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ABSTRACT With the recent outbreak of COVID-19, the reach and scale of COVID-19 cases is top of mind
for everyone and many research groups are actively monitoring and exploring the potential spread. A positive
consequence of past epidemics and pandemics is that there are sound epidemiological compartmental
modelling approaches that can effectively model disease spread. With minor changes to the underlying
dynamical system of equations, many different strategies and situations can be explored. In particular,
one such strategy of social distancing is top of mind for many Canadians as our political leaders, local
businesses, and fellow Canadians promote and adopt this approach with the hopes that it will effectively
‘flatten the curve’ and reduce or prevent further spread. In this paper, the baseline SIR model is introduced
with its close counterpart, the SEIR model. Social distancing is modelled through the isolation of a subset
of the susceptible population and comparative studies are performed considering a range in the proportion
of individuals isolated. Robust and accurate numerical approximation techniques are used to simulate the
pessimistic base case for which no preventative measures are taken and for various social distancing regimes.
The results of social distancing are consolidated into two groups — those that flatten the curve and those that
completely halt the disease spread. Mathematical formulations show that the turning point between these two
regimes is when the effective reproductive rate, denoted R,, is equal to 1. Conclusions are made regarding

the impacts and extent of the spread in relation to the severity of social distancing measures.

INDEX TERMS COVID-19, epidemiology, infectious disease modeling, social distancing.

I. INTRODUCTION

As the COVID-19 outbreak continues and expands rapidly
into numerous countries, governmental bodies are starting to
move toward conventional containment and response tactics,
such as isolation and social distancing. It has been observed
that these have a dramatic impact on the flattening of the
curve and reduction of the virus spread [1]. There have
been observational studies that have demonstrated how these
strategies reduce the virus caseloads [2]-[5] as well as simu-
lations performed by COVID-19 response teams showing the
progression under different paradigms.

Several articles focused on the COVID-19 pandemic have
recently been published in the literature. Authors have stud-
ied the effects of social media and its use to acquire and
exchange situational information so that relevant and accurate
information is provided to the population [6]. Early prediction
of the COVID-19 outbreak in mainland China has also been
considered using simple mathematical models and limited
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data released to the public [7]. The authors discovered that
a part of the released data was unreasonable and had to be
discarded. This highlights the importance of utilizing reliable
sources of data to develop accurate infectious disease models
that health officials can use to educate and inform politicians
on best practices for the public.

In an attempt to slow the spread of COVID-19, the
Canadian government, working with provincial and territorial
counterparts, enacted a number of measures. These measures
include social distancing efforts, limiting the size of pub-
lic gatherings, closing schools and other public buildings,
shuttering of malls and non-essential commercial districts,
and restricting non-essential travel in and out of Canada.
In an effort to mitigate the economic impacts, the Canadian
government provided funding for individuals and families
through the Canada Emergency Response Benefits (CERB)
and the Canada Child Benefit (CCB) programs. Furthermore,
wage subsidies were introduced to avoid layoffs, rehiring of
employees, and help create new jobs. Financial support was
also provided to businesses through interest free loans, tax
deferral programs, and investments in industry.
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FIGURE 1. Standard SIR model dynamics.
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This paper aims to target both a specific population,
the Canadian population, and demonstrates the impacts var-
ious social distancing and isolation strategies have on either
flattening the curve or halting the spread based on the sever-
ity of the social distancing measures. The two categories
of simulations are partitioned into those with an effec-
tive reproductive rate above but nearing 1 and those for
which the effective reproductive rate drops below 1. This
paper also compares how the various strategies influence the
required amount of time to reach a disease-free population
state.

The paper is organized as follows. Two types of traditional
compartmental models are described in Section II, followed
by proposed models used to study COVID-19 impacts intro-
duced in Section III. In Section IV, computer simulations
under various pandemic scenarios are described, and the
results are presented and discussed. Section V outlines some
of the limitations of the current paper with notes on future
improvements. Section VI contains further remarks on the
findings followed by conclusions outlined in Section VII.

Il. COMPARTMENTAL MODELS

Compartmental models are a system of ordinary differential
equations used to model the spread of infectious diseases.
This section provides an overview of two of the most common
compartmental modelling definitions.

