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Robust Nonlinear Model
Predictive Control With Model
Predictive Sliding Mode for
Continuous-Time Systems
This paper presents a robust, tube-based nonlinear model predictive controller for
continuous-time systems with additive disturbances which cascades two sampled-data
model predictive controllers: the first creates a desired path using nominal dynamics,
and the second maintains the true state close to the nominal state by regulating a sliding
variable designed on the error between the true and nominal states. The sampled-data
model predictive approach permits easy incorporation of continuous-time sliding mode
dynamics, allowing a dynamic boundary layer and tube design to be included. In this
way, the control applied to the system capitalizes on the robustness properties of tradi-
tional sliding mode control (SMC) while incorporating system constraints. Stability anal-
ysis is presented in the context of input-to-state stability (ISS) for continuous-time
systems. The proposed controller is implemented on two case studies, is compared to
benchmark tube-based model predictive controllers, and is evaluated using average root-
mean-square (RMS) values on the state and input variables, in addition to average inte-
gral square error (ISE) and integral absolute error (IAE) values on the position states.
Results reveal that the proposed technique responds to higher levels of disturbance with
significant increases in control effort, eliminates constraint violation by using of con-
strained SMC as the secondary controller, and maintains similar tracking performance
to benchmark controllers at lower levels of control effort. [DOI: 10.1115/1.4053026]

1 Introduction

Model predictive control (MPC) is a widely used control tech-
nique that formulates an optimal control effort over a time horizon
for a system with respect to state and input constraints [1].
Because of its ability to control complex, multivariable systems
with limited conceptual complexity, it has found success in the
automotive and process control fields [2–5]. Though powerful,
successful implementation of MPC depends on an explicit system
model, without which it breaks down in the presence of disturban-
ces, modeling error, or noise. In reality, all systems are plagued
by uncertainties, motivating the development of robust MPC
(RMPC) methods to maintain system performance in spite of
uncertainty.

A popular robust method is tube-based RMPC, in which a nom-
inal MPC problem generates a reference trajectory and a second-
ary controller endeavors to maintain the true system trajectory
within a “tube” centered on the reference trajectory. Adherence to
the tube is enforced by tightening the state and input constraints
of the nominal MPC such that they are satisfied for all possible
realizations of the given disturbances. Tube RMPC has been well
studied for linear systems [6–9], and extensions to nonlinear sys-
tems have seen increased focus [10–13].

One prevalent approach in extensions to nonlinear systems in
the literature has been to use sliding mode control (SMC) as the
secondary controller. Because it rejects matched disturbances,
SMC decreases the conservatism inherent in tube RMPC, which is
traditionally designed on the worst possible realization of the dis-
turbance. For example, the tube-based approach in Ref. [14]
incorporates an SMC to reduce the effect of intersample distur-
bances afflicting a sampled-data nonlinear MPC (NMPC), design-
ing the sliding surface to achieve the sliding mode at the initial

time instant. In a similar vein, Refs. [15–17] apply integral sliding
mode to address matched and unmatched disturbances, first intro-
duced in Ref. [18], allowing the nominal NMPC to be designed on
a system without tightened constraints in the case of only matched
disturbances and on a system with less conservative constraints in
the case of unmatched disturbances. Further, a nonrigid tube tech-
nique is presented [19] that optimizes the tube geometry as a func-
tion of a time varying boundary layer, describing a relationship
between the control bandwidth, system uncertainty, and tube size.

Though effective, these sliding mode based approaches fail to
take into consideration system constraints in the design of their
secondary controllers. This is especially true when implementing
traditional SMC as in Refs. [14] and [19] because, where integral
sliding mode can be naturally saturated by design through its con-
troller gain, SMC must be saturated postdesign to adhere to actua-
tor limitations. However, while input constraints can be
reasonably considered by saturation, state constraints are typically
disregarded, and adherence to them may be compromised by the
introduction of input saturation [20]. Earlier research on this issue
has focused on merging MPC and SMC control laws in a predic-
tive scheme, as introduced in Ref. [21] with generalized predictive
control, where the sliding variable is predicted along the horizon.
Reference [22] implemented a receding horizon sliding mode for
discrete-time systems designed to minimize the deviation of the
sliding variable from zero. A recent approach by Rubagotti et al.
[23] instead designed an MPC to mimic a discrete-time SMC,
rather than merge the techniques into an explicit control law.
Despite the fair amount of research in constrained SMC, literature
on its unification with RMPC is scarce. To the best of our knowl-
edge, only Ref. [24] has integrated MPC and SMC as an explicit
control law within the context of tube RMPC, adding an integral
SMC component to the optimal control problem. However, this
approach is limited to linear systems, leaving room to investigate
nonlinear solutions.

In this paper, we present a tube-based robust NMPC for nonlin-
ear control affine systems with a constrained SMC. System
dynamics are considered in continuous-time and controlled using

1Corresponding author.
Contributed by the Dynamic Systems Division of ASME for publication in the

JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received
May 13, 2021; final manuscript received November 5, 2021; published online
December 27, 2021. Assoc. Editor: Huiping Li.

Journal of Dynamic Systems, Measurement, and Control MARCH 2022, Vol. 144 / 031006-1
Copyright VC 2022 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/dynam

icsystem
s/article-pdf/144/3/031006/6818662/ds_144_03_031006.pdf by M

cM
aster U

niversity user on 27 February 2025

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4053026&domain=pdf&date_stamp=2021-12-27


NMPC for sampled-data systems with piecewise-continuous con-
trol signals, as presented in Refs. [25] and [26]. The proposed
scheme includes two cascaded NMPCs: one designed on the nom-
inal system to create a reference trajectory, and one designed on
the nominal system to minimize the distance between the true and
nominal system trajectories.

The primary contribution of this work lies in the use and design
of a constrained SMC as the latter controller, constructed as a
sampled-data model predictive sliding mode controller (MPSMC),
allowing an SMC to incorporate system constraints and mitigate
performance loss. Contrary to the design in Ref. [24], the combi-
nation of MPC and SMC in this paper requires no linearization of
system dynamics and no a priori constraint tightening. Asymptotic
stability of the overarching control is proven through regional
input-to-state stability (ISS) analysis. The controller is simulated
on two case studies, and performance is evaluated using root-
mean-squared values on the states and control effort.

The remainder of the paper is organized as follows: the nota-
tions used in this paper are presented in Sec. 2, followed by an
outline of the problem statement in Sec. 3. Section 4 describes the
proposed robust NMPC strategy. Section 5 examines the theoreti-
cal properties of the closed-loop system, followed by a discussion
on simulation results in Sec. 6. Finally, the paper is concluded in
Sec. 7.

