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This work explores a theoretical solution for noise reduction in photonic systems using blackbody radiators.
Traditionally, signal noise can be reduced by increasing the integration time during signal acquisition. However,
increasing the integration time during signal acquisition will reduce the acquisition speed of the signal. By devel-
oping and applying a filter using a model based on the theoretical equations for blackbody radiation, the noise of
the signal can be reduced without increasing integration time. In this work, three filters, extended Kalman filter,
unscented Kalman filter (UKF), and extended sliding innovation filter (ESIF), are compared for blackbody pho-
tonic systems. The filters are tested on a simulated signal from five scenarios, each simulating different experimental
conditions. In particular, the nonlinear filters, UKF and ESIF, showed a significant reduction of noise from the
simulated signal in each scenario. The results show great promise for photonic systems using blackbody radiators
that require post-process for noise reduction. ©2020Optical Society of America
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1. INTRODUCTION

Estimation theory is the branch of science that is used to esti-
mate the true value of a parameter in a system that contains a
random element [1]. Estimation theory is commonly used to
improve the interpretation of sensor signals [1]. This is advan-
tageous to sensors that have a component of unstructured noise
[2]. The behavior of unstructured noise can be modeled as a
Gaussian distribution with a mean of zero [2]. With estimation
theory, a filter can be developed to reduce the noise generated by
photonic emitters with unstructured noise.

For such a filter to be developed, the behavior represented by
a model of the measured system is important for the prediction
of the true value of a system. The well-known Kalman filter (KF)
generates an optimal gain for a linear system to predict the true
values of a system, given the previous measurements and a valid
model [3]. Using the Kalman filter for these predictions can
help determine the actual value of the system using the system
characteristics [3]. This is valuable for designs that have poor
photonic sensor performance (i.e., high noise) and a known
system model that is linear [4]. The Kalman filter can also be
applied to nonlinear systems by applying a non-ideal solution to
the model through a non-ideal filter.

Two commonly used non-ideal filters are the extended
Kalman filter (EKF) [5] and the unscented Kalman filter (UKF)

[6,7]. Integration of the linear and nonlinear recursive-filtering-
based estimation techniques has become ubiquitous in modern
applications such as robotics [8], position tracking [6], and
state estimation of control systems [9]. In robotics, these fil-
tering methods have been applied to assist multiple simulated
robots exploring an unknown environment using backtracking
techniques [8]. In air traffic control applications, these filtering
methods have been applied to motion tracking to determine
actual positions of airplanes during their flight path in the pres-
ence of noise and clutter [6]. The linear and nonlinear filtering
methods tested in position tracking for a simulated air traffic
control problem proved successful in providing a more accurate
position tracking than the sensor measurements [6]. To increase
performance of the state estimation in a proportional integral
derivative (PID) controller, an adaptive controller of a simulated
electromechanical system was produced using an interacting
multiple model (IMM) controller [9].

Although KF-based methods have been used in the above-
described application, KF-based methods are derived based on
a number of strict assumptions (e.g., the system and measure-
ment noise are white noise, and the system and measurement
models are known) [10]. If these assumptions are violated, the
KF results may deviate from the true state values. Recently, a
new filter, referred to as the sliding innovation filter (SIF) and
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presented in Ref. [11], offered a solution to the KF robustness
issues. The SIF is based on sliding mode theory, which utilizes
a switching gain to keep the estimates close to the true state
trajectory. Although a sub-optimal solution, the SIF provides
robustness to modeling uncertainties and disturbances, and is
demonstrated to be more robust than the KF [11].

Linear and nonlinear filtering methods such as the KF, EKF,
and UKF have been introduced in less common applications
like photonic systems. Photonic systems are highly predictable,
and lend themselves favorably to being represented accurately
mathematically [12]. Given that these photonic systems are well
known, an application of a filtering method would be beneficial
to increasing system performance [13]. Applying recursive
estimation techniques to photonic systems is of great interest
through signal-to-noise (SNR) ratio improvement and appli-
cations in imaging, motion tracking, and spectroscopy. Such
filtering can have a great impact on photonic systems research.

Photonic systems research has recently started leveraging the
KF to improve system signal-to-noise ratio (SNR) performance.
Kalman filtering techniques have been applied to light-emitting
diode communications using EKF-based alignment [5], mini-
mization of time delay in position tracking using light-emitting
diode infrastructure [12], and diffuse optical tomography
parameter estimation [13]. Furthermore, the KF has been
used in adaptive optics to improve temporal error introduced
through integral controllers [14], and compensation for atmos-
pheric disturbances when imagining astrological features [15].
Additionally, fiber-optic systems involving the transmission
of light through a fibrous media [16] benefit from the use of
KF methods. Complications arise from transporting light over
long distances in a media in fiber-optics, such as phase delay and
polarization and amplitude decay [17]. Kalman filtering has
been applied to fiber-optic technologies for denoising gyroscope
signals [1,18] and polarization tracking in communications
[19,20].

