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ABSTRACT

Context. The so-called "light echoes" of supernovae - the apparent motion of outburst-illuminated interstellar dust - can be detected
in astronomical difference images; however, light echoes are extremely rare which makes manual detection an arduous task. Surveys
for centuries-old supernova light echoes can involve hundreds of pointings of wide-field imagers wherein the subimages from each
CCD amplifier require examination.
Aims. We introduce ALED, a Python package that implements (i) a capsule network trained to automatically identify images with a
high probability of containing at least one supernova light echo, and (ii) routing path visualization to localize light echoes and/or light
echo-like features in the identified images.
Methods. We compare the performance of the capsule network implemented in ALED (ALED-m) to several capsule and convolutional
neural networks of different architectures. We also apply ALED to a large catalogue of astronomical difference images and manually
inspect candidate light echo images for human verification.
Results. ALED-m, was found to achieve 90% classification accuracy on the test set, and to precisely localize the identified light
echoes via routing path visualization. From a set of 13,000+ astronomical images, ALED identified a set of light echoes that had been
overlooked in manual classification. ALED is available via github.com/LightEchoDetection/ALED.
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1. Introduction

Supernovae are extremely luminous but transient events that sig-
nal the final stage of a massive star’s evolution or the disruption
of a white dwarf in a close binary (Rest et al. 2015). The bright
light from the outburst is radiated in all directions and can be
scattered by interstellar dust as outburst light encounters such
material. The deflection of light off interstellar dust is analogous
to the deflection of sound waves off surfaces; hence the term
"light echo". Light echoes from a historical supernova can arrive
at Earth centuries later than any direct light and consequently
they can facilitate the study of historic supernovae in modern
times with modern instrumentation. The light echoes of super-
novae are present in some astronomical images, but are almost
without exception a small percentage of the surface brightness
of the moonless night sky (McDonald 2012).

A difference image is the result of subtracting a pair of im-
ages that are taken at the same telescopic pointing but at different
dates. Difference imaging allows for objects that appear to move
relative to the background of space, such as light echoes, to be
visually detected more easily (see Figure 1). However, manual
visual image analysis is still demanding due to the large amount
of data generated by supernova light echo surveys. For instance,
in McDonald (2012) 13,000+ difference images were individu-
ally inspected for light echoes over the course of a year.

This paper introduces the Python package ALED (pro-
nounced "A-led") for automated light echo detection in astro-
nomical difference images. This package provides an invaluable
resource for astronomers requiring rapid identification of images
containing at least one light echo, and where those light echoes
are located within the identified images. ALED takes as input a
grey-scale difference image of arbitrary size, and outputs a corre-
sponding routing path visualization of the input image (Bhullar
et al. 2020). The routing path visualization reveals the regions of
the input image that have a high probability of containing a light
echo - the brighter the region the greater the likelihood. Here,
we demonstrate and compare the performance of ALED-m, the
capsule network model that is available in ALED, to several dif-
ferent artificial neural network classifiers. We also apply ALED
to the 13000+ difference images for which McDonald (2012) did
not detect light echoes. ALED was developed specifically for the
purpose of light echo detection. Difference imaging also gener-
ates artifacts that can, in some instances, mimic the appearance
of light echoes, see Figure 1. Simpler automatic image classifi-
cation techniques struggle to distinguish light echoes from light-
echo-like artifacts (McDonald 2012).

ALED is based on a capsule network (Sabour et al. 2017),
which is an extension of a convolutional neural network (CNN).
CNNs have achieved state-of-the-art performance on many com-
puter vision problems, and are currently one of the most popular
algorithms for image classification. CNN architectures typically
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contain millions of weights that are to be learned during train-
ing, and as a result, require a large training set to prevent over-
fitting (LeCun et al. 1989). For example, LeNet, a CNN con-
taining 5,978,677 weights, was trained using 60,000 images to
classify hand-written digits (LeCun et al. 1998). This particular
classification task is considered simpler than light echo detec-
tion from difference images because each image is guaranteed to
contain a single white digit in the center of a black background.
More complex classification tasks require CNNs with a higher
weight count. For example, Wide ResNet-50-2, a CNN contain-
ing 68,951,464 weights, was trained using 1.2 million images
to classify photographs of 1000 object categories such as boats,
horses, etc. (Zagoruyko and Komodakis 2016). This is a more
complex classification task because an image can contain 1 of
1000 coloured objects in an arbitrary orientation on an arbitrary
background.