2 Preliminaries and Notations

For any column vector x 2 Rn; jj � jj denotes the Euclidean
norm, and jjxjj2P :¼ xTPx, where P is a symmetric matrix, is the
weighted norm. Given two sets A;B � Rn, and points a 2 A
and b 2 B, Minkowski set subtraction is defined as
A�B :¼ fajfag�B � Ag, where � describes set addition defined
as A�B :¼ faþ bg. A set R�0 is a set of non-negative real num-
bers. A class C1 function is all continuously differentiable func-
tions. A function c : R�0 ! R�0 belongs to class K if it is
continuous, cð0Þ ¼ 0, and strictly increasing. A function c :
R�0 ! R�0 belongs to class K1 if it is a K-function and
cðsÞ ! 1 as lims!1. A function b : R�0 �R�0 belongs to a
class KL if it is continuous and if, for each fixed t � 0; bð�; tÞ 2
K and for each fixed s � 0; bðs; �Þ is nonincreasing and bðs; tÞ !
0 as t!1. Given t1 > 0 and t2 > 0; Lð½t1; t2�;RÞ represents
the Lebesgue measurable and essentially bounded functions map-
ping u : ½t1; t2� ! R.

3 Problem Setup

Consider a nonlinear, time-invariant, affine dynamic system
with an additive disturbance

xðnÞðtÞ ¼ f ðxðtÞÞ þ buðtÞ þ wðtÞ (1)

where xðtÞ 2 Rn is the system state with nth derivative, uðtÞ 2 Rr

is the system input, wðtÞ 2 Rn is an external disturbance, and b 2
Rn�r is the input matrix. The vector field f : Rn �Rr ! Rn is a
C1 function in its arguments and f ð0Þ ¼ 0, so that ðx; uÞ ¼ ð0; 0Þ
is the equilibrium for the system if w 	 0. The solution to Eq. (1)
at time t1 for initial condition xðt1Þ and piecewise-continuous

control uð�Þ 2Lð½t1; t�;RrÞ is denoted as xðs; xðt1Þ; uð�Þ;wð�ÞÞ;
s 2 ½t1; t�. In the absence of disturbances (w¼ 0), an undisturbed
model with assumed dynamics f̂ : Rn �Rr ! Rn is described
by

xðnÞðtÞ ¼ f̂ ðxðtÞÞ þ b̂uðtÞ (2)

For the remainder of the paper, we assume that no uncertainty
exists in the input channel, such that b̂ ¼ b. We consider for sub-
sequent analysis that the systems of Eqs. (1) and (2) are feedback
linearizable and can be described as a second-order nonlinear
model with a single input (i.e., n¼ 2, r¼ 1) with states defined as
f ¼ ½ x _x �T . Further, all following analysis can be extended to
multi-input systems, including square systems. Equation (1) is
subject to constraints satisfying the following assumption:

ASSUMPTION 1. (State, input, and disturbance constraint sets)
The constraint sets X � Rn;U � Rr, and W � Rn are closed
and bounded, containing the origin in their interior. Further, the
external disturbance is bounded such that

wðtÞ 2 W :¼ fw 2 Rn : jjwjj 
 Wg; 8t � 0 (3)

The control goal is to design a law to stabilize the closed-loop sys-
tem subject to state and input constraints for any possible uncer-
tainty upper bounded by W. In this paper, this is done using the
tube-based RMPC method, wherein the control input to Eq. (1) is
determined from: (1) an NMPC controller designed on Eq. (2) to
compute nominal state and input trajectories (zMPCðtÞ; vMPCðtÞ)
along a horizon ½tk; tk þ T� and (2) an auxiliary controller designed
to maintain the true state x(t) near zMPCðtÞ. The total control for
tube-based methodology is traditionally defined by

uðtÞ ¼ vMPCðtÞ þ jðxðtÞ; zMPCðtÞÞ (4)

where xðtÞ 2 X ; uðtÞ 2 U; vMPCðtÞ 2 V � U; zMPCðtÞ 2 Z � X ,
and V;Z are tightened input and state constraints. The auxiliary
controller jðxðtÞ; zMPCðtÞÞ steers the disturbed system trajectory
toward the nominal system trajectory such that x(t) remains inside
a robust control invariant (RCI) set around zMPCðtÞ.

DEFINITION 1. (Robust control invariant set) Let eðtÞ :¼ xðtÞ
�zMPCðtÞ. A set S � X is a RCI set if there exists a control
jðxðtÞ; zMPCðtÞÞ 2 U such that if eðt0Þ 2 S, then for all allowable
wðtÞ 2 W, it holds that eðtÞ 2 S 8t � t0.

The set S forms a bounded neighborhood (tube) around zMPC,
which can be rigid or nonrigid and determined offline or online.
Determining S depends on the selection of jð�; �Þ, which will be
discussed in Sec. 4.2.

4 Robust Nonlinear Model Predictive Control

Framework

This section describes the proposed nonlinear tube-based
NMPC, whose controller architecture is displayed in Fig. 1. The
proposed framework is composed of two sampled-data model pre-
dictive controllers: an NMPC for the primary controller and an
MPSMC for the auxiliary controller. In sampled-data NMPC, the
optimal control problem is solved at sampling instances tk¼ kTs,

Fig. 1 Block diagram of the proposed control strategy
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where k 2N, and Ts 2 R�0 is the sampling time. We assume that
the sampling time is constant such that tkþ1 ¼ tk þ Ts. Further, the
cost functions satisfy the following:

ASSUMPTION 2. (Cost function continuity) The stage cost lð�; �Þ
is continuous, lð0; 0Þ ¼ 0, and quadratic defined as
lðx; uÞ ¼ jjxjj2Q þ jjujj

2
R, where Q is positive semidefinite, and R is

positive definite. Further, the stage cost is lower bounded by a
K1 function al such that alðjjxðtÞjjÞ 
 lðx; uÞ; 8xðtÞ 2 X ;
uðtÞ 2 U. The terminal cost Vf ð�Þ is C1, Vf ð0Þ ¼ 0, and quadratic
defined as Vf ðxÞ ¼ jjxjj2P, where P is positive definite.

4.1 Primary Controller (Nonlinear Model Predictive Con-
trol). The primary controller is designed to control the undis-
turbed system of Eq. (2) with nominal state z(t) and nominal input
v(t). Its optimization problem at sampling instant tk given initial
state zðtkÞ is stated as:

Problem 1 (nominal optimal control problem).

min
vð�Þ2Lð½tk ;tkþT�;RrÞ

JT;nomðzðtkÞ; vð�ÞÞ (5a)

subject to €zðsÞ ¼ f̂ ðzðsÞÞ þ bvðsÞ (5b)

zðtkÞ ¼ z0 (5c)

zðsÞ 2 Z; vðsÞ 2 V (5d)

zðtk þ TÞ 2 Z f

s 2 ½tk; tk þ T� (5e)

where the initial state z0 is selected as the solution to Eq. (2) with
the optimal input determined by the controller at the previous
sampling instant such that z0 ¼ z�ðtkþ1; zðtkÞ; v�ð�ÞÞ, where ð�Þ�
denotes the optimal solution, and T is the time horizon. The con-
straint set Z f � X is the tightened terminal constraint set contain-
ing the origin in its interior. The open-loop cost function for the
nominal state and input trajectories is

JT;nomðzðtkÞ; vð�ÞÞ

¼
ðtkþT

tk

lnomðzðsÞ; vðsÞÞdsþ Vf ;nomðzðtk þ TÞÞ (6)

where the stage cost lnomðz; vÞ : Rn �Rr ! R�0 is
lnomðz; vÞ ¼ jjzðsÞjj2Q þ jjvðsÞjj

