
METHODS FOR MULTI-TRAIT POLYGENIC

RISK SCORES



METHODS FOR MULTI-TRAIT POLYGENIC RISK SCORES

By YI WAN, B.Sc.

A Thesis Submitted to the School of Graduate Studies in Partial

Fulfillment of the Requirements for

the Degree Master of Science

McMaster University © Copyright by Yi Wan, December 2024

https://gs.mcmaster.ca/
http://www.mcmaster.ca/


McMaster University

MASTER OF SCIENCE (2024)

Hamilton, Ontario, Canada (Department of Mathematics and Statistics)

TITLE: Methods for Multi-Trait Polygenic Risk Scores

AUTHOR: Yi Wan

B.Sc. (Mathematics and Statistics),

McMaster University, Hamilton, Canada

SUPERVISOR: Dr. Angelo J. Canty

NUMBER OF PAGES: xv, 83

ii

http://www.mcmaster.ca/
https://math.mcmaster.ca/


Abstract

This thesis examines various methods for generating multi-trait polygenic risk scores

(PRS). The primary objective is to see which multi-trait method performs best and

are there any simpler methods that can perform as well. The thesis evaluates each

method by comparing the weighted-average multi-trait PRS with true phenotype val-

ues (target traits), using the correlation coefficient (ρ) for continuous traits and the

area under the receiver operating characteristic curve (AUC) for binary traits. It also

investigates how different simulation parameters influence performance. Two addi-

tional novel multi-trait PRS methods are introduced in this work: mt-lm and mt-

CVb. mt-lm is essentially a multiple linear regression for a continuous focal trait and

logistic regression for a binary focal trait, while mt-CVb combines cross-validation

and bagging techniques in a hybrid approach to improve model performance. The ex-

isting multi-trait method wMT-SBLUP consistently achieves the best performance,

outperforming all other methods in most scenarios. While the two novel methods are

not the top performers, they demonstrate better results compared to other methods

(excluding wMT-SBLUP) for both continuous and binary focal traits across various

parameter settings. Moreover, mt-lm offers the additional advantage of being faster

than wMT-SBLUP.
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Definitions and Abbreviations

Abbreviations

SNP Single nucleotide polymorphism

MAF Minor allele frequency

GWAS Genome-wide association studies

PRS Polygenic risk scores

ROC Receiver operating characteristic

AUC Area under the ROC curve

Definitions

DNA Deoxyribonucleic acid is composed of two long strands that form

a double helix, with a backbone made of sugars and phosphate

groups, and nucleotide bases (adenine (A), thymine (T), cytosine

(C), guanine (G)) that pair between the two strands (A with T,

xiii



C with G). The genome is stored within the cell nucleus as DNA

organized into chromosomes.

Chromosomes The human genome is divided into 23 pairs of chromosomes, each

of which contains long sequences of DNA. Each chromosome con-

tains hundreds to thousands of genes, chromosome 1 is the largest

human chromosome.

Gene A gene is a sequence of DNA that contains the instructions for

making a specific protein.

Genome The total complement of DNA within a single cell of an organ-

ism. Every living organism (from bacteria to humans) has a

genome, though the size and complexity can vary significantly

across species.

SNP Single nucleotide polymorphism (SNP) is the most common type

of genetic variation among individuals. A SNP occurs when a

single nucleotide (the basic building block of DNA) in the genome

is altered.

Allele Alleles are different versions of a gene or genetic variant. For a

specific genetic locus (position on a chromosome), an individual

can have two alleles (one inherited from each parent).

Homozygous The individual has two identical alleles (e.g. AA or GG).

Heterozygous The individual has two different alleles (e.g. AG).
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Minor allele Minor allele refers to the less frequent of the two alleles at a par-

ticular genetic locus in a given population.

MAF The minor allele frequency (MAF) is the proportion of the minor

allele in a population.

Trait A specific characteristic or feature of an organism that can be

influenced by genetics and environmental factors.

Genotype When talking about SNPs, the genotype indicates the particular

alleles present at a given location in the genome.

Phenotype An observable trait.

GWAS A genome-wide association study is used to identify associations

between genetic variants and traits or diseases across the genome,

compare the genetic variants of individuals with a particular trait

or condition to those without it, aiming to identify specific genetic

loci that contribute to the trait or disease.

PRS A polygenic risk score is used to quantify an individual’s genetic

risk for a particular trait or disease based on the combined effect

of many genetic variants, is a measure of an individual’s genetic

predisposition to a certain trait or disease. It is calculated using

information from many SNPs across the genome.
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Chapter 1

Introduction

1.1 Genetics

Single nucleotide polymorphisms (SNPs), are the most common genomic variant in

humans. These are locations in the genome where there is variation in the nucleotide

across individuals. Alleles are the possible nucleotides, and at any given genetic

locus (position on a chromosome), an individual inherits two alleles (one from each

parent). The minor allele frequency (MAF) is the proportion of the minor allele in a

population. An individual’s genotype at a given SNP tells which alleles they have at

that location. A trait (phenotype) is a specific observable characteristic or feature of

an organism that can be influenced by both genetics and environmental factors.

A genome-wide association study (GWAS) aims to identify associations between ge-

netic variants and traits or diseases across the entire genome. For binary traits, it

compares the genetic variants of individuals with a specific trait or condition to those

without it, identifying genetic loci contributing to the trait or disease. For contin-

uous traits, GWAS examines how genetic variants correlate with variation in the
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trait across individuals. The input for GWAS always includes both genotype and

phenotype data.

In genetics, the heritability of a phenotype is defined as:

H2 =
Var(Genotype)

Var(Phenotype)

which quantifies the proportion of phenotypic variation that is due to genetic varia-

tion. The genetic correlation matrix is used to show the genetic correlation between

traits. Traits which share causal SNPs will have genetic correlation, and the corre-

lation will increase if more causal SNPs are shared between the traits; additionally,

altering the linkage disequilibrium (LD) structure can contribute to genetic correla-

tion, as the same LD block influences both traits.

Polygenic risk scores (PRS) are used to quantify an individual’s genetic risk for a

particular trait or disease based on the combined effect of many genetic variants,

and are calculated using information from many SNPs across the genome. A PRS

is typically a weighted sum of genotypes at SNPs thought to be associated with the

trait of interest.

1.2 Uni-trait PRS

The uni-trait PRS method estimates genetic risk for a single trait or disease by

aggregating the effects of genetic variants associated with that trait. The utility

of a PRS relies on the assumption that the trait’s genetic architecture is polygenic,

meaning it is influenced by numerous genetic variants, each with a small effect; it also

assumes that these genetic effects are additive and that the associations identified in

2
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GWAS are replicable and applicable to the target population. Typically, uni-trait

PRS are constructed using summary statistics from a GWAS specific to the trait. A

common method for performing a GWAS involves fitting a linear regression model

for continuous traits, expressed as:

P = G · β + ϵ

where P represents the phenotype, β denotes the effect sizes, and G represents the

genotype. For binary traits, logistic regression is used:

log

(
π

1− π

)
= G · β + ϵ

π(G) =
eG·β+ϵ

1 + eG·β+ϵ

where π(G) is the probability of the trait’s occurrence for an individual with genotype

vector G, the probability of the trait differs depending on the individual’s genotypes.

GWAS analysis provides outputs such as Z-scores, standard errors, effect size esti-

mates, and p-values for each SNP and trait. Calculating the uni-trait PRS directly

using the formula G·β̂, where the genotype G is multiplied by the effect size estimates

β̂, is the simplest method for performing uni-trait PRS.

We typically select “significant” SNPs from GWAS results for use in polygenic risk

score (PRS) construction. The clumping and thresholding (C+T) method achieves

this by first clumping to remove SNPs in high linkage disequilibrium (LD), retaining

only the SNP with the lowest p-value within each LD block; next, thresholding is

applied to select SNPs with p-values below a specified cutoff. This process ensures

that the final set of SNPs is both statistically significant and largely independent.

3
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In other words, the C+T method filters SNPs based on their statistical significance

and LD structure to retain only independent significant SNPs. In this thesis, for

simplicity, independent SNPs were generated in the simulation discussed in Chapter

3 and Chapter 4. However, in Chapter 5, correlated SNPs were simulated to better

reflect real-world scenarios. We are conducting simulations instead of using real-life

datasets because we aim to examine how the parameters influence performance.

There are alternative methods for performing uni-trait PRS besides using GWAS es-

timates directly, such as snpboost and GraBLD. snpboost (Klinkhammer et al.,

2023) uses advanced machine learning techniques to improve PRS prediction by in-

tegrating various types of genetic data, enhancing the prediction of complex traits

or diseases. GraBLD (Paré et al., 2017) combines gradient boosting with linkage

disequilibrium adjustments to refine PRS and other predictive models. This method

utilizes gradient boosted regression trees to optimize SNP weights, followed by a

regional adjustment for linkage disequilibrium, leveraging the strengths of both tech-

niques to improve predictive accuracy.

1.3 Multi-trait PRS

Amulti-trait PRS method extends beyond focusing on a single trait by simultaneously

incorporating multiple related traits. Similar to the uni-trait method, constructing

a multi-trait PRS involves using data from GWAS; for multi-trait methods, GWAS

data is required for every trait involved. However, multi-trait methods leverage addi-

tional traits to enhance the predictive performance of the final PRS. By using one or

more additional traits to help predict the final PRS, these methods improve overall

predictive power. In order for a multi-trait method to outperform uni-trait method,

4
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the additional traits should have a significant genetic correlation with the focal trait,

meaning they share a substantial portion of their genetic architecture.

There are several methods for performing multi-trait PRS, each combining uni-trait

PRS for multiple traits to generate a final PRS. The method MPS (Krapohl et al.,

2018) uses elastic net regularized regression to predict outcomes, selecting predictors

and estimating their contributions. The multi-PGS method (Albiñana et al., 2023)

uses standardized PRS to develop prediction models for a target outcome, applying

both a linear model (lasso-penalized regression) and a non-linear model (boosted

gradient trees, XGBoost). The mtPGS method from Xu et al. (2023) incorporates

cross-validation to refine predictions. The wMT-SBLUP method, as described in

Maier et al. (2018), combines the information from multiple traits by using best linear

unbiased predictors (BLUPs) in the GWAS and deriving weights from the BLUP

estimators. Finally, the mtPRS-PCA method from Zhai et al. (2023) uses the sum

of the top eigenvectors from principal component analysis of the genetic correlation

matrix.