The difficulty of light echo classification falls somewhere in
between these two examples. Although there are only two clas-
sification categories - light echo present or not - light echoes are
not only found in widely different orientations and backgrounds
in grey-scale images but each image may contain several enti-
ties, and of those entities, more than one may be a light echo.
As such, it is expected that a CNN with millions of weights
would be required for adequate light echo detection. In special-
ized fields, such as observational astronomy, sufficiently large
sets of labeled data are often unavailable. This is especially true
for automating the classification of images containing supernova
light echoes because detectable light echo examples are so few
in number (McDonald 2012).

Training a CNN, which contains millions of weights, by us-
ing a dataset of a few hundred images is problematic because the
model may over-fit to the small dataset in a manner that is not
obvious. For example, if the training set represents the valida-
tion and test sets well then the validation and test accuracies will
be similar to the training accuracy. However, if the model over-
fits to irrelevant characteristics of the dataset, such as camera or
pre-processing characteristics or artifacts, then the training, val-
idation, and test accuracies will still be similar even though the
model will not perform well on datasets taken by different cam-
eras or pre-processed in a slightly different manner.

Capsule network models require far fewer weights, and thus,
are less likely to over-fit to irrelevant characteristics of the
dataset. Dropout can be used in CNNs to reduce over-fitting by
randomly omitting a certain percentage of neurons every forward
propagation step while training. This strategy makes it more dif-
ficult for the network to simply memorize the training set or learn
unnecessary co-adaptations such as higher-level neurons correct-
ing the mistakes of lower-level neurons (Hinton et al. 2012). For
completeness, we include a few CNN architectures to illustrate
how many more weights are needed in a CNN compared to a
capsule network for light echo detection.

Capsule networks are artificial neural networks that can
model hierarchical relationships (Sabour et al. 2017). They typi-
cally contain fewer trainable weights than CNNs and, as a result,
require a smaller training set to achieve good performance. Cap-
sule networks also facilitate routing path visualization which can
be used to interpret the entity that a given capsule detects. Said
differently, capsule networks provide a way to see what is being
detected. It should be noted that CNNs can also facilitate several
gradient based methods to see what is being detected, such as
grad-cam (Selvaraju et al. 2017).

Interpreting how a model functions is important because it
will allow for the identification of scenarios that may result in
model failure. When the training set is small, as seen in light

Fig. 1: Types of entities present in the CFHT dataset. (a) im-
ages that clearly contain at least one light echo; (b) images that
clearly do not contain at least one light echo; (c) images that
contain light echoes and artifacts; and (d) images that contain
entities with light echo-like characteristics. Illustration and cap-
tion credit: (Bhullar et al. 2020).

echo detection, it is expected that the training set will not contain
such difficult image classification scenarios even though they are
likely to arise in practice. Consequently, constraints can be ap-
plied to the network, or improvements can be made to the train-
ing set to decrease the probability of failure.

Section 2 describes the Canada-France-Hawaii Telescope
(CFHT) difference image data used to train and evaluate ALED.
Section 3 briefly reviews capsule networks and describes the net-
work architectures to which ALED was compared and the pa-
rameter settings used to classify the 13000+ CFHT difference
images. Section 4 presents the results from the analyses and con-
cluding comments are made in Section 5.

2. CFHT Dataset

In 2011, CFHT’s wide-field mosaic image, MegaCam, was used
to conduct a survey with the primary objective of discovering
supernova light echoes in a region where three historical su-
pernovae were known to have occurred. Out of the 13,000+
2048× 4612 difference images that were produced from the sur-
vey, 22 were found to contain at least one light echo (McDonald
2012). The 22 light echo containing CFHT difference images of
size 2048 × 4612 were reduced to 350 difference images of size
200 × 200, among which 175 contained at least a portion of a
light echo and the remaining 175 contained other astronomical
entities. The dataset was created by manually masking the light
echoes present in the 22 images of size 2048×4612, which were
then cropped to size 200 × 200. If a cropped image contained at
least 2500 pixels of mask then it was classified as containing a
light echo.

Among the 4885 200×200 cropped images that did not con-
tain a light echo, 175 were selected at random, along with 175
that were classified as containing a light echo to form the fi-
nal dataset of 350 images. The dataset consists of images and
their respective binary labels, where the label indicates whether
the image does or does not contain at least one light echo. The
dataset was split into a training set of 250 images, and a valida-
tion and test set of 50 images each. See Appendix A for a sum-
mary of the pre-processing steps required to produce a difference
image.
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3. Methods

A capsule is a vector whose elements represent the instantiation
parameters of an entity in the image, where an entity is defined
as an object or object part. The instantiation parameters of an
entity are defined as the total information that would be required
to render the entity. For example, the instantiation parameters
of a circle whose center is positioned at coordinates (x, y) could
be given by (x, y) and the radius of the circle. A capsule network
consists of multiple layers of capsules, where a capsule in a given
layer detects a particular entity. Capsules in a layer are children
to the capsules of its succeeding layer, and parent to the capsules
of its preceding layer. The child-parent coupling of some pairs
of capsules is stronger than others, and this is determined by the
routing algorithm (Sabour et al. 2017).