2
R; the terminal cost Vf ;nomðzÞ :

Rn ! R�0 is Vf ;nomðzÞ ¼ jjzðtk þ TÞjj2P; and the subscript ð�Þnom

indicates the function belongs to the primary controller. The out-
put of Eq. (5) is an optimal open-loop input sequence along the
time horizon v�ð�; zðtkÞÞ. The control input that would be applied
to the system until time instant tkþ1 is denoted as

vMPCðtÞ ¼ v�ðt; zðtkÞÞ; t 2 ½tk; tkþ1Þ (7)

which is recalculated at each sampling instant. The associated
optimal state to Eq. (7) is zMPCðtÞ ¼ z�ðt; zðtkÞ; v�ðt; zðtkÞÞÞ;
t 2 ½tk; tkþ1Þ. Note that the primary controller has no interaction
with the real system as the state trajectory is initialized with nomi-
nal state z0. The goal of Problem 1 is to stabilize the undisturbed
system. Given the above conditions, the closed-loop system for
Eq. (2) based on the application of u ¼ vMPCðtÞ is rendered stable
given assumptions on the terminal ingredients:

ASSUMPTION 3. (Terminal set and terminal set stability) For the
system given by Eq. (2), there exists a local asymptotically stabi-
lizing control law kf ðzÞ 2 V such that:

If kf ðzÞ 2 V 8z 2 Z f , and if z0 2 Z f , then the solution
zðt; z0; kf ðzÞÞ 2 Z f ;8t � 0.

The terminal cost satisfies the inequalities

a3ðjjzjjÞ 
 Vf ;nomðzÞ 
 a4ðjjzjjÞ (8)

dVf ;nom zð Þ
dz

f̂ zð Þ þ bkf zð Þ
� �




� lnom z; kf zð Þ
� �

;8z 2 Z f (9)

where a3ð�Þ; a4ð�Þ 2K1.
These are standard assumptions to ensure stability of the

closed-loop for Eq. (2) that are straightforward to satisfy given
appropriate selection or design of Vf ;nom. Based on selection of
Vf ;nom, the terminal constraint set Z f can also be determined as
discussed in Refs. [1] and [26] and the references therein. Here,
boundedness refers to the following definition:

DEFINITION 2. (Asymptotic ultimate boundedness) A system is
asymptotically ultimately bounded if a set of initial conditions of
the system converges asymptotically to a bounded set [11].

Remark 1. For simplicity, in this paper, we assume that the ter-
minal constraints are limited either to a zero terminal constraint
Z f ¼ f0g or to Z f ¼ fzeg where ze represents a set of equilibrium
states specific to the system dynamics. Expansions to more robust
terminal regions and sets are left as an avenue of future work.

4.2 Auxiliary Controller (Model Predictive Sliding Mode
Controller). The selected auxiliary controller is a model predic-
tive sliding mode controller whose goal is to maintain the per-
turbed system of Eq. (1) near the undisturbed system of Eq. (2). In
this paper, this is achieved by designing the MPSMC cost function
to minimize the deviation between a system propagated using
Eq. (2) and the optimal nominal trajectory z�ð�; zðtkÞ; v�ð�; zðtkÞÞÞ.
Specifically, in recasting a sliding mode controller as a model pre-
dictive control problem, the control goal is to reach and maintain
the sliding surface along the horizon. This is accomplished by
incorporating the dynamics in the sliding mode, i.e., the dynamics
that would maintain the derivative of the surface at zero. If a
boundary layer is introduced, then direct parameterization of the
RCI geometry is possible. Before deriving the auxiliary controller,
we will first review the formulation of a boundary layer SMC as
described in Ref. [27] and its relation to developing the tube S.
We assume the following on the system dynamics:

ASSUMPTION 4. The nonlinear dynamics are bounded by a model
error function F(x)

jf ðxÞ � f̂ ðxÞj 
 FðxÞ (10)

The sliding surface (with time argument omitted) is defined as

s ¼ d

dt
þ k

� �n�1

et ¼ _et þ ket (11)

where et :¼ x� xd is the tracking error between the state and the
desired trajectory, and k > 0 is a scalar gain. The derivative of
Eq. (11) is

_s ¼ €et þ k _et

¼ f ðxÞ þ buþ w� €xd þ k _et (12)

As stated in Ref. [27], a boundary layer sliding mode controller
(in the absence of disturbances) takes the form

u ¼ b�1 �f̂ xð Þ þ €xd � k _et � �K xð Þsat
s

/

� �� 	
(13)

where satð�Þ is the saturation function

sat s;/ð Þ ¼
s

/
jsj 
 /

sign sð Þ jsj > /

8<
: (14)
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and where / is the boundary layer thickness and the gain �KðxÞ is
determined by

�KðxÞ ¼ FðxÞ þW þ g� _/ (15)

where g > 0 is a design parameter that satisfies the sliding condi-
tion. A dynamic equation can be written for the boundary layer as

_/ ¼ �k0/þ FðxdÞ þW þ g (16)

where k0 is the control bandwidth which can be used to tune /. In
sliding mode theory, the first three feedback terms of Eq. (13) are
referred to as the equivalent control û, which is the component of
the input that maintains Eq. (12) at zero given known system
dynamics. The last feedback term in Eq. (13) is referred to as the
discontinuous control uK, which is the component of the input that
forces the system trajectories to the sliding surface. An RCI tube
is formed for the state error vector ~f ¼ ½ et _et �T from the time
domain solution to Eq. (11)

~fðtÞ ¼ eAðt�t0Þ~fðt0Þ þ
ðt

t0

eAðt�sÞBsðsÞds (17)

where A ¼ �k and B¼ 1 from the controllable canonical formula-
tion. Taking the element-by-element absolute value of Eq. (17),
noting jsðsÞj 
 /ðsÞ, and assigning SðtÞ ¼ j~fðtÞj, the tube is for-
mally described by [19]

SðtÞ 
 eAðt�t0ÞSðt0Þ þ
ðt

t0

eAðt�sÞB/ðsÞds (18)

Equation (18) bounds the state tracking error and its derivatives as
a function of the boundary layer thickness that bounds the sliding
surface, rendering the sets

B :¼ fs 2 Rn : jsðtÞj 
 /ðtÞ;8x 2 Xg (19)

S :¼ fx 2 Rn : SðtÞ 
 eAðt�t0ÞSðt0Þ

þ
ðt

t0

eAðt�sÞB/ðsÞds; 8x 2 Xg ;8t � t0 (20)

where B;S are RCI for the sliding surface and state error, respec-
tively, by Definition 1.