In this thesis, we focus on comparing mtPGS, wMT-SBLUP, and mtPRS-PCA

as described in Chapter 2. MPS is particularly suited for large datasets with many

predictors. On the other hand, multi-PGS is designed to optimize a single target

outcome, rather than integrating multiple traits, and uses 937 PRS to help improve

prediction in their paper. For these reasons, we chose not to include these two methods

in the simulation.

Additional methods, both uni-trait and multi-trait, are reviewed in Ma and Zhou

(2021). The key figure in this paper provides an overview of PRS methods up to

2021, offering a comprehensive summary of PRS and their applications in predicting

5
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complex traits.

A very interesting paper (Kachuri et al., 2024) explores the principles and methods

of applying PRS across global populations. Genetic architectures can differ among

populations due to varying allele frequencies, linkage disequilibrium patterns, and

environmental interactions. These differences can impact the accuracy of PRS when

applied to diverse groups. The paper addresses the challenges and strategies for

transferring PRS across different populations, emphasizing the need for accurate and

equitable risk assessments. Additionally, the application of PRS in pharmacoge-

nomics (PGx) studies shows promising potential for enhancing patient stratification

and drug response predictions; for example, the method PRS-PGx-Bayesx (Zhai

et al., 2024) offers a new Bayesian approach to reduce Eurocentric or cross-population

PRS prediction biases.

1.4 Overview

Chapter 2 presents three multi-trait methods from the literature that have been

applied in this thesis. Chapter 3 describes the simulation setup and presents the

results for scenarios involving both continuous and binary focal traits, with varied

parameters. Chapter 4 introduces two novel multi-trait methods and compares their

performance with the best of the methods discussed in Chapter 2. Chapter 5 de-

scribes a simulation in which there are correlated SNPs and discusses how the results

differ from independent SNPs as simulated in Chapter 3 and Chapter 4. Chapter

6 summarizes the results and discusses the limitations of the work presented in this

thesis.

6



Chapter 2

Multi-trait Polygenic Risk Score

Methods from Literature

These existing multi-trait methods we chose and included in this chapter use genome-

wide association studies (GWAS) as input to generate polygenic risk scores (PRS).

Each method incorporates additional traits to improve the prediction of the focal (tar-

get) trait. The weights for each PRS are first estimated, allowing us to compute the

final weighted average PRS by combining the corresponding individual PRS values.

The input for GWAS consists of a genotype matrix and trait vectors, with GWAS

analysis fitting models (e.g., a linear model or a generalized linear model) to produce

outputs such as Z-scores, standard errors, effect size estimates, and p-values for each

single nucleotide polymorphism (SNP) and trait.

Researchers typically use external GWAS data to ensure independence between datasets

and because they may lack access to large sample datasets. Publicly available GWAS

summary statistics, often derived from studies with very large sample sizes, are com-

monly used for this purpose.

7
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2.1 mtPGS

The method mtPGS from Xu et al. (2023) calculates the single PRS by combing

different PRS using:

mtPGS =
K∑
k=2

wk · PRSk (2.1.1)

where the weights w = (w2, ..., wK) are obtained using weighted regression through

cross-validation and PRSk = G · β̂k is PRS for the kth trait (G is the genotype vector

for individual and β̂k is the vector of estimates for the effect of the SNPs on the

kth trait). The PRS for the target trait is not used in the calculation in Equation

2.1.1 (assuming that the target trait is always labeled as the first trait). The goal of

mtPGS is to develop a robust prediction model by combining genetic information

from multiple traits that are likely to share genetic influences; this is why it does

not use the PRS for the target trait, as using a separate set of traits helps capture

the underlying genetic correlations among these traits and their contributions to the

target outcome.

The cross-validation model is trained on i−1 of the i folds (the training set) and tested

on the remaining fold (the validation set), where i is the number of equally sized (or

roughly equal) subsets (or “folds”) into which the dataset is randomly divided. This

process is repeated i times, each time using a different fold as the validation set and

the remaining i− 1 folds for training.

The model is then fitted through multiple linear regression. 10-fold cross-validation

is a commonly used default choice as it provides a good balance between bias and

variance while remaining computationally feasible in most scenarios (Kuhn, 2013).

8
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We use 10-fold cross-validation in this thesis. The estimates (weights) obtained from

multiple linear regression, where the target trait is the outcome and the other PRS

values for the other traits are the covariates in each fold, are used to calculate the

weights. The final weights are the average of the estimates across all folds.

2.2 mtPRS-PCA

The methodmtPRS-PCA from Zhai et al. (2023) calculates the weights for the com-

bination of PRS from multiple traits using the principal component analysis (PCA)

method and creates a composite single PRS, which has GWAS summary statistics for

each trait and genetic correlation matrix as its inputs using formula:

mtPRS-PCA =
K∑
k=1

wk · PRSk (2.2.1)

where the weights w = (w1, ..., wK) are created using genetic correlation matrix by

PCA, calculated the cumulative sum of eigenvectors and stop at the sum of top

eigenvectors that explained 80% of the genetic variability. In other words, the method

for calculating weights involves first determining the number of components that

explain at least 80% of the variance, then the loadings of the top principal components

are extracted and the loadings across these components are summed to obtain the

weights.

The inputs for this method are GWAS summary statistics and the genetic correlation

matrix. For real data we can estimate the genetic correlation matrix using the linkage

disequilibrium (LD) score regression approach (Bulik-Sullivan et al., 2015).

9
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2.3 wMT-SBLUP

The method wMT-SBLUP from Maier et al. (2018) is designed to improve genetic

prediction by leveraging genetic correlations among multiple traits. The full name of

this method is “weighted index to generate approximate multi-trait summary statis-

tics best linear unbiased predictor”, calculates the multi-trait PRS using the formula:

wMT-SBLUPi,f =
K∑
k=1

wk · ĝBLUP
i,k (2.3.1)

Considered a general linear mixed model P = G · β + ϵ for the GWAS (where β is

random effect), with Var(β) = B and Var(ϵ) = R. For each trait (total k traits), P

is a column vector of length n × 1 and G has dimension n × p. Assuming β is an

p× 1 true effect sizes vector for that trait with distribution β ∼ N(0, Ip · σ2
β), where

Ip is an identity matrix of dimension p; ϵ is a column vector of independent residual

effects, ϵ ∼ N(0, In · σ2
ϵ ), where In is an identity matrix of dimension n.

We now have:

B = Ip · σ2
β

R = In · σ2
ϵ

β̂BLUP =

[
G′R−1G+B−1

]−1

G′R−1P

ĝBLUP
i,k = G · β̂BLUPk

the genetic prediction for each individual i and focal trait of interest f is obtained

by combining the genetic predictions for each trait k, ĝBLUP
i,k , using the corresponding

weights wk.

10
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Generally, GWAS are performed using a linear regression model, but this method

differs from others by using a linear mixed-effects model, their estimates are β̂BLUP

(best linear unbiased prediction) instead of β̂OLS (ordinary least squares), the former

estimates the parameters of the error distribution and derives a linear unbiased pre-

dictor for the random effect sizes. One of the reference in Maier et al. (2018) describes

the BLUP method for GWAS and its advantages (Goddard et al., 2009). In a typical

GWAS, separate linear regression models are fitted for each SNP, resulting in as many

models as there are SNPs; each model estimates the effect size of a single SNP while

conditioning on covariates. In contrast, the BLUP approach fits a single mixed-effects

model that accounts for the effects of all SNPs simultaneously. Instead of estimating

individual SNP effects, the BLUP model estimates the distribution of SNP effect sizes.

Furthermore, standard GWAS often focuses on explicitly estimating individual SNP

effect sizes, which can lead to sparse models that retain only SNPs with significant

p-values; on the other hand, the BLUP method efficiently incorporates information

from all SNPs, including those with small or non-significant effects that may still con-

tribute to the overall polygenic signal. That is, the BLUP approach helps mitigate

overfitting and addresses the issue of multiple testing inherent in GWAS.

This method uses all the traits, including the focal trait, to generate the multi-trait

PRS. The weights are calculated using the heritability and genetic correlation matrix,

according to the formula:
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w = V −1C

=


Var(β̂SBLUP1) · · · Cov(β̂SBLUP1 , β̂SBLUPk

)

...
. . .

...

Cov(β̂SBLUPk
, β̂SBLUP1) · · · Var(β̂SBLUPk

)


−1

C (2.3.2)

with

Var(β̂SBLUPk
) = R2

k

Cov(β̂SBLUPk
, β̂SBLUPl

) =
rGR

2
kR

2
l√

h2
kh

2
l

where h2
k is the heritability for trait k, rG is the corresponding genetic correlation

between focal trait and selected trait, and note that:

R2
k =

ϕ+ h2
k −

√
(ϕ+ h2

k)
2 − 4ϕh4

k

2ϕ

ϕ =
Meff

Nk

where Meff is the effective number of chromosome segments or the number of inde-

pendent SNPs (for independent SNPs Meff = p and for correlated SNPs in this thesis

Meff = p
d
, where p is number of SNPs and d is the block size), Nk is the sample size

of trait k (sample size of the training set Nk = 900). The vector C represents the

covariance vector, with the following formula, where the subscript f denotes the focal

trait:
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C =


Cov(βf , β̂SBLUP1)

...

Cov(βf , β̂SBLUPk
)

 (2.3.3)

where

Cov(βf , β̂SBLUPf
) = R2

f

Cov(βf , β̂SBLUPk
) = rG

√
h2
f

h2
k

R2
k

In practice, many of the publicly available GWAS summary statistics use β̂OLS instead

of β̂BLUP; this makes it challenging to calculate PRS using β̂BLUP. Additionally, in

this thesis, all SNPs were included in the simulation without applying any selection

process, which reduces the advantage of BLUP over OLS. As a result, the overall

difference between the two methods is minimal, and this thesis uses β̂OLS in place of

β̂BLUP.
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Chapter 3

Comparison of Existing Methods

3.1 Simulation set-up

Three genotype matrices were generated for this simulation: the ng × p genotype

matrix for GWAS (Gg), the nt × p genotype matrix for the training set (Gt), and the

nv × p genotype matrix for the validation set (Gv). In the n× p genotype matrix G:

G =

SNP1 SNP2 SNP3 . . . SNPp

...
...

