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Abstract

The foundations of deep learning are supported by the seemingly opposing perspec-
tives of approximation or learning theory. The former advocates for large/expressive
models that need not generalize, while the latter considers classes that generalize but
may be too small/constrained to be universal approximators. Motivated by real-world
deep learning implementations that are both expressive and statistically reliable, we
ask: "Is there a class of neural networks that is both large enough to be universal but
structured enough to generalize?”

This paper constructively provides a positive answer to this question by identifying
a highly structured class of ReLLU multilayer perceptions (MLPs), which are optimal
function approximators and are statistically well-behaved. We show that any L-
Lipschitz function from [0, 1]¢ to [—n,n] can be approximated to a uniform Ld/(2n)
error on [0, 1]? with a sparsely connected L-Lipschitz ReLU MLP of width O(dn?),
depth O(log(d)), with O(dn?) nonzero parameters, and whose weights and biases take
values in {0, +1/2} except in the first and last layers which instead have magnitude
at-most n. Unlike previously known ”large” classes of universal ReLU MLPs, the

empirical Rademacher complexity of our class remains bounded even when its depth
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and width become arbitrarily large. Further, our class of MLPs achieves a near-
optimal sample complexity of O(log(N)/v/N) when given N ii.d. normalized sub-
Gaussian training samples.

We achieve this by avoiding the standard approach to constructing optimal ReLLU
approximators, which sacrifices regularity by relying on small spikes. Instead, we
introduce a new construction that perfectly fits together linear pieces using Kuhn

triangulations and avoids these small spikes.
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Chapter 1

Introduction

The foundations of deep learning are typically investigated from two seemingly op-
posing perspectives: either analytically in terms of the approximation power of neural
networks [83, 61, 16, 70, 71] or statistically by guaranteeing that these models gener-
alize beyond the training data [6, 7]. On the one hand, the (universal) approximation
literature studies MLPs that approximate continuous functions using a minimal num-
ber of neurons, and it typically overlooks the regularity needed for them to exhibit
reliable statistical behaviour. In contrast, the learning theory literature studies re-
stricted classes of MLPs which generalize beyond their training data by limiting their
expressivity either through weights and biases restrictions [54, 49, 81| or Lipschitz
constraints [25]. Practical deep-learning implementations, however, exhibit both of
these characteristics: They are powerful approximators and reliably generalize. This
means that the deep learning theory community still has not identified a class of
MLPs that reflects the analytic and statistical properties of real-world deep learning

implementations.
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This paper addresses this gap between theory and practice by identifying a sub-
class of deep ReLU MLPs that exhibits both optimal approximation rates when ap-
proximating continuous functions on [0,1]? and which generalizes well, even when
overparameterized. Informally, our main finding is that deep ReLU MLPs of max-
imal regularity are optimal (universal) approximators. Our sub-class of maximally
regular ReLU MLPs exhibits several familiar properties of real-world deep learning
implementations, such as sample interpolation [35, 72] and small derivatives [50, 30].

We find that it is enough to analyze the sub-class of real-valued ReLU MLPs
N. ZT{,V on R? whose size is constrained by a prescribed depth A and width W,
and whose regularity is limited by restricting their maximal Lipschitz constant. Fur-
thermore, the trainable parameters in NN Z’{”,V are highly structured in that, all the
weights and biases in their first and last layer are at most n, while in all other inter-
mediate layers, all biases are 0 and all weights are in {0, +1/2}.

Our main result shows that structural constraints, imposed by L and n, does not

hinder the optimal approximation power of N. i’{,v

Theorem 1.0.1 (Optimal Approximation by ReLU MLPs with Maximal Regularity).
For any L-Lipschitz function f : [0,1]? — [—n,n], there exists an L-Lipschitz ReLU
MLP ® in N. ﬁ/}j with width W < 8d([%] + 1)?, depth D < [log,d] + 4, at most
16d([%2] + 1)¢ nonzero parameters, which satisfies

max | 7(x) — B()] <
x€[0,1]4

3

If we relax the Lipschitz and weights constraints in Theorem 1.0.1, by sending
both L and n to infinity, then we recover the optimal approximation guarantees for

unconstrained ReLU MLPs, which are now well-known in the approximation theory
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literature. However, Theorem 1.0.1 shows that optimal approximation rates can be
achieved while simultaneously imposing regularity on .