Initially, when an image is fed into a capsule network, the
image is convolved with a set of filters to produce a feature map,
i.e., to produce a tensor representation of the image that is bet-
ter suited for classification (Goodfellow et al. 2016). The size
of the feature map is determined by the length, F, and stride,
S , of the filters, and the total number of filters used, N. Higher
level feature maps can be produced from these feature maps,
giving rise to M feature maps in total. The Mth feature map is
convolved with a set of filters to produce a convolutional cap-
sule (ConvCaps) layer. The ConvCaps layer contains I capsule
types each of dimension D, where all capsules of a particular
type detect the same entity. The elements of a capsule in the
ConvCaps layer are calculated using local regions of the image,
so ConvCaps capsules detect simpler entities. Succeeding layer
capsules are calculated using preceding layer capsules and trans-
formation weight matrices. Hence, higher-level capsules look at
broader regions of the image, and are expected to detect more
complex entities.

Each capsule in the final capsule layer is forced to detect a
particular entity, such as a light echo, whilst intermediate layer
capsules are not specified to which entities they may detect. The
Euclidean length of a capsule will be close to 1 if the entity that
the capsule detects is present in the image and close to 0 other-
wise. This phenomenon is enforced by minimizing the margin
loss while training,

L = T max(0,m+ − ||v||)2 + λ(1 − T ) max(0, ||v|| − m−)2,

where T = 1 if the entity is present in the image and 0 otherwise,
m+ = 0.9, ||v|| is the length of the capsule, λ = 0.5, and m− =
0.1 (Sabour et al. 2017). The total margin loss is calculated by
summing the margin loss of each capsule in the final capsule
layer. If the Euclidean length of the capsule is close to 1, it is
said to be “active".

The architecture of ALED-m is shown in Figure 2. To elabo-
rate, a 200× 200 image is convolved with a set of 16 filters sized
9 × 9 using a stride of 3 to produce the feature map. The feature
map is convolved with a set of 256 filters sized 5 × 5 using a
stride of 2 to produce the ConvCaps layer. The subsequent cap-
sule layers contain 24, 8, and 1 capsules of dimensions 12, 16,
and 16, respectively. The dimensions of higher-level capsules are
larger because more degrees of freedom are required to store the
instantiation parameters of more complex entities. The length of
the capsule in capsule layer 3 will be close to 1 if a light echo is
present in the image, and 0 otherwise. ALED also uses weight
sharing in which capsules of the same type within a ConvCaps
layer share a set of transformation matrices (Bhullar et al. 2020).

The entity that a given capsule detects can be localized, if
it is present, by routing path visualization (Bhullar et al. 2020).

Hence, this technique can be used to interpret the entities de-
tected by intermediate layer capsules. In turn, scenarios can be
identified that may result in model failure. For instance, there
is one capsule in capsule layer 3, and as a result, the informa-
tion present in all active capsules in the preceding layer, capsule
layer 2, will be strongly routed to that single capsule (Sabour
et al. 2017). Consequently, if a capsule(s) in capsule layer 2 is
detecting an irrelevant object, such as an artifact, than it may ad-
versely influence predictions made by the light-echo-detecting
capsule. Since there is only a single capsule in capsule layer 3,
the routing path visualization of that capsule will simply be an
addition of the routing path visualizations of the capsules in the
preceding layer, capsule layer 2. Changes to the training set or to
the model can help ensure that all capsules are detecting sensible
objects.

3.1. Model Comparisons

We compared the performance of ALED-m to ten other capsule
network architectures (Table 1), and to five CNN models (Ta-
ble 2) for baseline reference. ALED-m has a similar architecture
to model 8, but contains more filters, capsules, and dimensions
per capsule. Models 12 and 13 used the same CNN architec-
ture as model 14, but were trained using augmented training sets
of 1000 and 500 images, respectively. The original training set
of 250 images was flipped horizontally to create the augmented
set of 500 images, and then flipped vertically to create the aug-
mented set of 1000 images in total.