Kalman filtering has started to see applications in photonic
systems, in particular through imaging systems. Imaging
describes the branch of optics that deals with the acquisition
of electromagnetic data from a sensor and transcribing that
information into a visual representation [21]. Image processing
occurs after the electromagnetic data is collected, and further
data refinement can be used to enhance the image quality [21].
Kalman filtering has been used to improve image processing in
state estimation during the image formation of a dynamic object
[21,22], the sub-pixel detection of spectral signatures [23],
and image stabilization [24]. Biomedical imaging is the image
acquisition and visualization of biological matter. Biomedical
imaging is a more complicated sub-field of imaging, as the
electromagnetic radiation used for acquisition must cause min-
imal harm to the individual being or biological specimen being
examined. Most biomedical imaging techniques make use of
electromagnetic radiation, nuclear radiation, and/or ultrasonic
air pressure waves. In electromagnetic biomedical imaging,
Kalman filtering has been used in surgical guidance [25] and
magnetic resonance imaging [26].

Photonic systems and Kalman filtering also connect through
motion tracking, which makes use of photonic systems for
the position recording of a dynamic object. Electromagnetic
waves can be considered the fastest mechanism to record the

position of an object due to the mechanism being constrained
by the speed of light. Kalman filtering in motion tracking
is used for motion tracking in radar imaging [27], infrared
sensor parameter estimation [28], and cross-spectral sensor
modeling [29].

Furthermore, Kalman filtering is also used in photonic
devices in the field of spectroscopy. Spectroscopy applications
such as Fourier transform infrared (FTIR) spectroscopy [30],
nuclear spectroscopy [31], and materials optical property esti-
mation [32] have been able to leverage the Kalman filtering
technique. Spectroscopy is well established in literature and has
become a major part of photonic research as manifested by the
use of photonic instrumentation systems. Photonic instrumen-
tation systems measure light intensity using a photosensitive
device, like a photodiode or digital image sensor [33,34].

A particularly interesting avenue of research, for its gener-
alized appeal across many applications, is applying Kalman
filtering for photonic systems involving the emission and
detection of blackbody radiation. However, there is a gap in
the literature on applying Kalman filtering directly to the
wavelength dimension of a photonic system for improved
SNR of photonic systems involving blackbody radiators. The
motivation of this paper is to address this literature gap.

In this paper, we demonstrate a simulated spectral analysis of
blackbody radiators using two popular Kalman filtering tech-
niques and the new sliding innovation filter strategy. A number
of different scenarios are considered to provide a detailed com-
parison of the nonlinear estimation methods. Each scenario
was designed to test different experimental conditions to which
a spectrometer can be applied. The filters must be able to read
temperatures that are different from the temperature that the
filter model uses to predict intensity at each wavelength. The
goal of this research is to demonstrate that a filter designed with
the behavior of a blackbody radiator can reduce the noise of a
simulated measured spectrometer reading. A secondary goal of
this research is to determine a preferred filter based on the gen-
eral performance in all scenarios. Identifying a filter that can be
used to decrease noise in simulated spectrometer measurements
could indicate potential use for noisy (low integration time)
spectrometers to improve signal quality.

The paper is organized as follows. Blackbody radiation and
photonic systems are described in Section 2, followed by the
nonlinear estimation equations summarized in Section 3.
Section 4 provides the simulation setup, and Section 5 provides
an overview and discussion of the results. The paper is then
concluded in Section 6.

2. BLACKBODY RADIATION AND PHOTONIC
SYSTEMS

Blackbody radiation is described in detail here, as it is the focus
of the work on Kalman filters. The predictable behavior of
blackbody radiation is a key element that allows enhanced
SNR performance with the application of Kalman filtering
techniques.

Blackbody radiation can be over visible light, which is an
important wavelength of interest, for its interaction with the
human eye. Visible light is comprised of oscillating electro-
magnetic radiation (i.e., photons) that exist within the human
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perceptual range. The wavelength of the electromagnetic radi-
ation, being the distance between one cycle of oscillation, is the
determining property that constitutes the perceived color of
light. Humans can distinguish visible light having a wavelength
between 400 to 800 nm, with wavelengths shorter than (ultravi-
olet) and longer than (infrared) this range being invisible. This
is important when designing light emitters for human vision.
These light emitters can rely on the emission of blackbody
radiation, e.g., the sun or fluorescent bulbs. Blackbody emitters
that output a uniform white spectrum will be more appeasing
to the human eye than emitters that output an isolated portion
of the visible spectrum. Understanding the governing equations
that dictate the emission of light for blackbody radiation is
important for these visible blackbody emitters.

