29 features 
and 42,928 transactions, the fraudulent class only accounting for 1.57% 
of all transactions (Lu & Ju, 2011). Following the PCA transformation of 
the data set, five key features are derived, with the content of each 
outlined in Table 6 (Lu & Ju, 2011). The total contribution of all five 
principal components captured 87.87% of the data, with a loss of 
approximately 12% of the data. The descriptions of feature combina-
tions provided in this work are something rarely ever disclosed in 
published literature and can be considered a significant contribution by 
this paper. Addressing the previously mentioned suggestions of Bhat-
tacharyya et al. (Bhattacharyya et al., 2011), parameters for the pro-
posed ICW-SVM were found empirically by experimenting with 
variations in each setting (Lu & Ju, 2011). The ICW-SVM was compared 
against the standard SVM and DT, and it was demonstrated to be su-
perior in performance and shown to have the highest overall accuracy of 
the three algorithms at 91.28%. The ICW-SVM also had the highest 
recall of 85.25%, a significant difference from 53.55% by SVM and 
46.98% by DTs (Lu & Ju, 2011). The authors also show that the ICW- 

SVM is much more computationally efficient with the expansion of the 
scale of data sets when PCA was performed. The proposed method with 
PCA executed almost four times faster when compared to the same 
method without using PCA, sacrificing only 1.4% accuracy to achieve 
90.9% (Lu & Ju, 2011). The authors infer that the proposed model is 
useful and would achieve even better performance in an environment 
with real data due to its scalability. Further studies were suggested to 
determine how to effectively select the correct parameters are kernel 
functions to enhance the proposed technique’s performance. 

Although considered an unsupervised anomaly detection technique, 
one-class SVMs (OCSVM) are a kernel-based method of SVMs that were 
proposed by Schölkopf et al. (Schölkopf, Williamson, Smola, Shawe- 
Taylor, & Platt, 2000). They are only trained on the normal instances 
of data, e.g. the legitimate transactions, to learn the boundary around 
these points. Any points that do not lie within the boundary are classi-
fied as anomalies. In OCSVMs, the input data is mapped into a feature 
space using a kernel function to find a separating hyperplane, but the 
main difference from regular SVMs is that the separating hyperplane is 
between the data points and the origin (Schölkopf et al., 2000). As the 
name suggests, the hyperplane is optimized to separate the data into one 
class (e.g. the legitimate transactions), such that all samples not grouped 
into that class are considered part of the anomalous class (e.g. the 
fraudulent transactions). An example graphical representation of the 
separating hyperplane in two-dimensional space based on (Schölkopf 
et al., 2000) can be seen in Fig. 2. This approach to OCSVM is most 
prevalent due to its simple implementation and application; however, 
other approaches exist (Hejazi & Singh, 2013). Tax and Duin describe a 
hypersphere boundary between anomalies and the normal class as an 
alternative to a hyperplane in (Tax & Duin, 2001). 

Hejazi and Singh proposed an OCSVM approach to classifying credit 
card fraud using various types of kernel functions such as linear, poly-
nomial and radial basis functions (Hejazi & Singh, 2013). The authors 
use a German credit card data set from the University of California, 
Irvine (UCI) repository, which has a total of 1,000 samples and 20 fea-
tures, 300 of the samples belonging to the anomalous class (University of 
California, 2000). The literature compares binary classification SVMs 
balanced with various sampling techniques to the proposed OCSVM 
with an imbalanced data set. The parameters of the OCSVM were 
determined empirically and outlined in the literature to observe the 
effects on the model’s performance. 

Of the SVM models trained on balanced data sets, both random 
sampling and spread subsampling had the highest test accuracy of 
88.99%, compared to the imbalanced data set with 83.44%. However, 
the SVM with an imbalanced data set had the best test set accuracy of 

Table 6 
Structure of derived attributed from credit card data (Lu & Ju, 2011).  

Key features Content 

Negative information of 
account (X1) 

Default frequency, unpaid credit balance of each cycle 

Situation of card holding 
(X2) 

Overdraft frequency, overdraft limit, maximum 
number of days overdue 

Trading frequency (X3) Date of consumption, shopping frequency, store code, 
number of average consumptions 

Ratio of number of 
transactions (X4) 

Daily transactions/largest transactions number in 
history 

Basic customer 
information (X5) 

Age, education, occupation, income, housing 
conditions, industry prospects  

Fig. 2. Two-dimensional graphical illustration of how a separating boundary is 
determined by OCSVM methods. 
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77%, compared to 68% by random sampling coming in second. This led 
to conclusions that the while showing slight improvements in perfor-
mance with balanced data, SVMs tend to overfit and generalize poorly 
(Hejazi & Singh, 2013). On the other hand, when compared with the 
proposed OCSVM, it was shown that OCSVMs with imbalanced data sets 
significantly outperform regular SVMs with balanced data sets, which 
tends to overfit the training data (Sahin & Duman, 2011; Hejazi & Singh, 
2013). The linear kernel function OCSVM had the highest train set ac-
curacy of 90.16% and a test set accuracy of 91%. The polynomial kernel 
function of degree three had the second-highest accuracy of 90%, but 
the highest test set accuracy of 92%. The radial basis function kernel 
demonstrated comparable performance in train and test set accuracy of 
89.66% and 91%, respectively. Overall, the proposed OCSVM model by 
Hejazi and Singh demonstrated superior performance compared to 
previous SVM approaches in published literature, generalizing well to 
unseen data instead of overfitting the training set (Hejazi & Singh, 
2013). The computational efficiency of the OCSVM is also preferred, 
demonstrating to be at least two times faster than SVMs, and executed in 
less than 0.1 s on average regardless of the type of kernel function used. 
Most importantly, it is made evident in the literature that parameter 
tuning and optimization are critical to the performance of the OCSVM, 
which, if neglected, can result in severe deterioration in the accuracy of 
the model (Hejazi & Singh, 2013). 

More recent studies published in 2020 by Rtayli and Enneya propose 
an enhanced credit card fraud detection method based on RF as a feature 
selection algorithm coupled with an SVM to detect anomalous trans-
actions (Rtayli & Enneya, 2020). The RF algorithm selects relevant 
features from the data to increase the subsequent SVM model’s overall 
performance, which is tasked with classifying the transactions as legit-
imate or fraudulent. The extraction of non-redundant and robust fea-
tures is done by utilizing an importance score to select the extremely 
discriminative features, which helps reduce the dimensionality of the 
data (Rtayli & Enneya, 2020). Using the metrics of accuracy, recall and 
area under the curve (AUC), this technique was compared with other 
methods such as DT, as well as local outlier factor (LOF) and isolation 
forest (IF), which are unsupervised techniques further discussed in later 
sections. The authors used a public dataset of European credit card 
transactions retrieved from Kaggle (Machine Learning Group. (2017), 
2017), an online data science community. It consisted of 284,807 total 
transactions, of which 492 were fraudulent. Results showed that the 
accuracy of the proposed RF and SVM model had an accuracy of 95.18%, 
which was less than the other models. Moreover, the proposed model 
vastly outperformed the three models with 87% recall and IF coming in 
second with 34%. The AUC of the proposed model was 91%, which also 
shown to be superior to LOF with 52%, IF with 67% and DT with 50%. 
Overall it was concluded that the SVM based on RF feature selection had 
good accuracy, alerted less false positives and was most robust at 
detecting fraudulent transactions (Rtayli & Enneya, 2020). 

For the detection of fraudulent automobile insurance claims, Tao 
et al. proposed a dual membership fuzzy SVM (DFSVM) (Tao, Zhixin, & 
Xiaodong, 2012). Instead of the binary 0 or 1 classification of SVMs, in 
this technique, the model assigns each sample with two membership 
values that denote the probability of belonging to each respective class. 
This results in twice the amount of training samples that the model 
makes full use of, helping to overcome the overfitting problem of SVMs 
(Tao, Zhixin, & Xiaodong, 2012). The choice of the kernel function in the 
paper was the radial basis function (RBF); however, no discussion was 
provided on the reasoning behind the choice of kernel. The proposed 
model was compared against a regular SVM, using automobile insurance 
data of cases in Beijing. A total of 800 samples were used, with half of the 
cases being legitimate and the other half being fraudulent. We note that 
the literature introduces a bias by choosing the number of samples of 
each case in such a way that the dataset is balanced without the use of 
proper sampling methods or techniques. The categorical features of the 
dataset were transformed into numerical encodings, as necessary for this 
type of model. Hyperparameter tuning of the models was achieved by 

using a grid parameter search and cross-validation techniques. Experi-
mentation results showed that the proposed DFSVM had improved 
performance in comparison to previous SVM methods, as evident from 
F-scores of 91.02% and 87.99%, respectively (Tao, Zhixin, & Xiaodong, 
2012). The recall and precision of the DFSVM were also the highest 
reported, at 91.31% and 90.73%, respectively. The authors conclude by 
reaffirming the improvements of introducing fuzzy class memberships 
over previous techniques in previously published literature. 

Sundarkumar and Ravi proposed a novel hybrid undersampling 
method based on OCSVM and reverse k-nearest neighbours (kRNN) 
(Sundarkumar & Ravi, 2015). The authors apply the proposed technique 
to improve the performance of classifiers in detecting fraudulent auto-
mobile insurance claims by addressing the problem of imbalanced class 
distributions. The literature makes use of a public dataset from an 
automobile insurance company with 15,420 samples, 923 of which were 
fraudulent, accounting for 6% of the total samples and highlighting the 
highly unbalanced nature of the dataset. Preprocessing of the data was 
necessary in order to remove irrelevant features and extract more rele-
vant features from the ones already present. Of the original 31 features 
in the dataset, only 24 remained, which included some derived features. 
The methodology consisted of extracting a test set of 20% of the original 
data by stratified random sampling, which is left untouched so as to 
validate the efficiency of the proposed model (Sundarkumar & Ravi, 
2015). The remaining 80% of the dataset is then assigned as the train set. 
The next step involves eliminating outliers from the majority class of the 
train set using kRNN and extracting the support vectors of the resulting 
set using OCSVM. The choice of using SVM is justified by their ability to 
efficiently perform row dimensionality reduction, implicitly accom-
plishing undersampling (Sundarkumar & Ravi, 2015). The minority 
samples are merged with the reduced majority samples from the pro-
posed technique, which are subsequently used to train a classifier with 
the 10-fold cross-validation method. 

To observe the performance of their novel hybrid undersampling 
approach, the authors trained and compared several classifiers such as 
LR, MLP, DT and SVM on the merged training set. It was shown that all 
classifiers displayed improved overall performance, with higher AUC 
scores than when compared against the same models trained on the 
original unbalanced dataset (Sundarkumar & Ravi, 2015). The SVM 
classifier showed the best overall performance, with an AUC of 75.14%, 
which is a 12% increase from an SVM trained on an original dataset. The 
DT had an AUC of 74.71%, coming in second place in terms of overall 
performance. The performance of the SVM and DT were found to be 
quite similar, with recalls of 91.89% and 90.74%, respectively. This 
demonstrates the proposed model’s ability to detect and accurately 
classify fraudulent efficiently. The increase in recall of both models is 
met with a compromise in specificity, which decreased significantly for 
the DT to 58.69% from 99.83%. The SVM’s specificity decreased less 
drastically from 63.2% to 58.39%. This indicates that with the proposed 
hybrid undersampling technique, the tradeoff for increased detection of 
fraudulent cases is with a corresponding increase in the false alarm rate. 

Finally, the authors perform a t-test to determine the statistical sig-
nificance of the SVM’s performance. The literature finds that all the 
models are statistically significantly different with respect to the SVM’s 
recall, except for the DT. Consequently, the authors suggest that the DT 
is most suitable for the proposed novel technique due to it being 
computationally faster and, more importantly, the fact that it yields ‘if- 
then’ decision rules allowing for interpretability of knowledge extracted 
(Sundarkumar & Ravi, 2015). From the findings of this research, the 
authors suggest further effort should be allocated towards determining 
whether the presence of kRNN has an influence on the proposed model. 
If not, then it is hypothesized that OCSVM by itself can undersample the 
majority class with comparable predictive performance and significantly 
improved computational speed (Sundarkumar & Ravi, 2015). 

As a result, Sundarkumar et al. (Sundarkumar, Ravi, & Siddeshwar, 
2015) explored employing just the OCSVM to undersample the majority 
class to determine whether or not the presence of kRNN in the 
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methodology had any effect on performance. In their work, the authors 
used the same dataset and methodology employed by Sundarkumar and 
Ravi in (Sundarkumar & Ravi, 2015). Instead, the OCSVM is chosen to 
handle outlier detection and removal in the majority class and under-
sampling based on the properties of support vectors (Sundarkumar & 
Ravi, 2015). The proposed technique was compared against the results 
from the previous work. Experimentation showed that the proposed 
methodology led to slight improvements in the AUC as well as the recall 
for both the DT and SVM model. These findings led to conclusions that 
the kRNN has no significant effect on classification performance (Sun-
darkumar, Ravi, & Siddeshwar, 2015). The paper, however, does not 
investigate or determine the time and economic savings as a result of 
these findings, which could be an avenue of future exploration.  

ii. Neural Networks (NN) 

Neural networks are computational algorithms that mimic the 
working principle of the human brain using elements known as neurons 
(Ngai et al., 2011). Each neuron has a weight and bias associated with its 
connections, and the network structure generally consists of an arbitrary 
number of neurons placed within three main layers: the input, hidden, or 
output layer. The networks are usually densely connected, meaning 
input neurons are connected to every neuron in the hidden layer, which 
are then also connected to every neuron in the output layer. 

In this section, we are primarily concerned with feedforward neural 
networks, also known as multilayered perceptron networks (MLP), 
which are the simplest type of neural network. These types of networks 
propagate inputs forward in one direction from the input layer to the 
output layer (Michelucci, 2018). A graphical illustration of a densely 
connected NN can be seen in Fig. 3. Each neuron of the network con-
siders its inputs as the outputs of the neurons from the previous layer. 
The output of each neuron, except in the input layer, must undergo an 
activation function before it can be an input for the next layer. The 
choice of activation functions depends on the application, but the most 
commonly used are either the sigmoid function or the rectified linear 
unit. Neural networks that fall under supervised learning must learn 
from the dataset using a learning algorithm. One of the most popularly 
used algorithms is called the backpropagation of error, which involves 
calculating the error with respect to the training data. This error is then 
propagated backwards through the network, correcting the neurons’ 
weights and biases accordingly using gradient descent (Maes & Tuyls, 
2002). A summary of the papers reviewed implementing MLPs for fraud 
detection can be seen in Table 7. 

One of the first implementations of MLPs for credit card fraud 
detection is described by Maes et al. in 1993 (Maes & Tuyls, 2002). The 
authors implement a standard NN trained by standard backpropagation 
on a labelled transaction dataset. Of the two experiments conducted, the 
first involved investigating the effects of preprocessing the dataset. Ten 
features were observed to provide the most substantial results following 
a correlation analysis, which meant removing one feature (Maes & 

Tuyls, 2002). This led to the MLP’s best result, where for 70% of the true 
positives, there were only 15% false positives. The second experiment 
highlighted the importance of parameter tuning, which influences the 
learning process. The authors note that by decreasing the learning rate at 
certain intervals, improvements can be made in speed and efficiency 
(Maes & Tuyls, 2002). Results show that the MLP produces good results; 
however, it is outperformed by Bayesian networks. Also, in terms of the 
training time required, the MLP was considerably faster than the 
Bayesian networks. Future suggestions in the literature suggest pruning 
algorithms to get rid of neurons and connections practically not used 
during training and the use of variations such as radial basis networks 
and in the error function of backpropagation for weight optimization 
(Maes & Tuyls, 2002). 

Fig. 3. Labelled visual representation of a densely connected multilay-
ered perceptron. 

Table 7 
Summary of Published Literature on NN-Based Credit Card Fraud Detection.  

Year Reference Type of 
Fraud 

Method Method proposed 

1993 Maes et al. ( 
Maes & Tuyls, 
2002) 

Credit 
card 

MLP MLP trained on 
preprocessed dataset 
produced good results but 
was outperformed by a 
Bayesian network. 
Adaptive learning rate 
proved to be beneficial. 

1994 Ghosh and 
Reilly (Ghosh & 
Reilly, 1994) 

Credit 
card 

MLP MLP resulted in 20 to 40 
percent decrease in 
economic losses. 

1997 Aleskerov et al. 
(Aleskerov 
et al., 1997) 

Credit 
card 

MLP Using momentum during 
training improved MLP 
performance, detecting 85 
percent of fraud cases. 

2011 Patidar and 
Sharma ( 
Patidar & 
Sharma, 2011) 

Credit 
card 

GA- 
designed 
MLP 

Theoretical research 
proposing GA to address 
lack of guidelines for 
selecting number and size 
of hidden layers to use in a 
network. 

2014 Khan et al. ( 
Khan, Akhtar, 
& Qureshi, 
2014) 

Credit 
card 

SA-trained 
MLP 

Model achieves high 
detection rate at cost of 
increased false positives 
and is computationally 
expensive. 

2015 Behera and 
Panigrahi ( 
Behera & 
Panigrahi, 
2015) 

Credit 
card 

FCM-MLP FCM for sample filtering, 
then MLP trained with 
SCG to classify suspicious 
achieved 94 percent 
accuracy, only 6 percent 
false alarm rate. 

2018 Wang et al. ( 
Wang, et al., 
2018) 

Credit 
card 

WOA- 
trained 
MLP 

Model generalizes well 
and addresses problems of 
NNs overfitting with F- 
score of 98.4 percent. 

2018 Gómez et al. ( 
Gómez et al., 
2018) 

Credit 
card 

MLP 
ensemble 

Ensemble of MLP filters 
reduce effects of 
imbalanced data, improve 
classification performance 
of classifier. 

1992 He et al. (He 
et al., 1997) 

Health 
insurance 

MLP MLP had poor accuracy on 
its own, which improved 
when SOM clustering 
implemented prior to 
training. 

2005 Viaene et al. ( 
Viaene et al., 
2005) 

Auto- 
insurance 

BNN BNN had greatest AUC out 
of SVM and DT, but SVM 
had higher accuracy. 

2011 Xu et al. (Xu, 
Wang, Zhang, & 
Yang, 2011) 

Auto- 
insurance 

MLP 
ensemble 

One-step secant and 
gradient descent with 
momentum MLPs 
outperformed resilient 
backpropagation MLP. 