All models were trained using a single NVIDIA Pascal P100
GPU on TensorFlow (Abadi et al. 2016) with the Adam opti-
mizer (Kingma and Ba 2014). The learning rate was initially set
to 0.001 because it was found to be the largest learning rate that
caused a steady decline in the total margin loss. If the total mar-
gin loss of the validation set had not decreased for 10 consecutive
iterations then the learning rate was decreased by a factor of 10.
Learning was terminated when the learning rate fell below 10−6.
Training was terminated just before the model began over-fitting
to the training set. A batch size of 5 was used because it was the
largest size that could fit into memory.

An image was classified as containing a light echo if the
length of the final capsule was greater than 0.5. The accuracy
of the trained model was defined by

True Positives + True Negatives

No. of Images in Set
× 100%,

and was found to be 90% on the test set and 88% on the valida-
tion set.

4. Results

Using lower weight CNNs (less than 5 million weights) was nec-
essary to prevent over-fitting to the small training set (less than
500 images). Regardless, due to the large number of weights in
the CNNs relative to the small training set, the two fully con-
nected layers before the output layer required a 95% dropout
to combat over-fitting (Table 2). Since dropout is typically set
to 50% (Hinton et al. 2012), it may be that too many neurons
were initialized in the fully connected layers thereby resulting
in strong over-fitting. Model 15 was trained on the augmented
training set of 1000 images to see how a CNN model with less
than one million trainable weights, and a more standard percent
dropout of 50% would perform.
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Fig. 2: A diagram of the architecture of ALED-m, where ReLU Conv1 is the feature map layer, and Caps1, Caps2, Caps3 are the
capsule layers.

Table 1: List of capsule network architectures trained on the CFHT dataset. Models are defined by the feature map(s), ConvCaps
layer, and capsule layer(s), where C is the number of capsules in the layer, D is the number of dimensions per capsule, F is the
length of each filter, N is the number of filters used, S is the stride, I is the number of capsule types, and M is the number of feature
maps. The Number F. Maps column lists the total number of feature maps in each model. The Total Weights column lists the total
number of trainable weights in each model. All models were trained on 250 images.

Convolutional Layers Capsule Layers (C,D)

Number Feature Maps ConvCaps Total
Model F. Maps M × (F,N, S ) (F, I,D, S ) 1 2 3 Weights

1 5 3 × (5, 256, 1) (5, 40, 12, 2) (30, 15) ( 1, 25) 9,861,010
2 × (5, 256, 2)

2 2 2 × (5, 256, 2) (5, 40, 12, 2) (30, 15) ( 1, 25) 4,945,042

3 2 2 × (5, 256, 2) (5, 40, 12, 2) ( 1, 15) 4,724,992

4 1 1 × (9, 256, 3) (5, 40, 12, 2) (30, 15) (10, 25) (1, 25) 3,428,222

5 1 1 × (9, 256, 3) (5, 40, 12, 2) (30, 15) ( 1, 25) 3,320,722

ALED-m 1 1 × (9, 16, 3) (5, 32, 8, 2) (24, 12) ( 8, 16) (1, 16) 216,608

6 1 1 × (9, 16, 3) (5, 24, 8, 2) (16, 10) ( 4, 12) (1, 12) 117,280

7 1 1 × (9, 16, 3) (5, 6, 4, 2) ( 8, 6) ( 4, 8) (1, 8) 13,880

8 1 1 × (9, 8, 3) (5, 4, 4, 2) ( 8, 6) ( 3, 8) (1, 8) 5,984

9 1 1 × (9, 8, 3) (5, 2, 4, 2) ( 6, 4) ( 2, 6) (1, 6) 2,816

10 1 1 × (9, 8, 3) (5, 2, 3, 2) ( 6, 4) ( 3, 6) (1, 6) 2,546

Table 2: List of CNN architectures trained on the CFHT dataset. Models are defined by the feature maps, number of fully connected
layers, and % dropout per fully connected layer, where F is the length of each filter, N is the number of filters used, S is the stride,
and M is the number of feature maps. The Number F. Maps column lists the total number of feature maps in each model. The Total
Weights column lists the total number of trainable weights in each model.