Our main result, namely Theorem 1.0.1, confirmed that the class of MLPs V. Z;V
is rich/large enough to be a universal approximator. The statistical viability of this
class is guaranteed by our second result, which shows this class is tame/small enough
to generalize well.

We consider training data for a classification task {(X,, Y,)}Y_ | in R?x [0, 1]. Our
second result quantifies the (uniform) generalization gap for the class NN i’ff,v, which
is defined as the largest absolute difference between the true risk R(®), computed
over the true distribution (Xi,Y;) ~ P, and the empirical risk Ry (®), computed on

the training data, for any ReLU MLP ® in NN Z’;‘,V, where

R(®)  Boyys[(@(X, V)], Ry(®) S 1 3T UB(X,). V)

Theorem 1.0.2 (Nearly Optimal Sample Complexity Without Explosion for Deep
and Wide MLPs). Given the sample set {(X,,, Yn)}Y_, where {X,}N_, are i.i.d. cen-

tered, sub-Gaussian random variables with normalized covariance E[X; X[ | = %Id,

and 1, is the d x d identity matriz then, for each § € (0,1)

sup  [R(®) — Ry(®)| € (5(
PENNK W

10g<4/5> ‘ WSA/2 Ld/(d+3)
———— + min ,
VN {ZA\/N /N }

holds with probability at least 1 — 6.

Our generalization bound in Theorem 1.0.2 guarantees a nearly optimal sample
complexity of O(log(N)/v/'N) observed in parametric generalization bounds of ReL.U

MLPs, e.g. [54, 6, 7]. However, unlike parametric generalization bounds, our bound

3
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in Theorem 1.0.2 converges even in the overparameterized regime where A and W are
allowed to be arbitrarily large (compared to the sample size N). Typically, only non-
parametric generalization bounds, such as e.g. [33], do not explode when A and W
are taken to be arbitrarily large since they can account for the enumerable parametric
symmetries in large neural networks; see e.g. [17, 2] for a discussion on these paramet-
ric symmetries. However, unlike the non-parametric bounds, the sample complexity

. ) I . .
of generalization bound for NN (7, converges at a dimension-free rate.

/
/

(a) Our Strategy - “Maximally Regular” (b) Standard Approach - “Spiky” Networks:
Networks: The networks constructed in Following methods such as [83, 70], ReLU
Theorem 1.0.1 interpolate a given grid MLPs are constructed by first computing

linearly with the optimal slope between any piecewise constant approximators of the
two grid points. These ReLU MLPs target function matching its values at grid
constructed from finite sample values of the points (flat black lines) outside of
target function can never have Lipschitz so-called trifling regions (shaded in red).
constant (or, more generally, modulus of The piecewise constant approximators are
regularity, as shown in Lemma 7.5.4) then “glued together” via linear
exceeding that of the target function. interpolation (steep red lines).

Figure 1.1: How our method works: Our method (left) against the usual approach
(right) of [83, 70] for ReLU MLPs achieving the optimal convergence rate when
approximating a (blue dashed) target function. Both methods memorize the value of the
target function (black dots) at a specific set of grid points.

What issue does our construction resolve? The trouble in standard construction
(right) is that as approximation becomes more accurate, these small trifling regions
become very small, which can result in extremely steep red interpolating segments. Using
our Kuhn triangulation-based construction (for the multi-dimensional case), we can
construct optimal ReLLU approximators with no trifling regions, meaning that we do not
need these steep red segments; therefore, our ReLU approximators are not irregular.
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Our construction of universal MLPs, with one-dimensional cartoons illustrated
by Figure 1.1, relies on a new proof technique based on the Kuhn triangulation of the
hypercube [0, 1], see [41], and not on the trifling regions perfected by [70]. This new
geometric construction allows us to construct approximating ReLU MLPs of maximal
regularity. Surprisingly, Theorem 6.1.1 shows that there is no other triangulation (up
to reflections) which can be used to construct an approximating ReLU MLP with a

minimal Lipschitz constant; thus, our new construction is essentially unique.