2018 Wang and Xu ( 
Wang & Xu, 
2018) 

Auto- 
insurance 

LDA-MLP LDA enabled text mining 
of documents, improving 
F-score of MLP by 7.2% 
and recall by 9.6%.  
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Ghosh and Reilly implemented and trained an MLP using transaction 
data from Mellon Bank (Ghosh & Reilly, 1994). The network was trained 
on a sample of legitimate and fraudulent accounts, followed by a blind 
test of the trained model on a separate, unsampled, holdout set of 
transactions. The authors showed that the model could achieve a loss 
reduction ranging from 20% to 40%, resulting in the installation of the 
model for use in Mellon Bank’s credit card fraud detection systems 
(Ghosh & Reilly, 1994). Aleskerov et al. proposed CARDWATCH to 
provide a graphical user interface (GUI) for a credit card fraud detection 
system based on neural networks (Aleskerov, Freisleben, & Rao, 1997). 
The authors train an MLP on synthetic data representing customer 
transactions using backpropagation with momentum as the learning 
algorithm. The momentum term improves efficiency by moving the 
correction of weights in the direction of the last weight update (Ale-
skerov et al., 1997). Experimental results showed that the model pro-
duced strong results, detecting 100% of the normal transactions and 
85% of fraudulent transactions. 

Various research papers have been published that have proposed 
variations of standard NNs that have been used in preceding literature. 
In the case of credit card fraud, Patidar and Sharma propose and discuss 
using genetic algorithms (GA) to make decisions about the topology of a 
NN, which refers to the way neurons should be interconnected, the most 
common way being fully connected and three-layered (Patidar & 
Sharma, 2011). This is an attempt to address a problem with neural 
networks, which is the lack of clear guidelines on setting those param-
eters of a network that play a critical role in the learning and perfor-
mance of NNs (Patidar & Sharma, 2011). Although the proposed 
research seems promising, the authors do not analyze the feasibility of 
this with experimentation. 

Khan et al. proposed using simulated annealing (SA), a probabilistic 
technique based on a thermodynamic heat treatment process, as a 
training algorithm for NNs (Khan, Akhtar, & Qureshi, 2014). The au-
thors justify this technique to address the issue of standard back-
propagation getting stuck at local minima and is computationally less 
expensive than other meta-heuristic algorithms such as GA (Khan, 
Akhtar, & Qureshi, 2014). Using a dataset from the UCI repository, the 
authors design an MLP consisting of 20 input neurons, one for each 
feature of the dataset, and two outputs representing a binary classifier, 
with an arbitrary 50 neurons in the hidden layer (University of Cali-
fornia, 2000). The model took two days to complete training on 75% of 
the original dataset, leading to a 1% training error. The experimentation 
shows that the model produces good detection accuracy, identifying 
92% of the fraudulent cases and 85% of the legitimate cases. This in-
dicates that there is a trade-off between detecting more of the fraudulent 
cases and the false positive rate (Khan, Akhtar, & Qureshi, 2014). One 
issue that was not addressed was the significant amount of time elapsed 
until the model completed training, which suggests that it might be more 
computationally expensive than anticipated by the authors. 

The Whale Optimization Algorithm (WOA) was recently proposed in 
2018 as a learning algorithm for an MLP by Wang et al. aimed at solving 
the problems of slow convergence to local minima and the low stability 
of backpropagation techniques (Wang, Wang, Ye, Yan, Cai, & Pan, 
2018). The WOA is a novel meta-heuristic proposed by Mirjalili and 
Lewis in 2016, which the authors show in their literature that the WOA 
is very competitive compared to state-of-the-art meta-heuristic algo-
rithms (Mirjalili & Lewis, 2016). The authors used the European data 
set, which consisted of 284,807 transactions, of which 492 were 
fraudulent. PCA was used to find a lower-dimensional representation of 
the data, protecting customer privacy with 8 principal components. 
Experimental results show that using the WOA to update an MLP’s 
weight led to outstanding performance, with the model achieving an F- 
score of 98.04%, accurately detecting 97.83% of fraudulent transactions 
and 96.40% of normal transactions (Wang, et al., 2018). Compared to 
models trained with other meta-heuristic algorithms such as GA, the 
WOA outperformed by every measure. The authors also note that the 
proposed technique demonstrates superior generalization capabilities 

A hybrid approach to MLP credit card fraud detection by Behera and 
Panigrahi involves implementing a fuzzy clustering detection model 
(Behera & Panigrahi, 2015). Fuzzy c-means (FCM) or fuzzy clustering is 
a form of clustering that allows each data point to belong to more than 
one cluster, which has been proposed by Bezdek et al. (Bezdek, Ehrlich, 
& Full, 1984). The authors propose a two-step model, where trans-
actions are initially clustered by FCM based on two features: transaction 
amount and items purchased. A suspicion score is then calculated based 
on the Euclidean distance of the transaction from the centroid of the 
cluster (Behera & Panigrahi, 2015). The suspicion score is then 
compared against experimentally determined upper and lower thresh-
olds. If it is in the lower threshold, it is a normal transaction; if it is in the 
upper threshold, it is fraudulent, and if it is between the two thresholds, 
the transaction is considered suspicious, and the MLP is applied to 
classify it further appropriately (Behera & Panigrahi, 2015). The authors 
use Scaled Conjugate Gradient (SCG) as a supervised learning algorithm 
for the MLP, noting its faster execution time and eliminating the prob-
lem of poor behaviour and convergence on large scale datasets (Møller, 
1993). Five hidden layers were used for the MLP, which was noted to 
increase the performance at the cost of increasing the computational 
time for training. Results showed that the proposed method yielded a 
true positive rate of 93.90% and a false positive or false alarm rate of just 
6.10% (Behera & Panigrahi, 2015). Future suggestions in the literature 
suggest considering more features by the system to improve the model. 

Gómez et al. proposed using a set of two consecutive filters in 
cascade, which consist of an ensemble of NNs, and a final MLP as a 
classifier (Gómez, Arévalo, Paredes, & Nin, 2018). The purpose of the 
filters is to classify reject as many legitimate transactions as possible 
while conserving as best as possible the number of fraudulent trans-
actions. The remaining transactions are then further classified as legit-
imate or genuine by the last neural network. The authors show that the 
imbalanced data set used reduced from a ratio of 5000:1 genuine to 
fraudulent transactions to 420:1 by the first filter and close to 100:1 by 
the second filter (Gómez et al., 2018). The final MLP’s hidden units had 
ReLU activation functions and softmax output units to provide binary 
classifications. Backpropagation with stochastic gradient descent as the 
learning algorithm for the last MLP, applying batch normalization to 
increase convergence speed during training (Ioffe & Szegedy, 2015). The 
Value Detection Rate (VDR) was used as a measure of performance for 
the filters, which is the ratio of fraudulent cases still present after 
filtering by each model, and results show that a VDR of 93.7% and 
66.4% were achieved after the first and second filter respectively. The 
area under the ROC curve was also inspected, with results showing an 
average of 86.8% on test data over three months. The recall of the final 
neural network was shown to be 86.6%, and the authors note that the 
ratio is a good compromise to avoid saturating back-end alert systems 
with false positives (Gómez et al., 2018). Overall, the results of the 
proposed model were deemed promising, and the authors suggest 
exploring other types of deep learning architectures such as LSTM to 
exploit inherent temporal information related to fraud patterns and 
spending behaviour. 

The earliest applications of NNs for insurance fraud were published 
by He et al. in 1992, where the authors trained an MLP to classify the 
practice profile of a sample of general practitioners (He, Wang, Graco, & 
Hawkins, 1997). The authors propose training the MLP on a dataset of 
1,500 general practitioner profiles randomly selected from an Australian 
population sample. The dataset consisted of 28 features selected by 
expert consultants in the field. The experts also labelled each practi-
tioner’s profile on a scale of 1 to 4, ‘1′ indicating a high likelihood of 
abnormal practice, ‘4′ indicating standard practice, and ‘2′ and ‘3′

signifying practice profiles somewhere in between (He et al., 1997). An 
example of one of the features includes the proportion of initial-to- 
subsequent consultations, in which practicing practitioners generally 
have a lower proportion. The dataset was assumed to be balanced, with 
an equal distribution of classes, and thus was split into two halves for 
training and testing. 
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The authors choose an MLP configuration of 28–15-4, signifying 28 
neurons in the input layer for each feature, 15 neurons in the hidden 
layer, and four neurons in the output layer (He et al., 1997). An adaptive 
learning rate was used, and a weight decay term was added to the loss 
function of the network to avoid over-training issues. The accuracy of 
the model’s predictions was calculated to determine its classification 
performance. Results from the proposed MLP were shown to be unsat-
isfactory, with an accuracy of 63.80% on the train set and 59.87% on the 
test set. The poor performance of the proposed model is attributed to the 
degree of uncertainty and inconsistencies in labelling by human experts, 
especially when there are more than two classes (He et al., 1997). To test 
this hypothesis, a SOM was implemented and used to cluster the 1,500 
practitioner profiles based on the similarity of input features. When 
setting the number of clusters to 20, the authors observe that the first 
five group’s members are classified mostly as ‘1′ or abnormal, while the 
last five groups are mostly ‘4′ or normal. As for all the clusters in be-
tween, there was no clear majority in any of the groupings. Based on 
this, the authors suggest that the intermediate classifications of ‘2’ and 
‘3’ are difficult to distinguish. Therefore, to combat this, the authors 
propose an MLP using two-class classification instead, using the same 
methodology as already established. Accordingly, profiles classified 
with intermediate labels of ‘3’ or ‘4’ were reclassified into classes ‘1’ and 
‘4’, respectively. As expected, improved accuracy was observed in both 
the train and test accuracies of the two-class MLP proposed, achieving 
88.40% and 80.93%, respectively (He et al., 1997). 

Viaene et al. explored the explicative capabilities of NNs trained 
using a Bayesian learning approach for the detection of fraudulent 
automobile insurance claims (Viaene, Dedene, & Derrig, 2005). 
Bayesian NNs (BNN) apply the process of Bayesian inference to find the 
predictive distribution for the labels of a “test” case, given the inputs for 
that case as well as the input and label of the training cases (Neal, 1996). 
This approach is based on MacKay’s (MacKay, 1992) evidence frame-
work, which optimizes an automatic relevance determination (ARD) 
regularized objective function (Viaene et al., 2005; Neal, 1996). This 
objective function allows for the determination of the relative impor-
tance of each input feature to the trained model. In Bayesian learning, 
with all prior explicit assumptions, the weights and hyperparameters of 
a network are determined using Bayesian inference to map prior as-
sumptions into posterior knowledge after observing the training data 
(Viaene et al., 2002). The benefits of BNNs with ARD are that they allow 
for the inclusion of a large number of potentially relevant features 
without the detrimental effects generally associated with high- 
dimensional datasets (Viaene et al., 2005). This eliminates the need to 
remove irrelevant inputs a priori, as they are dealt directly with by the 
ARD’s regularization parameter scheme. 

In their work, Viaene et al. conducted a baseline benchmark study, 
empirically evaluating the performances of the DT, SVM and proposed 
BNN models in detecting fraudulent automobile insurance claims 
(Viaene et al., 2002; Viaene et al., 2005). A dataset consisting of 1,399 
claims made in the state of Massachusetts in 1992 was used. The in-
formation in the data was collected by the Automobile Insurers Bureau 
of Massachusetts and tracked 25 binary features as well as 12 contin-
uous, categorical features considered relevant to fraud investigators and 
adjusters. The literature shows that the BNN consistently outperformed 
the other models in terms of the AUC score (Viaene et al., 2005). The 
AUC of the proposed BNN reached up to 88.49%, compared to only 
84.30% and 86.52% by the DT and SVM, respectively. In terms of ac-
curacy, however, the SVM performed best by reaching up to 91.49%. 
Both the proposed BNN and DT still achieved a comparable accuracy of 
91.21%, a negligible difference with the SVM. One important note is that 
the authors do not mention or discuss the distribution of fraudulent 
cases in the data and whether it is balanced in nature. 

An ensemble of MLPs was proposed by Xu et al. using rough set 
theory-based dimensionality reduction techniques for preprocessing the 
original data (Xu, Wang, Zhang, & Yang, 2011). Rough set methods have 
demonstrated the ability to significantly reduce pattern dimensionality, 

proving to be viable for the front end of NNs, a topic that has been 
extensively reviewed by Thangavel and Pethalakshmi (Thangavel & 
Pethalakshmi, 2009). In their research, Xu et al. (Xu, Wang, Zhang, & 
Yang, 2011) use the rough set reduction technique to generate multiple 
subsets of reductions of the training data. The dataset used in the liter-
ature is the same one used in the research proposed by Sundarkumar and 
Ravi in (Sundarkumar & Ravi, 2015), which consisted of 15,420 samples 
of automobile claims from an insurance company. The authors further 
extend their methodology by employing the random subspace method, 
also known as feature or attribute bagging, to randomly select a 
generated reduction to train each of the MLP classifiers in an ensemble. 
The predictions of each MLP are then aggregated using voting or 
weighted voting strategies, and the final output of the model is then 
compared against the test set. 

Several different MLPs were experimented with and compared to 
validate the performance of the proposed method, the first of which was 
trained using gradient descent with momentum and an adaptive 
learning rate (Xu, Wang, Zhang, & Yang, 2011). One-step secant back-
propagation and resilient backpropagation were the two other types of 
MLPs used. The accuracies and ROC curves for all the models were 
compared as single classifiers and as an ensemble of two classifiers as 
outlined in the research methodology. As expected, an improvement in 
accuracy was achieved by all three models. The highest accuracy ach-
ieved of the single classifiers was 83.1% by the one-step secant MLP, 
followed by 81.9% for the gradient descent MLP and 76.7% with the 
resilient backpropagation MLP (Xu, Wang, Zhang, & Yang, 2011). The 
highest accuracy recorded in the ensemble configurations was 88.7%, 
achieved by both the gradient descent with momentum and the one-step 
secant MLP. Rather than evaluating the AUC of each model, the authors 
simply provide visual comparisons of the corresponding ROC curves for 
each of the models in both their single and ensemble configurations. No 
discussion is present in the research paper on the ROCs provided for 
each of the proposed techniques. However, we note that by visual in-
spection, the one-step secant MLP’s ROC tends closer to the top left 
corner of the graph than the gradient descent MLP. This suggests that the 
one-step secant MLP has a higher recall value, meaning more efficient 
detection of fraudulent claims, with fewer false alarms. Future research 
efforts put forward by the authors involve exploring other types of 
ensemble classification models, other types of fraud, as well as applying 
the proposed system for online detection of fraud (Xu, Wang, Zhang, & 
Yang, 2011). 

Studies by Wang and Xu leveraged deep learning and text mining to 
propose a novel technique for the detection of automobile insurance 
fraud (Wang & Xu, 2018). Most of the previous studies on insurance 
fraud detection examine numeric or categorical factors such as the time 
of claim submission or the make, model, or colour of the insured car. 
However, textual information in insurance claims has rarely been 
studied or analyzed to detect fraud. Therefore, the authors propose using 
Latent Dirichlet Allocation (LDA) based text analytics to extract hidden 
textual features in the written descriptions provided in claims by 
claimants (Wang & Xu, 2018). An MLP is subsequently trained on the 
labelled data with the extracted features to learn to detect fraudulent 
claims. In natural language processing, LDA is a generative probabilistic 
model proposed by Blei et al., which uses a Bayesian model to extract 
and model topics in a text as a probability distribution (Blei, Ng, & 
Jordan, 2003). Each topic is considered independent of one another, can 
also be viewed as a probability distribution of the many words in a 
document (Wang & Xu, 2018). A perplexity term is introduced in the 
literature to help determine the appropriate number of topics. This term 
measures the prediction ability of a probability distribution, with more 
appropriate probability distributions having a relatively low perplexity 
value (Wang & Xu, 2018). 

The authors use a real-world dataset from an automobile insurance 
company, with 37,082 labelled samples. There are 415 fraudulent 
claims in the dataset or 1.12%, highlighting the imbalanced nature of 
the dataset. Consequently, oversampling of the majority is proposed 
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with SMOTE to result in a dataset of 1,660 samples for each of the 
legitimate and fraudulent classes. A total of 10 features described each 
sample, one of which is a textual attribute, which will be processed using 
LDA to extract key hidden topics and augmenting them as categorical 
features into the dataset. With the goal of combatting overfitting, 10- 
fold cross-validation training of 10 different LDA with different 
numbers of topic groups was carried out. The lowest perplexity is ach-
ieved by the model with five topics, each representative of certain words 
from expert auditors’ descriptions in the claim—the most significant 
words in each topic outlined in Table 8. 

In the first topic, the collection of words describe liabilities of acci-
dents, the driver of the car and the third party involved. The second 
topic describes how the incident was addressed by individuals, as some 
may report incidents to the police, and others may accept compensation 
from a private party with pleasure (Wang & Xu, 2018). Topic 3 is a 
description of the scene of the incident and whether there were any 
witnesses or police intervention. Driving behaviour is primarily 
distributed in the key words derived from topic 4, according to de-
scriptions or accounts of suspicious behaviour based on the human ex-
pert’s individual experience. Information about any damage or personal 
injury resulting from an incident is found in topic 5. The authors hope 
that the MLP trained on these added features will be able to extract the 
experience of human experts in the field. 

The MLP architecture consisted of seven hidden layers, which was 
determined empirically, as it was observed that the amount of compu-
tation increased without any improvement in performance past seven 
hidden layers (Wang & Xu, 2018). Through manual tuning, the number 
of nodes in each of the layers was chosen as 8, 8, 10, 7, 8, 6 and 4. ReLU 
activations functions were used in the neurons to avoid the vanishing 
gradient problem, and a dropout probability of 0.2 for each neuron was 
employed to help curb overfitting. Furthermore, the MLP made us of an 
adaptive learning rate, starting at 0.5 and decreasing as the epoch in-
creases. The proposed model was compared against RF and SVM and 
found to have a recall of 91%, 8% higher than the RF, and 22.8% higher 
than that of the SVM. This was reasoned to be due to deep learning 
models being able to capture and understand the abstract experiences 
extracted by the LDA (Wang & Xu, 2018). The MLP model with LDA 
extracted features had an accuracy and precision of 91.4% and 91.7%, 
respectively, the highest of the three models by a margin of at least 5%. 
The apparent overall superior performance of the proposed model is 
further supported with an F-score of 91.3%, compared to 81.4% by the 
RF and 76.2% by the SVM. 

A comparative analysis was also conducted in the author’s studies, 
comparing each of the three models with and without the proposed LDA- 
based text mining and feature extraction method. For the MLP without 
LDA, the optimal structure was determined to be with seven hidden 
layers of 6, 7, 9, 4, 5, 4 and 4 neurons in each layer, using ReLU acti-
vation functions similar to the previous experimentation. Results 
showed that the MLP’s overall performance without LDA suffered, with 
the F-score decreasing by 7.2% to 94.1%. This decrease in performance 
was also significant in terms of recall, which was 81.4%, a decrease of 
9.6% from the proposed model using LDA. Overall, the MLP model with 
LDA proved to be the best detector of fraudulent claims. The authors 
note that the analysis of the text description derived from human experts 
may inevitably involve subjective ideas or characteristics. Thus, the 
literature suggests it may be fruitful to explore ways of eliminating these 

implicit biases to observe the effect and allow the model to generalize 
better (Wang & Xu, 2018).  

iii. Convolutional Neural Networks (CNN) 

The CNN is another type of deep learning architecture that was first 
introduced in the 1990 s, which is characterized as a network with many 
layers categorized into the input, pooling, fully connected, and output 
layers (LeCun & Bengio, 1998). They are named after the fact that the 
convolutional layer performs a mathematical operation known as 
convolution on the input. Fig. 4 displays a representation of the structure 
of a CNN’s layers. CNNs have been predominantly used for image-driven 
pattern recognition tasks due to the essential nature of the input, which 
is usually in matrix form (O’Shea & Nash, 2015). However, they have 
been demonstrated to be applicable in other fields and domains by 
manipulating the structure of the input data. 