Fully Connected (FC) Layers
Train Number Feature Maps Number Number Dropout Total

Model Size F. Maps M × (F,N, S ) FC Layers Neurons % Weights
11 250 3 2 × (5, 256, 2) 3 328 0 22,848,778

1 × (5, 128, 2) 192 50
2 -

12 1000 3 1 × (9, 256, 3) 3 152 95 4,551,906
2 × (5, 128, 2) 88 95

2 -

13 500 3 1 × (9, 256, 3) 3 152 95 4,551,906
2 × (5, 128, 2) 88 95

2 -

14 250 3 1 × (9, 256, 3) 3 152 95 4,551,906
2 × (5, 128, 2) 88 95

2 -

15 1000 3 1 × (9, 16, 3) 3 152 50 875,586
2 × (5, 32, 2) 88 50

2 -
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Table 3: The prediction accuracy on the validation and test sets is listed for each model. The time taken to train each model is given
under the Duration column. The total number of times the weights were updated during training is given under the Steps column.
The time taken to classify a single image is given under the Time column, and this number is averaged over 50 images.

Accuracy Training
Network Type Model Weights Validation Test Duration Steps Time (s)

Capsule 1 9,861,010 80% 78% 14h 7860 -
2 4,945,042 84% 86% 15h 7692 0.35
3 4,724,992 50% 50% 2h 11990 0.013
4 3,428,222 88% 88% 11h 2965 0.79
5 3,320,722 82% 82% 11h 3250 0.83

ALED-m 216,608 88% 92% 4h 1620 0.63
6 117,280 88% 92% 2h 1950 0.22
7 13,880 88% 86% < 1h 3960 0.022
8 5,984 88% 90% < 1h 9200 0.015
9 2,816 84% 90% < 1h 2320 0.0085

10 2,546 86% 84% < 1h 2015 0.0086

Convolutional 11 22,848,778 Over-Fitting < 1h 456 -
12 4,551,906 88% 86% < 1h 1653 0.0029
13 4,551,906 82% 86% < 1h 360 0.0029
14 4,551,906 60% 66% < 1h 234 0.0029
15 875,586 66% 60% < 1h 1000 0.0016

4.1. Model Evaluations

The accuracy and time taken to classify a single image is summa-
rized in Table 3. ALED-m can classify a 200×200 difference im-
age in 0.63 seconds, and a corresponding routing path visualiza-
tion can be produced in approximately 2 seconds. For the capsule
network models, it was found that classification accuracy and
time taken to classify an image increased as the number of cap-
sule layers increased. Increasing the number of feature maps, M,
and the size of the ConvCaps layer did not noticeably affect the
classification accuracy, as demonstrated by models 1, 2, 3. The
total number of trainable weights in a model was mainly influ-
enced by the size of the feature map(s) and ConvCaps layer, and
not the number of capsule layers. A notable difference between
capsule network and CNN models is that capsule networks can
be trained to achieve good classification accuracy using a small
non-augmented training set, and an architecture that contains a
few thousand trainable weights. For instance, capsule network
model 8 and CNN model 12 have similar accuracy, but model
8 contains 5,984 trainable weights where as model 12 contains
4,551,906.

Figure 3 displays sample routing path visualizations of the
capsules in capsule layer 2 for model 8 (Table 1). The brighter
the region in a routing path visualization the more that region of
the image is routed to that particular capsule. Capsule 1 seems to
be detecting a combination of light echoes and artifacts; capsule
2 seems to be detecting the diffraction pattern difference features
around bright stars; capsule 3 seems to be detecting light echoes.
Accordingly, the model may fail when given an image of a bright
star because capsule 2 will become active, and the irrelevant
information contained in capsule 2 will be routed to the light-
echo-detecting-capsule. It was found that increasing the number
of capsule types, I, and the number of dimensions per capsule,
D, resulted in a cleaner routing path visualization. ALED-m and
models 6, 8, and 9 had comparable accuracies on both the vali-
dation and test sets and were best performing among all capsule
network and CNN architectures tested.

The absence of artifacts in the routing path visualizations in
Figure 4 in comparison to Figure 3 reveals that the capsules in
capsule layer 2 of ALED-m are not nearly as sensitive to artifacts
as model 8. This finding is reasonable because ALED-m is more

complex than model 8, and thus, can learn a more appropriate
strategy for classification. All capsules in capsule layer 2 seem
to be detecting entities related to light echoes, which makes the
model less susceptible to incorrectly classifying a non-light-echo
image as a light echo image.

From Figure 5, it is evident that a routing path visualization
of the light-echo-detecting capsule in ALED-m precisely local-
izes light echoes, if they are present in the image. On the con-
trary, a routing path visualization of the light-echo-detecting cap-
sule in model 8 localizes other entities in addition to light echoes.
It seems that a model with more weights can more cleanly local-
ize light echoes in a routing path visualization. In short, model
8 does not always use the correct information in the image to
predict the presence of a light echo because irrelevant regions of
the image are routed to the light-echo-detecting capsule. Regard-
less, both model 8 and ALED-m were among the best perform-
ing models because of their low misclassification rates (model
8: 5/50, ALED-m: 4/50) and low margin loss (model 8: 0.037,
ALED-m: 0.039). These models could better distinguish light
echoes from artifacts compared to most other models. See Table
B.1 of the Appendix for classification details for select models.