The sliding mode problem presented above can be recast as a
model predictive control problem subject to the definition of the
sliding surface dynamics, system dynamics, and state and input
constraints. The goal of the problem is to regulate s¼ 0, which is
accomplished in sliding mode theory by driving Eq. (12) to zero.
Given known system dynamics, this is accomplished by û. How-
ever, the total control input u, necessary to achieve both the reach-
ing and sliding phases, is the desired decision variable for the
controller. The control u can be substituted into Eq. (12) by
manipulating the relationship between u; û, and uK which is

u ¼ û þ uK (21)

Rearranging for û yields

û ¼ u� ð�b�1 �KðxÞsatðs;/ÞÞ (22)

A new version of the sliding derivative for use in the optimal con-
trol problem is defined as

_s ¼ f ðxÞ þ bðuþ b�1 �KðxÞsatðs;/ÞÞ � €xd þ k _et (23)

Thus, the optimization for the auxiliary controller jð�; �Þ at time-
step tk is:

Problem 2 (auxiliary optimal control problem).

min
�uð�Þ2Lð½tk ;tkþT�;RrÞ

¼ JT;jðsðtkÞ; �uð�ÞÞ (24a)

subject to _�sðsÞ ¼ f̂ ð�xðsÞÞ þ bð�uðsÞ (24b)

þb�1 �Kð�xðsÞÞsatð�sðsÞ; �/ðsÞÞÞ
�€xdðsÞ þ k:�e tðsÞ

€�xðsÞ ¼ f̂ ð�xðsÞÞ þ b�uðsÞ
(24c)

_�/ðsÞ ¼ �k0�/ðsÞ þ FðxdðsÞÞ þW þ g (24d)

_�SðsÞ ¼ A�SðsÞ þ B�/ðsÞ (24e)

�xðtkÞ ¼ xðtkÞ; �sðtkÞ ¼ sðtkÞ (24f )

�/ðtkÞ ¼ /0; �SðtkÞ ¼ jeðtkÞj (24g)

�xðsÞ 2 X ; �uðtÞ 2 U (24h)

�xðtk þ TÞ 2 X f

s 2 ½tk; tk þ T� (24i)

where xdðsÞ and its derivatives are the associated optimal state tra-
jectory from Problem 1, /0 ¼ �/

�ðtkþ1; sðtkÞ; �u�ð�ÞÞ from the previ-
ous sampling instant, and ð�Þ indicates internal variables in the
optimization problem, specified to avoid confusion with the true
system dynamics. The value sðtkÞ is dependent on the current state
and the optimal nominal solution, evaluated using Eq. (11). The
open-loop cost function, JT;j, of the predicted surface and input
sequences is

JT;jðsðtkÞ; �uð�ÞÞ

¼
ðtkþT

tk

ljð�sðsÞ; �uðsÞÞdsþ Vf ;jð�sðtk þ TÞÞ (25)

where the stage cost ljðs; uÞ : Rr �Rr ! R�0 is
ljðs; uÞ ¼ jj�sðsÞjj2Q0 þ jj�uðsÞjj

2
R; the terminal cost Vf ;jðsÞ : Rr !

R�0 is Vf ;jðsÞ ¼ jj�sðtk þ TÞjj2P0; and the subscript ð�Þj indicates
the function belongs to the auxiliary controller.

Remark 2. Given the model error function, F(x), is an upper
bound of possible parametric uncertainty, its presence in
Eq. (24d) is justifiable despite the primary and auxiliary control-
lers being based on the same dynamics. However, if the true sys-
tem dynamics f(x) are known, one can eliminate the bound from
the formulation.

The solution to Eq. (24) is the optimal open-loop control input
implemented on the system until the next sampling instant tkþ1

uMPCðtÞ ¼ �u�ðt; sðtkÞÞ; t 2 ½tk; tkþ1Þ (26)

Additional outputs of Eq. (24) are the associated predicted optimal
trajectories for the sliding surface �s�, the state trajectory �x�,
boundary layer thickness �/

�
, and tube size �S

�
for t 2 ½tk; tk þ T�.

The optimal tube size is the portion of the optimal tube trajectory
implemented from the current time to the next sampling instant,
i.e., SoptðtÞ ¼ �S

�ðt; sðtkÞ; �u�ðt; sðtkÞÞÞ; t 2 ½tk; tkþ1Þ. This value is
used to determine the tightened constraints. The inputs to Eq. (24)
include the state, sliding variable, and state error of the real sys-
tem at the current sampling instant, the previously optimized
boundary layer size, and the optimal sequences
z�ð�; zðtkÞ; v�ð�; zðtkÞÞÞ and v�ð�; zðtkÞÞ from the primary controller.

The nonlinear tube RMPC for the system in Eq. (1) formed by
cascading Problems 1 and 2, as seen in Fig. 1 and as described in
Algorithm 1, is referred to as NMPC–MPSMC for the remainder
of the paper. As described in Algorithm 1, the control resulting
from the MPSMC provides the total control to the disturbed sys-
tem, supplanting the formulation in Eq. (4) such that the resultant
closed-loop system at each sampling instant is
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Algorithm 1: Robust Control Alogrithm (NMPC-MPSMC)

Step 0: At t ¼ t0, initialize z(t0)¼ �xðt0Þ ¼ x(t0) ¼ xref(t0) and �sðt0Þ ¼
s(t0), where xref is the initial state of the reference trajectory

Step 1: Solve Problem 1 to determine the optimal sequences z*(t), v* (t)
at time tk with current state z(tk)

Step 2: Solve Problem 2 to determine the optimal control u*(t), at time
tk with current state x(tk) and current sliding variable s(tk)

Step 3: Apply uMPC(t) to (1) during the inverval t 2 [tk, tkþ1) and mea-
sure the successor variable x(tkþ1), s(tkþ1). Apply uMPC(t) to (2)
and determine z*(tkþ1).

Step 4: Set z(tk) ¼ z*(tkþ1), �xðtkÞ¼ x(tkþ1), �sðtkÞ ¼ s(tkþ1), tk ¼ tkþ1 and
go to Step 1.

Step 5: Terminate at tkþ1¼ tf, the final simulation time

€xðtÞ ¼ f ðxðtÞÞ þ buðtÞ þ wðtÞ; uðtÞ ¼ uMPCðtÞ (27)

Remark 3. Problem 2 assumes the same general formulation as
Problem 1, but with respect to the sliding variable. As such,
Assumption 3 can be redefined with the sliding dynamics:

ASSUMPTION 5. There exists a stabilizing control law kf ðxÞ 2 U
such that:

If kf ðxÞ 2 U;8s 2 B and if sðt0Þ 2 B, then u ¼ kf ðxÞ ensures
sðt; sðt0Þ; kf ðxÞÞ 2 B 8t � t0.

The terminal cost satisfies the inequalities

a5ðjjsðtÞjjÞ 
 Vf ;jðsðtÞÞ 
 a6ðjjsðtÞjjÞ (28)

dVf ;j s tð Þð Þ
ds tð Þ _s tð Þð Þ 
 �lj s tð Þ; kf xð Þ

� �
; 8s 2 B (29)

where a5ð�Þ; a6ð�Þ 2K1.
Assumption 5 reveals that due to the relationship established in

Eq. (18), s 2 B ! e 2 S. Additionally, if zMPCðtÞ ¼ 0, then S is
control invariant for Eq. (1). Note that Eq. (29) can be used to
verify the descent property of the value function for Problem 2,
showing that the value function decreases along the solution tra-
jectories from the first sampling instant, and thus that s(t)
decreases with respect to B.