The various layers of a CNN’s architecture, as illustrated in Fig. 4, are 
responsible for carrying out different operations. As briefly mentioned, 
the convolution operation is performed in the convolutional layer, 
which preserves the spatial relationship of the input to extract derived 
features. Different filters are used for the convolution operation, acting 
as feature detectors. The pooling layer reduces the dimensionality of the 
feature maps produced from the convolutional layer using subsampling 
techniques, retaining the most critical information. Pooling allows for 
the input to be more manageable, reducing the number of computations 
and parameters in the network, which helps to control overfitting 
(Krizhevsky, Sutskever, & Hinton, 2012). The fully connected and 
output layer is a traditional densely connected feedforward NN or MLP 
whose input is the output from the convolutional and pooling layer and 
serves to classify the data. The relevant works involving CNN-based 
approaches can be seen in Table 9. 

CNNs were first proposed for the task of credit card fraud detection 
by Fu et al. in 2016 to capture intrinsic patterns of fraudulent behaviours 
from labelled data (Fu, Cheng, Tu, & Zhang, 2016). The authors propose 
this method in response to the overfitting behaviour of MLPs. A labelled 
credit card dataset from a commercial bank is used and adapted by the 
authors, who propose a method of feature transformations to capture 
temporal representations in the data. This involves partitioning features 
of the data into several groups having different features over different 
time windows, by which two features of the same type by different time 
windows have strong relationships and, as such, will be close in position 
within a feature matrix (Fu, Cheng, Tu, & Zhang, 2016). New features 
were derived from the raw data, such as the average transaction amount, 
differences between a current amount and the average amount, as well 
as other features generated for the fixed time window. A novel feature is 
proposed by the authors to describe the relationship between a user’s 
transaction amount and the total transaction amount over a period, 
known as trading entropy, which was implemented into the model (Fu, 
Cheng, Tu, & Zhang, 2016). 

The original one-dimensional feature vectors were reshaped into a 
feature matrix in which the rows represent different features, and the 

Table 8 
Keys words of five topics extracted by LDA in (Wang & Xu, 2018).  

Topic Key words 

1 Scene, driver, third-party, liability 
2 Report, treatment, compensation 
3 Policeman, right, collision 
4 Drive, right, collision 
5 Front, back, glass, no-injury, impaired  

Fig. 4. Schematic representation of the layers of a CNN and the associ-
ated functions. 
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columns represent different time windows. A heatmap was generated to 
illustrate the correlations with some examples of fraudulent and legiti-
mate transactions. Discussion of the experimentation results was limited 
but showed that the CNN model with trading entropy achieved an F- 
score of 0.33, which was considered superior compared to other tech-
niques such as MLPs, SVMs and RFs (Fu, Cheng, Tu, & Zhang, 2016). 

Further studies to evaluate the performance of CNNs for predicting 
fraudulent transactions were published by Heryadi and Warnars, 
comparing their performance to LSTMs and a hybrid CNN-LSTM model 
(Heryadi & Warnars, 2017). The hybrid model attempts to combine the 
short-term and long-term ability of the CNN and LSTM models, respec-
tively, in capturing temporal relations. The input data is first processed 
with a CNN, and then the output is fed to the LSTM to be classified. Card 
transaction data from a bank was treated with undersampling due to the 
imbalanced nature, and custom features were constructed to capture 
short and long-term relationships of spending patterns. 

The constructed features consisted of vectors of 50 elements, each 
representing historical transactions of a cardholder over a month, such 
as the daily transaction amount, average transaction amount over 2 
consecutive days and the minimum and maximum amount over the 
entire month (Heryadi & Warnars, 2017). Principal components of the 
feature sets were determined to reduce the dimensions using PCA, with 
experimental trials comparing the performance using 20, 30 and 40 
principal components. The authors note that the AUC was the most 
suitable metric for identifying the best performing model, which was 
experimentally determined to be the CNN model in all trials where the 
number of principal components is varied (Heryadi & Warnars, 2017). 
The highest AUC of 77% was achieved with the CNN with 30 principal 
components, and the authors note that the CNN had the smallest accu-
racy score of all the models. Inferences can be made that the CNN model 
compromises minimizing the number of false positives to catch more 
fraudulent cases. The authors interpret the results of the CNN’s superi-
ority to be due to its strength in capturing short-term trends, corre-
sponding to the short-term nature in which fraudsters commit 
fraudulent transactions through credit cards (Heryadi & Warnars, 
2017). 

Studies conducted by Zhang et al. on employing CNNs to detect 
fraudulent transactions produced results that support previous findings 
of the efficacy of this technique in this application domain (Zhang, Zhou, 
Zhang, Wang, & Wang, 2018). The authors note, however, that their 
proposed model can achieve better performance than existing CNN 

models by only using the raw features from transaction data for training. 
Transaction data provided by a commercial bank consisted of 5 million 
transactions over 6 months, with 62 dimensions and positive samples 
exceeded the fraudulent ones by approximately 33 times. The sequential 
continuity of the data was ensured by using one-month batches of data 
for experimentation. Feature engineering methods and statistical anal-
ysis of raw data helped determine the significant characteristics for the 
fraud detection model from the data set, which resulted in the reduction 
to an 8-dimensional input for direct input to the model. The authors 
implement a feature sequencing layer prior to the input layer to arrange 
the features into a one-dimensional vector feature, processed by a one- 
dimensional convolution kernel feature vector in the convolutional 
layer. In Fig. 5, a 1 × 2 convolution kernel is depicted based on (Zhang 
et al., 2018), showing the transformation process, which generates de-
rivative features from two adjacent features. 

The CNN model proposed in this literature was compared against an 
MLP trained with backpropagation, as well as the CNN model by Fu et al. 
in (Fu, Cheng, Tu, & Zhang, 2016), which uses generated features as 
opposed to raw data as input to the model. The models were trained and 
evaluated with the same data sets, except the proposed CNN model was 
cross-validated over 10 different feature sequencings for the most 
optimal effect. Results showed that the proposed CNN model had the 
best performance with a precision of 91%, recall of 94%. This was an 
increase of 26% and 2%, respectively, compared with the implementa-
tion of the CNN model proposed by Fu et al. (Fu, Cheng, Tu, & Zhang, 
2016; Zhang et al., 2018). In terms of computational efficiency, the MLP 
was significantly faster than the two CNN models. A single feature 
arrangement had a training time of 65 s, and the entire model took 752 s 
to train with all the feature arrangements. The traditional CNN took 352 
s to complete the training without the feature derivative work; however, 
the authors note that considering the time for feature processing would 
result in the traditional model being considered slower in performance 
(Zhang et al., 2018). Finally, the effect of the feature arrangements on 
the classification performance is highlighted, as it was shown was the 
model produced the best results with the 8th sequencing determined, in 
which the authors note computational capability is the limiting factor 
for decreasing the time for training (Zhang et al., 2018). The authors 
conclude by suggesting the exploration of LSTM networks to capture 
sequential characteristics more efficiently, as well as further exploration 
of the influence of characteristic combinations on the model by varying 
the types of convolution kernel used.  

iv. Long Short-Term Memory Networks 

Table 9 
Summary of published literature on CNN and LSTM-based fraud detection.  

Year Reference Type of 
fraud 

Method Comments 

2016 Fu et al. (Fu, 
Cheng, Tu, & 
Zhang, 2016) 

Credit 
Card 

CNN CNN achieved F-score of 0.33 
and outperformed MLPs. 

2017 Heryadi and 
Warnars (Heryadi 
& Warnars, 2017) 

Credit 
Card 

CNN- 
LSTM 

CNN’s short-term and 
LSTM’s long-term abilities 
combined to capture 
temporal relations. Best AUC 
achieved of 77%. 

2018 Zhang et al. ( 
Zhang et al., 
2018) 

Credit 
Card 

CNN CNN achieved recall of 94% 
and precision of 91%, 
outperforming MLP, but was 
considerably slower in 
training. 

2009 Wiese and Omlin ( 
Wiese & Omlin, 
2009) 

Credit 
Card 

LSTM LSTM outperformed SVMs, as 
well as the MLP proposed by 
Maes et al. in (Maes & Tuyls, 
2002). 

2018 Jurgovsky et al. ( 
Jurgovsky et al., 
2018) 

Credit 
Card 

LSTM LSTM with feature 
aggregation strategy 
performed similarly to RF but 
detected different fraud 
behaviours. Combination of 
models suggested.  

Fig. 5. The convolution process of a 1 × 2 convolution kernel between 
two feature. 
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Long Short-Term Memory networks (LSTM) are an extension of 
recurrent neural networks (RNN), a form of deep neural network pri-
marily used for time series data proposed by Hochreiter and Schmid-
huber in 1997 (Hochreiter & Schmidhuber, 1997). Each neuron in an 
LSTM is a cell with ‘memory’ that can store information, maintaining its 
own state, in contrast to RNNs that merely take the current input from 
their previous hidden state to output a new hidden state. The improved 
memory capacity of LSTMs is thanks to the introduction of input and 
output “gates” into the cell, which were shortly followed by the intro-
duction of the forget gate by Gers et al. (Gers, Schmidhuber, & Cummins, 
2000). For a thorough review of LSTMs and the different variants, we 
refer the reader to a recent survey paper by Yu et al. (Yu, Si, Hu, & 
Zhang, 2019). 

LSTMs currently constitute the state-of-the-art in many real-world 
applications such as text, writing and speech recognition, as well as 
natural language processing. They are also well-known for addressing 
the vanishing gradient problem that is generally associated with RNNs 
(Hochreiter & Schmidhuber, 1997). Only very recently have LSTMs been 
applied to detect fraud, of the early studies implementing already dis-
cussed were by Heryadi and Warnars (Heryadi & Warnars, 2017). They 
have been recognized by other authors, such as Gómez et al. (Gómez 
et al., 2018), and have even been suggested to show promise in detecting 
fraudulent credit card transactions or insurance claims. Despite their 
promise, their implementation in research is rare, and there is an 
apparent lack of available literature studying their performance to 
detect financial fraud. For a sumary of the relevant literature on LSTM- 
based methods see Table 9. 

Wiese and Omlin (Wiese & Omlin, 2009) are among the first to 
explore developing a credit card fraud detection model with LSTMs. The 
authors cite that current fraud detection measures in place are plagued 
by misclassifications and that their usefulness is hampered by high false- 
positive rates (Wiese & Omlin, 2009). The literature proposes that by 
using the LSTM to analyze sequences of transactions as a whole instead 
of as individuals, the system will be able to capture more temporal re-
lationships and behaviours and ultimately become more robust to minor 
fluctuations or shifts in legitimate spending behaviour (Wiese & Omlin, 
2009). In the studies, the standard gates such as the input, output, and 
forget gates are used in the LSTM’s architecture. Standard preprocessing 
of the data was conducted, which involved encoding the symbolic fea-
tures, such as the transaction data into numerical values and standard 
manual feature selection. Furthermore, a statistical value known as the 
transaction velocity was calculated and used as an additional input 
feature. The transaction velocity, in a fraud context, is calculated by the 
number of transactions the took place in an account during a pre- 
specified timeframe (Wiese & Omlin, 2009). Different velocities can 
be calculated by grouping certain merchants into one velocity 
calculation. 

In their studies, Wiese and Omlin compared the performance of the 
proposed LSTM credit card fraud detection model against another that 
employed SVMs (Wiese & Omlin, 2009). A dataset of credit card trans-
actions consisting of 30,876 transactions was used, with the fraudulent 
class accounting for less than 0.1% of the total cases. The dataset was 
reordered based on the transaction date and time. Half of the dataset was 
set aside for training, the other half for testing. The architecture decided 
upon for the LSTM included was determined through empirical analysis 
and consisted of two memory blocks with two memory cells each, 
densely connected to the input and output neurons (Wiese & Omlin, 
2009). A total of 30 trials were conducted with 100 training epochs, 
which was also empirically chosen since it resulted in the best gener-
alization performance. During the training of the model, when a 
misclassification error occurred, the training on the current transaction 
sequence was restarted, and this process was repeated until all the 
transactions of a sequence were correctly classified (Wiese & Omlin, 
2009). Then, a new sequence is randomly selected from the training set 
for the next iterations, and at the end of the training cycle, the pre-
dictions of the model for both the training and testing set were recorded 

to draw up ROC curves for an AUC comparison. 
From the 30 trials conducted, the average AUC of the proposed 

model on the training and testing set was 97.57% and 98.22%, respec-
tively, demonstrating remarkably impressive separation between the 
classes (Wiese & Omlin, 2009). As expected by the authors, the proposed 
model outperformed the SVM, which was considered a remarkable feat 
as the SVM also performed exceptionally well. The SVM achieved an 
AUC of 89.32% on the testing set. However, the literature suggests that it 
is possible that the kernel and hyperparameters determined were not the 
most optimal and required more thorough tuning (Wiese & Omlin, 
2009). Furthermore, the training speed of the LSTM was slower than the 
SVM, but once trained, it had a much higher classification rate of 2,690 
transactions per second, compared to 213 transactions per second by the 
SVM. Wiese and Omlin (Wiese & Omlin, 2009) compared the LSTM 
fraud detection model against the MLP technique proposed by Maes 
et al. (Maes & Tuyls, 2002) and found that their model was superior in 
performance. The MLP proposed by Maes et al. reported a recall of 68% 
at a false alarm rate of 10% and a recall of 74% at a false alarm rate of 
15%, while the LSTM by Wiese and Omlin had average recalls of 98.9% 
and 99.45% at 10% and 15% false alarm rates, respectively (Maes & 
Tuyls, 2002; Wiese & Omlin, 2009). 

A detailed discussion is provided on the limitations of the model, as 
well as future suggestions for avenues of research to explore for 
improved fraud detection performance. First, it is noted that the LSTM 
was applied to a set of dissimilar time series of variable length, which is 
considered a gross overcomplication, and as such future efforts can be 
allocated towards using LSTMs to model singular time series (Wiese & 
Omlin, 2009). Also, the topology of the network used in the studies was 
quite simple, with only two blocks of two memory cells each, which was 
attributed to Occam’s razor, stated simply as “the simplest explanation is 
usually the right one.” However, the authors mention that this leads to 
fewer weights, opening up possibilities that may allow for storing these 
weights on chips of next-generation payment cards (Wiese & Omlin, 
2009). The possible benefit of such an implementation is that point of 
sale terminals would be able to conduct initial fraud detection using the 
weights stored on the chip, forwarding only transactions with high de-
grees of fraud to the host system easing some of their burden (Wiese & 
Omlin, 2009). Essentially, this enables the possibility for true online 
fraud detection systems, where the detection of fraud may even equate 
to its prevention. Finally, Wiese and Omlin also suggest investigating 
unsupervised methods, citing that in many cases where fraud detection 
systems are implemented in banks or countries relatively new to these 
techniques, there is usually a lack of records or data identifying the 
fraudulent cases (Wiese & Omlin, 2009). This eliminates the possibility 
of using supervised learning without resorting to human experts for 
manual labelling, which is both very costly and time inefficient. 

Jurgovsky et al. (Jurgovsky et al., 2018) proposed an LSTM model for 
detecting credit card fraud, but instead of modelling transaction se-
quences like in previous research, the authors make use of a novel 
feature aggregation methodology explicitly proposed for credit card 
detection models by Bahnsen et al. in (Bahnsen, Aouada, Stojanovic, & 
Ottersten, 2016). The feature aggregation strategy involves grouping 
transactions made during the last specified period, initially by card or 
account number, followed by the type of transaction, the merchant 
group, country or others, and then calculating the number of trans-
actions or the total amount spent in all those transactions (Bahnsen 
et al., 2016). 

Bahnsen et al. note that the aggregated features still have information 
missing that they do not capture, and as such, take the methodology a 
step further by deriving time features (Bahnsen et al., 2016). This in-
volves analyzing the time of the transaction, the reasoning being that 
customers are expected to make transactions at similar hours. An issue 
arises when analyzing time features, specifically when looking at the 
mean of certain transactions times, which is that it is easy to make the 
mistake of using the arithmetic mean. The arithmetic mean does not take 
into account the periodic behaviour of time features. For example, the 
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arithmetic mean of four transaction times made at 2:00, 3:00, 22:00 and 
23:00 is 12:30, which is counterintuitive as there were no transactions 
made close to or at that time (Bahnsen et al., 2016). To overcome this 
limitation, the authors propose modelling the time of transactions as 
periodic variables using the von Mises distribution, a method of statis-
tical analysis for circular data (Fisher, 1993). This allows for the 
determination of a period mean, which is a more realistic representation 
of the transaction times than the arithmetic mean. 

The studies by Jurgovsky et al. used the previously described feature 
aggregation strategy to train an LSTM model and compare its perfor-
mance against an RF model in detecting credit card fraud (Jurgovsky 
et al., 2018). Two different datasets of credit card transactions were 
used, one consisting of online e-commerce transactions and the other of 
face-to-face or point of sale (POS) transactions. The size of both datasets 
was considerable, both consisting of millions of samples. More specif-
ically, the e-commerce dataset has 2.9 million instances in the training 
set, 600 thousand instances in the validation set and 3.3 million samples 
in the test set. The face-to-face dataset has 4.3 million training set 
samples, 700 thousand samples in the validation set and 4.7 million 
samples in the test set. In the e-commerce dataset, the number of 
fraudulent samples comprised only 0.08% of the entire dataset, and 
similarly, in the face-to-face dataset, they were only 0.065%. Two 
transaction sequences were constructed for comparison, either of length 
5 (short) or length 10 (long). The performance of both the RF and LSTM 
models were observed and recorded with both lengths of transaction 
sequences using the feature aggregation methodology, as well as with 
only the raw features. 

Several metrics were employed in the literature to compare the 
performance of both classifiers, as well as to observe the differences in 
types of fraud detected in every experiment. The choice of these metrics 
is guided by two criteria: robustness against the imbalanced class and 
attention to business-specific details and interests (Jurgovsky et al., 
2018). The first was the AUPRC, noted for its benefits and robustness in 
imbalanced settings in fraud detection. More specifically, for being 
sensitive to the number of false positives and capturing the effect of the 
large numbers of genuine samples on the performance of the classifiers 
(Jurgovsky et al., 2018). (Jurgovsky et al., 2018). Furthermore, the 
Jaccard Index was used to investigate the qualitative differences of the 
two approaches, highlighting the similarity of classifiers based on the 
type of fraud detected in the form of a confusion matrix. 