4.2. ALED Classification Results

ALED-m was found to have fewer false positives if classifica-
tion was based on the routing path visualization pixel value,
rather than on the length of the of the light echo-detecting cap-
sule. As such, if a routing path visualization contains at least one
pixel with a value greater than 0.00042 then ALED classifies the
corresponding difference image as a light echo candidate. How-
ever, this threshold can be changed to increase or decrease the
pool of light echo candidates. ROC and precision-recall curves
were generated by varying the classification threshold from 0
to 0.00070 (Figure B.1 of the Appendix), and then applying
ALED-m to the entire set of 350 cropped CFHT images of size
200×200. The confusion matrix corresponding to a threshold of
0.00042 shows that there are no false positives, so ALED-m is
able to identify light echos with specificity of 1 (Table 4 and
Figure 6 (c)-(e)). It was found that very faint and narrow light
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Fig. 3: Routing path visualization to interpret the entities that
the capsules in capsule layer 2 of model 8 detect. Sample im-
ages from test set. Sample test images are of size 200× 200, and
routing path visualizations of capsule layer 2 are of size 29× 29.
Images (a), (b), and (d) contain light echoes; (c) and (e) contain
stars. All images show varying amounts of interstellar dust or
artifacts. Illustration and caption credit: (Bhullar et al. 2020).

Table 4: The number of true positive (TP), true negative (TN),
false positive (FP) and false negative (FN) classifications based
on ALED-m, using pixel value threshold of 0.00042 for light
echo classification.

TP TN FP FN
44 175 0 131

echoes may get falsely classified as non-light-echoes (Figure 6
(a)-(b)).

All 13,000+ 2048×4612 difference images produced in 2011
by CFHT’s MegaCam, including the 22 images that were used to
train ALED-m, were also classified by ALED. When input im-
ages are larger than 200x200, ALED pads the input image so that
it is completely divisible into 200 × 200 sub-images. Each sub-
image is passed through ALED-m, and a corresponding routing
path visualization is produced. The routing path visualizations
are stitched together into a final routing path visualization.

From the 13,000+ difference images, 1646 images were clas-
sified to be light echo candidates. The 1646 difference images
were then manually inspected for validation – a two-hour pro-
cess, and one difference image was found to contain bona fide
Cas A light echoes not noted by McDonald (2012), see Figure
7 (e). The significance of this find is that the ALED algorithm
was able to identify a group of light echoes that were not in the
training set.

Fig. 7: Difference images and their corresponding routing path
visualizations. (a)-(d) sample artifacts that ALED classified as
light echo candidates; (e) Cas A light echoes that ALED cor-
rectly classified.

About 40% of the light echo candidates from the classifica-
tion of all available difference images were due to bright stars,
see Figure 7 (a). There are always small pointing differences be-
tween the two images used to create a difference image. The
diffraction patterns around bright stars are then slightly displaced
and when differenced, show radially-displaced patterns that can
be mistaken for very sharp, low apparent motion, light echo fea-
tures. This mis-classification is reasonable because bright star
artifacts are large, usually spanning a 1000 × 1000 pixel region
of an image, and ALED only looks at local 200× 200 regions of
an image at a time. Fortunately, since the positions and apparent
brightness of such stars is known, bright stars can be algorith-
mically filtered from the pool of light echo candidates. Figures 7
(b)-(d) show the routing path visualizations of rejected light echo
candidates, all of which exhibit light echo-like features. Appar-
ently, several such features were contained in the training set but
ALED correctly assessed them as unlikely light echo candidates.

5. Summary

We have presented ALED, a novel tool for automated classi-
fication of light echoes from differenced astronomical images.
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Fig. 4: Routing path visualization to interpret the entities detected by the capsules in capsule layer 2 of ALED-m. Sample images
from test set. On a set of sample test images of size 200 × 200. Routing path visualizations of capsule layer 2 are of size 29 × 29.

(i) model 8 (ii) ALED-m

Fig. 5: Routing path visualization to localize light echoes detected by the light-echo-detecting-capsule. Sample images from test
set. Sample test images are of size 200 × 200, and routing path visualizations of capsule layer 3 are of size 29 × 29.