A. SIR MODEL
In disease modelling, the simplest compartmental model
takes the form of an STR model. If we assume that the disease
will cause immediate infection in susceptible individuals,
then each susceptible individual instantaneously becomes
infectious and then later recovers [8]. This is called an SIR
model, where S represents the susceptible class, I the infected
class, and R the recovered, or removed, class. In this model,
« is used to denote the recovery rate, so that 1/« is the mean
length of the transmission period. The serial interval is simply
this mean length of transmission and we obtain the state-
space transition diagram outlined in Fig.1.

Using the notation X to denote the time derivative of
compartment X, the SIR mathematical model can be written
as the following system of differential equations:

S:B—dS—ﬁﬂ (1)
N

i:ﬁg—dl—al )

_ N

R =al —dR 3)
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B. SEIR MODEL

Although the SIR model does have some interesting
properties it is not as realistic as its more advanced counter-
part, the SEIR model. In this type of compartmental model,
a susceptible individual is assumed to come in contact with
an infected individual and then moves into a latent exposed
(E) class before becoming infectious (/) [8]. It is initially
assumed that every susceptible individual has equal likeli-
hood of contacting an infected individual and contracting the
virus.

SI
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FIGURE 2. Standard SEIR model dynamics.

If B is the birth rate and we use the simplification of a
constant population size, then B = dN, where d is the
per capita death rate and N is the total population size.
Assuming the more general four compartment SEIR model,
N = S+ E + I 4+ R. B is a transmission rate, the effective
contact rate of infected individuals [8], under the well-mixed
assumption. We incorporate the law of mass action, which
states that the number of new infections depends on the
product of the number of infected individuals, the number
of susceptible individuals, and a transmission parameter [9].
« is the rate at which we progress from the exposed class
to the infectious class, so that 1/« is the mean length of
the incubation period. y is the recovery rate, so 1/y is used
as the mean length of the transmission period. Therefore,
the mean generation time or serial interval for the SEIR model
introducedis G = 1/a+1/y [10]. In this case, the state-space
transition diagram takes the form as shown in Fig. 2.

Including (1), the following system of differential
equations represent the SEIR model defined in Fig. 2:

E—,BSI dE — «E )
= ﬁ o

I =aE —dl —yl 3)
R =yl —dR (6)

We note that this model does not incorporate a term for
disease-induced deaths.

Ill. MODELS FOR PREDICTING DISEASE

In this section, the stability analysis and computation of S is
considered, followed by the effects of variable birth and death
rates, the incorporation of disease-related deaths, and media
effects such as social distancing.

A. STABILITY ANALYSIS AND COMPUTATION OF B
Using the Jacobian (first-order Taylor series approxima-
tion) and stability conditions for an SIR model, the basic
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reproductive number Ry can be found. Considering the
disease-free equilibrium § = I = R = 0 we get the trivial
solution (S,1,R) = (N, 0,0). Since the recovered class is
redundant, we consider the classes S and I and calculate the
Jacobian matrix as follows:

—d — BI/N
BI/N

By substituting the disease-free equilibrium, we obtain the
following:

BS/N

ss.n=| Y U G

J(N,0)=[_Od ﬁ_g_a} ®)

Since —d is always negative, it is required that
B —d — a < 0 for the disease to die out. We know that
if Ry < 1, the disease will die out so:

B—d—a <0=8<d+a =Ry = <1 ©)]

d+o

However, when analyzing the stability of the SEIR model
the next-generation method is typically used to effectively
calculate the basic reproduction number [11]. In this method,
we define the vector x = {x;:i=1,...,n} as the distri-
bution of the number of individuals in each compartment.
We next let F; (x) be the rate of appearance of new infec-
tions in compartment i and V;(x) = V; (x) — Vl.+ (x)
where Vl.Jr and V; are the rates of transfer of individuals into
and out of compartment i by all other means.

The next generation operator is FV~! where F and V are
the matrices defined as follows:

JF; aV;
F=|i® andy = | Vi) (10)
dx; x=x0 0 x=x0
where i,j = 1,...,m and where xo is the disease-free

equilibrium. Ry is given by the spectral radius of the
next-generation operator [11].

Considering the standard SEIR model proposed above,
we consider the compartments E and / since interest is in the
spread of the infection. We write these compartments in their
simplified forms:

. SI
E=pr—Wd+oE (11)
I =aE —d+7y)I (12)

The disease-free equilibrium is x9 = (N, 0, 0, 0). Then
F>(x) = BSI/N and F3 (x) = 0 so that matrix F can be
computed as follows:

0F; (xo)  0F2 (xo)
_ oE ol _|0 B
F=1ar®) aF; &) —[o o} (13)
oE ol

The computations of V; for i = 2, 3 are:
Vai)=d+a)E, Vzx)=Wd+y)l—aE (14)
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FIGURE 3. SEIR model dynamics with variable birth, death, and
disease-related death rates.