Based on the results from the experimentation, there were no clear 
distinctions in performance between both the RF and proposed LSTM 
models as both performed comparably to each other. However, there 
was a clear improvement for both classifiers in performance when the 
aggregated features proposed in the studies were used. In the face-to- 
face transaction dataset, the LSTM improved from 20% to 24.6%, and 
the RF from 13.8% to 24.1% using the case of the short sequences 
(Jurgovsky et al., 2018). Using longer sequences in training resulted in 
slightly weaker performance with the LSTM model, with an AUPRC of 
23.6% with the aggregated features, outperformed by the RF at 24.2%. 
The e-commerce dataset showed a similar trend, but with better overall 
performance than the face-to-face dataset, where the LSTM and RF with 
long sequences had AUPRCs of 40.2% and 40.4%, respectively 
(Jurgovsky et al., 2018). These AUPRCs are a significant increase than 
the case without the aggregated features, further demonstrating the 
viability of the methodology. The most interesting results were observed 
using the Jaccard Index, which presented a heatmap comparing the 
degree of similarity of the types of fraud detected by each type of model. 
In terms of the types of frauds detected by each of the two models when 
compared with themselves, there was a consistency in the similarity of 
the types of fraud detected. However, this property was slightly more 
substantial in the RF models, as the LSTMs show slightly more variation. 
When the LSTM and RF models were then compared with each other, it 
was apparent that the LSTM captured a more comprehensive range of 
different types of frauds. Further, it was shown that the two models 
detect very different types of fraudulent card behaviour (Bahnsen et al., 

2016). 
It is postulated by Jurgovsky et al. that the combination of two 

models working together in a fraud detection system may lead to even 
better results due to the different types of frauds detected by both 
models, as well as the overall more exhaustive range of types of fraud-
ulent transactions that would be detected (Jurgovsky et al., 2018). 
Several observations are also detailed in the study in regards to the ar-
chitecture of the LSTM, which although specifics of are not provided in 
the study, the authors mention the model is prone to overfitting when 
there are only a few nodes (Jurgovsky et al., 2018). This was combatted 
by incrementally increasing the number of nodes, which produces the 
optimal results when combined with an ADAM optimizer instead of 
SGD.  

v. Naïve Bayes 

The naïve Bayes (NB) classifier is a popular supervised model and is 
often considered as the simplest form of Bayesian network classifier 
(Friedman, Geiger, & Goldzsmidt, 1997). The model learns the condi-
tional probabilities of each attribute in the training set, given the class 
label. Classification is then done by applying Bayes’ theorem to compute 
the probability of the label given the particular instance’s features or 
attributes (Friedman et al., 1997). An assumption is necessary for the 
feasibility of this computation: that all the features in the dataset are 
independent of the value of the class labels. Considering input data x =

(x1,⋯, xn) ∈ Rn and target labels y, the structural assumption simplifies 
the model to: 

p(x|y) =
∏n

m=1
p(xm|y) (1) 

The assumption of the independence of the predictors given the class 
is, for many domains, arguably somewhat restrictive. Nonetheless, the 
NB classifier has often been reported to demonstrate surprisingly good 
performance based on an extensive history of empirical studies (Viaene 
et al., 2002; Viaene, Derrig, & Dedene, 2004). This was true even in 
cases where the underlying assumption of independence was considered 
unrealistic (Friedman et al., 1997). 

Studies by Viaene et al. (Viaene et al., 2004) proposed NB classifiers 
to predict fraudulent automobile insurance claims, similar to their pre-
vious research in (Viaene et al., 2002). The authors propose boosting the 
model using the AdaBoost algorithm proposed by Freund and Schapire 
(Freund & Schapire, 1996). The basic idea of boosting is the construction 
of classifiers in sequence, trained on various versions of the original 
training set. The various training sets are formed by resampling or 
reweighting, where any data instances poorly classified by one of the 
classifiers in the sequence have a more significant weighting in the next 
model. Upon termination of training after a fixed number of iterations, 
the classifiers are then combined using a majority voting scheme. In 
AdaBoost, each classifier’s vote is adaptively weighted according to its 
quality of classification (Ridgeway, Madigan, & Richardson, 1998). The 
concept of perturbing the data in stages allows the NB model to focus 
incrementally on the regions of data more difficult to learn (Viaene 
et al., 2004). The proposed model is extended further with a weight of 
evidence voting formulation for the case of NB with AdaBoost, as pro-
posed by Ridgeway et al. (Ridgeway, Madigan, & Richardson, 1998). 
The weights of evidence voting facilitates more interpretable results and 
explanations that are otherwise eliminated by AdaBoost whilst retaining 
the predictive performance of the NB classifier (Ridgeway, Madigan, & 
Richardson, 1998). 

In the literature, the Massachusetts automobile claim data set was 
used, which consisted of 1,399 samples of data. Two-thirds of the dataset 
was used for training the proposed naïve Bayes AdaBoosted weights of 
error (ABWOE) classifier, which consisted of a sequence of 25 base 
classifiers. The model was compared against a simple NB classifier, an 
AdaBoosted classifier (AB), as well as a model using majority voting 
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instead of the proposed method. The evaluation of the models was based 
on the criteria of accuracy, AUC, and a logarithmic score (L) such that 
{L ∈ [0,∞)}, zero being optimal (Viaene et al., 2004). The proposed 
ABWOE classifier outperformed the rest of the models for all perfor-
mance measures, with 84.43% accuracy, 89.19% AUC and the lowest L 
of 0.3697. The proposed voting framework is confirmed to be superior, 
as the model with majority voting had an AUC of 50%, indicating no 
discrimination capacity, and output predictions are random guesses. The 
plain NB had an accuracy of 83.03% and AUC of 88.56%, slightly shy of 
the ABWOE’s performance. The AB model’s accuracy and AUC, 84.41% 
and 89.08%, respectively. These results are comparable to that of the 
ABWOE, but the proposed model was ultimately considered superior 
with a L less than half that of the 0.8789 achieved by the AB. In sum, the 
authors recognize the ABWOE scoring framework’s accessibility, inter-
pretability and general applicability to be prime advantages of the 
model, allowing for flexible human expert interaction and tuning 
(Viaene et al., 2004). 

A similar study conducted by Phua et al. studied the effects of using a 
hybrid stacking-bagging training approach using an NB, C4.5 DT and 
MLP (Phua et al., 2004). The purpose of the research is to address the 
issues of skewed or imbalanced associated with the poor performance of 
classifiers. Bagging makes use of base classifiers such as NB, fitting them 
with randomly sampled subsets of the training data. Each base classifier 
then votes on the class of a sample, and the majority vote is chosen as the 
final classification. The difference between bagging and boosting is that 
in bagging, the models learn independently from each other in parallel, 
compared to in sequence with one another in boosting. Stacking takes 
this one step further by using the output of the base models in bagging to 
train the meta-model to select the best base classifiers and then combine 
these predictions with bagging (Phua et al., 2004). 

In the literature, Phua et al. used a labelled automobile insurance 
claim dataset consisting of 11,338 samples, a fraud rate of just 6%, 
described by 25 categorical and six numerical features (Phua et al., 
2004). Several other features are derived in order to help increase the 
predictive accuracy of the models. The low fraud rate of the dataset 
brings about the problems of imbalanced datasets, especially in high- 
dimensional feature spaces such as the one used in this study. The au-
thors partition the genuine, non-fraud samples in the dataset into 11 sets 
of 923 instances. Then, these sets of genuine samples are merged with 
fraudulent samples, making 11 partitions of fraud to genuine claim ra-
tios of 40:60, 50:50 or 30:70. Minority oversampling with replacement 
is the sampling approach used by the authors to distribute the partitions. 
By creating these 11 partitions, the problems associated with an 
imbalanced dataset are eliminated, and the time complexity is reduced 
for the learning models (Phua et al., 2004). Interestingly, a financial cost 
model is developed by the authors to observe the actual performance of 
a model in terms of cost savings. The proposed cost model follows two 
assumptions: all fraud alerts must be investigated, and the average cost 
per claim must be higher than the average cost per investigation (Phua 
et al., 2004). The authors use statistical approximations from the year 
1996 for the average cost per claim at USD$2,640 and the average cost 
per investigation at USD$203 (Phua et al., 2004). The cost model is 
comprised of four components summarized in Table 10, which illus-
trates the higher cost associated with false alarms since they incur both 
investigation and claim costs. 

According to the authors, there are two extremes for the performance 
of the model. At one extreme, no fraud detection takes place, and all 
claims are regarded as genuine (no action). At the other extreme, the 
model achieves perfect performance and detects all fraudulent claims 
with no false alarms (optimal scenario). Based on these extremes, the 
cost model is described by Phua et al. as follows (Phua, Alahakoon, & 
Lee, Minority report in fraud detection: classification of skewed data, 
2004): 

Savings = Noaction − [UDF +FAL+G+DF] (2)  

%Saved =
Savings

Optimalscenario
*100% (3) 

Results of the experimentation with the proposed model were 
measured using the cost model developed and overall accuracy. When 
compared against other classification models using just a single classi-
fier, an ensemble of classifiers or just bagging, the proposed method was 
deemed superior as it resulted in the most significant cost savings of 
$167,000 with an accuracy of just 60% (Phua et al., 2004). These 
financial savings are a 29.7% reduction in cost compared to a perfect 
classifier. Other models, such as one using just a C4.5 DT trained on an 
under-sampled 40:60 fraud to genuine partition, generated cost savings 
of $165,000 and accuracy of 60%, which is 0.3% less than the proposed 
stacking-bagging method. Surprisingly, some MLP models resulted in 
very little savings, the worst one even causing a loss of $6,000, even 
though it had an accuracy of 92% (Phua et al., 2004). An inverse rela-
tionship was observed between the cost savings and the accuracy of a 
model, which was attributed to the costs associated with an increased 
number of false alarms at the cost of detecting more fraudulent cases. As 
such, the importance of utilizing more important measures is apparent 
in this scenario. 

The stacking-bagging model considered 33 classifiers trained on 
different partitions of the original dataset. From those classifiers, only 
the top 15 were bagged to produce the best predictions, of which nine 
were C4.5 models, four were MLPs and two NB classifiers. A limitation 
identified in this research is the simplicity of the cost, and the small size 
of the dataset, for which the authors suggest exploring SMOTE, as it has 
been shown to handle imbalance data issues better (Phua et al., 2004). 
The availability of more datasets would also allow for verification of 
these results.  

vi. Other Supervised Methods 

Mahmoudi and Duman proposed the Modified Fisher Discriminant 
Analysis (MFDA), an adaptation of Linear Discriminant Analysis (LDA), 
for a credit card fraud detection system (Mahmoudi & Duman, 2015). 
LDA is a supervised learning method that has been used for dimen-
sionality reduction and has even been applied to classify data by 
determining decision boundaries or surfaces between regions that are 
linear functions of input vectors. The MDFA adjusts the Fisher criterion 
in LDA models by applying a weighted average on both classes, defining 
the weights to be the total available credit limit that is usable on each 
card (Mahmoudi & Duman, 2015). This weighting biases the linear 
discriminant towards the cases that are more financially beneficial to 
detect accurately, as opposed to merely maximizing the correct number 
of instances classified. Thus, instead of maximizing the number of 
correctly classified instances, the MDFA will ensure that the critical and 
cost-effective instances are classified correctly as best as possible 
(Mahmoudi & Duman, 2015). 

The authors conducted experimentation with the proposed MDFA, 
comparing it with the performances of DT, MLP, NB and standard LDA 
models. A dataset provided by a Turkish bank was used in the studies, 
which consisted of 8,448 legitimate and 939 fraudulent transactions 
described by a total of 102 features. Feature selection was achieved 
using a DT model, using the selected features to train the rest of the 
models. The dataset was divided into three portions for cross-validation. 

Table 10 
Components of cost model for insurance fraud detection in (Phua et al., 2004).  

Type of claim Cost 

Detected fraud (DF) Number of cases detected * Average cost per investigation 
False Alarms (FAL) Number of false alarms * (Average cost per investigation +

Average cost per claim). 
Undetected fraud 

(UDF) 
Number of cases undetected * Average cost per claim 

Genuine (G) Number of genuine claims * Average cost per claim  
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The literature’s evaluation of the model’s results is provided in an 
economically-oriented focus, rather than observing the actual prediction 
accuracy or performance. Instead of observing popular classifier per-
formance measures such as the recall, precision or overall accuracy, the 
authors use a cost model to determine the percentage of cost savings 
achieved by each model (Mahmoudi & Duman, 2015). Furthermore, 
only the top 313 ranked fraudulent predictions of each model were 
considered in the paper’s discussion. 

It was shown that the proposed MDFA achieved the most significant 
overall savings increase of 90.8%, classifying 236 out of 313, or 75.3% 
of all samples correctly (Mahmoudi & Duman, 2015). MLPs showed the 
worst cost savings of all models, a still significant increase of 86.30%, 
classifying 73.5% of the fraudulent transactions correctly as fraudulent. 
The LDA detected 76.7% of the fraudulent cases correctly, more than the 
proposed MDFA. However, the LDA was inferior in terms of cost savings 
by almost 4% compared to the MDFA, with a savings increase of 87.15%. 
Overall, the authors find the results of the studies and proposed model to 
be favourable and direct future efforts towards investigating other types 
of linear discriminant functions such as the Linear Perceptron Discrim-
inant (LPD) to develop iterative linear discriminants (Mahmoudi & 
Duman, 2015). Furthermore, the consideration of misclassification costs 
of genuine samples could be variable instead of fixed, limiting the 
number of false alarms and dissatisfaction amongst consumers, which 
could result in variable churns costs (Mahmoudi & Duman, 2015). 

A detection system for fraudulent automobile insurance claims was 
proposed by Dhieb et al., who proposed extreme gradient boosting 
(XGBoost) with DTs (Dhieb, Ghazzai, Besbes, & Massoud, 2020). 
XGBoost is a system proposed by Chen and Guestrin (Chen & Guestrin, 
2016) specifically designed to optimize memory usage and exploit the 
computing power of modern hardware, resulting in increased execution 
speeds and performance (Dhieb et al., 2020). In the proposed method-
ology, boosting is used to build sequential sub-trees from an original DT, 
where each sub-tree reduces the error of the previous sub-tree. This 
results in an update of the residuals of the cost function employed and 
reducing the error. 

The XGBoost DT model proposed in the literature was evaluated 
against a standard DT, NB classifier and kNN. The dataset used 
comprised of more than 64,000 automobile insurance claims, and the 
authors do not mention the ratio of fraudulent to legitimate cases or 
whether the classes were balanced or not. Furthermore, other than a 
brief discussion of minor preprocessing steps to handle errors or missing 
values, no insight is provided into any feature selection or extraction 
techniques or steps. However, a confusion matrix was developed to 
display the correlations between each of the features in the dataset. 
Following training and testing, the results of the experiments showed 
that the proposed detection system had the highest score across all 
measures except training time (Dhieb et al., 2020). This included an 
accuracy of 99.25%, precision of 99.28%, recall of 99.2% and an F-score 
of 99.26%. The worst performance was displayed by the kNN algorithm, 
with an F-score of 0.255 (Dhieb et al., 2020). The DT model came was 
the second-best model, with an F-score of 89.2%; however, it exceeded 
the XGBoost in terms of computational efficiency with a training time of 
0.471 s, less than half of 9.95 s by the XGBoost (Dhieb et al., 2020). The 
NB classifier also performed poorly, with an F-score of 42.5%, and as 
such, the authors conclude the research in favour of their proposed 
model. 

5.2. Unsupervised Methods  

i. Isolation Forest (IF) 

A novel unsupervised approach to anomaly detection known as IF 
was proposed by Liu et al. in 2008 to explore the concept of explicitly 
isolating anomalies (Liu, Ting, & Zhou, 2008). The concept of isolation, 
which according to the authors, has not been studied in current litera-
ture, enables the method to exploit sub-sampling to create an algorithm 

with a low constant linear time complexity and a low memory 
requirement (Liu, Ting, & Zhou, 2008). IF is also capable of scaling up to 
handle massive data sets and high-dimensional problems with many 
irrelevant features. 

Isolating samples involves building ensembles of Isolation Trees 
(iTrees) to separate them from other samples (Liu, Ting, & Zhou, 2008). 
Partitions are generated by selecting a random feature and then arbi-
trarily determining a split value between that feature’s maximum and 
minimum values. This partitioning is done recursively, which can be 
represented by the iTree structure, and the number of partitions 
required to isolate a point is equivalent to the path length from the root 
node to a terminating node (Liu, Ting, & Zhou, 2008). The premise is 
that anomalies are easy to isolate and require fewer partitions. 
Conversely, normal observations are difficult to isolate and require more 
partitions. 

Two input parameters are required by the IF algorithm: the sub- 
sampling size ψ and the number of trees t. The sub-sampling size ψ 
controls the size of the training data, and the authors find empirically 
that 28 or 256 generally provides enough detail across a wide range of 
data. The literature shows that there is no need to increase ψ further as it 
could cause increases in processing time and memory size without no 
increase in detection performance (Liu, Ting, & Zhou, 2008). The 
number of trees controls the size of the ensemble, and the authors show 
in the literature that the path lengths usually converge well before t =
100 (Liu, Ting, & Zhou, 2008). 

Efforts to apply the IF algorithm to detect credit card fraud have only 
emerged in recent years. In 2018, the IF was proposed to detect fraud-
ulent transactions in credit cards by Ounacer et al. (Ounacer, Ait El Bour, 
Oubrahim, Ghoumari, & Azzouazi, 2018). The authors aim to address 
the issues of supervised learning and demonstrate high accuracy and 
detection performance in real-time. The training phase of the process 
involves building the IF model using iTrees with subsamples of the 
training set, and the testing phase then passes each sample through the 
model to calculate the number of splits required across all trees to isolate 
that observation and return an anomaly score between 0 and 1, where 1 
indicates to fraud, and the threshold is set at 0.5 to classify samples 
(Ounacer et al., 2018). The proposed method was compared with other 
unsupervised models such as OCSVM, LOF and k-means clustering using 
the European credit card data set containing 284,807 transactions with 
just 492 fraudulent transactions. For privacy reasons, all input features 
except for time and amount were transformed using PCA, and the fea-
tures used for the model consisted of the 28 principal components ob-
tained. Results showed that the IF had the best performance with the 
highest accuracy and AUC of 95.12% and 91.68%, respectively 
(Ounacer et al., 2018). Coming in second is the k-means clustering al-
gorithm with 90.12% and 51.91% for accuracy and AUC, respectively. 
The authors conclude by highlighting the capability of the IF algorithm 
in detecting fraudulent transactions and suggest exploring the imple-
mentation of the model for online, big-data processing architectures. 