Remark 1.0.1 (Approximation of Smooth Functions). The approximate piecewise
polynomial variant of this construction sketched in Figure 1.1b, which applies for
smooth enough functions and which was developed by [84] and subsequently refined
by [85, 61, 46], uses approximate implementations of piecewise polynomials instead of
piecewise constant functions “outside trifling regions”. Nevertheless, these methods
still “glue together” several of these (approximate) local polynomial approximators
using steep interpolators on these little “trifling regions”. Thus, they, too, still can

have little regions where the resulting ReLU MLPs have very steep linear segments.

Remark 1.0.2 (Approximation in Lipschitz Norm). Theorem 1.0.1 guarantees that
any bounded L-Lipschitz function can be uniformly approximated by bounded ReLU
MLPs whose Lipschitz constant never exceeds L. Thus, the approximation hap-
pens within the compact (thus separable), by Arzela-Ascoli theorem, set of uniformly
bounded L-Lipschitz functions in the Banach space of continuous functions on the
d-dimensional cube C([0,1]%). Our result does not claim that one can approximate
any Lipschitz function f : [0,1]¢ — R with ReLU MLPs with respect to the Lipschitz
det.

norm | fzip = maxyepo13¢ | f(x)| + Lip(f); which is impossible as the space of the Ba-

nach space of Lipschitz functions on [0, 1]¢ with this norm is not separable whereas
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the set of ReLU MLPs is.

1.1 Further Results

Our analysis yields additional results concerning the expressivity of regular ReLLU

MLPs.

Memorization/Interpolation with ReLU MLPs of Minimal Lipschitz Con-
stant The memorization (i.e. interpolation) problem for the MLP model dates back,
at least, to [65, Theorem 5.1] where the author showed, amongst other things, that
real-valued shallow MLPs with non-polynomial activation function and width n can
memorize/interpolate n + 1 points in a domain of R%. The following is a shallow
version of our main universal interpolation result (Theorem 7.4.1), which guarantees
interpolation of N data points with minimal parameter usage and minimal Lipschitz
constant is possible with ReL.LU MLPs depending on O(N) trainable parameters, con-
stant depth, and O(v/N) width.

Theorem 1.1.1 (Optimal Interpolation with ReLU MLPs of Maximal Regularity
(Shallow Version)). Let ((zn,yn))Y_, be distinct pairs of training datapoints in R x R
(with ©, < xp1 forn =1,...,N —1). There exists a ReLU MLP ® : R — R of
width at most 2[v/N|, depth 2, and with at most 2N + 8[v/N| nonzero parameters
such that

O(x,) = yn forn=1,...,N

Furthermore, ® is linear on the intervals [z, Tp41]| forn =1,..., N—1, and constant

on (—0, x| and [zx,0).
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This (shallow) version of our main memorization/interpolation theorem matches
the optimal (in the sense of VC-dimension) parameter usage of a ReLU interpolator, as
in [78]. The construction of [78], however, can easily be seen to have a large Lipschitz
constant, whereas the Lipschitz constant of our interpolating ReLU MLPs cannot be
improved as they are exactly the best piecewise linear interpolator of the training
data. It is worth noting that, in [62, Theorem 9.6], the authors recently constructed
interpolating ReLU MLPs; which also obtain the optimal Lipschitz constant (with
respect to the ¢! norm) in the multi-dimensional case. Those networks, however,
require depth O(log(N)) and width O(N), making them sub-optimal in terms of
parameter usage. Instead, the memorizers of Theorem 1.1.1 are optimal for both
literature streams as they both have minimal parameter usage and minimal Lipschitz
constant.