The matrix V can now be readily computed as:

Vo (xg) V2 (x0)
_ oE ol _|d+a 0
V= V3 (xp) Vs (xg) | — |: —a d+]/j| (15)
oE ol

Having calculated F and V, the next-generation operator
can be calculated as:

ap B
Fv'l=|@d+y)d+a) d+y (16)
0 0

The spectral radius of this matrix gives the value for
the reproductive number Rp which yields the following
relationship:

_ ap
S d+a)d+y)

The assumption of homogeneity of the population implies
that the population can be broken into compartments in which
each compartment has identical parameter values for all those
individuals in that specific compartment [12]. In more gen-
eral cases, the basic reproduction number Ry takes on the
definition of ‘“‘the number of new infections produced by a
typical infected individual in a population at a disease-free
equilibrium” [13]. Fortunately, for many widespread diseases
such as influenza or COVID-19 continuous studies are being
performed to estimate Ry. In this base case, virus spread will
be contained when Ry < 1. However, we will see below that
with the introduction of strategies such as social distancing
that this requirement on Ry is sufficient but not necessary as
disease spread can be halted once the effective reproductive
number R, drops below 1. This value will be defined below
in the context of social distancing.

Ro 7)

B. VARIABLE BIRTH AND DEATH RATES
In a more realistic scenario, there is varying birth and death
rates as well as disease-related deaths. If we denote the birth
rate by b, death rate by d, and disease-related death rate by a,
then we get the state-space transition diagram outlined in
Fig. 3.

In this case, the dynamical system of equations is
[14], [15]:

S = bN ST ds 18
= —ﬂﬁ— (18)
. i

E=po—@+dE (19)
I =aE —(y+a+d)I (20)
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R =yl —dR (21)

The total population is also time varying with the following
dynamic equation [14], [15]:

N=S+E+I+R=@®dN—al (22)
Normalizing by N we have the following:
S E | 1 R
s=—, e=—,i=—,Fr=— (23)
N N N N

Dividing the SEIR model defined above by N and subbing
for —d within the 4 equations by using the dynamic equation
for the total population we get [14]:

§ = b— Bsi — bs + ais (24)
e = Bsi — (a + b)e + aie (25)
i =ae—(y +a+ b)i+ a* (26)
F = yi—br+air 27

Calculating the Jacobian and evaluating at the disease-free
equilibrium (s, e, i) = (1, 0, 0) yields:

—b 0 a—pf
J(1,0,00=| 0 —(x+b) B (28)
0 a —(y+a+b)]

This gives us the following next generation operator:

1 [0 @=Pab (@Bb+h)]
Fvl=—10 Bab Bb (a+b) (29)
Vo 0 o |
where:
[VI=b(a+b)(y +a+Db) (30)

The spectral radius of the above yields the relationship
between Ry and S as [15]:

_ ap
b+ a)(b+a+y)

Ro (31)
C. EFFECTS OF MEDIA: SOCIAL DISTANCING

Denote as m the proportion of people that have seen media
broadcast about COVID-19 and/or possible recommenda-
tions concerning the stifling of the spread. o is used to
represent the proportion of people that are affected by the
media and, thus, do what is necessary to keep themselves
from encountering infected individuals. In this way, we see
that 1 — mo is the proportion of susceptible individuals that
may potentially encounter infected individuals. If we apply
this notion to the SEIR model introduced in the previous
section, then we get the following updated model:

§ = b — Bsi — bs + ais (32)
é = Bsi — (a + b)e + aie (33)
i =ae—(y+a+b)i+ai (34)
= yi—br+ air 35)

where 8 = (1 — p) and p = mo. Therefore, the amount
of people that remove themselves from potential contraction
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of the virus due to the media is directly related to the num-
ber of secondary infections, which has a large impact on
altering the dynamics of the disease spread. When a fraction
of the population, represented above as p, is protected from
infection then the effective reproduction number becomes
R. = (1 — p) Ry, assuming a well-mixed population [16].