According to Stripling et al., it has been reported among 69% of in-
dustry experts that there is a belief of an increase in workers’ compen-
sation fraud (Stripling, Baesens, Chizi, & vanden Broucke, 2018). 
Workers’ compensation insurance policies cover the costs the arise when 
employees sustain injuries or illnesses while on the job. The authors 
propose using a model that utilizes the IF algorithm to compute an 
anomaly score from features in the training set to create a new feature. 
The computed anomaly score for each sample is augmented into a new 
training set, and the features used to compute the anomaly score are 
omitted from this set. This newly formed training set is then used to train 
a classifier, with the goal of improving its performance. According to the 
literature, the selection of nominal attributes that should undergo the IF 
transformation is driven by expert human knowledge to obtain mean-
ingful scores (Stripling et al., 2018). 

In their work, Stripling et al. empirically evaluate the performance of 
their proposed technique on a real-world dataset of workers’ compen-
sation claims received from an anonymous European organization 
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(Stripling et al., 2018). The dataset has 9,572 labelled samples with 23 
features, only 3 of which are described due to confidentiality reasons: 
the type of injury, the policyholder’s industry sector and the registered 
duration of incapacity (Stripling et al., 2018). Some classifier models 
chosen for comparison were LR, DT, RF, linear kernel SVM and radial 
basis function kernel SVM. Each of the model’s AUC scores was 
compared with and without the proposed anomaly scores computed by 
the IF. The highest AUC was achieved by the linear SVM without the 
anomaly scores, at 87.72%, compared to 80.75% with the IF anomaly 
scores (Stripling et al., 2018). It was noticed that there was around a 
3–5% decrease in AUC of all the models with the IF anomaly scores. 
However, the authors note that this was not necessarily the only crite-
rion that should be considered. When the results of the model were 
presented to investigators from the company providing the dataset, it 
found higher appreciation among the investigators as it uncovered 
fraudulent claims not previously detected by human experts. The in-
vestigators confirmed that the model demonstrated high detection ac-
curacy and practicality, especially with cases that previously remain 
undetected (Stripling et al., 2018). 

The authors conclude by highlighting the benefits of the model, 
mainly since it works in an unsupervised fashion. This is especially 
useful in cases where labels may be difficult or expensive to obtain for 
each sample in a dataset. Future suggestions to improve the model 
included exploration of techniques to automate the feature selection 
process. The scalability of the model is also an avenue for further 
investigation and studies  

ii. Self-Organizing Maps (SOM) 

The SOM is a type of neural network employing unsupervised 
learning that configures the neurons of the network according to the 
input data’s topological structure (Kohonen, 1990). This process is 
known as self-organization, which iteratively tunes the weights of neu-
rons to approximate the input data, resulting in the clustering and 
profiling of the data set (Quah & Sriganesh, 2008; Kohonen, 1990). The 
neurons in a SOM are arranged in a matrix structure that maps inputs 
from a high-dimensional space to the two-dimensional array of neurons 
(Quah & Sriganesh, 2008). This mapping is designed to model similar 
input vectors as neurons that are closer together in the resulting matrix, 
providing a visualization of the input. 

A variety of distance measures can be used during the iterative 
training process to group the nodes, such as the Euclidean distance, 
Manhattan distance, Chebychev distance and more (Zaslavsky & Striz-
hak, 2006). After training, the data in the data set gets classified into 
legitimate or fraudulent sets by self-organization, and any new trans-
action thereafter also undergoes the same process before being passed 
into the SOM. These new transactions are classified as either legitimate 
or fraudulent based on whether they are within a specific threshold 
value (Quah & Sriganesh, 2008). Rather than having just binary classi-
fications for fraudulent and legitimate labels, SOM methods can also 
have more than one cluster representing each class. 

Employing SOM as a technique for detecting fraudulent credit card 
transactions was first proposed by Zaslavsky and Strizhak (Zaslavsky & 
Strizhak, 2006). The authors apply the SOM to create a model of the 
typical behaviour of cardholders, analyzing deviations to identify sus-
picious transactions. In the literature, the initial step is to create a 
cardholder profile, which is a model representing generalized patterns 
of transactions executed historically by the cardholder. This model is 
trained by the SOM based on the set of transactions and can identify 
typical transactions of a cardholder (Zaslavsky & Strizhak, 2006). The 
performance of the SOM model was examined on several cardholder 
records with various characteristics of behaviours to explore the con-
structed model’s dependence on the transaction similarity degree. The 
authors showed that the accuracy of the method increased with the in-
crease of the size of the data set, especially in the more imbalanced 
credit cards examined (Zaslavsky & Strizhak, 2006). 

Furthermore, two-dimensional maps were built to illustrate the 
clustering of cardholder behaviour, in which the clusters in this map are 
defined by three types: typical ATM transactions, the typical point of 
sale (POS) transactions and rare or anomalous transactions. Discussion 
on the quantitative performance of the method provided by the authors 
is limited; however, the methodology in the literature is recognized to be 
in the early stages of research. The noted advantages of the proposed 
method are that it is not dependent on statistical assumptions about the 
data distribution and deals well with noisy data. Furthermore, the model 
allows for modification of the model with the influx of new transactions, 
requiring no a priori information other than a set of transactions per-
formed by the cardholder (Zaslavsky & Strizhak, 2006). 

Quah and Sriganesh also proposed using SOMs as a technique to help 
in the detection of fraud by employing them to unearth hidden patterns 
between various features or attributes within the data (Quah & Sriga-
nesh, 2008). Furthermore, the authors utilize the SOM as a pre-classifier, 
a means of filtering out the number of transactions that need to be sent 
for review in a real-time detection system, reducing processing time, 
cost and complexity (Quah & Sriganesh, 2008). The proposed SOM 
model outputs clusters deciphered from input vectors that sketch out 
each cardholder’s profile, deriving spending and behavioural patterns. 
Transactions in a dataset are compared against the profile of the card-
holder and clustered based on their Euclidean distance from that cluster. 
Upon the grouping of samples into appropriate clusters, a parameter 
controlling a radius around the centroid is designated to set and control 
the threshold for labelling transactions as within that cluster or not 
(Quah & Sriganesh, 2008). For a particular cardholder, a dense may 
indicate that many of his transactions are of one particular type, and a 
sparse cluster could mean that very few transactions of another partic-
ular type (Quah & Sriganesh, 2008). As such, transactions in the dense 
clusters, within a determined threshold value, are filtered out, which can 
aid a system to more easily identify transactions requiring further review 
(Quah & Sriganesh, 2008). 

The model was implemented using a dataset from a bank in 
Singapore. However, according to the authors, the studies conducted are 
at an early stage of research, just like the SOM proposed by Zaslavsky 
and Strizhak in (Zaslavsky & Strizhak, 2006). Only the clustering ca-
pabilities of the method were demonstrated in the author’s work, using 
visual representations of the clusters formed as well as by inspecting the 
similarity of features in the same cluster. It was discussed that it is 
possible to further extend the proposed research by implementing a 
feedforward NN, using the output of the proposed SOM model as the 
training input (Quah & Sriganesh, 2008). We note that there is also a 
lack of quantifiable results or metrics in the literature regarding the 
model’s filtering accuracy. Regardless, the authors mention that when 
implemented into and trialled in a bank’s architecture, the algorithm 
executes very quickly, requiring less than a minute to execute (Quah & 
Sriganesh, 2008). Limitations of the proposed model, as identified by the 
authors, is its sensitivity to the choice of hyperparameters, such as the 
number of neurons, the similarity measure used, as well as the choice of 
cluster centers (Quah & Sriganesh, 2008). 

Extending upon the work of previous literature, Olszewski imple-
mented a SOM model into an actual fraud detection system on the basis 
of a threshold-type binary classification algorithm that was proposed 
(Olszewski, 2014). Initially, user accounts are represented by data 
matrices assembling a sequence of records. The user account’s features 
are then visualized with the SOM, and the centroid of the visualized 
features on the grid is computed. This results in a single 2-dimensional 
point that can visualize the entire account. The classification method 
utilized in the paper is presented graphically in Fig. 6 which displays the 
individual accounts on a SOM grid based on (Olszewski, 2014). 

The classification threshold is set according to the value of dissimi-
larity between the centroid of the entire SOM grid (as in Fig. 6) and the 
SOM neuron corresponding to the maximal value in the U-matrix cor-
responding to that SOM (Olszewski, 2014). The U-matrix is a graphical 
representation of a SOM, where each entry corresponds to a neuron in 
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the SOM grid. The value of each entry is the average dissimilarity be-
tween the neuron and the neighbouring neurons (Olszewski, 2014). A 
sequence of high values in a U-matrix, consequently, represent border-
lines that separate the clusters of data on the SOM grid (Olszewski, 
2014). 

Olszewski evaluated the proposed model on a credit card fraud 
dataset consisting of 10,000 accounts of selected credit card holders 
from Poland (Olszewski, 2014). Only three features were used: the 
amount of money spent in a transaction, the location of the transaction, 
and the time of the transaction. Among all of the accounts, only 100 
were fraudulent, representing 1% of the total dataset. The model’s 
detection performance was compared against a standard SOM-based 
clustering model, a Gaussian mixture (GM) based model, and a 
growing hierarchical SOM (GHSOM), which was proposed by Huang 
et al. in (Huang, Tsaih, & Yu, 2014). The GHSOM approach was devel-
oped to discover topological patterns of fraudulent financial reporting, 
where a classification rule was also presented by the authors. The dif-
ference in the GHSOM is that the focus is mainly on creating data 
clusters rather san utilizing SOM visualization (Olszewski, 2014; Huang 
et al., 2014). 

Results from the experimentation showed that the proposed SOM- 
based model with the detection threshold performed the best of all the 
models, achieving perfect classification with perfect scores of 100% 
across all measures of precision, recall, accuracy and F-score (Olszewski, 
2014). The closest results are achieved by the SOM clustering-based 
method, with an F-score of 86.12%, recall of 90%, accuracy of 85.5% 
and precision of 82.57%. The GHSOM-based method and the GMM- 
based method had F-scores of 80% and 69.77%, respectively. As such, 
the authors concluded that based on the experimental results achieved, 
the proposed detection threshold proposed with the SOM model dem-
onstrates clear superiority over the three other models. The model has a 
perfect fraud detection rate, with zero false alarms. The authors suggest 
exploring other detection methods to observe the flexibility of the model 
and adapt it to other applications (Olszewski, 2014). We highlight the 
significance of these results, as, beyond our knowledge, a perfect 
detection rate in a credit card fraud setting has not been observed in any 
other literature we have surveyed.  

iii. Autoencoders 

An autoencoder (AE) is a type of unsupervised deep learning network 
symmetric in structure with fewer nodes in the middle layers. It has a 
section that encodes inputs into a lower-dimensional representation and 
another section that decodes or reconstructs that input again (Boukerche 
et al., 2020). The goal of training an AE is to learn a reduced encoding of 
data efficiently and then reconstruct it. As illustrated in Fig. 7, the input 
layer passes the input data to the hidden layer, where the lower- 
dimensional encoding is learned. Then, the encoding is passed from 
the hidden layer to the output layer, where it is decoded and recon-
structed as much as possible. The number of hidden layers in an AE is 
arbitrary, with the condition that for each part of the network, e.g. the 
encoder, each subsequent hidden layer must have fewer neurons than 
the previous layer. This architecture imposes a bottleneck in the 
network, restricting the amount of information that can traverse through 
and in turn forcing a compressed knowledge of the original input 
(Kucharski, Kłeczek, Jaworek-Korjakowska, Dyduch, & Gorgon, 2020) 

The premise of detecting anomalies with AEs is that anomalies are 
more challenging to reconstruct by a trained AE than normal instances. 
As such, a reconstruction error can be determined for each sample of a 
data set using an AE, which can subsequently be used as an anomaly 
score (Boukerche et al., 2020; Chalapathy & Chawla, 2019). Since 
anomalies are difficult to reconstruct; they will have larger reconstruc-
tion errors that can be used to identify and detect them. 

There have been several types of regularized AEs introduced in 
recent literature capable of learning richer and more expressive repre-
sentations of input features. An example of such is sparse autoencoders 
(SAE), which encourage sparsity in a layer’s neurons during training by 
keeping the top K-most active units (Makhzani & Frey, 2014). Denoising 
autoencoders (DAE) are trained to reconstruct a “repaired” input from a 
corrupted version of it, which is done by first corrupting the initial input 
with a stochastic mapping (Vincent, Larochelle, Lajoie, Bengio, & 
Manzagol, 2010). Contractive autoencoders (CAE) go even further by 
learning feature representations robust to small variations of instances 
around their neighbours by adding the Frobenius norm of the Jacobian 
matrix of the encoder’s activations as a penalty term (Rifai, Vincent, 
Muller, Glorot, & Bengio, 2011). Variational autoencoders (VAE) pre-
vent overfitting by introducing regularization into the representation 
space by encoding data samples using a prior distribution over the latent 
space (Pang et al., 2020; Doersch, 2016). Also, VAEs make use of a 
reconstruction probability rather than a reconstruction error, which is 

Fig. 6. Graphical illustration of the threshold-type binary classification method 
for a SOM. 

Fig. 7. Schematic of an autoencoder network’s basic, symmetric architecture.  
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the probability that a data point can be generated from the latent vari-
able drawn from the approximate posterior distribution (An & Cho, 
2015). We refer the reader to Table 11 for a summary on autoencoder- 
based fraud detection approaches. 

Kazemi and Zarrabi proposed using AEs in a system to detect and 
prevent fraudulent credit card transactions before they are processed 
(Kazemi & Zarrabi, 2017). The authors suggest training an AE to extract 
the most relevant features and then add a softmax layer to classify the 
network’s output. The effect of the layer size is investigated in the 
literature by comparing the results of two AEs with different configu-
rations. The first AE has 20 neurons in the input layer, then 15, 10 and 5 
neurons in the next hidden layers of the first symmetrical half of the 
network. The second AE has 20 neurons in the input layer and 30, 50, 
and 100 neurons in the subsequent layers. The two AE models were 
compared with a SOM on a German credit card data set with 1,000 
samples. The literature, however, makes no mention of the distance 
measure used for the reconstruction error, and the literature’s qualita-
tive results are limited but showed that the AE with the more extensive 
architecture had the best predictive performance with an accuracy of 
84.1%. Nevertheless, the SOM outperformed the AE with smaller hidden 
layers by 0.8%, with an accuracy of 82.4%. (Kazemi & Zarrabi, 2017). 

Pumsirirat and Yan conducted a more comprehensive study pro-
posing AEs to detect fraud in the same data set as the previously 
mentioned study and two others (Pumsirirat & Yan, 2018). An Austra-
lian data set was also used, with 690 samples, and the familiar European 
credit card data set with 284,807 samples. Unlike the previous litera-
ture, the data sets in this study were preprocessed and transformed using 
PCA. The AE was designed with 21 input neurons and 16, 8 and 4 
neurons in each layer of the network’s encoder part with hyperbolic 
tangent activation functions, and the mean squared error (MSE) was 
used as a measure of reconstruction error (Pumsirirat & Yan, 2018). The 
restricted Boltzmann machine (RBM) is a shallow network that can learn 
the probability distributions of its inputs, which was also implemented 
for comparison. Results showed that both methods showed poor per-
formance on the German data set, with the AE having an AUC of 43.76%, 
slightly lower than the RBM with 45.62%. The performance did not 
improve much with the Australian data set; however, the AE performed 
better here, with an AUC of 54.83% compared to 52.38% for the RBM. A 
significant jump in the AUC of both models was demonstrated on the 
European data set, which is the largest of the three data sets. The AE 
proved to be superior at 96.03%, compared to 95.05%. Thus, for large 
data sets, the authors conclude that both the AE and RBM model 
demonstrated the ability to excel in the task of detecting fraudulent 
credit card transactions in large data sets (Pumsirirat & Yan, 2018). 

Sweers et al. expanded on previous literature by proposing a VAE 
model to detect fraudulent transactions on the European credit card data 
set and compared their performance with regular AEs (Sweers, Heskes, 
& Krijthe, 2018). Similarly, the data set was transformed using PCA to 
reduce the dimensionality and veil private information, citing confi-
dentiality concerns. The authors implemented four AE and four VAE 
architectures of varying structural complexity. The first two models of 
the AE and the VAE have one hidden layer containing and either 2 or 10 
neurons in that layer. The second two models of each type of AE have 
several hidden layers ‘stacked’ with varying numbers of neurons in each 
layer and are thus referred to as the stacked AE and the stacked VAE 
models. After encoding the input with the probabilistic VAE encoder, 
which results in a posterior distribution, the reconstruction probability 
is calculated. Samples are then drawn from a normal distribution, which 
is reparametrized with the posterior distribution’s mean and standard 
deviation. The samples are then decoded by the probabilistic VAE, 
resulting in a prior distribution whose mean and standard deviation was 
then used to calculate the reconstruction probability (Sweers, Heskes, & 
Krijthe, 2018). It was shown that the stacked AE model with larger 
hidden layers had the best performance in terms of a recall of 93.8%, 
compared to 91.3% by the stacked VAE (Sweers, Heskes, & Krijthe, 
2018). The precision of both models was identical at 0.009, which seems 
alarmingly low and suggests that the model produces many false posi-
tives and is not addressed or discussed by the authors. However, the 
stacked VAE was shown to be superior to both the simple AE and simple 
VAE architectures. It was stated in the literature that both models 
exhibited relatively similar high performance in detecting fraudulent 
transactions in credit card data; however, we comment that more in- 
depth discussion on the precision of the models is still necessary until 
such conclusions can be made. 

More recent efforts by Misra et al. (Misra, Thakur, Ghosh, & Saha, 
2020) implemented the method proposed by Pumsirirat and Yan 
(Pumsirirat & Yan, 2018) using the same methodology, but with a slight 
variation to the approach. The authors first train the AE with the feature 
set transformed with PCA and then only use the encoding part of the 
network to extract representative features of the data (Misra et al., 
2020). Next, a classifier is trained on the encoded features in a super-
vised manner with the labels of the transactions. Upon testing, the test 
set is encoded using the AE and then passed to the classifier for classi-
fication. The authors experimented with three different models, such as 
MLPs, kNN and LR, and found the MLP achieved the best performance. 
That model was subsequently compared against the model in (Pumsir-
irat & Yan, 2018) and demonstrated to be more effective overall in 

Table 11 
Summary of published literature on autoencoder-based fraud detection.  

Year Reference Type of 
fraud 

Method Comments 

2017 Kazemi and 
Zarrabi (Kazemi 
& Zarrabi, 2017) 

Credit card AE AE accuracy of 81.6% 
was outperformed by 
SOM accuracy of 82.4% 

2018 Pumsirirat and 
Yan (Pumsirirat 
& Yan, 2018) 

Credit card AE AE was superior to RBM, 
but performed poorly 
with small dataset size 

2018 Sweers et al. ( 
Sweers, Heskes, 
& Krijthe, 2018) 

Credit card VAE AE with deeper 
architecture performed 
the best in terms of recall 
of 93.8% compared to 
VAE, both models had 
identical precision 
scores. 

2018 Renström and 
Holmsten ( 
Renström & 
Holmsten, 2018) 

Credit card Stacked 
AEs 

Stacked AE and VAE 
models outperformed 
single AE model with a 
recall of 99% but had 
slightly lower precisions. 