ALED uses capsule networks for classification and routing path
visualization to localize regions of the image contributing to the
classification. Performance of ALED is competitive with CNNs,
but requires far fewer training weights or training samples, and
does not rely on either drop out or augmenting the training set
with training image transpositions. For practitioners, the routing

path visualizations facilitate quick identification of class entities
within an image.

Model ALED-m is implemented in the Python package
ALED and is trained on the CFHT data to predict presence of
light echoes in astronomical images. ALED-m uses the correct
regions of an image when predicting the presence of light echo
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Fig. 6: Sample of routing path visualizations of 5 light echos.
(a)-(b) classified to "no light echo"; (c)-(e) classified to "light
echo". Red ellipses localize light echoes.

and can precisely localize light echoes when they are present
in an image. The arduous task of classifying 13000+ images by
manual inspection was drastically reduced by applying ALED-m
to identify light echo candidates and then using manual inspec-
tion for confirmation only on the set of light echo candidates.
Further, one novel light echo image was detected by ALED-m
that had been missed by manual classification.

Although ALED uses a capsule network to improve
generalizability, future work involves testing ALED on
astronomical images not taken from the CFHT Mega-
Cam. The Python package ALED is publicly available at
github.com/LightEchoDetection/ALED, though corresponding
package documentation is also provided in Appendix C. To the
authors’ knowledge, this is the first automation of the laborious
task of light echo detection.
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Appendix A: Reduction and Difference-Imaging Technique (McDonald 2012)

This appendix summarizes the pre-processing of astronomical photos to produce the differenced images on which ALED was
trained. Difference-imaging involves the digital image subtraction of two or more epochs of the same field or viewpoint. McDonald
(2012) developed an image pipeline that used reduced CFHT images and adapted a technique by Rest et al. (2005) to perform the
differencing. A brief description of the difference-imaging steps implemented by the image pipeline on the reduced images are
described below:

1. Deprojection - Each image was resampled to the same geometry as the template image (earlier epoch image) so that images are
photometrically aligned to facilitate subtraction per the SWarp software package (Shang et al. 2012).

2. Aperture Photometry - The reduced and resampled images are photometrically calibrated using the DoPHOT photometry
package to identify and measure sources (Schechter et al. 1993), and identify a photometric zero point for the image.

3. Pixel Masking - Saturated pixels are masked out since their true brightness values are unknown (i.e. for saturated stars, both the
star and its spikes are masked).

4. Image Subtraction - Clean difference-images are produced by point-spread-function (PSF)-matching and then subtracting pixel
values, using the Higher Order Transform of PSF and Template Subtraction (HOTPANTS) package.

The photonetric alignment and PSF-matching are the most difficult steps of this process. Indeed, the images to be subtracted are
often taken under different conditions, including atmospheric transparency, atmospheric seeing, or exposure times, with each image
consequently having different PSF. A convolution kernel that matches the PSFs of two astronomical images is found such that the
output pixel is a weighted sum of the input pixels within a kernel of a certain size. Further, since the PSF of astronomical images
are spatially varied, the kernel must be modelled as a spatially varying function (McDonald 2012).

Appendix B: Extended Model Evaluation

Here we present further classification results. Table B.1 compares classification using different capsule and CNN architectures for
classification threshold based on length of light echo-detecting capsule. Lower model loss was typically associated with better
ability to distinguish light echoes from light echo like artifacts. Figure B.1 plots performance curves for model ALED-m using
classification threshold based on routing path visualization pixel value.

Table B.1: Classification (TP: true positive, TN: true negative, FP: false positive, FN: false negative) of the test set of 50 images,
for several models. For the capsule networks, an image was classified as containing a light echo if the length of the final capsule
was greater than 0.5. For the CNNs, an image was classified as containing a light echo if the neuron corresponding to the light echo
class was more active than the non-light-echo class neuron. The model loss is given by the margin loss for capsule networks, and
cross-entropy loss for CNNs.

Classification
Network Type Model TP TN FP FN Loss

Capsule 2 23 20 5 2 0.041
3 25 0 25 0 0.202
4 23 21 4 2 0.046
5 23 18 7 2 0.056

ALED-m 23 23 2 2 0.039
6 23 23 2 2 0.041
7 23 20 5 2 0.047
8 24 21 4 1 0.037
9 23 22 3 2 0.213

10 23 19 6 2 0.045

Convolutional 12 21 22 3 4 0.371
13 21 22 3 4 0.459
14 17 16 9 8 0.644
15 12 18 7 13 0.721

Appendix C: Package Documentation - github.com/LightEchoDetection/ALED

This appendix provides details on how to use the ALED package and perform routing path visualization in Python.
The function classify_fits() takes as input the path of a directory containing difference images, of any size, to be classified.