The effective reproductive number directly determines the
number of secondary cases generated by an infected case
once an epidemic is underway. Thus, we require that R, < 1,
although Ry may not be below 1 [17]. For a population prac-
ticing social distancing, the proportion of susceptible individ-
uals that are not practicing social distancing is represented by
1—p.

When measuring the effects of media coverage and social
interactions on the spread of the disease a similar approach to
Grassly et al. will be adopted in that an effective reproductive
number will be calculated based on a media-informed pop-
ulation [9]. There is an optimal value of R, that is needed
to be reached to give an outbreak of the exact size that is
needed to give enough population immunity. If the controls
are too strong then an epidemic can occur once controls are
lifted, and reintroduction of the disease occurs [18]. Social
interactions and countermeasures will indeed play a key role
on the spread of disease.

It has been shown that a small reduction in the basic
reproduction number will have little effect on reducing the
final proportion of people that are infected if the reproduction
number was initially very high. On the other hand, if the
reproduction number is not much greater than 1 then a small
reduction in the basic reproduction number has a significant
effect on reducing the proportion of individuals who will
contract the virus [19]. Therefore, R, = 1 represents a turning
point in the long-term dynamics of the disease propagation.

IV. COMPUTER SIMULATIONS AND DISCUSSION

The aforementioned compartmental models represent a
system of ordinary differential equations for which there are
several numerical algorithms that provide an approximate
solution. In this analysis, the linear multistep model known
as the Adams-Bashforth method is chosen. This method has
strong stability properties and is efficient to compute, pro-
vided that F; is computed at each subsequent timestep #; with
associated state-space distribution Y;.

In the following formulation, we use Y; to represent
current state values, which implies that ¥; = (S, E, I, R);.
Provided the ODE system Y = F(t,Y), initial time 1y,
initial state-space distribution Yy, and timestep h, we first
implement Euler’s method represented by (36) followed by
Adams-Bashforth two, three, and four-step explicit meth-
ods represented by (37), (38), and (39), respectively. For
subsequent timesteps, the Adams-Bashforth five-step explicit
method is used for the numerical approximations of Y, as
represented by (40) [20]:

Y| = Yo+ hFy (36)
3 1

Yo=Y h|=Fy — =F 37

b 1+ <2 =5 0) 37
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Y3 =Y2+h<§F2—1—6F1—3F0> (38)
12 12 12
Y, = Y3+h<§F3—5—9F2+ﬂF1 —EF()) 39)
24 24 24 24
Y =Y, +h<@Fn—l - @ n—2 +@Fn—3--~
720 720 720
1274F 251
~ 0 Fn4 + %Fn—5> , n>=35 (40)

where we used the shorthand F; = F (t;, Y;).

There is a vast amount of research being actively done
on COVID-19 and studies have shown that the basic repro-
duction number, Ry, is in the range of 1.5-3.5 with averages
around 2.3 [21]. Incubation periods of 5-days have been
used by the research team at John Hopkins University, which
implies that the rate of transition from exposed to infected
is o ~ 0.2 [22], [23]. Recovery period estimates range
from 5-days to 2-6 weeks in total, which implies that the
recovery rate y ~ 0.024 —0.2 with typical values in the range
0.07 — 0.2 [22]-[24].

Considering the current Canadian population, we set the
initial population Ny equal to an estimate of ~37.59 M. For
birth and death rates, we will use estimates derived from
global numbers [25]. Therefore, the value of b and d are:

b ~ 4.92985¢ — 5/day 1)
d ~ 2.07234e — 5/day (42)

For the incubation and infection periods, the global average
values will be used for the COVID-19 outbreak:

a=y =02 43)

To determine the parameters Ry and a, a series of
simulations using the SEIR model defined above were per-
formed fitting the parameters that minimize the mean abso-
lute error in the total caseload and total disease-related deaths.
The mean absolute error in the total disease-related deaths
were rescaled by the max total cases divided max total
disease-related deaths so that the error in the total cases and
disease-related deaths are of the same order.