Atoms having vibrational kinetic energy, dependent on
temperature, give off electromagnetic radiation across many
wavelengths (i.e., a spectrum). This temperature-dependent
emission is known as blackbody radiation. As a blackbody object
heats up, the center wavelength of emitted radiation gradu-
ally decreases (i.e., increases in frequency). The blackbody is
particularly visible when the center wavelength resides above
800 nm—corresponding to a blackbody temperature above
4000 K. The amplitude per wavelength for a given temperature,
A(λ, T), for blackbody radiation can be described by

A(λ, T)=
2hc 2

λ5

(
1

e
hc
λkT − 1

)
, (1)

where T is temperature of the blackbody radiator, c is the speed
of light in a vacuum, h is Planck’s constant, k is Boltzmann’s
constant, andλ is wavelength.

For the development for a filter model, a temperature must
be selected for Eq. (1) to be satisfied. The temperature that
is selected will be designated as the calibration temperature.
To select a calibration temperature of interest for our Kalman
filtering comparison, we consider spectrometers that involve
blackbody radiation. In one application, being visible black-
body emitters (incandescent bulbs) and associated spectroscopy,
high temperatures are used (5000 K to 6000 K) [35]. As such,
we select a calibration temperature of 5500 K for all models
developed in this work.

3. NONLINEAR ESTIMATION METHODS

This section describes the three nonlinear filtering methods that
are used to estimate blackbody radiation in our simulated pho-
tonic system.

A. Extended Kalman Filter

The earliest expansion to nonlinear systems on the Kalman filter
(KF) is the extended Kalman filter (EKF). Consider nonlin-
ear system and measurement functions f and h described by
Eqs. (2) and (3), respectively:

xk+1 = f (xk, uk)+wk, (2)

zk+1 = h(xk+1)+ vk+1, (3)

where xk refers to the state at time k, uk refers to the system
input, wk refers to the system noise, zk refers to the measure-
ment, and vk is the measurement noise. Both the system and
measurement noise are considered white noise (zero mean and
normally distributed).

The EKF uses the Jacobian matrices (first-order Taylor series
approximations) to linearize the nonlinearities. Equations (4)
and (5) represent the linearization of the nonlinear system and
measurement functions, respectively:

Fk+1 =
∂ f
∂x

∣∣∣
x̂k|k ,uk

, (4)

Hk+1 =
∂h
∂x

∣∣
x̂k+1|k

. (5)

The goal of any estimator (e.g., EKF, UKF, or SIF) is to retrieve
the true state value xk+1, in this application the intensity
observed by a spectrometer reading at a given wavelength (λ),
using high noise measurements zk+1. These high noise value
can be introduced by electrical components and modeled as
white noise [36]. As described in [10], the EKF is created as
a predictor-corrector strategy. The prediction stage includes
predicting the state estimates as per (6), predicting the state error
covariance matrix (the amount of error is represented by the
amount of error present in the estimation process) as per (7), and
calculating the innovation (measurement error) as per (8):

x̂k+1|k = f (x̂k|k, uk), (6)

Pk+1|k = Fk+1 Pk|k F T
k+1 + Qk+1, (7)

z̃k+1|k = zk+1 − h(x̂k+1|k), (8)

where Q represents the system noise covariance matrix, and
the subscript k + 1|k refers to the a priori (“before the fact”)
information (prediction stage). In the update stage, the EKF
gain is calculated as per (9), which updates the state estimates in
Eq. (10), as well as the state error covariance matrix in Eq. (11):

K k+1 = Hk+1 P T
k+1|k(Hk+1 Pk+1|k HT

k+1 + Rk+1)
−1
, (9)

x̂k+1|k+1 = x̂k+1|k + K k+1 z̃k+1|k, (10)

Pk+1|k+1 = (I − K k+1 Hk+1)Pk+1|k(I − K k+1 Hk+1)
T

+ K k+1 Rk+1 K T
k+1, (11)

where Rk represents the measurement noise covariance matrix
and I is an identity matrix of dimensions n × n, where n is the
number of states. Note further that k + 1|k + 1 refers to the a
posteriori (“after the fact”) information.

The EKF estimation process is represented by Eqs. (4)
through (11), and are used for systems and measurements mod-
eled by Eqs. (2) and (3). The process is repeated iteratively (at
each time step).
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B. Unscented Kalman Filter

The unscented Kalman filter is another type of nonlinear
KF-based method. The UKF is considered more accurate
than the EKF for highly nonlinear systems, considering no
first-order approximations are used [37]. The UKF can be
identified as a sigma-point KF which uses the unscented trans-
form to approximate the nonlinearities. It is also formulated
as a predictor-corrector strategy, and can be summarized in
five steps.

The generation of 2n + 1 sigma-points (also called sam-
ple points) is the first step. These sigma points will be used to
approximate an n state system. The initial sigma point and its
corresponding weight (used later) are defined respectively as
follows:

X 0,k|k = x̂k|k, (12)

W0 =
κ

n + κ
, (13)

where κ is a design value typically much less than 1. The remain-
ing 2n number of sigma points and their corresponding weights
are defined respectively as

X i,k|k = x̂k|k ±

(√
(n + κ)Pk|k

)
i
, (14)

Wi =
1

[2(n + κ)]
, (15)

where i refers to the i th sigma point. Note that the i term in the
square root in Eq. (14) refers to the i th row or column of the
matrix square root result.