Each difference image is cropped to many images of size 200 × 200, which are then classified and a corresponding routing path
visualization is produced. The routing path visualizations are stitched together to form a final output routing path visualization that
corresponds to the input image. The routing path visualization localizes the light echoes for the user. The output also includes a text
file listing images that are good candidates for containing a light echo.
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(i) ROC curve (ii) Precision-recall curve

Fig. B.1: The ROC and precision-recall curve of ALED-m as calculated by varying the threshold of 0.00042 from 0 to 0.00070.

Appendix C.1: Installation

1. Install Python 3.7

2. (Optional) create a virtual environment: virtualenv aledpy, and activate virtual environment: source
aledpy/bin/activate

3. Install jupyter notebook: pip install jupyterlab

4. Install dependencies via pip install ...

Dependencies:
astropy==3.0.5
matplotlib==3.0.2
numpy==1.16.3

opencv-python==3.4.4.19
pandas==0.24.1

scikit-image==0.14.2
scikit-learn==0.20.2

scipy==1.2.1
tensorflow-gpu==1.11.0 or tensorflow==1.11.0

Installing tensorflow-gpu==1.11.0 isn’t a straight forward pip install tensorflow-gpu==1.11.0, instead follow
this tutorial https://www.tensorflow.org/install/gpu. tensorflow==1.11.0 can be installed easily using pip, however, it is
typically much slower than tensorflow-gpu because it only uses the cpu.

5. Run jupyter notebook: jupyter notebook

If you’re remotely connected to the computer than port forward jupyter notebook onto your local computer via
local_user@local_host$ ssh -N -f -L localhost:8888:localhost:8889 remote_user@remote_host

6. To make sure everything is installed correctly, run test.ipynb

Appendix C.2: Description

The test.ipynb file contains sample code to get you started. Call function classify_fits(snle_image_paths,
snle_names, start) from file model_functions.py to start the classification process. snle_image_paths is a Python
list of the file paths of each differenced image to be classified (each image in .fits format). snle_names is a Python list of the
names of the images corresponding to the file paths (names can be arbitrary strings). start is an int that allows you to start the
classification process where you left off, in case the process has to be terminated.

The input image will be cropped to multiple 200x200 sub-images (note that padding will be added to the input image so that it
is completely divisible by 200x200). Each sub-image is passed through the network for classification, and a corresponding routing
path visualization image is produced. The routing path visualization images are stitched together and saved as a .png in directory
asto_package_pics/, along with the input image.
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For each .fits image, a corresponding routing path visualization image will be saved to astro_package_pics/. In addition, a
text file titled snle_candidates.txt will be created. The text file contains the name of each .fits file, and 5 values called Count1,
Count2, Count3, Avg1, Avg2, representing the liklihood of the image containing a light echo. From experience, if Count1 is
non-zero than the image should be considered a light echo candidate.

1. Count1: A count of the number of pixels in the routing path visualization image that have a value greater than 0.00042.

2. Count2: A count of the number of pixels in the routing path visualization image that have a value greater than 0.00037.

3. Count3: A count of the number of pixels in the routing path visualization image that have a value greater than 0.00030.

4. Avg1: Is the average length of the light-echo-detecting capsule for the top_n sub-images with the largest length for the
light-echo-detecting capsule.

5. Avg2: Is the average length of the light-echo-detecting capsule for the small_n sub-images with the largest length for the
light-echo-detecting capsule.

As default, top_n=45 and small_n=10. top_n and small_n are arguments for classify_fits() and can be changed via
classify_fits(..., top_n=45, small_n=10).

Appendix C.3: Test Package

To check if the dependencies have been installed correctly open test.ipynb and run all cells. If successful, 3 files should be
produced:

1. snle_candidates.txt: Will contain the following line test.fits 375.000000 440.000000 562.000000 0.731215
0.880019

2. astro_package_pics/rpv_test.fits.png: The routing path visualization image of test.fits
3. astro_package_pics/snle_test.fits.png: test.fits in .png format

Appendix C.4: Re-Train Model

The user must have a dataset in order to re-train the model as one is not provided. The re-training script is titled
retrain_script.ipynb in this repository. We recommend that the dataset contain an equal number of light-echo and non-light-
echo images to prevent any class imbalance issues that may arise. The script demonstrates how to train a new model with the same
architecture as ALED-m, and starting from the weights learned by ALED-m.
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