... . . .
...


where each row represents an individual and each column represents single nucleotide

polymorphism (SNP), the values (0, 1, and 2 in each SNP represent the number

of minor alleles at a given locus) in the matrix are the observed genotypes for an

individual at a given SNP. There are a total of ng = 1800 observations for Gg,

nt = 900 observations for Gt, and nv = 900 observations for Gv; the total number of

SNPs is p = 5000. In this simulation, the minor allele frequency (MAF) are different

across SNPs, are generated from a Uniform(0.05, 0.5) distribution.
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In the n× k phenotype matrix P :

P =

Trait1 Trait2 Trait3 . . . Traitk
...

...
... . . .

...


there are a total of n observations and k columns of traits. For the model used to

generate continuous traits in this thesis:

P = G · β + ϵ

where P represents the phenotype, β denotes the effect sizes, and G represents the

genotype matrix. The model used to generate binary traits in this thesis was:

log

(
π

1− π

)
= Gi · β + ϵ

πi =
eGi·β+ϵ

1 + eGi·β+ϵ

Pi ∼ Bernoulli(πi)

here πi is the probability that individual i has the trait of interest (based on genetic

and environmental factors) and Pi denotes the binary indicator of whether or not they

have the trait. The error terms include both non-genetic (environmental) effects and

random noise, and, without loss of generality, are assumed to have a mean of zero.

Three phenotype matrices were generated for this simulation: the ng × k phenotype

matrix for GWAS (Pg), and the nv × k genotype matrix for the validation set (Pv).

The number of traits in this simulation is set to k = 4.

These trait columns in P are correlated due to two factors: their error terms are
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correlated (a non-genetic mechanism), and there are shared causal SNPs between

traits (a genetic mechanism). In this thesis we will use the term causal SNP to refer

to variants which are directly related to the trait of interest; that is, the true β

corresponding to the SNP is non-zero. The correlation matrix of the errors is:

Cerror =



1 0.125 0.125 0.125

0.125 1 0.125 0.125

0.125 0.125 1 0.125

0.125 0.125 0.125 1


and ϵ ∼ MVN(0,Σ) where the variance-covariance matrix is:

Σ =



2 0.25 0.25 0.25

0.25 2 0.25 0.25

0.25 0.25 2 0.25

0.25 0.25 0.25 2


The true heritability vector and the true genetic correlation matrix are calculated

prior to the data analysis, since these are true values (not estimates based on data),

we did not use the methods discussed in previous papers for estimating heritability

and the genetic correlation matrix, such as the method using LD scores described in

Zaitlen and Kraft (2012). Instead, we used the model and true βs (effect sizes) to

calculate them. The heritability formula for the jth corresponding trait is now:
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H2
j =

Var(G)

Var(P )
=

Var(G)

Var(G) + Var(ϵ)
=

p∑
i=1

β2
i,j · 2 · pi · (1− pi)

p∑
i=1

β2
i,j · 2 · pi · (1− pi) + Var(ϵ)

(3.1.1)

We computed those values for both continuous and binary focal traits, since in the

binary case we focus on the heritability on the liability scale, where liability-scale her-

itability refers to the heritability of an unobserved continuous liability that underlies

the binary trait. The genetic correlation covariance between two traits is calculated

using:

Vl,m = Vm,l =

p∑
i=1

βi,l · βi,m · 2 · pi · (1− pi) (3.1.2)

for l and m = 1, ..., k and these covariances were then converted to correlations in the

standard way.

In our studies, the four traits (for both continuous and binary case), have different

truly associated SNPs. The first trait is truly associated with SNPs 1–10, the second is

truly associated with SNPs 6–15, the third is truly associated with SNPs 8–17 and the

last trait is truly associated with SNPs 9–18. For the jth trait, the vector βj contains

the effect sizes of the SNPs that are truly correlated with this trait, with values set

to zero for SNPs that are not correlated with it. The vector can be represented as:

βj =

[
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

]T

These parameter values result in true heritability for both the continuous and binary
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cases of:

H2 ≈
[
0.4 0.4 0.4 0.4

]
which are close to real-life scenarios. The true genetic correlation matrix is:

Cgenetic =



1 0.37 0.15 0.08

0.37 1 0.63 0.48

0.15 0.63 1 0.82

0.08 0.48 0.82 1


3.1.1 Simulation framework

For the continuous traits, we fit a linear regression model for the GWAS with one SNP

at a time as the covariate. For the binary traits, we will fit a logistic regression model.

The simulation is repeated R = 200 times. The sample size and number of SNPs used

in this thesis are smaller than those in real-life scenarios, as larger parameters would

require significantly more time to run. Figure 3.1 outlines the basic framework for

the simulation in this thesis, consisting of four steps:

Step 1. The inputs are the ng × p genotype matrix for GWAS (Gg) and the ng × k

phenotype matrix for GWAS (Pg). By applying genome-wide association studies

(GWAS), a p× k matrix of effect size estimates (β̂) is produced as output.

Step 2. The inputs are the nt×p genotype matrix for the training set (Gt), the nt×k

phenotype matrix for the training set (Pt), the p× k effect size estimates (β̂) matrix

from Step 1, a heritability vector (H2), and a genetic correlation matrix (Cgenetic).

Additional inputs depend on the specific method applied; in this thesis, these include

the various methods discussed in Chapter 2. The output is a k × 1 vector of weight
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estimates (w), indicating the weight for each column of polygenic risk scores (PRS).

Figure 3.1: Framework for simulation in this thesis with steps

Step 3. In this step, we calculate the weighted average PRS for the validation set.

The inputs are the nv×p genotype matrix for the validation set (Gv), the p×k effect

size estimates (β̂) matrix from Step 1, and the k×1 weight estimates (w) vector from

Step 2. The nv×k PRS matrix is calculated by multiplying the genotype matrix (Gv)

with the effect size estimates (β̂) matrix, producing a score for each individual for

each trait. The final nv × 1 polygenic risk score (PRS) is obtained by computing the

weighted average of the trait-specific PRS values, using the weight estimates vector

(w). This weighted average combines the individual PRS values across traits, where

the weights represent the relative importance of each trait’s contribution to the overall

PRS.

Step 4. The final PRS from Step 3 is compared with the focal trait in the validation
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set to assess the predictive accuracy.

In our simulation we compare the three methods described in Chapter 2 and also the

uni-trait method which only used the PRS for the focal trait.

3.2 Continuous focal trait

In this thesis, the correlation between the target trait and the PRS generated from

each method are examined to assess the accuracy of the methods (note that the

correlation may not be very high, since PRS only uses genetic information, it can

only predict the genetic component of risk for the trait).

Figure 3.2 shows the linear relationship between the PRS generated by each method

and the corresponding trait for a single simulation run. We can see that the scatter

plots exhibit a linear trend, indicating that the correlation coefficient is meaningful.

Figure 3.2: Plot for PRS and the first trait (as the average performance across all
methods is the lowest for this trait)
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Figure 3.3 presents boxplots for each method using the original parameters, these box-

plots allow for a comparison of the correlation coefficients across methods for each

trait. From Figure 3.3, we observe that the performance of the multi-trait method

wMT-SBLUP method (show in blue) consistently outperforms the others, while

mtPGS (show in red) performs worse. For the multi-trait methods wMT-SBLUP

and mtPRS-PCA, the performance is comparatively lower for the first trait, while

the other three traits show significantly higher performance. The mtPGS method

performs best for the second trait, but still lags behind wMT-SBLUP and mtPRS-

PCA. The uni-trait method shows consistent performance across all traits but deliv-

ers the worst results for all traits, except for the first one, when compared to all the

multi-trait methods. One reason for this behavior may be that the first trait has the

lowest average genetic correlation with the other traits (with the average correlation

above 0.45 for the others, and the third trait having the highest at 0.53, while the first

trait’s is approximately 0.2), which could limit the extent to which information from

the other traits improves prediction for the first trait. The performance of multi-trait

methods, such as mtPRS-PCA, depends heavily on the genetic correlation matrix,

which could explain their varied performance across traits. Furthermore, the consis-

tently poor performance of mtPGS may be attributed to the fact that it is the only

method that does not incorporate the PRS of the focal trait; its performance does

not match the high performance observed in the paper, possibly because only ten

SNPs are truly correlated with each trait, which may not provide enough predictive

power for the model. Additionally, the low genetic correlation between the first trait

and the others might constrain the advantages of multi-trait approaches, which could

explain why uni-trait methods outperform some multi-trait methods for this specific

21



M.Sc. Thesis - Yi Wan McMaster - Mathematics and Statistics

trait. Table 3.1 provides a summary of the average correlation between PRS and trait

for each method across traits.

Figure 3.3: Comparison of correlation coefficients across methods using original pa-
rameters

Table 3.1: Mean correlation coefficients of original parameters

Trait 1 Trait 2 Trait 3 Trait 4

Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

3.2.1 Effect of changing sample sizes

In this case, all parameters remained the same except for the sample sizes ng and nt.
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Changing the GWAS sample size ng

Figure 3.4 shows the performance of each method across traits as the GWAS sample

size decreases from 1800 to 600. We observe that as the sample size ng decreases,

the correlation coefficient for the methods also decreases. The performance of each

method across traits improves as the GWAS sample size increases from 1800 to 2700.

The plot is qualitatively similar to Figure 3.4, with the major difference being the

larger values on the Y-axis, the ordering of the performance remains the same, so

we will not include this plot. We observe that as the sample size ng increases, the

correlation coefficient for the methods increases. The result aligns with expectations:

the performance of all methods improves with larger GWAS sample sizes, as this

increases statistical power and reduces sampling error. The relationship between

the performance of the various methods, however, remains largely unchanged by the

changing GWAS sample size.