Calculating the predicted state estimates and covariance is the
second step. The sigma points are propagated through the non-
linear system model as per Eq. (16), and the weights are used to
calculate the predicted state estimates as per Eq. (17):

X̂ i,k+1|k = f (X i,k|k, uk), (16)

x̂k+1|k =

2n∑
i=0

Wi X̂ i,k+1|k . (17)

The values of Eqs. (16) and (17) are used to calculate the state
error covariance matrix per Eq. (18):

Pk+1|k

=

2n∑
i=0

Wi (X̂ i,k+1|k − x̂k+1|k)(X̂ i,k+1|k − x̂k+1|k)
T
+ Qk .

(18)

The measurement and measurement (innovation) covariance
are calculated in the third step. The sigma points are propagated
through the nonlinear measurement model as per Eq. (19), and
the measurement is predicted as per Eq. (20):

Ẑi,k+1|k = h(X̂ i,k+1|k, uk), (19)

ẑk+1|k =

2n∑
i=0

Wi Ẑi,k+1|k . (20)

The measurement (innovation) covariance is calculated using
Eqs. (19) and (20) as follows:

Pzz.k+1|k =

2n∑
i=0

Wi (Ẑi,k+1|k

− ẑk+1|k)(Ẑi,k+1|k − ẑk+1|k)
T
+ Rk+1. (21)

The calculation of the cross-covariance as per Eq. (22) in con-
junction with Eq. (21) to calculate the UKF gain is the fourth
step:

Px z.k+1|k =

2n∑
i=0

Wi (X̂ i,k+1|k − x̂k+1|k)

(Ẑi,k+1|k − ẑk+1|k)
T
, (22)

K k+1 = Px z.k+1|k P−1
zz.k+1|k . (23)

The calculation of the updated state estimates as per Eq. (24)
and the updated state error covariance matrix as per Eq. (25) is
the fifth step:

x̂k+1|k+1 = x̂k+1|k + K k+1(zk+1 − ẑk+1|k), (24)

Pk+1|k+1 = Pk+1|k − K k+1 Pzz,k+1|k K T
k+1. (25)

The UKF process is summarized by Eqs. (12) through (25), and
is repeated iteratively. Although the EKF is mathematically less
complex than the UKF, the main advantage to the UKF is that it
does not require any linearization, which allows for a more accu-
rate estimate.

C. Sliding Innovation Filter and Extended Sliding
Innovation Filter

The sliding innovation filter (SIF) and its nonlinear form,
referred to as the extended SIF (ESIF), was recently presented
in [11]. It is formulated as a predictor-corrector strategy sim-
ilar to KF-based methods; however, the gain of the ESIF is
derived based on sliding mode techniques. The ESIF provides
sub-optimal results for linear systems, but is considered to be
more robust than the KF. For nonlinear estimation problems,
robustness is maintained while providing comparable accuracy.

The ESIF process is nearly identical to the EKF as presented
earlier in Eqs. (2) through (11); however, the gain [Eq. (9)] is dif-
ferent. In this case, the ESIF gain is calculated as follows:

K k+1 = H+k+1sat(|z̃k+1|k |/δ), (26)

where+ represents the pseudoinverse, sat represents a diagonal
matrix of elements equal to saturated values, |z̃k+1|k | refers to the
absolute measurement error or innovation, and δ refers to a slid-
ing boundary layer width (one width for each measurement).

Figure 1 provides an overview of the SIF estimation concept.
An initial estimate is pushed towards the sliding boundary layer.
The amount of uncertainties in the estimation process define the
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Fig. 1. Illustration of the Sliding Innovation Filter concept [11].

sliding boundary layer. Once inside the sliding boundary layer,
the SIF gain forces the estimates to switch about the true state
trajectory.

The measurement errors are bounded to the true state tra-
jectory by a switching term, the SIF gain. The function of
modeling uncertainty and noise within the estimation process
is defined as δ (the sliding boundary layer). Through trial and
error, grid search methods, or optimization techniques, the
widths can then be tuned to reduce the estimation error.

4. SIMULATION SETUP

All simulations used a wavelength spacing of 10 nm
(dλ= 10 nm). The simulation bounds were λ= 200 nm to
λ= 3400 nm. The first Kalman filter to be discussed is the EKF.
The EKF will use a linearized model of blackbody radiation
to predict the system data points. The first state (x ) of the fil-
ter equation is the intensity given the wavelength as provided
by the Steph Boltzmann Eq. (1). The second state (ẋ ) of this
equation is given by the rate of change of the Steph Boltzmann
Eq. (1) with respect to wavelength. Using these two states from
the previous iteration, an inference can be made about the
next intensity value. Randomized noise is added to the system
equation represented by w; this provides a simulated error in
spectrometer intensity values. This value is selected to determine
how much noise the system will output. The EKF model state
equation is as follows:

xk+1 =

∣∣∣∣1 dλ
0 α − β

∣∣∣∣ xk +wk, (27)

where k is the iteration,

α =
2h3c 3e

hc
λkT

kTλ7

(
1

e
hc
λkT − 1

)2

, (28)