2019 Jiang et al. ( 
Jiang, Zhang, & 
Zou, 2019) 

Credit card DAE- 
MLPa 

DAE used to remove 
noise from input and use 
output to train MLP 
classifier. Outperformed 
MLP classifier trained on 
raw input. 

2020 Misra et al. (Misra 
et al., 2020) 

Credit card AE-MLPa AE using only the 
encoder for feature 
extraction, with the 
output used to train a 
classifier. AE-MLP 
classifier outperformed 
AE in (Pumsirirat & Yan, 
2018) 

2020 Tingfei et al. ( 
Tingfei et al., 
2020) 

Credit card VAE- 
MLPb 

VAE to oversample 
minority class 
outperformed SMOTE 
and GAN oversampling 
when training MLP 
classifier. 

2016 Paula et al. ( 
Paula, Ladeira, 
Carvalho, & 
Marzagão, 2016) 

Money 
laundering 

AE AE was able to detect 
fraudulent cases 
previously identified by 
domain experts  

a The denoted methods are AE-based feature extraction or data preprocessing 
techniques implemented in conjunction with a classifier. 

b The denoted methods are AE-based oversampling techniques augmenting 
generated data to a classifier’s training set. 
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detecting credit card fraud with an F-score of 82.65% and an accuracy of 
99.94%, compared to 8.9% and 97.05%, respectively, by the inferior 
method. The authors conclude that the proposed method maintains a 
degree of balance between precision and recall and propose tuning the 
technique to handle stream data in the future by training on batches of 
transactions (Misra et al., 2020). The authors note, however, the vital 
but challenging task of periodically retraining the model to keep up with 
evolving patterns of fraud. 

Renström and Holmsten proposed a novel architecture of stacked 
AEs to further develop on previous works (Renström & Holmsten, 2018). 
Three AEs with one hidden layer were trained separately in a series 
configuration, with the output and the classification error of the prior AE 
acting as the input of the next AE. The proposed model used the MSE 
measure in the reconstruction error and was compared with a single AE 
and a VAE on the same data set as the previous study, employing the 
same methodology of feature transformation using PCA (Renström & 
Holmsten, 2018). It was shown that the proposed stacked AE method 
yielded an improved recall of 99% in comparison to the single AE at 
94%. This improved recall value indicates that only 1% of fraudulent 
transactions were undetected, with the VAE showing similar results to 
the stacked AE. The single AE had a higher precision of 83% than the 
proposed stacked AE with 78% (Renström & Holmsten, 2018). We note 
that the results and discussion provided in the author’s work are much 
more detailed and in-depth than that produced by Sweers et al. (Sweers, 
Heskes, & Krijthe, 2018), mainly by providing a clear picture of the 
precision values achieved by the models. 

Tingfei et al. also proposed VAEs for the task of credit card fraud 
detection; however, the authors suggest its use to address the imbal-
anced data problem as an oversampling method rather than to classify 
instances of data (Tingfei, Guangquan, & Kuihua, 2020). The VAE is 
used to generate and inject data resembling the minority class into the 
training set. Then, an MLP with one hidden layer and ReLU activation 
functions in the neurons is trained using the data set in a supervised 
manner. Two other methods for oversampling the minority class are also 
implemented for comparison using the same procedure as the proposed 
method. The first is the synthetic minority over-sampling technique 
(SMOTE), proposed to address the problem of imbalanced data sets for 
classification tasks by Chawla et al. (Chawla, Bowyer, Hall, & Kegel-
meyer, 2002). Rather than oversampling by replacement, SMOTE cre-
ates synthetic examples along line segments joining any or all the k 
minority class nearest neighbours (Chawla et al., 2002). The other 
method involves employing GANs to oversample the minority class 
through an adversarial involving two competing networks, which will 
be discussed further in later sections. The authors also use the European 
credit card data set to experiment with the models, with all features 
transformed using PCA except for the purchase amount and time, which 
were instead standardized and normalized to new eigenvalues, which 
were then shown to be related to the eigenvalues of the transformed 
features (Tingfei et al., 2020). 

The number of injected minority samples was varied to investigate 
the effects on performance. When the number of injected cases into the 
model reached 175, the performance of the model was significantly 
improved in all five measures, and the best results were achieved by all 
three models (Tingfei et al., 2020). The precision, F-score, specificity, 
and accuracy of the proposed VAE method demonstrated to be the best 
of the other techniques. The accuracy of the VAE was 93%, which is 2% 
higher than the optimal values of SMOTE and GANs at 91% (Tingfei 
et al., 2020). The F-score, which is considered a better measure of a 
classifier’s performance, was 88% for the proposed VAE method, 
compared to 86.15% and 86.55% for the GAN and SMOTE techniques, 
respectively. Furthermore, the authors found through investigation that 
as the number of injected samples into the training set reached 100 times 
the number of actual minority cases, all three models’ performances 
suffered significantly, with the VAE being affected the least (Tingfei 
et al., 2020). It is hypothesized in the literature that the reason behind 
this drop in performance could be attributed to the difference in 

diversity of the minority cases. Finally, it was also shown that although 
the proposed model had the best recall, it was barely affected and had 
the smallest differences in value as the ratio of minority classes gener-
ated was increased (Tingfei et al., 2020). 

DAEs are another type of autoencoder network that were proposed 
by Jiang et al. to remove the noise from corrupt input data to reconstruct 
the undisturbed input as best as possible and use the output to improve 
the performance of an MLP classifier (Jiang, Zhang, & Zou, 2019). The 
European data set was used with PCA transformed features, which is 
initially oversampled using the SMOTE technique to address the class 
imbalance. Then, the data is intentionally corrupted by adding Gaussian 
noise to the data within the. This is then used to train the DAE to learn to 
undo this corruption rather than merely reconstructing the input by 
minimizing the MSE between the DAE’s output and the original uncor-
rupted data (Jiang, Zhang, & Zou, 2019). The reconstructed samples are 
then used to train a supervised MLP classifier with cross-entropy loss 
function and softmax output. Experimental results indicated that the 
proposed method achieved superior performance achieving a recall of 
84% and an accuracy of 97.93% in comparison to an MLP classifier 
without oversampling or denoising, which only had a recall of approx-
imately 20% for the same accuracy value (Jiang, Zhang, & Zou, 2019). 
The results in this literature demonstrate the highest accuracy out of the 
reviewed literature; however, further analysis and exploration of the 
results produced by the methodology is recommended to confirm the 
findings. 

Paula et al. proposed using an AE trained on databases of foreign 
trade in Brazil with the objective of identifying organizations or com-
panies involved in the export business and showing signs of divergence 
from regular patterns of behaviour (Paula, Ladeira, Carvalho, & 
Marzagão, 2016). The original dataset used consisted of 80 features, and 
by using gradient boosted machines were filtered down to 18 features 
that are able to explain 80% of the variability of exported volumes by 
companies. The AE network was designed with 18 input and output 
neurons and three hidden layers with a 6–3-6 neuron structure as the 
bottleneck. By simple observation, the network was chosen to be trained 
with 50 epochs to avoid over or underfitting and had ReLU activation 
functions in the neurons (Paula, Ladeira, Carvalho, & Marzagão, 2016). 
The model was evaluated with an MSE, measuring the difference be-
tween the estimator and what was estimated. The higher the MSE, the 
more likely a sample was anomalous in relation to the patterns found in 
the data by the proposed model. The MSE values were organized in 
ascending order a plotted on a graph for visual inspection, which indi-
cated an evident change in behaviour in the last 20 records. The authors 
mention that these samples were forwarded to third party experts in 
export fraud. The system was considered efficient by the experts, who 
indicated that it identified fraud cases that were already known by ex-
perts. Therefore, with further research, we believe that the application 
of these newer deep learning architectures to anti-money laundering 
systems shows excellent opportunities for future efforts.  

iv. Other Unsupervised Methods 

An unsupervised spectral ranking method for anomalies (SRA) was 
proposed by Nian et al. and applied to detect fraud in automobile in-
surance claims (Nian, Zhang, Tayal, Coleman, & Li, 2016). In their work, 
the authors extend spectral clustering algorithms, demonstrating that 
spectral optimization based on a defined Laplacian matrix can be viewed 
as a relaxation of unsupervised SVM. Using the magnitudes of the 
components of eigenvectors from the Laplacian matrix, it is then 
possible to approximate the degree of support for the optimal binary 
class separation function. From this, an anomaly score can be yielded 
instead of cluster groupings (Nian et al., 2016). The technique models 
data as an undirected graph using vertices to represent data instances 
and an adjacency matrix, where the elements specify the similarity be-
tween the different vertices (Nian et al., 2016). 

The public automobile insurance dataset was used, as seen in other 
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literature, which consisted of 15,420 samples with a 6% fraud rate, 25 
categorical and six numerical features. The labels were discarded and 
used only for evaluation of the model during testing. The model was 
compared against an OCSVM and LOF designed for the same detection 
task. The only quantitative performance measure for evaluation used 
was the AUC, and the discussion provided by the authors mainly covered 
the effect of varying the type of kernel used. Regardless, the proposed 
SRA demonstrated the highest AUC of 74% out of the three models, 
compared to 59% by the OCSVM and 69% by LOF (Nian et al., 2016). 
The results also showed that the model’s performance was sensitive to 
the hyperparameters used and thus required careful tuning. Further-
more, visual representations of the clusters formed by the principal ei-
genvectors of the model were inspected to observe the complexities of 
the separating structures constructed. We note that a more thorough 
discussion of the various other relevant performance measures is 
needed; however, the proposed SRA demonstrated to be applicable to 
detect fraudulent automobile insurance claims. 

The ARIMA model is a technique used for time series that is a 
generalization of the autoregressive moving average model (ARMA). 
The ARMA model is comprised of the autoregressive (AR) and the 
moving average (MA) models. The AR model assumes that there is a 
dependent linear relationship between an observation and a specific 
number of lagged or previous observations, and an error term. In 
contrast, the MA model makes use of the dependency between obser-
vations and the residual errors that are a result of applying the model to 
lagging observations (Moschini, Houssou, Bovay, & Robert-Nicoud, 
2020). 

In time series analysis, the central assumption is that the series is 
stationary, meaning it has zero mean, and the variance is constant over 
time. However, in most practical situations, this is generally not the case 
(Adhikari & Agrawal, 2013). The solution to this is the ARIMA model, a 
prevalent and simple model, which facilitates the differencing of data 
points in time series so that they are made stationary (Moschini, Hous-
sou, Bovay, & Robert-Nicoud, 2020; Adhikari & Agrawal, 2013). In the 
detection of fraudulent activity, time series are a useful tool when 
dealing with aggregated features produced by aggregation, which is a 
method of deriving new features from the data that might be more useful 
to the model (Pozzolo, Caelen, Le Borgne, Waterschoot, & Bontempi, 
2014). 

The application of ARIMA models for detecting fraudulent credit 
card transactions has only been recently implemented by Moschini et al. 
in (Moschini, Houssou, Bovay, & Robert-Nicoud, 2020). In their work, 
the authors propose the model to address the unbalanced nature of data 
sets available, as well as the lack of adaptability by many models to 
consider changing spending behaviours and patterns over time. The 
model is unsupervised, and the only source of information to the model 
is from the spending behaviour of a cardholder. The model is initially 
calibrated on the daily number of legitimate transactions to learn the 
spending behaviours of customers. Then, rolling windows of time are 
used to predict fraudulent transactions from the test set. Fraudulent 
transactions were flagged based on their calculated standard score (also 
known as a Z-score) being more significant than a threshold (Moschini, 
Houssou, Bovay, & Robert-Nicoud, 2020). 

Using a dataset provided by a fraud-prevention company known as 
NetGuardians SA containing information about credit card transactions 
of 24 cardholders from the period of June 2017 to February 2019, the 
ARIMA model was implemented and compared against other models 
such as box plots, LOF, IF and k-means clustering. The authors comment 
on the highly imbalanced nature of the data set, with the proportion of 
fraud consisting of only 0.76% of all transactions (Moschini, Houssou, 
Bovay, & Robert-Nicoud, 2020). Experimental results show that the 
ARIMA model displayed the highest precision and F-score of 50% and 
55.56%, respectively. The k-means algorithm, however, was the best 
performer in terms of recall. Overall, the worst model was shown to be 
LOF, with a precision of 8.4% and an F-score of 14.04%; however, the 
authors note that this model is designed to be useful with 

multidimensional data sets, unlike in this methodology (Breunig, Krie-
gel, Ng, & Sander, 2000). Box plots demonstrated the best performance 
overall with an F-score of 72.22%, although the authors note that the 
advantage of the ARIMA model is that it is based on the concept of 
modelling customer behaviour. 

Overall, ARIMA models for credit card fraud detection have been 
shown by Moschini et al. to perform better when there is a significant 
amount of fraudulent activity within the same day (Moschini, Houssou, 
Bovay, & Robert-Nicoud, 2020). They also reduce the number of false- 
positive alerts in comparison to other benchmark models and take into 
account the dynamic spending behaviour of customers by utilizing 
rolling windows. The authors’ major identified problem is that ARIMA 
models operate under the assumption that the observations in a data set 
are equally spaced in time, which does not hold in this study as trans-
actions were unequally spaced. It is suggested in the literature that 
future research efforts will be directed towards using more advanced 
approaches such as the continuous-time autoregressive moving average 
(CARMA) process to address this issue (Moschini, Houssou, Bovay, & 
Robert-Nicoud, 2020). 

5.3. Semi-Supervised Methods  

i. Hidden Markov Models (HMM) 

HMMs are stochastic processes that are used to model much more 
complicated processes than a traditional Markov model. They are 
comprised of a finite set of states that are governed by a set of transition 
probabilities. Each state also has an associated probability distribution 
responsible for generating an outcome or observation. The outcome is 
known in an HMM, but it is the state that is unknown or hidden 
(Rabiner, 1989). 

An HMM is characterized by several things, the first of which is the 
number of states in the model. For each state, there are also several 
distinct outcomes or observations that correspond to the modelled sys-
tem’s physical output. A state probability matrix or state transition 
matrix gives the probabilities of transitioning from one state to another 
in a single step, which can be represented graphically by a state tran-
sition diagram, as shown in Fig. 8. The hidden states are represented by 
xi, each mapping to an observable outcome yi with probability bij. The 
state transition probabilities aij represent the probabilities of moving 
from one hidden state to another (Toledo & Katz, 2009). Rabiner in 
(Rabiner, 1989) provides a comprehensive tutorial on HMMs. 

A credit card fraud detection system was proposed by Srivastava et al. 

Fig. 8. An example of a hidden Markov model state transition diagram.  
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to model the sequence of operations in credit card transactions and 
detect fraudulent activity using multinomial HMMs (Srivastava, Kundu, 
Sural, & Majumdar, 2008). The normal transactions of an individual are 
used to train an HMM for each cardholder. Incoming transactions for 
individuals are compared with their respective models, and any trans-
action not accepted by the HMM with sufficiently high probability is 
subsequently considered fraudulent. The authors begin by quantizing 
the purchase values into price ranges, configurable based on cardholder 
spending habits (Srivastava et al., 2008). The k-means clustering algo-
rithm is used in the literature to determine the low, medium, and high 
spending ranges, with the number of clusters fixed a priori to three. 
Then, a state transition matrix is constructed from the types of pur-
chases, with the reason being that cardholders typically make purchases 
depending on their need to procure different types of items over a period 
of time. This results in the generation of sequences of transaction 
amounts, forming part of the hidden state of the HMM. 

A simulated data set was generated and used to train and evaluate 
the model, with the authors noting the difficulties of obtaining data from 
institutions that are hesitant to share (Srivastava et al., 2008). Sequences 
of transactions of different lengths were generated and used to train 
HMMs with varying numbers of states. It was shown that as the length of 
the sequence and the number of states were increased, the classifying 
performance of the model also increased. However, this comes along 
with the cost of higher computational complexity. Similarly, the model 
demonstrated that as the sequence length increased, so did the false 
positives rate. Based on various trials, the authors settle on choosing a 
sequence length of 100 and 5 states. Experiments were carried out by 
varying the number of fraudulent transactions intermixed with a 
sequence of genuine transactions. Results showed that the proposed 
method outperformed methods proposed in previous literature. The 
HMM achieved an accuracy of close to 80% on average over a wide 
variation of the input data and was demonstrated to be scalable for 
handling large volumes of transactions (Srivastava et al., 2008). The 
importance of having accurate spending profiles is highlighted in the 
studies, with the model showing significant degradation in performance 
with low quality or a lack of information. 

Bhusari and Patil also verified the performance of HMM for detecting 
credit card fraud by recreating the model proposed by Srivastava et al. 
and achieving similar results on a simulated data set (Bhusari & Patil, 
2016). Studies by Dhok employed a similar approach and methodology 
to apply the HMM model to a real-world credit card transaction data set 
(Dhok, 2012). The results are consistent with the previous literature 
results, demonstrating the feasibility and performance of the HMM for 
this application. Robinson and Aria extended previous authors’ work 
with success to a prepaid credit card processing and detection system to 
detect fraud in real-time for merchants (Robinson & Aria, 2018). 

A supervised approach of using HMM models for credit card fraud 
detection was proposed by Lucas et al. by creating sequential features to 
describe temporal dependencies between cardholder transactions (Lucas 
et al., 2020). The authors suggest using an RF classifier to detect 
fraudulent transactions based on the sequential features generated by 
their proposed HMM technique. The sequence of credit card transactions 
is modelled from three perspectives in the literature’s framework. 

The first involves comparing the likelihood of transaction sequences 
with legitimate historical transaction sequences and sequences with at 
least one fraudulent transaction. Both comparisons are necessary 
because it is not sufficient for fraudulent behaviour to be far from 
legitimate, but it is also expected to be relatively close to risky behaviour 
(Lucas & Jurgovsky, 2020). Secondly, the features are created to 
describe the transaction sequences of cardholders and merchant termi-
nals, which have been shown to have a positive effect on the detection 
efficiency (Lucas et al., 2020). Finally, the authors considered the time 
elapsed between two transactions and the transaction amount as the 
primary signal for constructing the features. Combining these perspec-
tives results in eight sets of sequences produced from the data’s training 
set for which there is an HMM trained on each sequence (Lucas et al., 

2020). A likelihood value is associated with a transaction by each HMM 
based on the previous sequences of transactions. These values are used 
as additional features for the RF classifier. 