The parameter estimation was performed prior to the
introduction of social distancing measures to ensure that the
values were not biased toward any social distancing measures
[26]. For this study, the date of the introduction of social dis-
tancing was assumed to be on day 90 (April 14, 2020) follow-
ing the first introduction of COVID-19 cases within Canada
on January 15, 2020. Therefore, the parameter estimation
considered up to and including April 13, 2020 and used the
most recent 10 days in that period as validation for the param-
eters. Furthermore, the assumption was made that the number
of reported cases is equivalent to 20% of the total number of
cases based on early assumptions of mild/asymptomatic cases
making up 80% of the total caseload [27]. Therefore, the
predicted infected count which represents the total number
of infected cases was reduced by a factor of 5 for comparison
to the reported numbers.
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To optimize the parameters, 861 simulations were
performed where the disease-related-death rate ranged from
1% to 3% incrementing by 0.05% while Ry ranged from 2 to
3 incrementing by 0.05. The optimal parameters identified
were Ry = 2.65 and a = 0.0135. This value of a is consistent
with recent estimates of the infection fatality rate (IFR)
[28], [29].

For dynamics to be created we merely need to initialize our
system as (s, e, i, r)g = (1,0,1/Np, 0). It is of note that this
represents only 1 infected individual being introduced into the
population. Due to this fact, we later conclude why it is impor-
tant that in a disease-free state we have very strict policies
and testing procedures in place to ensure that reintroduction
of infected individuals does not occur.

Although recent papers have provided evidence of
pre-symptomatic transmission [30], [31], the aim of this
paper is to provide a comparative study of the impacts of
varying the seriousness of social distancing and the relation-
ship that has on the spread of COVID-19 cases. Therefore,
this comparative study uses the default SEIR model formu-
lation with varying birth and death rates as well as disease-
related deaths as introduced above. Furthermore, there are
numerous approaches to studying social impacts over time
such as Markov-based solutions for adaptive social networks
[32] and time-varying social isolation parameters. However,
for the purposes of comparison and given the nature of
the recommendations provided to the Canadian population,
the simplifying assumption of a constant social distancing
impact was assumed in this study.

A. SIMULATION 1: BASELINE

Using the above default parameter values, incorporating no
media or other preventative measures, we get a worst-case
baseline scenario. For this simulation, unconstrained expo-
nential growth occurs due to the interaction term Ssi. When
the susceptible population is infected and subsequently recov-
ers from the virus, they are assumed to have immunity.
As well, through natural births the susceptible population
continues to grow over time. However, through the expo-
nential growth of the infected population the susceptible
population is more quickly depleted than replenished through
natural births and a critical point is reach for which a decline
in the incidence of the virus occurs. Although worst case
scenario, this does result in a ‘disease-free’ state occurring
quite rapidly as the virus quickly spreads through most
of the population. Figure 4 shows the dynamics of this
simulation.

From the simulation, it is found that, under no preventative
measures, the virus would infect approximately 87.35% of
the population. This number represents the percentage of the
susceptible group and, since we assume that no preventative
measures is taken, we assume the susceptible group is indeed
the entire population. Using the entire population of Canada
as the sample group for this simulation, we see that this
represents approximately 34.46 M people being infected with
the virus over the year. The entire disease-related death count
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FIGURE 4. Results of a baseline simulation that shows the proportion of
individuals that are in the susceptible and recovered states (left) as well
as the exposed and infected states (right) over time.

would be approximately 458.9 k and the disease would exit
the population on day 308. Since the first case occurred in
Canada on January 15, 2020 this would imply a disease-free
state on November 18, 2020.

B. SIMULATION 2: FLATTENING OF THE CURVE

Social distancing plays a critical role in the flattening of the
curve. This first set of results focusses on cases for which
p is not large enough to reduce the effective reproductive
number below 1 which would result in halting the spread,
explored in the next section. However, the flattening of the
curve introduced in these simulations still has significant
impacts on the disease spread. Depending on the propor-
tion of individuals removed from the susceptible population
through these efforts, it has the impact of both reducing the
peak and increasing the time to the peak in infected cases.
Through flattening of the peak, it reduces the likelihood of
overwhelming Canada’s healthcare system and extending the
timeline of the spread provides more time for either the
development of a vaccine or more rigorous test regimes.
Vaccines again have the direct impact of reducing the sus-
ceptible population, however more rigorous test regimes also
have the direct impact of determining and isolating infected
individuals more rapidly. This can allow for more precise
isolation tactics.

For these simulations, we assume that at the 90-day point
of the disease-progression that social distancing efforts have
begun. Although a simplified assumption, it offers the ability
to give easy comparison of various social distancing impacts.
For this grouping of results, we consider cases for when the
social distancing efforts have reduced the susceptible popu-
lation by 15% to 55% in 10% increments. This is equivalent
to values of p ranging from 0.15 to 0.55.