4.3 Constraint Tightening. The tightened constraints, which
are necessary to ensure robust constraint satisfaction, are deter-
mined in this section. Constraints Z;V are initialized as equivalent
to constraints X ;U at time t0 and change as a function of time
based on the optimal tube size, SoptðtÞ. The original constraints
have the form

X ¼ fx 2 RnjLxx 
 Bxg (30)

U ¼ fu 2 RrjLuu 
 Bug (31)

where Lx, Lu and Bx, Bu are user determined constants for the lin-
ear inequality constraints.

4.3.1 State Constraints. The state constraint can be tightened
using the geometry of the tube determined by the auxiliary con-
troller. Because applying Eq. (26) to Eq. (1) bounds the true state
to an RCI, the difference between the nominal and true system tra-
jectories is bounded as xðtÞ � zMPCðtÞ 2 S;8t 2 ½tk; tk þ T�. Rear-
ranging yields the modified state constraint

Z :¼ X � S (32)

Resulting in the linear constraints Z ¼ fz 2 Rn :
Lxz 
 Bx � LxSoptg.

4.3.2 Control Constraints. When an NMPC is used as the
auxiliary control, control constraint tightening typically takes the
form V ¼ cU, where the tightened constraint is a scalar fraction c
of the original constraint. However, in sliding mode based robust
NMPC designs, the upper bound of the auxiliary control SMC is

used to tighten the input constraint. A similar approach is taken
here with a basic assumption on the primary controller.

LEMMA 1. Let the initial conditions of the nominal state z(t) be
such that Eq. (2) for the primary controller starts in the sliding
mode. Then, the control necessary to maintain the sliding motion
is the equivalent control û and the tightened input constraint is

V :¼ U � fb�1 �KmaxðxðtÞÞg (33)

where �KmaxðxðtÞÞ ¼
maxf �KðzMPCðtÞ � SoptðtÞÞ; �KðzMPCðtÞ þ SoptðtÞÞg; t 2 ½tk; tkþ1Þ
represents the element-by-element maximum discontinuous
control.

Proof. The upper bound of the controller input is the input con-
straint U. By design this upper bounds the control allotted for
Eq. (24), which includes both equivalent and discontinuous con-
trols. In the sliding mode, only û is necessary to maintain _s ¼ 0.
Thus, determining how much input should be allotted for û can be
reduced to maximizing the saturation term and subtracting it from
the bound. The maximum discontinuous control becomes
maxfuKg ¼ �KðxðtÞÞ, the value of which must be determined at
the bounds of the tube defined as xðtÞ ¼ zMPCðtÞ6SoptðtÞ;
t 2 ½tk; tkþ1Þ. Substituting this information into Eq. (13) yields

û 2 U � fb�1 �KmaxðxðtÞÞg (34)

If zðt0Þ ¼ xrefðt0Þ, then the primary control starts in the sliding mode,
only requires û, and yields Eq. (33). This results in the tightened lin-
ear constraints V ¼ fv 2 Rr : Luv 
 Bu � Lub�1 �KmaxðxðtÞÞg. �

5 Stability Analysis

This section analyzes the feasibility of the auxiliary control and
the convergence properties of the closed-loop system Eq. (27)
using Eq. (26). Convergence is illustrated by way of input-to-state
stability, which was introduced in Ref. [28] as a suitable frame-
work to establish robust stability of MPC controlled systems and
which is defined for continuous-time systems as:

DEFINITION 3. (Input-to-state stability) Consider the system of
Eq. (1) satisfying Assumption 1 and having initial condition
x0 ¼ xðt0Þ. Then, the system is ISS with respect to w if there exists
functions b 2KL;r 2K such that for all t � t0; x0 2 X ,
bounded disturbance w 2 W, and bounded input u 2 U

jjxðs; x0; uð�Þ;wð�ÞÞjj 

bðjjx0jj; tÞ þ rð sup

t0
s
t
jjwðsÞjjÞ; s 2 ½t0; t� (35)

Given the above and the proposed control, the following stability
results are stated.

THEOREM 1. Suppose Assumptions 1–5 are satisfied and Problems
1 and 2 are feasible at the intial time instant. Then, the closed-loop
system of Eq. (27) controlled by Eq. (26) is input-to-state stable
with respect to wðtÞ 2 W for all initial conditions xðt0Þ 2 X .

Remark 4. Because Problem 1 has no interaction with the dis-
turbed system of Eq. (1), instead using the state and dynamics of
the nominal system only, it is guaranteed recursively feasible and
asymptotically ultimately bounded.

Proof. The proof of the theorem has two parts. First, recursive
feasibility of Problem 2 is demonstrated, i.e., that existence of a
solution at time tk implies existence of a solution at tkþ1. Then, con-
vergence of the closed-loop system in the sense of ISS is shown.

Feasibility: Assume the solution to Problem 2 exists at time tk.
The optimal input sequence solved at tk can be written as a
concatenation

�u�ðs; sðtkÞÞ ¼
�u�ðs; sðtkÞÞ; s 2 ½tk; tkþ1�
�u�ðs; sðtkÞÞ; s 2 ½tkþ1; tk þ T�

(
(36)
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which satisfies the state and input constraints. By Assumption 5,
at the next sampling instant tkþ1, there exists a feasible input ~u
composed of the s 2 ½tkþ1; tk þ T� portion of Eq. (36) and a u ¼
kf ðxÞ that satisfies control invariance for s 2 B over
s 2 ½tkþ1; tkþ1 þ T�

~uðs; sðtkþ1ÞÞ ¼
�u�ðs; sðtkþ1ÞÞ; s 2 ½tkþ1; tk þ T�
kf ðxðsÞÞ; s 2 ½tk þ T; tkþ1 þ T�

(
(37)

Further, due to the RCI property associated with Problem 2,
Eq. (37) guarantees that the true state will lie in the tube S � X ,
hence

xðtkþ1 þ s; �u�ð�Þ; xðtkþ1ÞÞ 2 X ; 8s 2 ½0; T� (38)

Because the sequence ~uð�; sðtkþ1ÞÞ is admissible at the next sam-
pling instant, feasibility at tk implies feasibility at tkþ1, i.e., if
Problem 2 is feasible at t¼ 0, it is feasible for all t � 0.

Convergence: Problem 1 guarantees boundedness of Eq. (2) so
there exists bð�Þ 2 KL such that

jjzðtÞjj 
 bðjjzðt0Þjj; tÞ; t � t0 (39)

Because Problem 2 induces an RCI for eðtÞ 2 S, we have a rð�Þ 2
K such that

jjeðtÞjj 
 rð sup
t0
s
t

jjwðsÞjjÞ; t � t0 (40)

Thus, using the definition eðtÞ ¼ xðtÞ � zðtÞ, we can rearrange and
apply the triangle inequality to get

jjxðtÞjj 
 jjzðtÞjj þ jjeðtÞjj (41)

Subsituting Eq. (39), Eq. (40), the bound of w from Eq. (3), and
noting that the true and nominal systems are initialized the same,
i.e., xðt0Þ ¼ zðt0Þ

jjxðtÞjj 
 bðjjxðt0Þjj; tÞ þ rðWÞ (42)

So, the solution to Eq. (1) under the control of Eq. (26) is ISS in
the closed-loop. �

6 Numerical Examples

In this section, we verify the proposed method on two case
studies and against two robust NMPC techniques. The first study
involves control of a single input spring–mass–damper system, in
which the effect of the disturbance bound and adherence to con-
straints are examined. The second application focuses on the con-
trol of a more complex multi-input spacecraft dynamic system,
where sliding surface activity is inspected.