In the literature, the authors’ proposed automated feature engi-
neering methods compared with using an RF classifier without the 
HMM-based features with a data set from an industry partner (Lucas 
et al., 2020). Experiments showed that the AUC of the precision-recall 
curve in the novel method increased by 18.1% for transactions made 
face-to-face and 9.3% for e-commerce transactions. It was also demon-
strated that the method’s feature engineering strategy could be relevant 
for various other classifiers due to its robustness to the choice of 
hyperparameters for feature construction (Lucas et al., 2020). Future 
works suggested by the authors involve combining the predictions of an 
LSTM network with the HMM feature-based RF classifier’s predictions to 
extend upon the work of Jurgovsky et al. (Jurgovsky et al., 2018).  

ii. Generative Adversarial Networks (GAN) 

GANs are a type of deep learning framework proposed by Goodfellow 
et al. in 2014 that consists of two networks in competition with each 
other (Goodfellow et al., 2014). The first is a generative model G to 
capture the distribution of the training data. Its adversary is a discrim-
inative model D that determines the probability of a sample coming from 
the training data instead of G. The objective in training G is to maximize 
the chance of inducing D, which is simply a classifier, to make mistakes 
distinguishing the data (Goodfellow et al., 2014). The two models in a 
GAN are deep learning architectures that learn a representation of the 
original input. Increasing the number of layers or the size of layers in the 
network can help it learn deeper and more abstract representations 
(Bengio, Courville, & Vincent, 2013). 

As illustrated in Fig. 9, the generative model’s input is random noise 
z, which it then transforms with a function and then produces examples 
of the real data. The discriminator then learns to better distinguish be-
tween the real and generated examples by minimizing its prediction 
errors, and the generator tries maximizing the error, resulting in a 
competition formalized as a minimax game in (6): 

min
θG

max
θD

(Ex pd [logD(x)] + Ez pz [log(1 − D(G(z) ) )]) (7)  

where θG and θD are the parameters of the generator and discriminator 
networks, respectively, pd is the data distribution and pz is the prior 
distribution of the generative network (Goodfellow et al., 2014). 
Although GANs are unsupervised learning algorithms, they use a su-
pervised loss as part of the training. In most financial fraud applications 

Fig. 9. Schematic of a GAN’s generator G, accepting random noise z as input 
and outputting generated examples to the discriminator D. The discriminator 
distinguishes the generated examples by G from the real data u. 
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to date, GANs have been used in a semi-supervised fashion as a method 
of oversampling for data augmentation, which is the reasoning behind 
their classification under semi-supervised in this paper. 

Mirza and Osindero proposed extending GANs to a conditional 
model, known as conditional GANs (CGAN), by conditioning the 
generator and discriminator on some extra information (Mirza & Osin-
dero, 2014). This extra information could be of any kind, 

such as class labels or data from other modalities, which is fed to both 
networks as an additional input layer. An outline of the surveyed works 

involving GANs for fraud detection can be seen in Table 12. 
Up until recent years, GANs for anomaly detection have been mainly 

applied to problems in which the nature of the input data is in the form 
of an image, as surveyed by Di Mattia et al. (Di Mattia, Galeone, De 
Simoni, & Ghelfi, 2019). Among the first papers applying them to detect 
fraudulent credit card transactions was published by Chen et al., who 
propose using an SAE to obtain representations of normal transactions to 
train a GAN (Chen, Shen, & Ali, 2018). The discriminator is trained to 
distinguish real genuine transactions from faked genuine transactions, 
which are produced by the generator trained on the normal represen-
tations learned and output by the SAE. The SAE extends upon the idea of 
original AEs by incorporating a sparse penalty term to the reconstruction 
error, resulting in more robust features by adding constraints for concise 
expression of the input data (Zhang, Cheng, Liu, & Liu, 2018). This 
induced sparsity results in a greater average activation value by limiting 
the neurons with low, undesired activation values to zero. 

The European data set is used for training and testing in the proposed 
method’s literature (Chen, Shen, & Ali, 2018). The training set consisted 
of 5,000 normal transactions, and 492 transactions of each fraudulent 
and normal class were used for testing. The authors used a novel tech-
nique to visualize high-dimensional data known as t-distributed sto-
chastic neighbour embedding (t-SNE), proposed by van der Maaten and 
Hinton in (van der Maaten & Hinton, 2008), to visualize the test data 
distribution. Several experiments were held to demonstrate the effec-
tiveness of the proposed model, the first of which involved varying the 
size of the hidden layer of the SAE to observe the effect on the overall 
model’s predictive performance. A positive trend was apparent between 
the hidden layer’s size when it was varied from 30 to 60 neurons and the 
model’s precision (Chen, Shen, & Ali, 2018). However, the recall and F- 
score began to decrease when the number of neurons increased past 50. 
The second experiment involved comparing the performance of the 
proposed model against state-of-the-art one-class methods such as the 
OCSVM proposed by Tax and Duin in (Tax & Duin, 2001), as well as one- 
class Gaussian processes (OCGP), which was proposed by Kremmler 
et al. (Kremmler, Rodner, Wacker, & Denzler, 2013). The proposed 
method had the highest F-score and precision out of the three models, 
87.36% and 97.59%, respectively, with the OCGP coming in second. 
However, in terms of recall, the OCSVM showed the best performance 
with 95.11%. The proposed SAE-GAN came in second by a significant 
difference of 15.74% at 79.37%. Finally, the GAN’s discriminator was 
trialled with and without the SAE features. A performance improvement 
was proven in the proposed technique, with an 11% increase in precision 
from 87.41% to 97.59% and a 4.6% rise in F-score from 83.47% to 
87.36%. The increase in precision and F-score came at a slight cost of the 
recall, which decreased by 1.12% to 79.37% from the model without the 
SAE (Chen, Shen, & Ali, 2018). 

The high precision of the proposed SAE-GAN model is attributed to, 
by the authors, the fact that since the model is trained on normal 
transactions to distinguish them better, it is less likely to misclassify 
normal transactions (Chen, Shen, & Ali, 2018). The authors justify the 
low recall of the proposed model due to the increase in the SAE output’s 
dimensionality, resulting in overfitting of the data because of informa-
tion redundancies (Chen, Shen, & Ali, 2018). Overall, the literature 
demonstrated that the proposed GAN model trained with SAE features 
demonstrated to be superior to a standalone GAN in detecting credit 
card fraud. However, the authors suggest further research to address the 
problem of poor stability and F-score convergence of the model to 
improve its performance (Chen, Shen, & Ali, 2018). 

Followed shortly after were efforts by Tanaka and Aranha to develop 
a method of employing GANs in the task of credit card fraud detection to 
improve the performance of a classifier (Tanaka & Aranha, 2019). The 
authors use GANs to generate artificial training data for machine 
learning tasks, which is extremely useful for classification models based 
on imbalanced data sets. The ability of GANs to create artificial data is 
compared to techniques like adaptive synthetic (ADASYN) sampling 
(He, Bai, Garcia, & Li, 2008) and SMOTE (Chawla et al., 2002). A noted 

Table 12 
Summary of Published Literature on GAN-Based Fraud Detection.  

Year Reference Type of 
fraud 

Method Comments 

2018 Chen et al. ( 
Chen, Shen, & 
Ali, 2018) 

Credit card SAE-GAN GAN trained on SAE- 
learned features from 
majority class has 
improved F-score and 
precision, but with a 
decrease in recall. SAE- 
GAN outperforms OCSVM 
and OCGP in terms of F- 
score. 

2019 Tanaka and 
Aranha ( 
Tanaka & 
Aranha, 2019) 

Credit card GAN-DTa DT trained with minority 
class GAN-based 
oversampling had slightly 
higher precision, but lower 
recall than when using 
SMOTE or ADASYN. 

2019 Fiore et al. ( 
Fiore et al., 
2019) 

Credit card GAN- 
MLPa 

MLP trained with GAN- 
based oversampling had 
improved recall, and 
proposed model also 
outperformed SMOTE in 
terms of recall, but had 
slightly lower specificity. 

2019 Ba (Ba, 2019) Credit card WCGAN- 
LRa 

LR with WCGAN-based 
oversampling had most 
balanced performance with 
higher F-score and AUC 
than GAN, CGAN, SMOTE 
and ADAYSN. However, 
WCGAN’s recall of 64.2% 
was significantly inferior to 
ADAYSN’s at 90%. 

2019 Zheng et al. ( 
Zheng et al., 
2019) 

Credit card AE- 
OCAN 

Complementary GAN 
generator trained on AE- 
learned representations of 
genuine transactions; 
discriminator is proposed 
as OCAN. Proposed model 
performs better in F-score, 
precision and accuracy 
than OCSVM but 
outperformed in recall. 

2020 Charitou et al. ( 
Charitou et al., 
2020) 

Money 
laundering 

SAE-GAN SAE features extracted 
from entire train set, then 
used to train generator of 
GAN to produce 
complementary samples. 
Samples generated are 
augmented into training 
set, and discriminator is 
trained to classify samples. 
Proposed model 
outperformed LR, SVM, 
MLP and RF with either 
ADASYN or SMOTE in 
terms of F-score, accuracy 
and precision. RF with 
ADASYN, however, 
outperformed in terms of 
recall.  

a The denoted methods are GAN-based oversampling techniques augmenting 
generated data to a classifier’s training set. 
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benefit of artificially created data is that it is also useful when dealing 
with data that contains sensitive information (e.g. financial information, 
medical information and imaging)) (Tanaka & Aranha, 2019). In the 
literature, the proposed GAN’s generator is trained to mimic and pro-
duce samples of the minority class when fed with a noise vector, and the 
discriminator must learn to distinguish between real samples and the 
fake samples produced by the generator. As a result, the generator will 
learn to output samples that are progressively more resembling the 
original data. 

In the literature, using the European data set, the experimental 
procedure is outlined by the authors as follows (Tanaka & Aranha, 
2019): first, the target minority class (i.e. fraudulent transactions) is 
separated, and several GANs with a varying number and size of hidden 
layers are trained with only that subset of the data. Two GANs have one 
hidden layer, with either 128 or 256 neurons, and two other GANs have 
two hidden layers with either 128 and 256, or 256 and 512 neurons in 
the first and second hidden layer, respectively. The activation functions 
in the neurons were chosen to be the leaky ReLU. The GANs were used to 
generate and augment new samples into the data set until balanced. A 
DT classifier was trained using the newly balanced data set. The pro-
posed method was compared against other DT models using SMOTE, 
ADASYN and one without any oversampling. Finally, the models’ per-
formances were all compared on a balanced and imbalanced test set. 

The literature showed that all the models displayed much better 
results on the balanced test set than the imbalanced test set, which the 
authors mention makes sense since the classifier has an easier time 
identifying minority class labels (Tanaka & Aranha, 2019). Further-
more, for all the methods with oversampling, there was an improvement 
of at least 30% in the recall score, compared to 56.5% by the simple DT 
model. SMOTE and ADASYN had the highest recall of 86.1%, and the 
GAN with the smaller two hidden layers came close with a recall of 82%. 
That said, the authors warn that more importance should be given to the 
results from the imbalanced test set, as it cannot be expected that test 
data will be balanced in actual applications (Tanaka & Aranha, 2019). 
With that in mind, negligibly better accuracy and precision was ach-
ieved by the GAN than SMOTE and ADASYN, but with a worse recall 
value. The importance of these metrics depends on the application 
domain, and in the case of detecting fraud, a high recall score is 
considered paramount, as it indicates a higher amount of detected fraud. 
Consequently, the authors suggest that ADASYN and SMOTE should be 
preferred over their proposed method (Tanaka & Aranha, 2019). Even 
so, the literature concludes that with further work and research, it is 
reasonable to expect comparable future results to the other two tech-
niques used (Tanaka & Aranha, 2019). 

Fiore et al. conducted even more extensive studies using GANs to 
oversample the minority class in imbalanced data sets and improve a 
classifier’s performance (Fiore et al., 2019). The author’s choice of the 
classifier was an MLP, and an emphasis was put on the design and tuning 
stage of the experimentation. The importance of finding optimal values 
for hyperparameters is highlighted in the research to be the critical 
aspect of maximizing the performance of the proposed method (Fiore 
et al., 2019). As such, using the European credit card data set, the MLP 
classifier was trained on a training set of two-thirds of the original data 
to determine the set of optimal hyperparameters that facilitate the best 
performance on the test set. Then, the proposed GAN is trained on the 
fraudulent samples only, and the original data is balanced with samples 
from the generator. Another MLP is trained on the data balanced and 
augmented with fraud samples from the GAN, using the first-trained 
MLP’s hyperparameters. 

To start the tuning process of the networks, the authors compare 
various configurations and structures of classifiers. Since too many 
layers would complicate training and cause overfitting, while too few 
layers might hinder the network’s ability to build representations at 
decent levels of abstractions, as a reasonable trade-off, the authors chose 
to test networks with only two or three hidden layers (Fiore et al., 2019). 
The number of neurons in the hidden layers was determined empirically 

by being varied from 20 to 40, except for the generator’s first layer, 
which seemed to require a larger number of units (around 100) (Fiore 
et al., 2019). Three different activation functions were explored, 
including the sigmoid, ReLU and hyperbolic tangent functions. The 
literature found the best performing classifier to be a network with two 
hidden layers, 30 ReLU units, 30 sigmoid units, and two softmax units in 
the output layer to output the final classification. 

The literature showed that when the number of generated samples 
was augmented into the training set increased, the recall improved 
appreciably compared to the imbalanced training set (Fiore et al., 2019). 
The recall improved from 70.23% in the imbalanced dataset to a high of 
73.03% recall with 3,150 generated samples. This improvement was 
counterbalanced by a negligible decrease in the specificity of 0.004% 
from 99.9998%, corresponding to the increase in false positives (Fiore 
et al., 2019). A comparison was also carried out with SMOTE, the sig-
nificance of which is noted to be due to its similarity to the framework by 
the authors. The recall of the proposed GAN method is generally higher 
than the SMOTE, while the specificity is higher than the author’s 
framework. However, this comparison further corroborates the superior 
performance of the proposed GAN with the highest F-score of 81.90% 
compared to SMOTE, with an F-score of 81.78% (Fiore et al., 2019). 

The training of the GAN is identified as the costly portion of the 
computational complexity, which is circumvented by training on a small 
portion of the training data. The authors conclude that while the pro-
posed method may be capable of identifying similar frauds, it can be 
expected to be mostly ineffective in spotting frauds that are novel, where 
there is no information to generalize upon (Fiore et al., 2019). In the 
hope of improving upon the performance of the proposed research, 
ensemble methods are suggested as an avenue of exploration for future 
work; however, the authors suggest the directions for future study are 
manifold. 

The Wasserstein GAN (WGAN) was proposed by Arovsky et al., which 
used the Earth Mover (EM) distance as the measure of error, and does 
not require a careful design of the network architecture as the typical 
GAN (Arjovsky, Chintala, & Bottou, 2017). Ba proposed implementing 
the WGAN instead of regular GANs, citing them as more stable in 
training and capable of producing more realistic fraudulent transactions 
when trained on the minority class (Ba, 2019). Similar to Tanaka and 
Aranha’s work in (Tanaka & Aranha, 2019), the WGAN was used to 
oversample the minority class and balance the data set. This data set was 
then used to improve the performance of an LR classifier. The archi-
tecture of the proposed WGAN consisted of only one hidden layer, and 
the hyperparameters of the network, such as the learning rate, drop-out 
rate, and the number of neurons, were found using a random search 
algorithm. The literature also extends the WGAN to develop a condi-
tional WGAN (WCGAN) to examine any effects or improvements in 
performance compared to the WGAN. The authors used the European 
data set in their methodology, training the model on 80% of the 
fraudulent samples with mini-batches of 64 samples. Adam was used as 
the optimization algorithm, which is a stochastic optimization method 
suited for problems that are large in terms of data and dimension 
(Kingma & Ba, 2014). The F-score of the proposed WGAN and WCGAN 
was compared against the typical GAN and CGAN, as well as the sam-
pling techniques SMOTE and ADASYN. Results demonstrated that the 
WCGAN was the most balanced classifier with an F-score of 71%. 
However, the recall of the model, 64.2%, is relatively low regardless of 
the F-score, compared to the recall of ADASYN with 90.1%. This may 
make the ADASYN seem more advantageous than the WCGAN; however, 
it only had a precision of 1.8%, meaning it was too prone to false alarms. 
The AUC of the WCGAN was 94.8%, the highest of all the models. 
Overall, it was concluded that the proposed WCGAN produced a balance 
of precision and recall that resulted in the best overall performance with 
the highest F-score (Ba, 2019). 

A one-class adversarial net (OCAN) was proposed by Zheng et al. to 
detect fraudulent credit card transactions by using a complementary 
GAN trained on representations of data learned by an AE (Zheng, Yuan, 
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Wu, Li, & Lu, 2019). In the literature, the AE is responsible for learning 
the representation of legitimate transactions in the hidden space from 
the raw features. Then, the GAN is trained with a generator that pro-
duces complementary samples in the legitimate transactions’ low- 
density area instead of matching the representation’s distribution like 
a regular GAN. Fig. 10 illustrates the difference in output between the 
generators of the regular and complementary GANs based on (Zheng 
et al., 2019). The discriminator is subsequently trained to distinguish 
between the generated complementary samples and the legitimate 
samples based on a probability distribution threshold. Since fraudulent 
behaviour is complementary to that of genuine behaviour, it is expected 
that the proposed method should be able to differentiate between the 
two classes (Zheng et al., 2019). 

The performance of the method proposed by the literature was 
evaluated using the European data set against other one-class techniques 
such as one-class nearest neighbours (OCNN) and OCSVM. The effect of 
learning a representation of the data using an AE is also investigated by 
evaluating each model with only the raw features transformed using 
PCA. Using a training set of 700 legitimate transactions and a test set of 
490 fraudulent and 490 legitimate transactions, the OCAN proposed by 
Zheng et al. displayed the best performance out of all the other models 
both in terms the precision, F-score and accuracy, and came second for 
recall behind OCSVM (Zheng et al., 2019). The F-score achieved by the 
proposed method was 86.56%, an increase of 2.4% from the OCAN with 
just raw features. However, the precision of the OCAN with just raw 
features was higher, at 97.55%, compared to the proposed OCAN with 
90.67% precision. In terms of recall, the OCSVM was more favourable 
with 95.09% instead of 83.2% of the OCAN with learned representation. 
Also, the AUC of the corresponding ROC was calculated to be 97.5% for 
the proposed OCAN, a minor increase from 96.45% with just raw fea-
tures. Overall, the authors conclude that the proposed method’s results 
are auspicious, particularly for detecting credit card fraud compared to 
previous traditional techniques (Zheng et al., 2019). 

An anti-money laundering system using GANs was proposed by 
Charitou et al., training the model using the robust features extracted 
from the training set by an SAE (Charitou, Garcez, & Dragicevic, 2020). 
The structure of the proposed framework consists of first using an SAE 
with two encoding and two decoding layers. The SAE projects the input 
into a higher dimension and reconstructs it again from the sparse rep-
resentation. This mapping seeks to increase the distance between the 
positive and negative class samples (Charitou et al., 2020). Next, the 
data representations extracted from the SAE are used as the input to the 
GAN, which adopts a complementary generator that tries to match the 
data representations and generate new complementary samples (Char-
itou et al., 2020). Together with the real representations of the data, the 

generated samples are then used to train the discriminator model, which 
learns to distinguish and detect fraudulent cases. 