Table 1 offers a comparison of the various scenarios which
result in the flattening of the curve. In this table, we use
TI to indicate total infected, TDRD for total disease-related
deaths, DFD for disease-free days or the number of days until
a disease-free state occurs, and DFDT for the disease-free
date or approximate date at which disease-free state occurs.
In addition, in Fig. 5, we see the impacts on the propor-
tion of the population that are within the infected state
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TABLE 1. Comparison of the various flattening scenarios.

14 TI TDRD DFD DFDT
0.00 34,460.2 k (87.35%) 45892k 308 Nov. 18, 2020
0.15 32,367.8 k (82.04%) 431.06k 348 Dec. 28, 2020
0.25 30,1229k (76.35%) 401.16k 391 Feb. 09, 2021
0.35 26,695.4 k (67.66%)  355.51k 462 Apr. 21,2021
0.45 21,2332k (53.81%) 28277k 603 Sep. 09, 2021
0.55 12,075.4k (30.60%) 160.81k 1,025 Nov. 05, 2022

Percentage of Population
0.12 —— Baseline
p=0.15
0.10 —— p=0.25
- p=0.35
0.08 p = 0.45
o - p=0.55
£
0.06
o
o
0.04
0.02
0.00
0 100 200 300 400 500

Time (Days)

FIGURE 5. Proportion of the population considered infected,
demonstrating the ‘flattening of the curve’ behavior. Fewer people are
infected but it takes a significantly longer time for the virus to work
through the entire population.

over time. With increasing values of p the peak flattens more
dramatically as well as shifts later into the future.

Contrasting the cases for which p = 0.25 and p = 0.55 to
the baseline scenario above, we see modest and more extreme
reductions in the total infected and disease-related deaths,
respectively. In the former case, the maximum proportion of
the population that is infected at the peak of the pandemic is
approximately 7.5% in contrast to the base case for which the
maximum proportion is approximately 12.5%. In the latter
case, the maximum proportion of the population infected at
a given point reduces even further to 0.8%. The evolution of
the exposed and infected states is shown in Fig. 6 for these
two scenarios.

C. SIMULATION 3: HALTING THE SPREAD

If we continue to increase the impact of social distancing by
further increasing the value of p, then we will begin to enter
the region where the effective reproductive rate falls below 1.
In this case the disease spread will begin to halt. As the
effective reproductive number becomes smaller the halting
of the disease spread occurs more rapidly. This is essentially
due to the balance between the incubation period, infection
period, and further exposure of individuals to the virus which
occurs at a reduced rate.

However, once the population has reached a disease-free
point, it is extremely important to note that if a single new
case is reintroduced into the population, then a new epidemic
will occur. Therefore, it is paramount that ongoing rigorous
testing is performed at the border to prevent reintroduction
of an infected individual until globally COVID-19 has been
eradicated.
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FIGURE 6. Proportion of the population exposed and infected over time
for the cases when social distancing has removed p = 0.25 (left) and

p = 0.55 (right) from the susceptible population 90 days after the first
reported case within Canada.

TABLE 2. Comparison of the various halting scenarios.

p TI TDRD DFD DFDT
0.00  34,460.2k (87.35%) 45892k 308 Nov. 18, 2020
0.65 1,322.9 k (3.35%) 17.62 k 1,200 Apr. 29,2023
0.70 603.1 k (1.53%) 8.03k 592 Aug. 29,2021
0.75 401.4 k (1.02%) 535k 394 Feb. 12, 2021
0.80 309.6 k (0.78%) 412k 301 Nov. 11, 2020
0.85 257.4 k (0.65%) 343k 246 Sep. 17,2020
0.90 223.8k (0.57%) 298k 210 Aug. 12,2020
0.95 200.3 k (0.51%) 2.67k 184 Jul. 17,2020
1.00 183.0 k (0.46%) 2.44k 162 Jun. 25,2020

To simulate the various halting cases, we consider where
(1 —p)R, < 1 which occurs for p > 62.3%. Therefore,
we consider the cases for p = 0.65 to p = 1 in increments
of 0.05. The key metrics for these simulations are summarized
in Table 2 while the time-series of the proportion of infected
individuals is summarized in Fig. 7.