6.1 Case Study 1: Spring–Mass–Damper System. The pro-
posed controller is verified on a nonlinear spring–mass–damper
system, with dynamics given by Landis Markley and Crassidis
[29] as

_x1ðtÞ ¼ x2ðtÞ (43a)

_x2 tð Þ ¼ 1

m
�k1x1 tð Þ � k2x3

1 tð Þ � cx2 tð Þjx2 tð Þjþu tð Þ þ w tð Þ
� �

(43b)

where x1 is the position of the mass with respect to equilibrium, x2

is its velocity, u is the force applied to the mass, w is an additive
load disturbance, and m; k1; k2; c > 0 are the mass, spring
constants, and damping values, respectively. The value of w
is randomized but satisfies jwj 
 W. The system f(x) is

assumed known, so F(x)¼ 0. The user-defined constraint sets
are X ¼ fjx1j 
 0:75 m; jx2j 
 1 m=sg; U ¼ fjuj 
 1 Ng, and
X f ¼ Z f ¼ f0g. System parameters, initial conditions, and
weighting matrices are provided in Table 1. Simulations are
implemented in MATLAB via direct multiple shooting with CASADI,
which includes the nonlinear optimization library IPOPT [30]. The
sampling time is Ts ¼ 0:2 s with a time horizon of T ¼ 1 s. The
simulation time is t ¼ 50 s.

Closed-loop performance is evaluated using three metrics: the
root-mean-square (RMS) values of the states and control input;
the integral absolute error (IAE) of the position state; and the inte-
gral square error (ISE) of the position state. All metrics are com-
puted as an average over 100 simulations and presented in
Tables 2 and 3. Each simulation evaluates at a randomly selected
w from within the specified bound. Figure 2 illustrates the trajec-
tories of the states, sliding surface, and the control effort of the
system for one realization of the disturbance. As expected, the
nominal state stabilizes subject to the tightened constraint, while
the true state reaches steady-state offset from the nominal value.
The sliding variable does not achieve zero, but it is well bounded
within the boundary layer. Finally, the primary controller input is
bounded within its tightened constraint, and the auxiliary control-
ler input stabilizes at around �0.2 N.

Another set of simulations were run to investigate the effect of
the disturbance bound on the proposed method. An increased dis-
turbance bound of W¼ 1.25 N was considered, with RMS results
reported in Table 2 and position and control effort trajectories pre-
sented in Fig. 3. It is seen that the amount of disturbance

Table 1 System parameters: spring–mass–damper

Parameter Value Parameter Value

k1 1.5 N/m k 3
k2 0.75 N/m k0 1
m 1 kg x0, z0 ½ 0:5 0 �T m
c 3 N s/m Q, P diagð3 3Þ
W 0.25 N R 1
g 0.25 Q0;P0 10

Table 2 RMS values: spring–mass–damper

W¼ 0.25 N

Controller

Parameter NMPC–NMPC [1] NMPC–DTMPC [19] NMPC–MPSMC

x1 (m) 0.0945 0.111 0.0722
x2 (m/s) 0.0530 0.0591 0.0533
u (N) 0.0635 0.0391 0.117

x1 (m) 0.299 0.416 0.111
x2 (m/s) 0.0589 0.0627 0.0629
u (N) 0.186 0.125 0.510

Table 3 x1 integral errors: spring–mass–damper

Controller W¼ 0.25 N W¼ 1.25 N

ISE
NMPC–NMPC [1] 0.391 m 5.91 m
NMPC–DTMPC [19] 0.547 m 11.14 m
NMPC–MPSMC 0.186 m 0.617 m

IAE
NMPC–NMPC [1] 3.08 m 14.5 m
NMPC–DTMPC [19] 4.00 m 20.0 m
NMPC–MPSMC 1.23 m 4.39 m
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minimally impacts the amount of constraint tightening where Z
decreases by about 0.1 m and V remains about the same as a result
of the increase in uncertainty from the 0.25 N disturbance bound.
From the RMS data, one can see that while comparable levels of
state error are achieved between the different bounds, there is a
significant increase in the controller RMS. This aligns with tradi-
tional concerns on implementing sliding mode control, where
decent tracking performance can be maintained in the face of
uncertainty at the cost of higher levels of control effort. While the
input applied remains well within the constraints, clearly serious
consideration must be given between desired tracking perform-
ance and input restrictions.

The proposed algorithm is verified against the tube RMPC
methods presented in Refs. [1] and [19], referred to here as
NMPC–NMPC and NMPC–DTMPC respectively, where the latter
controller employs a dynamic tube model predictive controller
(DTMPC). These are selected for comparison because the former
is a traditional benchmark tube RMPC method while the latter is a
tube RMPC method that uses SMC as the auxiliary control, allow-
ing for insight into how encapsulating sliding control under MPC
affects system performance. The nominal cost function of
NMPC–NMPC employs only the stage cost, identical to lnomðz; vÞ,
while its auxiliary controller cost function is

JðxðtkÞ; �uð�ÞÞ ¼
ðtkþT

tk

lð�xðsÞ; �uðsÞÞdsþ Vf ð�xðtk þ TÞÞ (44)

subject to the system dynamics, initial condition constraint, and
input constraints, with stage cost lðx; uÞ ¼ jjx� zjj2QNMPC

þ jju�
vjj2RNMPC

and terminal cost Vf ðxÞ ¼ jjxjj2QNMPC
, where QNMPC ¼

diagð50 50Þ and RNMPC ¼ 0:5. The nominal control problem

constraints are Z ¼ X and V ¼ cU, where c ¼ 0:8 is a scalar that
has been tuned to limit constraint violations. The nominal cost
function of NMPC–DTMPC is

JðxðtkÞ; �uð�ÞÞ ¼
ðtkþT

tk

lð�xðsÞ; �k0ðsÞ; �uðsÞÞdsþ Vf ð�xðtk þ TÞÞ (45)

subject to the system, boundary layer, and tube dynamics, initial
condition and terminal constraints, input and state constraints, and
additional constraints detailed in Ref. [19], with stage cost

lðx; k0; uÞ ¼ jjx� zjj2Q þ jjk
0jjR þ jjujj

2
R and terminal cost

Vf ðxÞ ¼ jjxjj2P. The weighting matrices Q, R, and P are identical to
those defined in Table 1. The auxiliary controller for
NMPC–DTMPC is a boundary layer sliding mode controller that

operates with control bandwidth k0, gain �KðxÞ tuned according to
Eq. (15), and SMC variables k and g identical to those in Table 1.
Note that the value for the control bandwidth is static for
NMPC–MPSMC but a tuned decision variable for the
NMPC–DTMPC. With respect to this variable, it is upper and
lower bounded for NMPC–DTMPC implementation with user

selected values as 0:5 
 k0 
 5. Further, to incorporate the control
constraint, NMPC–DTMPC’s control input is saturated at 1 N.