The authors partner with a company in the UK to improve their 
current system, using a dataset provided by the company. It consisted of 
4,700 samples, 1,200 of which were flagged for potential money laun-
dering activity, accounting for more than 25% of the whole dataset 
(Charitou et al., 2020). The data described anonymized gambling ac-
tivity from the company’s legal online gambling services, and the cases 
of known fraud or money laundering were labelled in the dataset. Spe-
cifics regarding preprocessing of the data or any feature selection or 
extraction steps were not mentioned in the research. The proposed 
model’s performance was compared with various other models such as 
LR, RF and MLP using different sampling techniques like SMOTE and 
ADASYN. The proposed SAE-GAN model demonstrated the best overall 
performance with the highest F-score of 89.85% (Charitou et al., 2020). 
It also had the highest recorded accuracy of 94.37%. The recall of the RF 
model with ADASYN oversampling demonstrated the highest recall of 
95.69% compared to 93.08% by the proposed model, with an F-score 
slightly lower at 88.62% (Charitou et al., 2020). The basic RF model 
showed the best precision at 87.81%, slightly better than the SAE-GAN 
at 86.72%. 

Overall, the authors state that the model was considered a significant 
improvement from the previous measures in place for money laundering 
detection by the company. The proposed SAE-GAN’s F-score yielded an 
increase of 3.64% from the current detection system in place and a 
0.52% increase compared to the other methods evaluated (Charitou 
et al., 2020). The versatility of the framework is further emphasized for 
supervised settings. It is suggested that testing different sparse coding 
methods may further improve the model’s results, which the authors 
will attempt to implement into a more extensive framework for future 
experimentation with a GAN designed to generate synthetic data 
(Charitou et al., 2020).  

iii. Other Semi-supervised Methods 

A novel hybrid approach using GA and unsupervised FCM clustering 
(GAFCM) to detect fraudulent automobile insurance claims was pro-
posed Subudhi and Panigrahi (Subudhi & Panigrahi, 2020). The 
approach proposed in this study is similar to that in the studies by 
Behera and Panigrahi in (Behera & Panigrahi, 2015), in which the ma-
jority (genuine) samples of data were initially clustered by the FCM to 
identify and remove outliers, resulting in a balanced dataset when 
augmented with the rest of the minority samples. A supervised learning 
model was then trained on the balanced dataset to further classify the 
samples into either the genuine or fraudulent class with improved 

Fig. 10. Two examples of outputs produced by generators of (a) a regular GAN and (b) a complementary GAN. The dotted blue line indicates the high-density region 
of benign transactions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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performance. In this study, the authors extend upon the work of Behera 
and Panigrahi (Behera & Panigrahi, 2015) by using GA to optimize the 
cluster centers of the FCM algorithm during training to observe for im-
provements in detection performance and experimenting with auto-
mobile insurance claims instead of credit card transactions (Subudhi & 
Panigrahi, 2020). The classification of the overall proposed method as 
semi-supervised is due to the unsupervised FCM using only the majority 
samples, even if unlabelled, to perform the outlier detection. 

It is postulated in the literature that using GA to train the FCM al-
gorithm has the benefits of increasing its robustness, allowing it to 
conduct a more extensive search for the optimal cluster centers and 
reducing the chances of getting stuck at a local optima (Subudhi & 
Panigrahi, 2020). A dataset consisting of 15,420 automobile insurance 
claims was used, with only 923 fraudulent claims, accounting for less 
than 6% of the total number of claims. The authors highlight one of the 
significant issues faced by researchers in this field, noting the lack of 
availability of public datasets other than the one used in their study. A 
quarter of the training set was set aside for testing, and the rest for 
training. No discussion is provided on whether any preprocessing or 
feature selection measures took place. The genuine majority samples in 
the training set were separated, and the FCM was trained on those 
samples using 10-fold cross-validation. A total of 4,773 genuine in-
stances were removed by the GAFCM from the original training set of 
10,627 samples (Subudhi & Panigrahi, 2020). 

The balanced training set was used to train two subsequent detection 
models, an FCM and GAFCM, which were then compared with two 
identical FCM and GAFCM models that were trained with the original 
imbalanced training set. An evident improvement in sensitivity, speci-
ficity and accuracy of both models was observed when using the 
balanced dataset. The GAFCM performed the best overall, however, with 
66.67% sensitivity, 86.95% specificity and 84.34% accuracy (Subudhi & 
Panigrahi, 2020). These values represent increases by 5.13%, 2.16% and 
1.12%, respectively, from the GAFCM model trained with an imbalanced 
dataset. The FCM with an imbalanced dataset had a sensitivity of 
59.22%, a specificity of 84.49% and accuracy of 81.97%, which is a 
significant improvement from the unbalanced case but still inferior to 
the proposed GAFCM. (Subudhi & Panigrahi, 2020). 

To further verify the improved performance of the hybrid GAFCM 
technique proposed over the FCM proposed by Behera and Panigrahi, 
the balanced datasets produced by each model were used to train a su-
pervised learner. Several models’ performances were analyzed, which 
included DT, SVM and MLP. Results from this experimentation further 
solidify the effectiveness of the proposed GAFCM technique, showing 
overall improvements across the board in all measures for each of the 
three models (Subudhi & Panigrahi, 2020). Of the three models using 
the GAFCM balanced dataset, the SVM displayed the highest sensitivity, 
specificity, and accuracy of 83.21%, 88.45% and 87.02%, respectively. 
These values are clear improvements from 64.34% accuracy, 72.23% 
specificity and 70.15% accuracy by the SVM model with FCM outlier 
detection (Subudhi & Panigrahi, 2020). Thus, the technique outlined by 
Subudhi and Panigrahi (Subudhi & Panigrahi, 2020) is considered 
favourable over previous methods, performance better as both a 
standalone classifier and a data undersampling method to address the 
issues associated with imbalanced datasets for supervised classifiers. We 
note that more extensive studies are suggested to address certain aspects 
not covered by the authors, such as whether feature selection or pre-
processing may yield further incremental improvements. 

5.4. Graph-based Methods 

The popularity of graph-based anomaly detection techniques for 
fraud detection has been on the rise, especially when it may be beneficial 
to analyze the connectivity patterns in large networks. These techniques 
have proven to be especially useful in anti-money laundering and in-
surance fraud detection settings, where there are often multiple entities 
or organizations that can be linked to fraud. A recent and thorough 

review of graph-based fraud detection techniques is provided by Pour-
habibi et al. in (Pourhabibi et al., 2020). However, it is noteworthy to 
highlight some of the critical papers directly relating to this survey. 

Yang and Hwang, for example, proposed a process-mining frame-
work to detect healthcare insurance fraud or abuse by utilizing the 
concept of clinical pathways (Yang & Hwang, 2006). The application of 
clinical pathways aims to have medical staff performing care services in 
the right order to enable best practice without rework or wasting re-
sources. These pathways are typically driven by physician orders, and 
once they are created, they can be viewed as algorithms of decisions to 
be made and the care to be provided to a given patient (Yang & Hwang, 
2006). In their work, the authors outline a framework involving the 
mining of frequent patterns from clinical instances to facilitate an 
automatic and systematic construction of systems to detect healthcare 
fraud. The model was evaluated with a real-life dataset, with empirical 
results demonstrating the model’s efficiency and its capability in iden-
tifying fraud cases not previously identified by domain experts or a 
manually constructed detection model (Yang & Hwang, 2006). 

An expert system using social network analysis to detect fraudulent 
automobile insurance claims was proposed by Šubelj et al. in (Šubelj 
et al., 2011). In automobile insurance fraud cases, organized collabo-
rators often work together to perpetrate these crimes, which sometimes 
consist of drivers, chiropractors, repair garages, mechanics, lawyers and 
others (Šubelj et al., 2011). As such, the authors represent data in net-
works to observe the relationships between different individuals or 
groups. Detection of suspicious entities or collaborators is then achieved 
by employing a novel assessment algorithm known as the Iterative 
Assessment Algorithm (IAA) (Šubelj et al., 2011). The results showed 
that the proposed system was able to detect fraudulent cases efficiently 
and that the appropriate data representation was vital and is very 
applicable in practice as it does not require a labelled dataset (Šubelj 
et al., 2011). The system instead allows for the imputation of a domain 
expert’s knowledge, which can thus be adapted to newer types of fraud 
as they are identified. The benefit of the system is that it does not require 
large amounts of data, with the only challenges being that it relies on 
user-defined thresholds or parameters that must be refined. 

Branting et al. explored using graph analytics to detect fraudulent 
healthcare claims and activity (Branting, Reeder, Gold, & Champney, 
2016). The authors apply various groups of network algorithms; one 
such group calculates the behavioural similarities to known fraudulent 
and genuine healthcare providers with respect to measurable activities 
such as healthcare procedures and drug prescriptions (Branting, Reeder, 
Gold, & Champney, 2016). Another group of algorithms estimates the 
propagation of risk from healthcare providers through geospatial 
collocation, such as shared practice locations or other addresses 
(Branting, Reeder, Gold, & Champney, 2016). The proposed model was 
evaluated empirically on various datasets, demonstrating an F-score and 
AUC of up to 91.9% and 96%, respectively. It was also shown that the 
most predictive features were based on the collocation-based risk 
propagation algorithms (Branting, Reeder, Gold, & Champney, 2016). 

In the context of anti-money laundering, a social network analysis 
algorithm (SNA) was proposed by Dreżewski et al. (Dreżewski, Sepielak, 
& Filipkowski, 2015). In their paper, the authors note that offenders 
often create sophisticated organizational structures that can be identi-
fied. Furthermore, it is possible to detect the roles of each member 
within that network, which is all possible using SNA. The SNA module 
builds networks from the data by assigning roles to nodes and then 
analyzes the connections between nodes to find the proximity between 
entities, acting almost like a clustering algorithm (Dreżewski et al., 
2015). The authors use various data sources such as bank statements and 
national court registers and compare the roles assigned to nodes in 
networks of the two different domains. This analysis revealed crucial 
information about the true leaders of fraud and the vulnerabilities 
within the network. A node proximity module was used, which provides 
knowledge on the different bank accounts possessed by the same indi-
vidual. The correctness of the roles assigned to members of the network 
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was verified using the module to find the nodes with the same roles in 
different networks (Dreżewski et al., 2015). Overall, the proposed was 
found to be useful for automated analysis of criminal networks and the 
identification of the patterns of interaction between offenders and the 
assigned roles of members within a criminal group (Dreżewski et al., 
2015). This effectiveness is partly credited to the model making use of 
multiple data domains. 

Colladon and Remondi (Colladon & Remondi, 2017) also explored 
the use of SNA not only to detect but also to attempt to prevent money 
laundering. The authors proposed a new approach to sort and map 
relational data, and based on certain network metrics, a predictive 
model is presented to assess the risk profiles of clients. In their studies, 
Colladon and Remondi applied the model on a factoring company’s 
central database, which contained information about the financial op-
erations linked to the factoring business as well as other useful infor-
mation about company clients (Colladon & Remondi, 2017). The 
factoring business involves businesses or clients selling their accounts 
receivable or invoices to a third party at a discounted rate, which can 
occur for many reasons, such as to satisfy short-term liquidity needs. The 
SNA model proposed is used to predict the risk profiles associated with 
each of the clients involved in the business. The analysis was focused on 
the economic transactions and money transfers made from debtors to the 
factor. Four kinds of relational graphs were plotted: the first to take into 
account operational risks associated with the activities of the economic 
sector; the second to consider the risks associated with particular 
geographic locations; the third to study the transaction amounts; and the 
fourth to identify potentially dangerous links between different orga-
nizations with the same owner or representatives (Colladon & Remondi, 
2017). These graphs were filtered to focus on transactions associated 
with a higher risk, and the risk factors were separated in the analysis to 
assess their importance and contributions better. 

Through a visual analysis of the graphs, it was possible to identify 
clear clusters of subjects that were involved in court trials. Based on this, 
an alarm is suggested to inspect all nodes within a cluster as soon as any 
of them are involved in suspicious or illicit operations. Furthermore, the 
analysis of the four different network graphs gave evidence of the 
importance of studying the centrality of transactions within a network, 
as clients with higher risk profiles are usually less central within the 
network (Colladon & Remondi, 2017). The proposed model was 
demonstrated to be useful and effective in preventing money laundering 
when applied to a factoring company’s database. However, the authors 
identify some limitations to be addressed by future studies, one being 
that a more significant sample size is required for analysis to determine 
whether or not the model may generalize well in practice (Colladon & 
Remondi, 2017). Another limitation is that it may be worthwhile to 
study the effects of additional control variables that were not present in 
these studies, such as the age and size of companies involved in the 
financial operations (Colladon & Remondi, 2017). Finally, the authors 
suggest that the metrics proposed in their studies should be combined 
with other tools that are based, for instance, on machine learning al-
gorithms or combining data at even a national level to allow for quicker 
detection of suspicious nodes within the network with the aim of pre-
venting money laundering (Colladon & Remondi, 2017). 

6. Concluding remarks and suggestions 

In this survey, the different ways that the problem of anomaly 
detection has been formulated in literature were outlined and discussed. 
We unified the notion of the anomaly to provide a clear theoretical 
understanding of the problem at hand. The methodology behind this 
research was driven by the mission that a comprehensive review on 
anomaly detection techniques should facilitate for the reader not only to 
be informed of the motivations behind using particular models but also 
of their advantages and limitations when applied to a specific area of 
fraud. We achieved this by detailing a comparative analysis of the 
various approaches implemented in each application. 

The significance of detecting fraud and its detrimental effects on the 
financial economy was highlighted in this paper, along with the asso-
ciated challenges of applying anomaly detection techniques to combat 
this continually growing problem. The main areas explored in this sur-
vey were credit card fraud, insurance fraud and money laundering. It 
was made evident that the challenges faced varied significantly based on 
the different fraud applications. For instance, the ability of systems to 
detect fraud in real-time is crucial for credit card frauds but may not be 
as prudent in insurance fraud detection systems. Furthermore, we 
showed that there is no single universally applicable anomaly detection 
technique or approach for all the different types of financial fraud out-
lined in this survey. An evident lack of publicly available datasets, 
labelled or not, was identified as a significant limitation in this field. We 
also attribute the aforementioned reason to the dearth of research on 
other types of financial fraud. More importantly, the imbalanced nature 
of datasets due to the rare occurrence of fraudulent cases was empha-
sized as one of, if not the most critical considerations that must be 
factored in during the design stage of any fraud detection system or 
model. 

From the surveyed literature, a clear shift in trend is apparent, with 
most of the recent research adopting unsupervised and semi-supervised 
models as opposed to supervised models. We identify this to be as a 
result of labelled data being much harder to come by in practice due to 
the tediousness and cost associated with manual labelling. Even when 
datasets are labelled, it is often the case that not all instances of fraud 
have been detected. Fortunately, unsupervised and semi-supervised 
methods have been observed to detect frauds previously unnoticed by 
domain experts or detection measures that were in place. Furthermore, 
increased attention has been given to developing sophisticated feature 
selection and extraction methodologies prior to training a model. These 
practices have been proven to improve the effectiveness of fraud 
detection systems by reducing the computational complexity and 
increasing detection accuracy. 

Generative models, which are unsupervised methods, have been 
shown in this survey to be especially popular in recent literature and 
have been applied in a variety of fraud detection systems for credit card 
and insurance fraud, and even anti-money laundering. These models can 
learn deeper and more complex representations of raw features from a 
training set’s latent space. GANs and the various types of different AE 
networks are examples of generative models applied in this area. These 
models have been used as classifiers and have each demonstrated 
different strengths as either feature extraction or oversampling tech-
niques. For example, we showed that features extracted from a training 
set by AEs significantly improve the performance of supervised classi-
fiers such as the MLP. For oversampling the minority class, a semi- 
supervised approach addressing the imbalanced class issues associated 
with this research, both GANs and VAEs have proven to be superior in 
creating more realistic samples that capture a broader representation of 
data distributions for data augmentation than traditional oversampling 
approaches like SMOTE and ADASYN. These approaches have also 
proven to be preferable over those that involve undersampling the 
majority class, such as random undersampling, stratified sampling or 
even clustering algorithms dedicated to outlier detection and removal. 

Other deep learning architectures that have demonstrated effec-
tiveness and are increasingly popular in recent years, especially to detect 
credit card fraud, are CNNs and LSTMs. CNNs can capture short-term 
temporal relations and behaviours of cardholders and are less likely to 
overfit the data than an MLP. LSTMs, on the other hand, capture the 
longer-term temporal behaviours and identify cases of fraud not other-
wise detected by other models when implemented in conjunction with 
them. These types of networks are heavily dependent on appropriate 
feature transformation strategies to adapt the input data into a form 
familiar to those types of models. Due to these transformations, LSTMs 
and CNNs detect frauds as contextual anomalies, which is considered a 
recent development in this field, as most models are often oriented to 
detect point anomalies. 
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However, the limitations of deep learning models are that they 
require much more careful design and tuning compared to simpler 
models like SVM and RF, as they are rather sensitive to the choice of 
hyperparameters and the architecture structure. Furthermore, the 
quality and amount of data required by these models is generally rela-
tively high. As deep learning models often operate in a black-box 
fashion, the processes involved to arrive at their prediction may 
require intricate tools and strategies to aid in their interpretability. 
These types of networks are also very heavily dependent on appropriate 
feature transformation strategies to adapt the input data into a form 
familiar to those types of models. Furthermore, the choice of learning 
algorithm or loss measure used to optimize these models impacts their 
overall performance, which must also be factored into consideration 
during the design stage. 

Finally, we bring attention to the matter of interpretability of fraud 
detection models, which allow for explainable results that may assist in 
applications requiring human interaction or for the inference of valuable 
insights to support decision-making. Specifically, it has been observed 
from the surveyed literature that there is a significant dearth in terms of 
discussion on this matter, especially when it can considered to be a 
critical tool for researchers and industries in developing deeper un-
derstandings of the workings of their proposed models and learning or 
unearthing patterns from data. For example, when dealing with simpler 
models like LR, DT, RF and NB, these models are intrinsically equipped 
with mechanisms to probabilistically determine the impact and evi-
dence of individual components on the overall model. However, these 
models have been proven to be inferior in detection performance to 
more recent, complex deep learning methods, which are generally black- 
box models, and consequently have the most to benefit from being 
equipped with techniques to aid in the interpretability of their results. As 
such, we posit that several opportunities exist for future researcher in 
this regard, particularly with two specific models that have displayed 
promising performance in the research literature for explaining deeper 
more complex models: local interpretable model-agnostic explanations 
(LIME) (Ribeiro, Singh, & Guestrin, 2016) and Shapley additive expla-
nations (SHAP) (Lundberg, 2017). 

The most promising directions for future research, in our opinion, 
involve investigating the performance of detection models that incor-
porate both the oversampling and discriminative powers of generative 
models with the ability of LSTMs and CNNs to capture long and short- 
term temporal relations in data and ultimately result in a system that 
is more robust and efficient in detecting fraudulent cases. Further, with 
these findings, it may be worthwhile exploring the adaptation of the 
techniques explored in this survey to the less researched areas of fraud 
such as securities & commodities fraud, mortgage fraud, insider trading 
and others. 
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