Figure 3.4: Comparison of correlation coefficients across methods when ng = 600
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Table 3.2: Mean correlation coefficients when ng changes

Method Trait 1 Trait 2 Trait 3 Trait 4

ng = 600 Uni-trait 0.085 0.074 0.081 0.086

mtPGS 0.051 0.081 0.048 0.049

mtPRS-PCA 0.031 0.109 0.123 0.113

wMT-SBLUP 0.090 0.117 0.147 0.150

ng = 1800 Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

ng = 2700 Uni-trait 0.166 0.145 0.169 0.179

mtPGS 0.089 0.146 0.081 0.076

mtPRS-PCA 0.038 0.223 0.237 0.221

wMT-SBLUP 0.168 0.240 0.292 0.296

Changing the training sample size for the PRS nt

Figure 3.5 shows the performance of each method across traits as the methods sample

size decreases from 900 to 300; we observe that as the sample size nt decreases, the

performance gap between the uni-trait method and the multi-trait methods for each

trait is smaller. As the sample size increases from 900 to 1350, the plot is very similar

to Figure 3.5, with the major difference being the values on the Y-axis. The ordering

of the methods in terms of performance stays the same.
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Table 3.3: Mean correlation coefficients when nt changes

Method Trait 1 Trait 2 Trait 3 Trait 4

nt = 300 Uni-trait 0.138 0.127 0.136 0.138

mtPGS 0.080 0.124 0.076 0.072

mtPRS-PCA 0.059 0.186 0.195 0.172

wMT-SBLUP 0.140 0.199 0.245 0.235

nt = 900 Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

nt = 1350 Uni-trait 0.137 0.120 0.133 0.149

mtPGS 0.072 0.129 0.066 0.054

mtPRS-PCA 0.032 0.185 0.198 0.182

wMT-SBLUP 0.141 0.197 0.243 0.247

3.2.2 Effect of the total number of SNPs p

In this case, all parameters remained the same as in the original simulation (including

the sample size ng = 1800 and nt = 900, true effect size β, heritability and genetic

correlation matrix) except for the number of SNPs p.

Figure 3.6 shows the performance of each method across traits as the number of SNPs

decreases from 5000 to 3000. Compared to Figure 3.3, we observe that as the number

of SNPs decreases, the correlation coefficient for the methods increases.

The plot showing the performance of each method across traits as the number of
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SNPs increases from 5000 to 7000 is very similar to Figure 3.6. Compare to Figure

3.3, we observe that as the number of SNPs increases, the correlation coefficient for

the methods decreases.

The results in this section may be due to the fact that, as the number of SNPs

increases, we are adding SNPs that are not associated with any of the traits. This

can decrease performance by introducing noise.

Table 3.4: Mean correlation coefficients when p changes

Method Trait 1 Trait 2 Trait 3 Trait 4

p = 3000 Uni-trait 0.169 0.151 0.173 0.184

mtPGS 0.091 0.153 0.079 0.082

mtPRS-PCA 0.036 0.233 0.248 0.224

wMT-SBLUP 0.175 0.241 0.298 0.302

p = 5000 Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

p = 7000 Uni-trait 0.123 0.105 0.114 0.128

mtPGS 0.066 0.110 0.058 0.060

mtPRS-PCA 0.033 0.163 0.170 0.156

wMT-SBLUP 0.126 0.174 0.210 0.216
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Figure 3.5: Comparison of correlation coefficients across methods when nt = 300

Figure 3.6: Comparison of correlation coefficients across methods when p = 3000
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3.2.3 How changing the true genetic effect sizes β affects per-

formance

In this case, all parameters remained the same. The change in true effect sizes will

affect the heritability of each trait (while heritability across the traits remains ap-

proximately the same), but will not have much impact on the genetic correlation

matrix.

Figure 3.7 shows the performance of each method across traits as the effect sizes

decreases to:

β =

[
0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

]T

with heritability approximately 0.3 for each trait. The plot showing the performance

of each method across traits as the effect sizes increases to

β =

[
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

]T

with heritability approximately 0.5 for each trait is very similar to Figure 3.7. We

observe that as the true effect sizes increase, the correlation coefficient for all methods

increases, except for the multi-trait method mtPRS-PCA.

Additionally, compared to the original case, the distribution of the mtPRS-PCA

method shows a significant shift, with the ranking of the traits reversed. In the

original case, the second trait has the highest values, followed by the third and fourth

traits. However, in this case, the second trait now has the lowest values, with the

third and fourth traits showing progressively higher values.
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Table 3.5: Mean correlation coefficients when β changes

Method Trait 1 Trait 2 Trait 3 Trait 4

H2 ≈ 0.3 Uni-trait 0.114 0.100 0.115 0.126

mtPGS 0.062 0.106 0.059 0.065

mtPRS-PCA 0.097 0.033 0.128 0.160

wMT-SBLUP 0.124 0.166 0.212 0.219

H2 ≈ 0.4 Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

H2 ≈ 0.5 Uni-trait 0.175 0.163 0.176 0.188

mtPGS 0.128 0.181 0.102 0.097

mtPRS-PCA 0.160 0.039 0.159 0.202

wMT-SBLUP 0.197 0.262 0.308 0.310

3.2.4 The effect of variable heritability H2 across traits

This case considers different heritabilities for each trait. Changing the variances

for the error terms in the trait generation model can alter the heritability of the

corresponding trait.
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Figure 3.7: Comparison of correlation coefficients across methods when heritability
approximately 0.3

Figure 3.8 shows the performance of each method across traits as the variance-

covariance matrix becomes:

Σ =



2 0.25 0.25 0.25

0.25 3 0.25 0.25

0.25 0.25 5 0.25

0.25 0.25 0.5 7


H2 ≈

[
0.4 0.3 0.2 0.1

]

We observe that heritability significantly impacts the performance of the methods.

In this case, the performance of the three multi-trait methods for the last trait is

now closer to that of the first trait. Additionally, the uni-trait method no longer

provides consistent performance across traits. Furthermore, among the multi-trait

methods, wMT-SBLUP performs the worst for the second trait compared to all
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other multi-trait methods for that trait.

Figure 3.9 shows the performance of each method across traits as the variance-

covariance matrix becomes:

Σ =



7 0.25 0.25 0.25

0.25 5 0.25 0.25

0.25 0.25 3 0.25

0.25 0.25 0.5 2


H2 ≈

[
0.1 0.2 0.3 0.4

]

In this case, we observe the multi-trait method mtPGS demonstrates consistent

performance across traits, while the other methods show an increasing trend in per-

formance across traits.

The reason why these two plots show opposite trends is that we are flipping reversing

the trend of the heritability. Higher heritability results in better performance.

Figure 3.8: Comparison of correlation coefficients across methods when H2 values are
listed from high to low
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Figure 3.9: Comparison of correlation coefficients across methods when H2 values are
listed from low to high

3.2.5 The effect of altering the genetic correlations

In this case, all parameters remained the same except for the genetic correlation

matrix. Adjusting the number of overlapping SNPs modifies the genetic correlation

matrix, this adjustment does not affect other parameters, such as heritability, which

remains unchanged.

Figure 3.10 shows the performance of each method across traits as genetic correlation

matrix becomes:

Cgenetic =



1 0.70 0.58 0.82

0.70 1 0.88 0.87

0.58 0.88 1 0.75

0.82 0.87 0.75 1


In this case, we observe that the multi-trait methods mtPGS exhibit consistent
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performance across traits, similar to the uniform performance demonstrated by the

uni-trait method, this may be because the genetic correlations across traits are al-

most the same. It is notable that the method mtPGS performs much better in

this case compared to all the previous cases, this improvement is likely due to the

increased genetic correlations, which enhance the influence of the other traits on

the focal trait, thereby benefiting this multi-trait method (recall that mtPGS is

the only method that does not use the focal PRS). Among the multi-trait methods,

wMT-SBLUP consistently outperforms the others, while mtPRS-PCA exhibits

comparatively lower performance.

Table 3.6: Mean correlation coefficients when H2 different

Method Trait 1 Trait 2 Trait 3 Trait 4

H2 high to low Uni-trait 0.145 0.092 0.070 0.062

mtPGS 0.067 0.156 0.079 0.103

mtPRS-PCA 0.034 0.138 0.123 0.102

wMT-SBLUP 0.075 0.120 0.136 0.124

H2 ≈ 0.4 Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

H2 low to high Uni-trait 0.060 0.059 0.107 0.146

mtPGS 0.046 0.047 0.046 0.049

mtPRS-PCA 0.033 0.097 0.134 0.141

wMT-SBLUP 0.097 0.118 0.191 0.207
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Figure 3.11 shows the performance of each method across traits as genetic correlation

matrix becomes:

Cgenetic =



1 0.24 0.05 0.01

0.24 1 0.27 0.15

0.05 0.27 1 0.07

0.01 0.15 0.07 1


In this case, we observe that as the average genetic correlation for each trait decreases

to approximately 0.1–0.2, the multi-trait methods lose their advantage except wMT-

SBLUP , showing diminished performance compared to higher correlation scenarios.

Table 3.7: Mean correlation coefficients when average genetic correlation changes

Method Trait 1 Trait 2 Trait 3 Trait 4

For each trait about 0.7–0.8 Uni-trait 0.134 0.143 0.136 0.151

mtPGS 0.213 0.225 0.224 0.230

mtPRS-PCA 0.195 0.138 0.084 0.196

wMT-SBLUP 0.243 0.267 0.243 0.275

About 0.4–0.5 Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

For each trait about 0.1–0.2 Uni-trait 0.134 0.130 0.130 0.159

mtPGS 0.054 0.138 0.099 0.111

mtPRS-PCA 0.059 0.036 0.118 0.205

wMT-SBLUP 0.166 0.176 0.166 0.261
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Figure 3.10: Comparison of correlation coefficients across methods when the off-
diagonal elements of the genetic correlation matrix change (with an average genetic
correlation for each trait about 0.7–0.8)

Figure 3.11: Comparison of correlation coefficients across methods when the off-
diagonal elements of the genetic correlation matrix change (with an average genetic
correlation for each trait about 0.1–0.2)
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3.3 Binary focal trait

When looking at binary focal trait, we use the area under the receiver operating char-

acteristic (ROC) curve to compare the polygenic risk score (PRS) with the observed

trait values.

In this scenario we had two binary traits and two continuous traits. We will focus on

evaluating and plotting the performance specifically for the binary focal traits. From

Figure 3.12, we observe that the multi-trait method, wMT-SBLUP, consistently

outperforms the others, while mtPRS-PCA exhibits comparatively lower perfor-

mance. Additionally, compared to the continuous scenario, the multi-trait method

mtPGS performs much better in the binary scenario. In contrast, the uni-trait

method demonstrates consistent performance across all traits but yields the poorest

results in every case. Table 3.8 provides a summary of the average performance for

each method across traits.