β =

(
10c 2h(

e
hc
λkT − 1

)
λ6

)
, (29)

where α − β is the derivative of the blackbody radiation
equation with respect to wavelength (ẋ ), and

w=∼ |Q|, (30)

where the model system noise covariance Q is

Q =

∣∣∣∣ 10−2 0
0 10−2

∣∣∣∣ . (31)

The second Kalman filter to be discussed is the UKF. The UKF
will leverage the known theoretical model of blackbody radi-
ation to determine the intensity of each wavelength given the
noisy measurement. The UKF (and later ESIF) model state
equations provided are as follows:

xk+1 =

∣∣∣∣1 dλ(ẋ )
0 α − β

∣∣∣∣ xk +wk . (32)

The third filter to be discussed is the ESIF, a sliding mode
controller. This filter uses the non-linearized Eq. (32) and the
linearized Eq. (27) to generate acceptable bounds in which the
next iteration of intensity should be within, given the param-
eters of the filter. The ESIF uses the tuned δ parameter as a
measure of uncertainty. The delta chosen for the ESIF used in
these simulations is as follows:

δ =

∣∣∣∣ 4× 1013 0
0 1× 102

∣∣∣∣ . (33)

The calculation on both the sliding parameters δ is completed
using an iterative process testing the performance of the filter
on a test simulated data set. This iterative process is completed
with the calibration temperature (5500 K) simulated data set.
The filter is tested with the simulated signal data set and adjusted
each iteration to decrease percentage of root mean square error
(RMSE) in the post-processed signal. However, this process is
only optimized to two significant digits due to overfitting the
filter to the calibration data set. If the filter had been to optimal
for the calibration data set, then the filter would not optimally
perform at other temperatures. Once the sliding parameter, δ, is
optimized to the data set, it is used in the filter.

The sliding parameter value, δ, is dependent on the appli-
cation and can be tuned further if more about the system is
prior knowledge. To increase accuracy, it should be decreased.
However, doing so will result in a loss of robustness. In this
application, temperature change (Scenario 4) and wavelength
absorption values (Scenario 5) are simulated, which both require
the filter to be robust, for the disturbances to the system to be
handled by the filter. Thus, this sliding parameter value, δ, is
chosen to accommodate all scenarios.

Each filter is simulated in five different scenarios, with respect
to the calibration temperature. The errors in the signals are
quantified as the RMSE between the actual signal and the
assessed signal. A percent reduction of RMSE can be calcu-
lated using the RMSE of the filtered signal and RMSE of the
simulated signal.

The state equations are dependent on a calibration tem-
perature. The calibration temperature is a tunable parameter
used in the filter to define a central point where the model of
the filter will be most similar to the actual model. The calibra-
tion temperature in the Kalman filters used is 5500 K. As the
actual temperature increases from the calibration temperature,
a decrease in filter performance will occur. The model provided
tracks the derivative of Planck’s law to calculate the next inten-
sity value for a given wavelength. The model does not use the
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base Planck’s law equation to calculate the exact point because
otherwise the model will follow the exact model for the calibra-
tion temperature instead of the simulated signal temperature.
The measurement equations are as follows:

zk+1 =

∣∣∣∣∣∣
2hc 2

λ5

(
1

e
hc
λkT −1

)
0

0 α − β

∣∣∣∣∣∣ zk + vk, (34)

where v is measurement noise expressed by a random value
equal to

v ∼

∣∣∣∣R × 10x690 nm

7

∣∣∣∣ , (35)

where x690 nm is the intensity of the blackbody radiation at a
wavelength of 690 nm at the scenario temperature. A value of
the system is chosen to scale the noise as intensity of the system
changes, given the model temperature. Where the measurement
noise covariance R is

R =

∣∣∣∣ 25 0
0 25

∣∣∣∣ , (36)

the measurement covariance is a system noise value obtained for
the filters to be tested on. The matrix in Eq. (36) could increase
or decrease based on the noise in the measurement device, in this
application, a spectrometer.

5. RESULTS AND DISCUSSION

Three filters (EKF, UKF, and ESIF) are implemented to deter-
mine their effectiveness in reducing the percent RMSE of a
simulated signal from five scenarios. A predicted temperature
can also be extracted from the spectra provided by the filters.
The predicted temperature is identified by a curve-fitting
technique that integrates the RMSE between the Stephen
Boltzmann Eq. (1) and the filter result to best identify the closest
temperature spectrum. Each scenario demonstrates an impor-
tant application of a spectrometer photonic system reading
blackbody radiation. Scenario one is a simulated blackbody
radiation spectral reading of a temperature 500 K below the

calibration temperature (5000 K). Scenario two is a simulated
blackbody radiation spectral reading of a temperature at the
calibration temperature (5500 K). Scenario three is a simulated
blackbody spectral reading of a temperature 500 K above the
calibration temperature (6000 K). Scenario four is a simula-
tion of a blackbody radiation scan where the spectrometer has
been disturbed during the scan. Scenario four was conducted
at two temperatures, calibration temperature (5500 K) and
the above-calibration temperature (6000 K). Scenario five is a
simulation of a blackbody radiation scan at calibration temper-
ature (5500 K), where the spectrometer is reading absorption
lines of contaminants in a hypothetical medium. In Table 1, the
performance of each filter for every scenario has been quantified
in percent RMSE reduction. The percent RMSE reduction
gives insight into the ability of the filter to change the simulated
signal to be more representative of the true signal.