Our main one-dimensional universal interpolation theorem (Theorem 7.4.1) is a
deep version of Theorem 1.1.1, where the user can ezactly specify the depth L > 4
as well as the layer widths of the interpolating ReLU MLP, subject to the restriction
that no MLP layer (bottleneck) is less than 12 and the total layer widths are at-least
O(v/N/L). What is most interesting about that result is that, unlike the memorizers
constructed in [80], which require very large information bottlenecks if the training
data points are close together, both Theorem 1.1.1 and its deep generalization in
Theorem 7.4.1, show that no such restriction is needed. Moreover, the result shows

that for most depth and width specifications, one can interpolate the training data.

Optimal Global Lipschitz Constant The full version of Theorem 1.0.1, namely
Theorem 4.1.1, allows for functions of arbitrary regularity. Furthermore, Corol-

lary 5.1.1 guarantees that & can be chosen to be globally L-Lipschitz, not only
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L-Lipschitz on [0,1]%, by increasing its depth by 1. A consequence of this is Corol-
lary 5.1.2, which shows that for any L-Lipschitz function there is an at-most L-
Lipschitz ReLU MLP of comparable depth and width to that of Theorem 1.0.1, such
that

sup (%) = @(x)]  — L max [(z; = 1)y + (=2)4] 3

d - i=1,...,n
xeR " ~ 7

SRS

~ ~

Approximation Error in [0,1]¢ e

Extrapolation Error beyond [0,1]¢

where for each u € R, u; = max{0,u} and < hides a dimensional constant of the
order of O(Ld); here max;_; _,[(z; — 1)+ + (—;)4+] is simply the ¢* distance to
from a point x € R to the hypercube [0,1]¢. This is an additive formulation of the

multiplicative global approximation result of [13].

Best Achievable Approximation of Discontinuous Target Function Our
main version (Theorem 4.1.1) of Theorem 1.0.2 even applies to “regular” but discon-
tinuous target functions. In these cases, the approximation error does not converge to
0 but, rather, to the minimal achievable approximation error (details in Section 3.2.2).
This latter result is rather interesting since it allows us to quantify the best uniform
approximation of discontinuous target functions instead of having to rely on an LP,
for 1 < p < o0, relaxation of the notion of approximability or via randomization as
in [40]. However, as one would expect from the Uniform Limit Theorem; see e.g. [51,
Theorem 21.6], this approximation error does not converge to 0 if the target function

is genuinely discontinuous; however, we can quantify how small it can be made.

Additional Structure of the weights and biases in the class NN i?/v Propo-
sition 4.1.1 provides details on the weights and biases, as well as the encoding scheme,

used to construct the universal sub-class of NN Z%V described in Theorem 1.0.1.

8


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

M.Sc. Thesis — R. Hong; McMaster University — Mathematics

1.1.1 Organization of Paper

Our paper is organized as follows. Section 2 overviews related results in the approx-
imation theory literature, focusing on our main result (Theorem 1.0.2). Section 3
contains the preliminary notation, terminology, and background required for the for-
mulation of our main results and their proofs. Section 4 contains our main results,
these are the full version of our “regular” approximation theorem (Theorem 1.0.1) as
well as the version of our main generalization bound (Theorem 4.2.1) with explicit
constants.

Section 5 discusses consequences of our main result, such as extrapolation rates
(Corollary 5.1.2), global Lipschitz regularity (Corollary 5.1.1). A discussion on how
our result fit into the modern theory landscape is given in Section 6; where we also
discuss the uniqueness (up to symmetries) of the Kuhn triangulation we used to
construct our optimal ReLU MLPs of maximal regularity. This later result shows
that our new geometric argument is essentially unique and cannot be improved.