Table 3.8: Mean AUC values of original parameters

Trait 1 Trait 3

Uni-trait 0.583 0.582

mtPGS 0.602 0.648

mtPRS-PCA 0.599 0.642

wMT-SBLUP 0.614 0.655
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Figure 3.12: Comparison of AUC values across methods using the original parameters

3.3.1 The effect of variable heritability H2 across traits

Figure 3.13 shows the performance of each method across traits as the variance-

covariance matrix becomes:

Σ =



2 0.25 0.25 0.25

0.25 3 0.25 0.25

0.25 0.25 5 0.25

0.25 0.25 0.5 7


H2 ≈

[
0.4 0.3 0.2 0.1

]

In this case, among the multi-trait methods, wMT-SBLUP still performs the best

across all traits compared to the other multi-trait methods, while mtPGS performs

better than mtPRS-PCA for the first trait.
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Figure 3.14 shows the performance of each method across traits as the variance-

covariance matrix becomes:

Σ =



7 0.25 0.25 0.25

0.25 5 0.25 0.25

0.25 0.25 3 0.25

0.25 0.25 0.5 2


H2 ≈

[
0.1 0.2 0.3 0.4

]

In this case, unlike the continuous scenario, the performance of the multi-trait method

mtPGS for the third trait is very close to that of wMT-SBLUP.

Figure 3.13: Comparison of AUC values across methods when H2 values are listed
from high to low
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Figure 3.14: Comparison of AUC values across methods when H2 values are listed
from low to high

Table 3.9: Mean AUC values when H2 different

H2 high to low Original H2 ≈ 0.4 H2 low to high

Trait 1 Trait 3 Trait 1 Trait 3 Trait 1 Trait 3

Uni-trait 0.583 0.573 0.583 0.582 0.570 0.581

mtPGS 0.605 0.615 0.602 0.648 0.598 0.639

mtPRS-PCA 0.601 0.627 0.599 0.642 0.597 0.631

wMT-SBLUP 0.609 0.630 0.614 0.655 0.605 0.644

3.3.2 Effect of other parameters

In the binary scenario, we altered all the parameters as we did in the continuous

scenario. We do not provide results for some of the simulations, such as the effects
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of changes in ng (GWAS sample size), nt (training set sample size), p (number of

SNPs), β (true effect sizes), and the genetic correlation matrix, because their results

were consistent with those observed in the continuous scenario (refer to Section 3.2).

Specifically, these parameters did not exhibit substantially different effects on the

model’s performance when switching from a continuous to a binary outcome, rein-

forcing the idea that the relationships and trends are similar across different trait

types.
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Chapter 4

Two Novel Methods

4.1 Methods

After simulating the multi-trait methods from the literature, we began considering

whether other methods might yield better performance. We developed two new meth-

ods to generate weighted average polygenic risk scores (PRS). To examine these meth-

ods we used the same simulation set-up as in Chapter 3. In each figure of this chapter,

we include two novel methods along with the multi-trait method wMT-SBLUP, as

this method performs the best in the majority of cases in Chapter 3. Both novel meth-

ods assume that we have access to the values for the trait of interest in the training

dataset (same as method mtPGS) , which may limit their practical applicability.

4.1.1 A method based on multiple linear regression

The method mt-lm is a multiple linear regression for a continuous focal trait and a

logistic regression for a binary focal trait, where the response variable is the focal trait
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and the covariates are the corresponding PRS for each trait. We were surprised to find

no reference paper specifically for this simple method, at least based on our research.

The method calculates the weighted average PRS using the following formula:

mt-lm =
K∑
k=1

γk · PRSk (4.1.1)

where weights γ = (γ1, ..., γk) are the estimates from multiple linear regression model.

4.1.2 Multi-trait cross-validation bagging method

This method (which will refer to as mt-CVb) combines cross-validation and bag-

ging techniques in a hybrid approach to improve model performance. The method

calculates the weighted average PRS using the following formula:

mt-CVb =
K∑
k=1

wk · PRSk (4.1.2)

where weights w = (w1, ..., wk) are obtained using cross-validation bagging variable

importance score. A higher score indicates that the specific covariate has a greater

effect on the model, as it is weighted more heavily. The sum of the importance scores

across all covariates in a single model is standardized to 1 (100%), this standardization

ensures comparability and emphasizes the relative contribution of each covariate (PRS

for the corresponding trait) to the model’s predictions.

Bagging is an ensemble method that aims to improve model accuracy and reduce

variance by training multiple models on different subsets of the data. These subsets

are created using bootstrap sampling, where data points are randomly selected with

replacement. Each model is trained on a bootstrap sample, and the final prediction is
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made by combining the outputs, usually through averaging or voting. Cross-validation

bagging further enhances this by using cross-validation during training.

As we did with mtPGS in Chapter 3, we used 10-fold cross-validation in our im-

plementation. The cross-validation bagging model is then fitted with multiple linear

regression, where the target trait is the response variable and all the PRS are the

predictors. In the other words, bootstrap samples are generated from the original

dataset, and a model is trained on each bootstrap sample to calculate variable im-

portance scores or predict the response variable for each fold. After repeating the

bagging and cross-validation steps, the variable importance scores are aggregated to

provide a comprehensive measure of each covariate’s contribution to the model.

4.2 Results for continuous focal trait

We used the same simulated data from Chapter 3 to apply these two novel methods.

From Figure 4.1, we observe that the performance of the two new multi-trait methods,

mt-lm and mt-CVb, are very similar. However, mt-lm exhibits higher average

performance compared to mt-CVb for the third and fourth traits. The variability

for the wMT-SBLUP method is lower, as indicated by its less dispersed box plot.

Table 4.1 summarizes the average performance of each method across traits (including

all methods from Chapter 3 and the new methods), rounded to three decimal places.

While the multi-trait method wMT-SBLUP consistently outperforms both of these

new methods, the new methods remain competitive.
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Figure 4.1: Comparison of correlation coefficients across methods using original pa-
rameters for new methods

Table 4.1: Mean correlation coefficients of original parameters for all methods

Trait 1 Trait 2 Trait 3 Trait 4

Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

mt-lm 0.143 0.177 0.206 0.206

mt-CVb 0.148 0.175 0.205 0.210

4.2.1 Effect of changing sample sizes

In this section, we varied ng and nt in the same way as in Section 3.2.1 and Section

3.3.1.
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Changing the GWAS sample size ng

Table 4.2 shows the performance of the two new multi-trait methods across traits as

the GWAS sample size decreases from 1800 to 600; we observe that as the sample size

ng decreases, Figure 4.2 shows that the correlation coefficient for the methods also

decreases and method mt-lm always has better performance than method mt-CVb

in this case. Table 4.2 shows the performance of the two new multi-trait methods

across traits as the GWAS sample size increases from 1800 to 2700; we observe that

as the sample size ng increases, the correlation coefficient for the methods increases

and Figure 4.3 shows that mt-CVb exhibits higher average performance compared

to mt-lm for the second and third traits.

Figure 4.2: Comparison of correlation coefficients across methods when ng = 600 for
new methods
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Table 4.2: Mean correlation coefficients when ng changes for all methods

Method Trait 1 Trait 2 Trait 3 Trait 4

ng = 600 Uni-trait 0.085 0.074 0.081 0.086

mtPGS 0.051 0.081 0.048 0.049

mtPRS-PCA 0.031 0.109 0.123 0.113

wMT-SBLUP 0.090 0.117 0.147 0.150

mt-lm 0.087 0.103 0.119 0.117

mt-CVb 0.080 0.102 0.113 0.116

ng = 1800 Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

mt-lm 0.143 0.177 0.206 0.206

mt-CVb 0.148 0.175 0.205 0.210

ng = 2700 Uni-trait 0.166 0.145 0.169 0.179

mtPGS 0.089 0.146 0.081 0.076

mtPRS-PCA 0.038 0.223 0.237 0.221

wMT-SBLUP 0.168 0.240 0.292 0.296

mt-lm 0.183 0.208 0.244 0.263

mt-CVb 0.180 0.215 0.256 0.253
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Figure 4.3: Comparison of correlation coefficients across methods when ng = 2700 for
new methods

Changing the training sample size for the PRS nt

Table 4.3 shows the performance of the two new multi-trait methods across traits as

the methods sample size decreases from 900 to 300; we observe that as the sample

size nt decreases, Figure 4.4 shows the performance gap between the uni-trait method

and the multi-trait methods for each trait is smaller and method mt-CVb exhibits

higher average performance compare to mt-lm for the first and second traits. Table

4.3 shows the performance of the two new multi-trait methods across traits as the

methods sample size increases from 900 to 1350; we observe that as the sample size

nt increases, method mt-CVb exhibits higher average performance compare to mt-

lm for all the traits except the third one, Figure 4.5 shows that the performance of

methods mt-lm and mt-CVb are very similar for the first two traits.
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Table 4.3: Mean correlation coefficients when nt changes for all methods

Method Trait 1 Trait 2 Trait 3 Trait 4

nt = 300 Uni-trait 0.138 0.127 0.136 0.138

mtPGS 0.080 0.124 0.076 0.072

mtPRS-PCA 0.059 0.186 0.195 0.172

wMT-SBLUP 0.140 0.199 0.245 0.235

mt-lm 0.131 0.183 0.208 0.191

mt-CVb 0.135 0.186 0.204 0.189

nt = 900 Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

mt-lm 0.143 0.177 0.206 0.206

mt-CVb 0.148 0.175 0.205 0.210

nt = 1350 Uni-trait 0.137 0.120 0.133 0.149

mtPGS 0.072 0.129 0.066 0.054

mtPRS-PCA 0.032 0.185 0.198 0.182

wMT-SBLUP 0.141 0.197 0.243 0.247

mt-lm 0.149 0.179 0.212 0.218

mt-CVb 0.152 0.180 0.210 0.220

48



M.Sc. Thesis - Yi Wan McMaster - Mathematics and Statistics

Figure 4.4: Comparison of correlation coefficients across methods when nt = 300 for
new methods

Figure 4.5: Comparison of correlation coefficients across methods when nt = 1350 for
new methods
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4.2.2 Effect of the total number of SNPs p

Table 4.4 shows the performance of the two new multi-trait methods across traits as

the number of SNPs decreases from 5000 to 3000. Compare to Figure 4.1, we observe

that from Figure 4.6, as the number of SNPs decreases, the correlation coefficient for

the methods increases and method mt-CVb exhibits higher performance compared

to mt-lm for all the traits.