Figure 2 displays the results from scenario one, being a
simulated blackbody radiation spectral reading of a tempera-
ture 500 K below the calibration temperature (5000 K). The
below-calibration temperature is 5000 K (i.e., 500 K below
the calibration temperature). The measurements from this
scenario that a spectrometer would provide are seen in Fig. 2(a).
The performance of each filter in Figs. 2(b) and 2(c) implies
that the EKF and ESIF have a higher percent RMSE reduction
when the temperature is lower than the calibration temperature.
The nonlinearities that the filter must track are reduced, thus
giving an advantage to the EKF. The EKF has a higher RMSE
reduction than the UKF when tracking model temperatures
below the calibration temperature (78.4% and 39.1% RMSE
reduction, respectively). The ESIF performs best in terms of
percent RMSE reduction when the temperature of the model is
below the calibration temperature (79.5% RMSE reduction).
The EKF and the ESIF have the best temperature prediction of
4980 and 5020 K, respectively (1T = 20 K). The UKF per-
forms the worst of the three filters when predicting temperature
lower than the calibration temperature, with a prediction of
4970 K (1T = 30 K).

Figure 3 displays the results from scenario two, being a sim-
ulated blackbody radiation spectral reading of the calibration
temperature (5500 K). The calibration temperature of the

Table 1. Tabulated Predicted Temperature and Percent RMSE Reduction from Each Filter (EKF, UKF, and ESIF) at
all Simulated Scenarios (below calibration temperature, calibration temperature, above calibration temperature,
temperature change mid-scan, and absorption lines)

EKF UKF ESIF

Scenario
Predicted T Value(s)

(K)

RMSE
Reduction

(%)
Predicted T Value(s)

(K)

RMSE
Reduction

(%)
Predicted T Value(s)

(K)

RMSE
Reduction

(%)

1: Below calibration temperature
T= 5000 K

4980 78.4 4970 39.1 5020 79.5

2: Calibration temperature
T= 5500 K

5450 55.5 5530 68.0 5530 74.2

3: Above calibration temperature
T= 6000 K

5890 −1.0 6040 43.3 6020 62.7

4: Change in temperature,
mid-scan T= 5500 to 6000 K

5450 5450 −6.17 5500 6010 55.0 5500 6000 55.4

5: Absorption lines T= 5500 K N/A 31.0 N/A 44.4 N/A 44.8
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Fig. 2. Graphical display of the results from scenario one, the simu-
lation of blackbody radiation at a temperature 500 K below the calibra-
tion temperature. (a) displays the theoretical values of a blackbody radi-
ation spectrum at 5000 K, with the simulated measured data overlaid
on the theoretical values. The graph depicted in (b) displays the inten-
sity values of a blackbody radiation spectrum at 5000 K with each fil-
ter (EKF, UKF, and ESIF) output using the measured data. (c) displays
the squared error of the simulated measurement and each filter at each
wavelength data point.

model is tuned to 5500 K. The measurements from this scenario
that a spectrometer would provide are seen in Fig. 3(a). Each
filter does not perfectly predict the calibration temperature
because each filter cannot only rely on the system model. This
allows the filters to predict the blackbody radiation spectrum
of temperatures that deviate from the calibration tempera-
ture. All filters produce a signal that improves the signal with a
percent RMSE reduction of 55.5, 68.0, and 74.2 for the EKF,
UKF, and ESIF, respectively. These results are summarized in
Table 1. Figure 3(c) shows that each filter produces the largest
error between λ= 200 nm and λ= 300 nm. The UKF and the
ESIF have the best temperature prediction of 5530 and 5530 K,
respectively (1T = 30 K). The EKF performs the worst of the
three filters when predicting the temperature, the calibration
temperature, with a prediction of 5450 K (1T = 50 K).