The RMS data in Table 2 at W¼ 0.25 N reveal that
NMPC–MPSMC both maintains the lowest position state error
and exerts the most control effort when evaluated against the com-
parison controllers. Increasing the disturbance bound exacerbates
this observation. While both NMPC–NMPC and NMPC–DTMPC
increase over three times their initial x1 state errors as a result of
the disturbance increase, the proposed control increases minimally
from 0.0722 m to 0.111 m. The data in Table 3 corroborate this
observation. The IAE values highlight that the proposed method

Fig. 2 Plots of nominal and true system trajectories (z, x) with nominal state constraint (Z),
the sliding surface trajectory (s) with boundary layer (), and the nominal and auxiliary control
inputs (v, u) with nominal input constraint (V)
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maintains the smallest deviation from the origin regardless of dis-
turbance size, while the ISE values indicate that it maintains
stronger disturbance rejection properties than the remaining con-
trollers. However, where neither comparison controllers increase
in control input by more than about 0.1 N, NMPC–MPSMC
increases by over 0.4 N from 0.117 N to 0.510 N for W¼ 1.25 N.
That the impact of an increased disturbance bound is considerably
higher on NMPC–MPSMC’s control effort than the comparison
controllers, especially NMPC–DTMPC which is also SMC-based,
reinforces the potential tradeoff between tracking and input
requirements in implementing this control design.

The benefit to constraining the SMC auxiliary controller is
highlighted in Fig. 4, which displays the phase plots for the sys-
tem for both NMPC–MPSMC and NMPC–DTMPC. The trajecto-
ries in the proposed control remain a safe distance from the
extremities of their constraints, while the NMPC–DTMPC trajec-
tories edge close to their x1 constraint and even violate it on some
occasions. Though these violations seem relatively minor, their
appearance suggests cases in which an unconstrained SMC can
violate the desired state constraint, even while satisfying the input
constraint. However, these violations are avoided using a con-
strained sliding mode controller such as MPSMC for the auxiliary
control, offering another tradeoff depending on system
requirements.

6.2 Case Study 2: Nonlinear Satellite System. This section
considers the stabilization of a nonlinear spacecraft system by the
proposed control. The kinematic and dynamic equations of a rigid
body spacecraft with reaction wheels in the presence of external
disturbances are

_q tð Þ ¼ 1

2
X xb tð Þð Þq tð Þ (46a)

_xbðtÞ ¼ I�1
b ½sextðtÞ þ TcðtÞ
� ½xbðtÞ��ðIbxbðtÞ þ LhwðtÞÞ� (46b)

where q ¼ ½ q1 q2 q3 q4 �T is the quaternion represented atti-
tude with vector portion q1:3 and scalar q4, xb ¼ ½xx xy xz �T
is the angular velocity of the satellite body in the body frame, Ib is
the moment of inertia of the satellite body represented as a 3� 3
matrix, hw is the reaction wheel angular momentum vector with
respect to the body frame, sext ¼ ½ sext;x sext;y sext;z �T is an exter-
nal disturbance, Tc ¼ ½Tc;x Tc;y Tc;z �T is the control torque input,
and the operation XðxbÞ, skew-symmetric matrix ½xb��, and reac-
tion wheel distribution matrix for a pyramid configuration L equal

XðxbÞ ¼
�½xb�� xb

�xT
b 0

" #
(47)

½xb�� ¼
0 �xz xy

xz 0 �xx

�xy xx 0

2
4

3
5 (48)

L ¼
a �a 0 0

b b c c
0 0 d �d

2
4

3
5 (49)

where the constraint a2 þ b2 ¼ c2 þ d2 ¼ 1 applies and the values
are defined by a ¼ b ¼ c ¼ d ¼ 1=

ffiffiffi
2
p

. The system’s state and
control vectors are x ¼ ½ q xb �T and u ¼ ½Tc �T . The state error

Fig. 3 Plots of the position and control input trajectories for 100 realizations of uncertainty
at W 5 0.25 N (left) and W 5 1.25 N (right)
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dynamics, necessary for sliding mode implementation, can be
described by

qe ¼ q q�1
d (50)

xe ¼ xb � xd (51)

where q is the measured quaternion, qd is the desired quaternion,
xb is the measured angular velocity of the body, xd is the desired
angular velocity of the body, and the operator q represents

q ¼
q4I3 � ½q1:3�� q1:3

�qT
1:3 q4

" #
(52)

where I3 is a 3� 3 identity matrix, and ½q1:3�� is identical to
Eq. (48) using the quaternion vector components. The sliding sur-
face for the system is defined by

s ¼ xe þ kqe;1:3 (53)

The new weighting matrices Q, R, and P, used in all
controllers, are now equivalent to Q ¼ P ¼
diagð 102 102 102 10�2 100 100 100 Þ and R ¼ 2I3. Fur-
ther, the NMPC–MPSMC auxiliary weighting matrices are
Q0 ¼ P0 ¼ 5� 104I3. The updated NMPC–NMPC gains are
QNMPC ¼ diagð 103 103 103 10�2 100 100 100 Þ and
RNMPC ¼ 0:5I3, and c remains unchanged. For the SMC-based
methods, the control bandwidth k0 and its upper and lower bound
remain unchanged, while now k ¼ 0:015 and g ¼ 0:03.

The numerical simulation for the satellite system considers sta-
bilization to the state vector x ¼ ½ 0 0 0 1 0 0 0 �T . As
done in Case Study 1, the value of the disturbance is randomized
but satisfies an upper bound selected as sext;max ¼ 3� 10�6 N�m,
and the system is assumed known with inertia matrix Ib ¼
diagð 399 377 377 Þ kg m2. The constraint sets are

X ¼ f�0:225 
 q1 
 0:1503;�0:1503 
 q2 
 0:225;

�0:225 
 q3 
 0:1503; 0:936 
 q4 
 0:9997;

jxbj 
 0:05 rad=sg
U ¼ fjuj 
 1 N �mg

where the selected state constraint set is based on a pointing con-
straint of 6p=8 rad of the origin for the roll, pitch, and yaw axes,
and the control constraint is based on reasonable torque values
available for satellite systems. Again, a zero terminal constraint is
implemented. The control constraint is incorporated into the
NMPC–DTMPC by saturating its control input at 1 N�m. Initial
quaternion values are randomized within the constraints defined
above, and the initial body angular velocities are set to 0.01 rad/s
across all axes. The sampling time is Ts ¼ 0:4 s with a time hori-
zon of T¼ 8 s. The simulation time is t¼ 7.5 min. Again, the aver-
age RMS over 100 simulations is presented for the states and

Fig. 4 Plot of the original state constraint (X) and the true state evolutions (fx1; x2g) for
NMPC–MPSMC (left) and NMPC–DTMPC (right)

Table 4 RMS values: nonlinear satellite

Controller

State RMS NMPC–NMPC [1] NMPC–DTMPC [19] NMPC–MPSMC

/ (rad) 0.0868 0.0714 0.0726
h (rad) 0.100 0.0876 0.0942
w (rad) 0.111 0.0768 0.0791
xx (rad/s) 0.00465 0.00299 0.00312
xy (rad/s) 0.00454 0.00336 0.00344
xz (rad/s) 0.00387 0.00296 0.00309

Control RMS NMPC–NMPC NMPC–DTMPC NMPC–MPSMC

Tc;x (N�m) 0.0924 0.0963 0.0833
Tc;y (N�m) 0.0895 0.0986 0.0820
Tc;z (N�m) 0.0734 0.0904 0.0780
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controls, while the average ISE and IAE are presented for the
position states. The attitude is reported in terms of Euler angles,
determined by a 3–2–1 Euler angle rotation into the body frame.