It is observed that the impacts are significantly more
dramatic in comparison to the flattening cases from the past
subsection. In particular, even in the most conservative halt-
ing case for which p = 0.65, we observe that the peak
dramatically reduces from approximately 12.5% of the pop-
ulation being infected at the peak of the pandemic to only
0.14%. Furthermore, the number of disease-related deaths is
reduced by a factor of 26 even for this conservative case.
However, because the disease progression continues while
the active caseload slowly diminishes, a disease-free state
does not occur until day 1,200 or April 29, 2023. On the
other hand, if we consider a more strict enforcement where
p = 0.8 the total disease-related deaths could have been
reduced to a total of approximately 4.12 k and the disease-free
date would occur roughly around the same time as the base
case on November 11, 2020.

D. COMPARISON TO ACTUAL CASE NUMBERS

At the time of writing this article, the total number of
reported cases had reached approximately 101 k and the
total of disease-related deaths had reached approximately
8.4 k in Canada. To compare the simulated results with the
actual cases, we consider the range of halting strategies from
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FIGURE 7. Proportion of the population considered infected,
demonstrating the ‘halting of the virus’ behavior. The result of which is a
significant reduction in the peak of the infected numbers.
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FIGURE 8. Comparison of the predicted total number of cases and
total-disease related deaths for the range of halting strategies from
p = 0.65 to p = 0.85 overlain with the actuals up until June 20, 2020.

p = 0.65 to p = 0.85. The comparison to the actual values
are shown in Fig. 8. We see that the total number of cases
aligns closely to an intermediate p value between 0.65 and
0.85 (with subsequent analysis showing very close alignment
to p = 0.7) while the total disease-related deaths for this
same case would be slightly understated from the actual num-
bers. This is possibly due to a slightly higher disease-related
death rate than what was observed from the initial numbers
and/or a higher number of non-reported COVID-19 cases.
Furthermore, it may be due to the drastic effects of hot spots
forming in long-term care homes which was not included in
the modeling.

E. SUBSEQUENT REDUCTION IN SOCIAL DISTANCING
Although the simplifying assumption of constant social
distancing from day 90 onward used in this study is not
representative of the dynamic situation of reality, we observed
in the previous subsection that the results obtained do have
alignment with realistic values. Furthermore, the comparison
of lenient versus strict social distancing strategies showcase
the importance social distancing has on the spread and the
resulting disease-related deaths.

However, as Canada enters the next phase of the pandemic
where businesses begin to reopen and society returns to
some semblance of normalcy, it bodes the question of how
vigilant the Canadian population should remain. Before
considering simulations to showcase the potential spread,
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FIGURE 9. Comparison of the predicted total caseload for the p = 0.7
case at day 90 followed by subsequent changes of p at day 180 from
p = 0.6 (relaxed social distancing) to p = 0.8 (more strict social
distancing).

epidemiological theory tells us that if the effective repro-
ductive rate exceeds 1 then caseloads will again increase.
However, it should be noted that this spread is both a function
of R, as well as the number of susceptible individuals. If the
number of susceptible individuals is sufficiently small, then
the caseload will continue to decline (i.e., herd immunity).

Using the approximate best fit scenario of p = 0.7
introduced at day 90, we integrate forward the SEIR ODE
equations to day 180 where we subsequently modify the
social distancing parameter. At day 180, we consider the
range of cases for p = 0.6 to p = 0.8. The relaxed,
p = 0.6 case represents where the effective reproductive
number exceeds 1.06 and we see that without further poli-
cies or procedures implemented the case numbers continue to
grow to the end of the 2-year period considered. On the other
hand, if social distancing measures represented by p = 0.7
is maintained or further increased to p = 0.8, then the case
numbers only marginally increase from those observed at the
day of writing.

V. LIMITATIONS OF THE STUDY

This study considers a simplified approach to analyzing the
impacts of social distancing by introducing point-in-time
coefficients that influences the proportions of individuals in
the susceptible population. The authors recognize that social
distancing measures are stochastic in nature, however this
study aims at the implications that different degrees of social
distancing could have on the caseload evolution. Also, using
the entire Canadian population as potential susceptible indi-
viduals is another simplifying assumption and subsequent
studies will be aimed at considering smaller segments of the
population.