Figure 4 displays the results from scenario three, being a
simulated blackbody radiation spectral reading of a temperature
500 K above the calibration temperature (6000 K). The above-
calibration temperature simulated is 6000 K (i.e., 500 K above
the calibration temperature) and displayed in Fig. 4(a). The
performance of the EKF shown in Figs. 4(b) and 4(c) demon-
strates that temperatures above the calibration temperature
cause the filter to decrease the quality of the signal in terms of
percent RMSE reduction (−1.0). The nonlinearity of the sys-
tem increases as the calibration temperature is increased above

Fig. 3. Graphical display of the results from scenario two, the
simulation of blackbody radiation at the temperature calibration tem-
perature. The graph depicted in (a) displays the theoretical values of a
blackbody radiation spectrum at 5500 K with the simulated measured
data overlaid of the theoretical values. The graph depicted in (b) dis-
plays the intensity values of a blackbody radiation spectrum at 5500 K
with each filter (EKF, UKF, and ESIF) output using the measured data.
The graph depicted in (c) displays the squared error of the simulated
measurement and each filter at each wavelength data point.

the calibration temperature. This causes the UKF and ESIF to
perform far better in percent RMSE reduction (53.4 and 76.3,
respectively) than the EKF. Figure 4(c) demonstrates that the
intensity is tracked relatively well, but begins to fail at approxi-
mately the same wavelengths as scenario two (i.e., λ= 200 nm
and λ= 300 nm). Figure 4(b) also demonstrates the ability of
the filter to still reduce the jagged characteristic of the noise in
the system. The ESIF has the best temperature prediction of
6020 K (1T = 20 K). The UKF is the second-best predictor
of the three filters at the above-calibration temperature with
a predicted temperature of 6040 K (1T = 40 K). The EKF
performs the worst of the three filters when predicting the
temperature, the calibration temperature, with a prediction of
5890 K (1T = 110 K).

Figure 5 displays the results from scenario four, being a
simulated blackbody radiation spectral reading of a system
temperature change of 500 K at λ= 500 nm. Theoretically, if
a spectral camera requires time to scan through the entire spec-
trum available for measurement, the temperature could change
during the scan. A temperature shift can occur during a scan
if there is movement applied to the spectrometer causing the
device to image a hotter surface. The measurements from this
scenario that a spectrometer would provide are seen in Fig. 5(a).
To exaggerate the effect of a temperature shift, the temperature
that the model uses increases by 500 K (from 5500 to 6000 K at
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Fig. 4. Graphical display of the results from scenario three, the
simulation of blackbody radiation at a temperature 500 K above the
calibration temperature. The graph depicted in (a) displays the theo-
retical values of a blackbody radiation spectrum at 6000 K with the
simulated measured data overlaid on the theoretical values. The graph
depicted in (b) displays the intensity values of a blackbody radiation
spectrum at 6000 K with each filter (EKF, UKF, and ESIF) output
using the measured data. The graph depicted in (c) displays the squared
error of the simulated measurement and each filter at each wavelength
data point.

λ= 690 nm). The filters are then evaluated to determine if the
intensity can still be tracked. In Fig. 5(c), the filters can track the
true simulated signal, until the disturbance shift occurs. Once
the disturbance shift occurs, there is a small wavelength delay
before the filters can correct and acceptable tracking returns.
Figures 5(b) and 5(c) show that EKF cannot track the tempera-
ture change at all. With the temperature shift, the EKF decreases
the quality of the signal by a percent RMSE reduction of−6.2.
Figures 5(b) and 5(c) show that the UKF cannot initially track
the temperature shift but begins to adjust the model to fit with
the temperature shift. With the temperature shift, the UKF
improves the signal of the simulated signal with an RSME per-
cent reduction of 55.0. The ESIF performs similar to the UKF,
but still reduces the percent RMSE slightly more (55.4). In sce-
nario four, two temperatures must be predicted, before and after
the temperature change. The RMSE curve fitting was applied
to all three filters at before and after λ= 500 nm. The ESIF
performed the best at predicting the before and after tempera-
ture change, with a prediction of 5500 and 6000 K, respectively
(1T = 0 K, 1T = 0 K). The UKF is the second-best pre-
dictor of the temperature change with predictions of 5500 K
before and 6010 K after the temperature change (1T = 0 K,
1T = 10 K). The EKF was unable to predict the temperature

Fig. 5. Graphical display of the results from scenario four, the sim-
ulation of blackbody radiation with a temperature change in the black-
body radiator from 5500 to 6000 K. The graph depicted in (a) displays
the theoretical values of a blackbody radiation spectrum with temper-
ature change, with the simulated measured data overlaid on the theo-
retical values. The graph depicted in (b) displays the intensity values of
a blackbody radiation spectrum with a temperature change for each fil-
ter (EKF, UKF, and ESIF) output using the measured data. The graph
depicted in (c) displays the squared error of the simulated measurement
and each filter at each wavelength data point.

change with an accurate before-change prediction, but the pre-
diction did not deviate once the temperature change occurred.
The before-temperature-change prediction was 5450 K, and the
after-temperature-change prediction was 5450 K (1T = 50 K,
1T = 550 K).