Table 4.4 shows the performance of the two new multi-trait methods across traits as

the number of SNPs increases from 5000 to 7000. Compared to Figure 4.1, we observe

that in Figure 4.7, as the number of SNPs increases, the correlation coefficient for

the methods decreases and method mt-lm exhibits higher performance compared to

mt-CVb for all the traits.

The results indicate that mt-CVb performs better with a smaller number of SNPs,

while mt-lm performs better for larger numbers of SNPs. This difference could be

because, with fewer SNPs, models like mt-lm are more susceptible to overfitting due

to limited flexibility in handling variability. In contrast, the bagging approach in

mt-CVb mitigates overfitting by averaging predictions across multiple subsamples,

providing more robust results in such case. The multi-trait method wMT-SBLUP

consistently outperforms the others, except for the first trait when p = 3000, where

the multi-trait method mt-CVb shows the best performance, according to Table 4.4.
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Table 4.4: Mean correlation coefficients when p changes for all methods

Method Trait 1 Trait 2 Trait 3 Trait 4

p = 3000 Uni-trait 0.169 0.151 0.173 0.184

mtPGS 0.091 0.153 0.079 0.082

mtPRS-PCA 0.036 0.233 0.248 0.224

wMT-SBLUP 0.175 0.241 0.298 0.302

mt-lm 0.181 0.215 0.262 0.265

mt-CVb 0.186 0.216 0.261 0.266

p = 5000 Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

mt-lm 0.143 0.177 0.206 0.206

mt-CVb 0.148 0.175 0.205 0.210

p = 7000 Uni-trait 0.123 0.105 0.114 0.128

mtPGS 0.066 0.110 0.058 0.060

mtPRS-PCA 0.033 0.163 0.170 0.156

wMT-SBLUP 0.126 0.174 0.210 0.216

mt-lm 0.120 0.150 0.178 0.173

mt-CVb 0.112 0.153 0.174 0.174
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Figure 4.6: Comparison of correlation coefficients across methods when p = 3000 for
new methods

Figure 4.7: Comparison of correlation coefficients across methods when p = 7000 for
new methods
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4.2.3 How changing the true genetic effect sizes β affects per-

formance

Table 4.5 presents the mean correlation coefficients obtained by varying the effect

sizes (β). From the table, we observe that as the true effect sizes decrease, the corre-

lation coefficient for all methods also decreases, and as the true effect sizes increase,

the correlation coefficient for all methods increases. The method mt-lm performs

better for lower heritability, while the method mt-CVb performs better for higher

heritability.

Figure 4.8 includes boxplots of the correlation coefficients across methods when H2 ≈

0.3, demonstrating that the performance of these two methods is very similar. The

plot for the boxplots of the correlation coefficients across methods when H2 ≈ 0.5 is

qualitatively similar to Figure 4.8, with the major difference being the Y-axis scale

(larger values).

According to Table 4.5, the multi-trait method wMT-SBLUP consistently outper-

forms the others, except for the first trait when heritability for each trait approx-

imately equals to 0.5, where the multi-trait method mt-lm shows the best perfor-

mance.

4.2.4 The effect of variable heritability H2 across traits

Figure 4.9 contains the boxplots for the correlation coefficients across methods, with

H2 values listed from highest to lowest. From Figure 4.9, the performance of the two

new multi-trait methods shows a decreasing trend across traits. Additionally, the

mt-CVb method exhibits higher performance compared to mt-lm for the first and

fourth traits. Table 4.6 presents the mean correlation coefficients for different values
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of H2, according to Table 4.6, we can see that for the first trait, the uni-trait method

performs better than all multi-trait methods.

Table 4.5: Mean correlation coefficients when β changes for all methods

Method Trait 1 Trait 2 Trait 3 Trait 4

H2 ≈ 0.3 Uni-trait 0.114 0.100 0.115 0.126

mtPGS 0.062 0.106 0.059 0.065

mtPRS-PCA 0.097 0.033 0.128 0.160

wMT-SBLUP 0.124 0.166 0.212 0.219

mt-lm 0.115 0.141 0.168 0.172

mt-CVb 0.113 0.139 0.169 0.171

H2 ≈ 0.4 Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

mt-lm 0.143 0.177 0.206 0.206

mt-CVb 0.148 0.175 0.205 0.210

H2 ≈ 0.5 Uni-trait 0.175 0.163 0.176 0.188

mtPGS 0.128 0.181 0.102 0.097

mtPRS-PCA 0.160 0.039 0.159 0.202

wMT-SBLUP 0.197 0.262 0.308 0.310

mt-lm 0.207 0.242 0.276 0.279

mt-CVb 0.202 0.243 0.279 0.281
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Figure 4.8: Comparison of correlation coefficients across methods when heritability
approximately 0.3 for new methods

Figure 4.9: Comparison of correlation coefficients across methods when H2 values are
listed from high to low for new methods
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Figure 4.10: Comparison of correlation coefficients across methods when H2 values
are listed from low to high for new methods

Figure 4.10 contains the boxplots for the correlation coefficients across methods, with

H2 values listed from lowest to highest. From Figure 4.10, we observe the perfor-

mance of the two new multi-trait methods shows a increasing trend across traits.

Additionally, according to Table 4.6, the mt-CVb method exhibits lower average

performance compared to mt-lm for all the traits except the first one.

The results indicate that heritability also affects the performance of the novel methods

mt-lm and mt-CVb; higher heritability leads to better performance.

4.2.5 The effect of altering the genetic correlations

Figure 4.11 shows the boxplots for the average genetic correlation of each trait, which

ranges from approximately 0.7 to 0.8. The plot for the range of approximately 0.1 to

0.2 is very similar to Figure 4.11. Table 4.7 includes the mean correlation coefficients
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when the average genetic correlation of each trait changes. According to Figure 4.11

and Table 4.7, among the two novel methods, mt-CVb performs better in high

correlation cases, while mt-lm performs better in low correlation cases.

Table 4.6: Mean correlation coefficients when H2 different for all methods

Method Trait 1 Trait 2 Trait 3 Trait 4

H2 high to low Uni-trait 0.145 0.092 0.070 0.062

mtPGS 0.067 0.156 0.079 0.103

mtPRS-PCA 0.034 0.138 0.123 0.102

wMT-SBLUP 0.075 0.120 0.136 0.124

mt-lm 0.123 0.122 0.113 0.095

mt-CVb 0.127 0.119 0.114 0.098

H2 ≈ 0.4 Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

mt-lm 0.143 0.177 0.206 0.206

mt-CVb 0.148 0.175 0.205 0.210

H2 low to high Uni-trait 0.060 0.059 0.107 0.146

mtPGS 0.046 0.047 0.046 0.049

mtPRS-PCA 0.033 0.097 0.134 0.141

wMT-SBLUP 0.097 0.118 0.191 0.207

mt-lm 0.067 0.096 0.154 0.186

mt-CVb 0.072 0.097 0.150 0.183
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Table 4.7: Mean correlation coefficients when average genetic correlation changes for
all methods

Method Trait 1 Trait 2 Trait 3 Trait 4

For each trait about 0.7–0.8 Uni-trait 0.134 0.143 0.136 0.151

mtPGS 0.213 0.225 0.224 0.230

mtPRS-PCA 0.195 0.138 0.084 0.196

wMT-SBLUP 0.243 0.267 0.243 0.275

mt-lm 0.224 0.249 0.228 0.256

mt-CVb 0.226 0.249 0.230 0.260

About 0.4–0.5 Uni-trait 0.134 0.121 0.135 0.147

mtPGS 0.082 0.132 0.073 0.077

mtPRS-PCA 0.034 0.188 0.201 0.190

wMT-SBLUP 0.149 0.199 0.245 0.251

mt-lm 0.143 0.177 0.206 0.206

mt-CVb 0.148 0.175 0.205 0.210

For each trait about 0.1–0.2 Uni-trait 0.134 0.130 0.130 0.159

mtPGS 0.054 0.138 0.099 0.111

mtPRS-PCA 0.059 0.036 0.118 0.205

wMT-SBLUP 0.166 0.176 0.166 0.261

mt-lm 0.134 0.140 0.120 0.169

mt-CVb 0.121 0.140 0.118 0.166
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Figure 4.11: Comparison of correlation coefficients across methods when the off-
diagonal elements of the genetic correlation matrix change (with an average genetic
correlation for each trait about 0.7–0.8) for new methods

4.3 Results for binary focal trait

Figure 4.12 presents boxplots for the binary focal traits, allowing for a comparison

of AUC values across methods for each trait. From Figure 4.12, we observe that

the performance of the two new multi-trait methods, mt-lm and mt-CVb, differs

more significantly than in the continuous scenario. In the binary scenario, mt-lm

demonstrates a higher average performance compared to mt-CVb across all traits.

Table 4.8 summarizes the average performance of each method across traits (includ-

ing those from Chapter 3 and the new methods), rounded to three decimal places.

The multi-trait method wMT-SBLUP no longer consistently outperforms both new
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methods, mt-lm achieves the best performance for all traits. Overall, the new meth-

ods remain competitive, even though mt-CVb does not always deliver the best re-

sults.

Figure 4.12: Comparison of AUC values across methods using original parameters for
new methods

Table 4.8: Mean AUC values of original parameters for all methods

Trait 1 Trait 3

Uni-trait 0.583 0.582

mtPGS 0.602 0.648

mtPRS-PCA 0.599 0.642

wMT-SBLUP 0.614 0.655

mt-lm 0.616 0.656

mt-CVb 0.610 0.649
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4.3.1 How changing the true genetic effect sizes β affects per-

formance

Nothing changes significantly compared to the previous results for the case where

heritability is approximately equal to 0.3 for each trait. Therefore, the plot for this

case will not be included.

Table 4.9 presents the mean AUC values for all methods when varying β, while

Figure 4.13 displays the boxplots for the three methods (mt-lm,mt-CVb andwMT-

SBLUP). According to Figure 4.13 and Table 4.9, when the heritability for each

trait is approximately 0.5, the multi-trait method mt-lm consistently demonstrates

the best performance among all methods in the binary scenario.