Several of the model parameters used in the simulations
are based on global studies. These may be pessimistic
or optimistic in contrast to the actual values observed in
the Canadian population. In order to ensure the numbers
are most representative for Canada, further simulations can
be performed in order to optimize other parameters based
on the current observations in Canada. However, extend-
ing the search space using a naive grid search approach
quickly makes the computational requirements infeasible.
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Therefore, other types of parameter estimation approaches
such as Tree Parzen Estimators will need to be explored
for these subsequent studies. Furthermore, the non-reporting
factor of 5 was used based on the mild and asymptomatic
cases and as more accurate evaluation of the total caseload
and total deaths (rather than reported numbers) becomes
available, it will be important to update the non-reporting
factor for caseloads as well as introduce the same for total
deaths.

Given the recency of the COVID-19 outbreak, it was
assumed that maternally derived immunity would not impact
the current dynamics of the simulations. However, with ongo-
ing progression of the COVID-19 pandemic, it will become
more and more important to adapt this SEIR model into more
robust alternatives such as the MSEIR model.

Lastly, although comparisons with other countries was not
performed in this study, similar approaches can be leveraged
and contrasted with those geographic regions and could make
for an interesting subsequent comparative study. However,
this current paper aimed to fill a gap in these types of studies
within the Canadian population.

V1. DISCUSSION

As simulated, social distancing can have a dramatic impact on
the containment of COVID-19. As social distancing ends up
driving the effective reproductive number below 1, significant
impacts are observed which are consistent with the findings
of Koopman et al. [19]. If we had overly strong compliance
with social distancing and 80% of the population removed
themselves from the susceptible population by taking the
precautionary steps to ensure non-exposure, then the esti-
mated result would have yielded 309.6 k total infected cases
(and an expected 61.92 k reported), 4.12 k disease-related
deaths, and a disease-free date of approximately November 11,
2020 which is near to the catastrophic baseline of
November 18, 2020. Through comparison with the current
total caseload and subsequent simulations showing progres-
sion under different social distancing regimes, we see that
if policies and procedures remain in effect that remove 70%
of individuals exposure to COVID-19, then the number of
reported cases is not likely to exceed approximately 120 k.
Rigorous testing, targeted social distancing, and isolation
could help to increase the mobility of Canadian residents
while minimizing likelihood of exposure to COVID-19.

Furthermore, it should be noted that no matter the age
group, you can contract the virus and there is a lot of evidence
supporting the likelihood of individuals showing mild to no
symptoms. This is a huge danger of COVID-19 as individuals
who have little to no symptoms may refrain from social dis-
tancing. In particular, the younger population is not immune
and can be carriers of the virus.

Blanket social distancing does not need to be the only
policy but, in lieu of rigorous and widespread testing, it may
be the best policy. If we establish a more widespread test
regime, then we could have more isolated social distancing
measures that target those that test positive. Without such

128247



IEEE Access

J. Yawney, S. A. Gadsden: Study of the COVID-19 Impacts on the Canadian Population

testing regimes however, travel-based isolation strategies
offer an example strategic alternative. That is, enforcing
self-isolation for those individuals that have travelled due to
the higher probability of them having been exposed to the
virus.

VIl. CONCLUSIONS

In this paper, baseline compartmental models used for
modelling infectious diseases were utilized and coefficients
to model social distancing were proposed. The impacts of
social distancing were studied and explored through numer-
ical simulations. Robust and accurate numerical approxima-
tion techniques were used to simulate the pessimistic base
case for which no preventative measures are taken and for
various social distancing regimes. It was discovered that
social distancing efforts can significantly reduce the spread
of COVID-19 by two orders of magnitude based on the
simulations completed.

The results of social distancing were consolidated into two
groups — those that flatten the curve and those that completely
halt the spread. Mathematical formulations show that the
turning point between these two groups is when the effective
reproductive rate is equal to 1. However, it is important to
note that the proposed models do not take into consideration
the effects of clusters or viral hot spots forming such as
in retirement homes, long-term care homes, or agricultural
processing plants. These events can cause increased cases of
COVID-19 which would increase the spread of the virus.

Subsequent simulations comparing results to observed
values showcase that even simple formulations can have some
baring on reality, as well as provide interesting findings for
which relative comparisons can be made. Furthermore, apply-
ing a similar range of social distancing strategies to simulate
impacts upon reopening the economy sheds light on the need
to remain vigilant until COVID-19 is completely removed
from the Canadian population and/or a vaccine is developed.

If we adopt the technology we are so fortunate to have
today to effectively work remotely, remain with immediate
family members, limit exposure to others, practice social
distancing when in public, and self-isolate as required, then
the effects of COVID-19 on the population (societal and
economical) can be minimized.
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