Figure 6 displays the results from scenario five, being a sim-
ulated blackbody radiation spectral reading of the calibration
temperature, with contaminants in a hypothetical medium
that have high absorption coefficients at specified wavelengths
(λ= 300 nm, λ= 400 nm, λ= 510 nm). Thus far, the filters
were chosen to track the nonlinear generation of the blackbody
radiation spectra synonymous with spectral measurements
of hot objects. In practical settings, emission spectra are often
embedded with notable absorption lines. Absorption lines cor-
respond to vibrational modes of the molecules and substances
that absorb such wavelength and impede its transmission. For
example, incandescent emitters can contain contaminants
which could absorb different wavelengths. With this in mind,
we have simulated the blackbody radiation with three unique
absorption lines, as seen in Fig. 6. The measurement of such a
spectrum with absorption lines is seen on Fig. 6(a). The EKF,
like scenario four, ignores the nonlinearities observed in the
simulated signal. The EKF performs the worst when tracking
the spectra with absorption line, providing a percent RMSE
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Fig. 6. Graphical display of the results from scenario five, the sim-
ulation of blackbody radiation with contaminants in a hypothetical
medium of radiation travel, resulting in absorption lines. The graph
depicted in (a) displays the theoretical values of a blackbody radiation
spectrum with absorption lines at 5500 K with the simulated mea-
sured data overlaid on the theoretical values. The graph depicted in
(b) displays the intensity values of a blackbody radiation spectrum
with absorption lines at 5500 K with each filter (EKF, UKF, and ESIF)
output using the measured data. The graph depicted in (c) displays
the squared error of the simulated measurement and each filter at each
wavelength data point.

reduction of 31.0. The UKF can approximate the sharp tran-
sitions at a large decrease in intensity that the system outputs.
The ESIF can also track the absorption lines in Fig. 6(c) like
the UKF, providing less loss in intensity from each peak than
the UKF. Overall, the ESIF performs better when tracking the
absorption lines, with a percent RMSE reduction of 44.8 in
comparison to the UKF percent RMSE reduction of 44.4. The
prediction of the absorption wavelength with the ESIF was
on average the most accurate out of the three filters with the
absorption wavelengths occurring at λ= 300 nm, λ= 400 nm,
and λ= 510 nm, with absorption values of 24.3%, 32.2%, and
33.4%, respectively, of the simulated absorption value. The
UKF could also predict the absorption values at the absorption
wavelengths λ= 300 nm, λ= 400 nm, and λ= 510 nm, with
predictions of 25.8%, 24.0%, and 20.9%, respectively, of the
simulated absorption value. The EKF could not predict the
absorption wavelength and the data values were unchanged
by the absorption lines (0%, 0%, and 0% for λ= 300 nm,
λ= 400 nm, and λ= 510 nm, respectively). The absorption
wavelength shift is found through comparing local maxima in
results. The absorption wavelength shift for the filters that had a
percent reduction in amplitude was 0 nm.

6. CONCLUSION

The Kalman filter has been explored for application to spec-
troscopy systems with blackbody radiators. Leveraging the
blackbody equation, a filter was explored to predict the inten-
sity of a spectrum at each wavelength, with the equation at a
calibration temperature as a framework.

The EKF is the worst-performing filter, due to the inability
of the EKF to track nonlinearities. The use of the EKF on noise
reduction is not recommended because it can worsen the quality
of signals above the tuned calibration temperature. Additionally,
the EKF did not track disturbances occurring during scans. The
EKF has demonstrated in scenarios three, four, and five that
the filter cannot predict the non-linearities with worse RMSE
reductions (−1.0% and −6.17%, respectively) and the inabil-
ity to recognize absorption wavelengths. The UKF could not
predict the temperature change in scenario four, with the filter
still providing predictions for the temperature 5500 K (filter
predicted temperature T = 5450 K) instead of the changed
temperature 6000 K.

The UKF is an acceptable application of the Kalman filter on
reduction of noise for blackbody radiation measurements. The
UKF demonstrates the capability to improve the quality of the
signal in terms of percent RMSE reduction in every scenario.
The UKF has demonstrated in scenarios one, two, and three that
the filter can predict the non-linearities from high temperatures
with sacrificing little prediction to the lower than calibration
temperature reading, providing acceptable RMSE reductions
(39.1%, 68.0%, and 43.3%, respectively) and the ability to rec-
ognize absorption wavelengths in scenario five. The UKF could
also recognize the change in temperature and corrected the
prediction to determine the new temperature presented with an
acceptable percent RMSE reduction (55.0%) and temperature
predictions (T = 5500 K, T = 6010 K).

The novel extended sliding innovation filter (ESIF) is the
best-performing filter for every scenario. The ESIF has demon-
strated in scenarios one, two, and three that the filter can predict
the theoretical signal given the simulated signal, providing the
best RMSE reductions (79.5%, 74.2%, and 62.7%, respec-
tively) and the ability to recognize absorption wavelengths
in scenario five. The UKF could also recognize the change in
temperature and corrected the prediction to determine the
new temperature presented with an acceptable percent RMSE
reduction (55.4%) and temperature predictions (T = 5500 K,
T = 6000 K). The application of the ESIF would be advanta-
geous on high-speed, low-integration-time spectrometers that
possess blackbody radiation characteristics.
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