Figure 4.13: Comparison of AUC values across methods when heritability approxi-
mately 0.5 for new methods
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Table 4.9: Mean AUC values when β changes for all methods

H2 ≈ 0.3 H2 ≈ 0.4 H2 ≈ 0.5

Trait 1 Trait 3 Trait 1 Trait 3 Trait 1 Trait 3

Uni-trait 0.577 0.580 0.583 0.582 0.595 0.596

mtPGS 0.598 0.635 0.602 0.648 0.618 0.683

mtPRS-PCA 0.604 0.616 0.599 0.642 0.622 0.627

wMT-SBLUP 0.609 0.643 0.614 0.655 0.633 0.688

mt-lm 0.605 0.639 0.616 0.656 0.640 0.690

mt-CVb 0.603 0.637 0.610 0.649 0.630 0.681

4.3.2 Effect of other parameters

Similar to Section 3.3.2, for the binary scenario, we altered all the parameters as

in the continuous scenario. For parameters not mentioned above, the results were

qualitatively very similar to those observed for continuous focal traits.
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Chapter 5

Correlated SNPs

In Chapters 3 and 4, we focused exclusively on simulations involving independent

SNPs. However, in real-life, SNPs are often correlated. This chapter examines the

performance of the methods discussed in Chapter 2 and Chapter 4 under the consid-

eration of correlated SNPs, comparing their performance across various scenarios.

All the parameters remain the same as in Chapter 3, except for the genotype matrix

G; since heritability and the genetic correlation matrix have the greatest impact on

performance, as discussed in Chapters 3 and 4. We focus exclusively on these two

parameters in this chapter. Recall there are a total of n observations and p columns

of single nucleotide polymorphisms (SNPs) as described in Chapter 3. Specifically,

there are ng = 1800 observations for Gg, nt = 900 observations for Gt, and nv = 900

observations for Gv, with a total of p = 5000 SNPs. The minor allele frequency

(MAF) is different across SNPs; and they assumed to follow a uniform distribution

MAF ∼ Uniform(0.05, 0.5).

To generate the correlated SNP data, the total number of p SNPs is partitioned

into m = p/d blocks, where d represents the number of SNPs in each block. For n
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individuals, each carrying two copies of each autosomal (non-sex) chromosome, two

independent multivariate normal vectors Z of dimension d were generated within each

block. Both Z were sampled from a multivariate normal distribution with a mean

vector of zero and a specified covariance matrix, reflecting the underlying linkage

disequilibrium structure among the SNPs in the block. The covariance which is

defined with diagonal elements are set to 1, while the off-diagonal elements decay

according to an auto-regressive structure of order 1, specifically 0.8|i−j|, where the ith

and jth SNPs are in the same block. This choice reflects the biological principle that

SNPs located closer together on the chromosome tend to exhibit stronger correlations,

which is reasonable given the structure of genetic linkage.

The cutoff values help translate continuous allele probabilities into binary values, re-

flecting the presence or absence of alleles based on the normal distribution threshold.

These cutoff values are determined using the MAF of each SNP and the quantiles of

the standard normal distribution. Specifically, the cutoff for each SNP is given by

Φ−1(MAF), where Φ is the cumulative distribution function (CDF) of the standard

normal distribution. The cutoff values are then applied to each SNP within a block

and repeated across rows to match the dimensions of the generated matrix Z. For

each individual, two d-dimensional vectors of ones and zeros are created, each repre-

senting one copy of the genome block; each element in the vector corresponds to the

presence (1) or absence (0) of the allele. The genotype of an individual at this block

is calculated by summing these two vectors.

The SNPs that truly impact the traits selected in this chapter are the middle ones,

specifically the tenth SNP in each block (when the block size is 20), for the first 18

blocks. Choosing edge SNPs (the first SNP or the last SNP) may not fully capture
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the correlation structure within the block, by selecting the middle SNPs, we ensure

that the SNPs are more representative of the genetic variation within the block,

capturing the central correlation patterns that are more relevant for modeling trait

associations. Appendix A includes thea function for generating the correlated SNPs

matrix as described above.

5.1 Continuous focal trait

From Figure 5.1, we observe that the performance of the multi-trait method wMT-

SBLUP method consistently outperforms the others except for the second trait,

while mtPGS exhibits lower performance. For all the multi-trait methods except

mt-lm, the first trait shows lower performance, while the other three traits display

significantly higher results. The mtPGS method performs best (compared to its

own performance across different traits) for the second trait, but still lags behind all

the other multi-trait methods. The uni-trait method shows consistent performance

across all traits but delivers the worst results for all traits, except for the first one,

when compared to the multi-trait methods. However, it does outperform the multi-

trait method mtPGS for the third trait. Recall that the first trait has the lowest

average genetic correlation with the other traits (with the average correlation above

0.45 for the others, and the third trait having the highest at 0.53, while the first

trait’s is approximately 0.2). The performance of the multi-trait method mtPRS-

PCA depends on the genetic correlation matrix, which explains why it performed

better for the third trait than for the other traits. Overall, the novel methods remain

competitive, particularly mt-lm, which delivers the highest performance for both the

first and second traits. Table 5.1 provides a summary of the average performance for
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each method across traits, rounded to three decimal places.

Figure 5.1: Comparison of correlation coefficients across methods using original pa-
rameters when SNPs are correlated

Table 5.1: Mean correlation coefficients of original parameters when SNPs are corre-
lated

Trait 1 Trait 2 Trait 3 Trait 4

Uni-trait 0.158 0.183 0.176 0.161

mtPGS 0.131 0.199 0.172 0.177

mtPRS-PCA 0.068 0.243 0.281 0.261

wMT-SBLUP 0.150 0.277 0.295 0.278

mt-lm 0.226 0.288 0.290 0.272

mt-CVb 0.119 0.254 0.259 0.240
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5.1.1 How changing the true genetic effect sizes β affects per-

formance

Table 5.2 includes the average correlation coefficients when altering the β values and

considering correlated SNPs. We observe that as the true effect sizes decrease, the

correlation coefficients of all methods decrease from Table 5.2. According to Figure

5.2, across all multi-trait methods, method mt-lm delivers the highest performance

for both the first and second traits, method wMT-SBLUP delivers the highest

performance for both the third and fourth traits, and method mt-CVb is not as

competitive as before when heritability decreases.

We observe that as the true effect sizes increase, the correlation coefficients of all

methods increase from Table 5.2. The plot for H2 ≈ 0.5 is very similar to Figure 5.2.

According to the plot and Table 5.2, we observe that across all multi-trait methods,

method mt-lm and method mt-CVb deliver better performance than the other

methods for the first trait, method mt-lm delivers the highest performance for both

the first and second traits, method wMT-SBLUP delivers the highest performance

for both the third and fourth traits.

According to Table 5.2, for the two novel methods, method mt-lm exhibits higher

average performance compared to mt-CVb for all traits in all cases.
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Table 5.2: Mean correlation coefficients when β changes and SNPs are correlated

Method Trait 1 Trait 2 Trait 3 Trait 4

H2 ≈ 0.3 Uni-trait 0.127 0.155 0.149 0.132

mtPGS 0.120 0.182 0.164 0.170

mtPRS-PCA 0.064 0.214 0.245 0.224

wMT-SBLUP 0.119 0.240 0.257 0.239

mt-lm 0.180 0.250 0.251 0.230

mt-CVb 0.098 0.211 0.214 0.199

H2 ≈ 0.4 Uni-trait 0.158 0.183 0.176 0.161

mtPGS 0.131 0.199 0.172 0.177

mtPRS-PCA 0.068 0.243 0.281 0.261

wMT-SBLUP 0.150 0.277 0.295 0.278

mt-lm 0.226 0.288 0.290 0.272

mt-CVb 0.119 0.254 0.259 0.240

H2 ≈ 0.5 Uni-trait 0.223 0.238 0.231 0.219

mtPGS 0.166 0.237 0.186 0.185

mtPRS-PCA 0.077 0.294 0.346 0.331

wMT-SBLUP 0.214 0.343 0.365 0.351

mt-lm 0.317 0.360 0.361 0.347

mt-CVb 0.219 0.335 0.344 0.327
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Figure 5.2: Comparison of correlation coefficients across methods when heritability
approximately 0.3 for all methods

5.1.2 The effect of altering the genetic correlations

Figure 5.3 presents the boxplots for all the methods when the average genetic corre-

lation of each trait is approximately between 0.7 and 0.8 with correlated SNPs. From

Figure 5.3, we observe that for the two new multi-trait methods, method mt-lm

always exhibits higher performance compared to mt-CVb for all traits. Among all

the multi-trait methods from Table 5.3, wMT-SBLUP does not consistently out-

perform the others anymore, while method mtPGS performs the best for all traits.

That might be because when the SNPs are correlated, increasing the genetic correla-

tion between traits allows the other traits to better contribute to predicting the focal

trait.
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Figure 5.3: Comparison of correlation coefficients across methods when the off-
diagonal elements of the genetic correlation matrix change (with an average genetic
correlation for each trait about 0.7–0.8) for all methods

Figure 5.4: Comparison of correlation coefficients across methods when the off-
diagonal elements of the genetic correlation matrix change (with an average genetic
correlation for each trait about 0.1–0.2) for all methods
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Table 5.3: Mean correlation coefficients when average genetic correlation changes and
SNPs are correlated

Method Trait 1 Trait 2 Trait 3 Trait 4

For each trait about 0.7–0.8 Uni-trait 0.158 0.191 0.179 0.184

mtPGS 0.273 0.322 0.319 0.332

mtPRS-PCA 0.124 0.300 0.280 0.251

wMT-SBLUP 0.240 0.302 0.272 0.297

mt-lm 0.245 0.314 0.291 0.295

mt-CVb 0.210 0.295 0.271 0.275

About 0.4–0.5 Uni-trait 0.158 0.183 0.176 0.161

mtPGS 0.131 0.199 0.172 0.177

mtPRS-PCA 0.068 0.243 0.281 0.261

wMT-SBLUP 0.150 0.277 0.295 0.278

mt-lm 0.226 0.288 0.290 0.272

mt-CVb 0.119 0.254 0.259 0.240

For each trait about 0.1–0.2 Uni-trait 0.158 0.192 0.142 0.208

mtPGS 0.120 0.223 0.202 0.232

mtPRS-PCA 0.160 0.119 0.088 0.198

wMT-SBLUP 0.182 0.231 0.178 0.312

mt-lm 0.228 0.287 0.214 0.311

mt-CVb 0.125 0.215 0.147 0.234

Figure 5.4 presents the boxplots for all the methods when the average genetic cor-

relation of each trait is approximately between 0.1 and 0.2 with correlated SNPs.