Tables 4 and 5 display the resulting RMS, ISE, and IAE data,
which are fairly consistent across state errors and controls for all
controllers. Indeed, in terms of the RMS, the proposed approach
and NMPC–DTMPC perform comparably, with the latter consis-
tently outperforming NMPC–MPSMC in all categories except
RMS for control effort. Further, although the traditional
NMPC–NMPC has higher RMS values than the SMC-based tech-
niques in all categories except yaw control effort (Tc;z), the met-
rics for all controllers are about the same, highlighting that the
proposed approach can perform as well as currently established
techniques.

Where the numerical data show nearly identical performance,
an examination of the state and control evolutions over time
reveals more nuanced information about controller behavior.
Figures 5–7 display the state and control trajectories along the roll
axis among controllers for the 100 simulations. As shown, the
SMC-based tube techniques settle faster than and maintain a
tighter spread of trajectories than NMPC–NMPC, each settling
around 2.5 min and which is most noticeably observed in Fig. 6.

The most notable difference in performance, however, is in the
control effort trajectories displayed in Fig. 7. Not only do the

controls produced by NMPC–MPSMC converge quickly to the
nominal trajectory at around 2 min but they are also very smooth
for the entire trajectory. Alternatively, both NMPC–NMPC and
NMPC–DTMPC display chatter-like motion once they have con-
verged to their nominal trajectories, with NMPC–DTMPC the
more afflicted of the two. It is important to note here that while
these control efforts seem to chatter, they are not displaying true
chattering behavior, and instead rather sudden increases in control
effort that, when plotted over 100 realizations, give the appear-
ance of chatter. In fact, each control trajectory plotted individually
is smooth with a prevalence of sharp peaks during the simulation.
NMPC–DTMPC contains the most peaks in control effort during
the simulation, failing to produce a smoother control effort than
both NMPC–NMPC and NMPC–MPSMC. Further, one can
observe that NMPC–DTMPC operates near the control constraints
often in the beginning of the simulation, reaching the saturation
limit early. This is avoided in NMPC–MPSMC, which operates
well within the control constraint and with smoother levels of
control.

Examining the sliding surfaces along the roll axis for both
NMPC–MPSMC and NMPC–DTMPC in Fig. 8 reveals similar
behavior, where the latter’s surface trajectories are erratic prior to
the 2 min settling toward the origin. Observable here is the impact
of incorporating the surface into the model predictive design.

Table 5 Integral error values: nonlinear satellite

Controller

Position state ISE NMPC–NMPC [1] NMPC–DTMPC [19] NMPC–MPSMC

/ (rad) 3.17 3.01 3.13
h (rad) 3.27 3.18 3.18
w (rad) 5.04 3.87 4.03

Position state IAE NMPC–NMPC NMPC–DTMPC NMPC–MPSMC

/ (rad) 29.8 29.3 29.7
h (rad) 30.6 29.9 30.3
w (rad) 38.5 34.3 34.6

Fig. 5 Plot of true system trajectories (x) along the roll (U) axis
for 100 realizations of uncertainty with the averaged nominal (z)
roll system trajectory and state constraint (X) across control-
lers: from top, NMPC–MPSMC, NMPC–NMPC, and
NMPC–DTMPC

Fig. 6 Plot of true system trajectories (x) for the body angular
velocity along the roll axis (xx) for 100 realizations of uncer-
tainty with the averaged nominal (z) body roll velocity system
trajectory and state constraint (X) across controllers: from top,
NMPC–MPSMC, NMPC–NMPC, and NMPC–DTMPC
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NMPC–MPSMC has a slightly larger spread of trajectories than
NMPC–DTMPC after the settling time, affirming the RMS data
presented in Table 4 as a tighter spread of s would indicate
improved tracking. However, prior to the settling mark, the pro-
posed control has a smaller spread, driven by the MPSMC control
to regulate the surface to zero and suggesting lower levels of
tracking error during initial target acquisition. Thus, there is merit
to incorporating the sliding dynamics into a model predictive
design as done in MPSMC, which not only emulates the behavior
of a traditional boundary layer SMC while adhering safely to con-
straints but also more quickly works to regulate the surface
trajectories.

7 Conclusions

This paper proposed a tube-based RMPC for continuous-time,
nonlinear systems with additive disturbances. A novel auxiliary
controller, termed MPSMC, was developed by recasting a boundary
layer sliding mode controller as a sampled-data model predictive
control problem. This formed a constrained SMC that imbued the
control architecture with the robustness properties of sliding mode
control without sacrificing constraint satisfaction. As highlighted in
the simulation results, by using MPSMC, the developed controller
was shown to safely adhere to state and input constraints, unlike
NMPC–DTMPC which used the saturated SMC. This demonstrates
the importance of employing an SMC that is constrained by design
rather than postdesign for use in tube RMPC. Further, the proposed
control maintained a tight spread of state and control trajectories
similar to or better than NMPC–NMPC and NMPC–DTMPC at
varying levels of uncertainty, illustrating its ability to perform com-
parably to currently used methods. These benefits, however, did
come at the cost of elevated levels of control effort for
NMPC–MPSMC, which rose considerably as the disturbance
bound increased, especially compared to its SMC-based counter-
part. Thus, NMPC–MPSMC, more so than other current techniques,
confronts the important tradeoff between robust tracking perform-
ance and higher levels of control effort. Future work will focus on
experimental implementation and incorporating nonadditive forms
of uncertainty, including multiplicative and parametric uncertainty.

Nomenclature

b ¼ system input matrix
B ¼ user-defined constant
B ¼ sliding surface robust control invariant set

e; et ¼ state and tracking errors
f ¼ nonlinear system function

F ¼ model error function
J ¼ open-loop cost function
k ¼ sample instant index
�K ¼ gain value
l ¼ stage cost function

L ¼ user-defined constant
P ¼ terminal state weight matrix
Q ¼ state weight matrix
R ¼ control weight matrix
s ¼ sliding surface
S ¼ state error robust control invariant set
S0 ¼ tube size

satð�Þ ¼ saturation function
t;T;Ts ¼ simulation time, time horizon, sampling time

u ¼ system control input
U ¼ system control constraint set
v ¼ undisturbed system control input
V ¼ tightened system control constraint set
Vf ¼ terminal cost function
w ¼ external disturbance
W ¼ disturbance upper bound
x ¼ system states

X ;X f ¼ system state constraint and terminal constraint set
z ¼ undisturbed system states

Z;Z f ¼ tightened state constraint and terminal constraint set

_¼ denotes time derivative
* ¼ denotes optimal solution
^¼ denotes internal optimization variable
g ¼ positive constant
j ¼ auxiliary controller

k; k0 ¼ gain value and control bandwidth
s ¼ time sequence over horizon
/ ¼ boundary layer size
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