From Figure 5.4, we observe that as the average genetic correlation for each trait
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decreases to approximately 0.1–0.2, the multi-trait methods lose their advantage,

showing diminished performance compared to higher correlation scenarios. Among

all the multi-trait methods, method mt-lm performs the best for all traits except for

the fourth one, method mtPRS-PCA even worse than the uni-trait method for all

the traits except the first one.

5.2 Binary focal trait

From Figure 5.5, we observe that the multi-trait method wMT-SBLUP performs

the best for the first trait, while mt-lm performs the best for the third trait. In con-

trast, mtPRS-PCA exhibits the lowest performance for the first trait, and mtPGS

shows the lowest performance for the fourth trait. The uni-trait method demonstrates

consistent performance across all traits but yields the poorest results in every case.

Overall, the new methods remain competitive, particularly mt-lm. Table 5.4 pro-

vides a summary of the average performance for each method across traits, rounded

to three decimal places.

Table 5.4: Mean AUC values of original parameters when SNPs are correlated

Trait 1 Trait 3

Uni-trait 0.587 0.589

mtPGS 0.611 0.643

mtPRS-PCA 0.610 0.651

wMT-SBLUP 0.625 0.666

mt-lm 0.620 0.671

mt-CVb 0.618 0.656
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Figure 5.5: Comparison of AUC values across methods using original parameters
when SNPs are correlated

5.2.1 How changing the true genetic effect sizes β affects per-

formance

Nothing changes significantly compared to the continuous scenario. The patterns

observed in the continuous scenario (for the correlated SNPs) hold true, with similar

trends in performance across methods.

5.2.2 The effect of altering the genetic correlations

Figure 5.6 presents the boxplots when the average genetic correlation for each trait

is approximately 0.7–0.8, while Figure 5.7 presents the boxplots when the average

genetic correlation for each trait is approximately 0.1–0.2. Table 5.3 includes the

average AUC values when altering the genetic correlations.
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From Figure 5.6, we observe that for the two new multi-trait methods, methodmt-lm

exhibits higher performance compared to mt-CVb for all the traits. Among all the

multi-trait methods from Table 5.3, wMT-SBLUP does not consistently outperform

the others anymore, methodmt-lm performs the best for the third trait and both new

methods demonstrate higher performance than wMT-SBLUP for the third trait.

From Figure 5.7, we observe that as the average genetic correlation for each trait

decreases to approximately 0.1–0.2, the multi-trait methods lose their advantage,

showing diminished performance compared to higher correlation scenarios although

they still have better performance than uni-trait method. According to Table 5.3,

among all the multi-trait methods, method wMT-SBLUP performs the best for

the first trait, method mt-CVb performs the best for the third trait and both new

methods demonstrate higher performance than all the other methods for the third

trait.

Table 5.5: Mean AUC values when average genetic correlation changes and SNPs are
correlated

For each trait about 0.7–0.8 Original about 0.4–0.5 For each trait about 0.1–0.2

Trait 1 Trait 3 Trait 1 Trait 3 Trait 1 Trait 3

Uni-trait 0.587 0.590 0.587 0.589 0.587 0.586

mtPGS 0.636 0.640 0.611 0.643 0.610 0.612

mtPRS-PCA 0.627 0.657 0.610 0.651 0.618 0.617

wMT-SBLUP 0.654 0.658 0.625 0.666 0.628 0.622

mt-lm 0.649 0.671 0.620 0.671 0.616 0.623

mt-CVb 0.650 0.666 0.618 0.656 0.617 0.626
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Figure 5.6: Comparison of AUC values across methods when the off-diagonal elements
of the genetic correlation matrix change (with an average genetic correlation for each
trait about 0.7–0.8) for all methods

Figure 5.7: Comparison of AUC values across methods when the off-diagonal elements
of the genetic correlation matrix change (with an average genetic correlation for each
trait about 0.1–0.2) for all methods
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Chapter 6

Conclusion

6.1 Discussion

Based on Chapter 3 and Chapter 4, we can conclude that all parameters influence the

final performance in both continuous and binary scenarios, particularly heritability

and the genetic correlation matrix. In both scenarios, the genome-wide association

study (GWAS) sample size ng is positively related to performance, while the number of

SNPs p is negatively related to performance. Although true effect sizes (β) and minor

allele frequency (MAF) also contribute to the genetic correlation matrix, their impact

is relatively minor compared to heritability. Under the same heritability assumptions,

lower heritability and lower genetic correlation across traits reduce the performance

of multi-trait methods. Lower heritability is more reflective of real-life scenarios,

and even when heritability is low, multi-trait methods generally outperform uni-

trait methods, although their advantage decreases. The multi-trait method wMT-

SBLUP consistently outperforms all other methods across Chapter 3 and Chapter

4, the mtPGS method shows improved performance when the genetic correlation is
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high, while the uni-trait method generally exhibits lower performance compared to

the multi-trait methods.

The performance of the two novel multi-trait methods developed in Chapter 4, mt-

lm and mt-CVb, is competitive with the other three multi-trait methods, although

they do not always deliver the best results. In certain cases, one or both of the two

novel methods can even outperform wMT-SBLUP. The advantage of the method

mt-lm is that it is faster when dealing with large datasets, as shown in Table 6.1.

Table 6.1: The average time over 100 datasets for three of the multi-trait methods

Average time over 100 datasets (in seconds)

wMT-SBLUP 0.026

mt-lm 0.022

mt-CVb 1.425

Chapter 5 focuses solely on the cases where heritability and the genetic correlation

matrix change when single-nucleotide polymorphisms (SNPs) are correlated. Method

mtPGS shows overall higher performance compared to its results in Chapter 3 and

Chapter 4, where SNPs are independent. Additionally, the performance of method

mt-lm remains more consistent across all traits compared to the other multi-trait

methods.

6.2 Limitations

The number of replicates in the simulation is relatively small (R = 200), which may

introduce some variability in the results. Moreover, both the sample sizes (ng and nt)
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and the number of SNPs p used in this study are much smaller than those typically

found in real-life datasets (where sample sizes can reach up to one million and the

number of SNPs may be in the several millions). SNPs selection was not performed in

this simulation, which could be an area for future work. Additionally, the heritability

values used in the study were calculated as true heritabilities, whereas in real-life

scenarios, these would generally be estimated. Furthermore, linkage disequilibrium

(LD) scores were not used in the calculation of heritability, which may affect the

accuracy and relevance of the results in comparison to real-life data.

In the binary scenario, we consider a total of four traits: two binary and two con-

tinuous, with the primary focus of this thesis in this scenario being on the binary

focal trait, while the continuous traits are not considered. In Chapters 3 and 4, the

section discussing changes to the number of SNPs p only includes SNPs that are not

associated with any of the traits when increasing p. Chapter 5 focuses on exploring

heritability and the genetic correlation matrix within the simulation.

6.3 Future work

To make the simulation more realistic, we plan to increase the number of replicates, as

well as the sample size and the number of SNPs. Additionally, we may explore SNP

selection using clumping and thresholding (C+T), as this thesis did not include any

selection process. Furthermore, we will consider using publicly available linkage dise-

quilibrium (LD) scores to calculate the estimated heritability and genetic correlation

matrix, which will better reflect the true genetic architecture of traits.

We would also like to examine the performance of the continuous focal trait in the

binary scenario to determine if there are any notable differences compared to the
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continuous scenario. We plan to explore the effects of adding causal SNPs as p

increases. For the scenario considered in Chapter 5, we aim to further investigate the

effects of parameters on correlated SNPs.

We plan to explore methods for generating polygenic risk scores (PRS) across global

populations (cross-ethnic) using real-life datasets, such as the UK Biobank. As dis-

cussed in Chapter 1, genetic architectures can vary among populations due to dif-

ferences in allele frequencies, linkage disequilibrium patterns, and environmental in-

teractions. These variations can affect the accuracy of PRS when applied to diverse

groups, underscoring the need for accurate and equitable risk assessments across dif-

ferent populations. To develop a final PRS that can accurately quantify genetic risk

across all ethnic groups, it is necessary to combine PRS from multiple populations.

This can also be related to the approach taken in this thesis. Specifically, we can

calculate separate GWAS for each ethnic group, obtain their respective weights, and

then combine the cross-ethnic PRS into a single score. This method improving the

generalizability of the polygenic risk scores across diverse ethnic groups.
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Appendix A

Related R Code

This appendix includes the function used to generate the correlated single nucleotide

polymorphisms (SNPs) in Chapter 5, in case there is any confusion.

Listing A.1: Function for generating the correlated SNPs matrix

1 generate_snp_matrix <- function(n, p, maf , block_size =20)

2 {

3 num_blocks <- ceiling(p/block_size)

4 #initialize genotype matrix

5 snp_matrix <- matrix(nrow=n, ncol=p)

6 cutoff <- qnorm(maf) #cutoff

7 #covariance matrix for each block

8 sigma <- diag(block_size)

9 sigma <- 0.8^( abs(row(sigma)-col(sigma)))

10 mu <- rep(0, block_size)

11 for (i in 1:num_blocks)

12 {
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13 Z <- mvrnorm(n=2*n, mu=mu , Sigma=sigma)

14 index <- ((i-1)*block_size +1):(i*block_size)

15 cutoff_i <- cutoff[index]

16 cutoff_i <- matrix(cutoff_i, nrow=2*n, ncol=block_size ,

byrow=TRUE)

17 Z1 <- Z<cutoff_i

18 snp_matrix[, index] <- Z1[1:n, ]+Z1[((n+1):(2*n)), ]

19 while (any(colMaxs(snp_matrix[, index ])-colMins(snp_matrix

[, index ]) == 0)) #avoid same value

20 {

21 Z <- mvrnorm(n=2*n, mu=mu, Sigma=sigma)

22 index <- ((i-1)*block_size -1):(i*block_size)

23 cutoff_i <- cutoff[index]

24 cutoff_i <- matrix(cutoff_i, nrow=2*n, ncol=block_size ,

byrow=TRUE)

25 Z1 <- Z<cutoff_i

26 snp_matrix[, index] <- Z1[1:n, ]+Z1[((n+1):(2*n)), ]

27 }

28 }

29 return(snp_matrix)

30 }
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