All proofs are relegated to Section 7.
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Chapter 2

Related Literature

2.1 Lipschitzness in Neural Networks

Neural networks of a prescribed Lipschitz regularity are common in various areas of
deep learning; with applications ranging from generative adversarial learning [4, 12,
39], conditional distribution estimation [10], to certifiable deep learning [18], amongst
many applications. This has led to several optimization pipelines, e.g. [54, 76, 66, 25,
58], and architectural designs, e.g. [45, 44, 3], enforcing Lipschitzness of trained neural
networks. Various computational tools, e.g. [36, 11, 82|, have also been developed to
efficiently estimate the Lipschitz constant of neural networks. Despite extensive work,
there is no guarantee that there will be no loss of model expressivity when imposing
Lipschitz constraints; our main result fills this gap, thus adding additional theoretical
foundations to deep learning areas relying on Lipschitz neural networks. We mention
that the Lipschitz constant of (untrained) randomly initialized neural networks has

recently been studied in [20].

10
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2.2 Approximators with Parameter Restrictions

To the best of the authors’ knowledge, the tightest available approximation results in
the literature, which provide weight and bias size limits, are given in [61, Theorem
3.1]. There, the authors consider an LP-type approximation, for 0 < p < o, of
any a-Hélder function on [0, 1]¢, with a-Holder coefficient at-most 1 is shown to be
possible using a ReLU MLP depending on O(e_a/d) parameters, organized into at-
most (2 + [logy(a)])(11 + «/d) layers, and whose weights all belong to [—e7%,¢7°];
where s > 1 is an integer depending at-least on the Holder exponent («) of the target
function and on the dimension. For simplicity, examining the proofs of [61, Lemmata
A.3] one sees that s > 7. Now, [57, Theorem 1] guarantees that the width of any
universal (in the L” sense) class of ReLU MLPs must have a width at least d + 1.
Therefore, these observations, together with the fact that the operator norm |A | ,p.2-2
of any d x d matrix by its componentwise 2-norm bound (and the elementary bound
on || -2 < |- ]1): |Alop2me < dmax; —1,. 4 |A;,;| implies that the upper-bound on
the Lipschitz constant Lip( f ) of ReLU MLP L? (p < o) approximator f which can
be deduced from [61, Theorem 3.1] must be at least

d(2+[10g2(a)])(11+a/d) d33
e7 (2+[logy(a)]) (11 +ar/d) = 231421 a/d’

(2.2.1)

Comparing the Lipschitz constant of a neural network whose weights achieve the
lower-bound in (2.2.1), to the Lipschitz constant of our main result (Theorem 1.0.1)
shows that the latter significantly improve the guarantees in the literature; as (2.2.1)
diverges as the approximation error tends to 0 while our Lipschitz constant remain

at the optimum.

11
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Approximation of Lipschitz functions with values in [—1,1] by MLPs with the
ReQU activation function and weights in [—1, 1] is possible, however, there are no
such guarantees for MLPs with the most standard ReLU activation function. We
mention the work of [9] which controls the statistical properties of ReLU MLPs with
bounded weights and biases using their best approximation (assuming it is exoge-

nously bounded) and a correction term.

2.3 Approximation of Functions and Their Deriva-
tives

The approximation of a function and its derivatives has drawn significant attention
in the deep learning for partial differential equations (PDEs) literature [56, 28, 15,
14, 29, 43, 29, 47, 23, 68]. Guarantees that networks can approximate a function
while also approximating its (at least first) derivative date back to [32] with more
recent quantitative guarantees being given by [27, 28, 9, 52] (not all of which use
the ReLLU activation function). Recall that, by the mean value theorem, every once
continuously differentiable function is Lipschitz on [0, 1]¢ with its Lipschitz constant
given by the maximum norm of its gradient thereon; and, as a partial converse, ev-
ery Lipschitz function on R? is differentiable almost-everywhere on [0, 1]¢; see [19,
Theorem 3.1.6]. Thus, for the subclass of Lipschitz functions which are once continu-
ously differentiable, these results guarantee that MLPs can approximate these maps
on [0, 1]? while also approximating their Lipschitz constant.

However, there is no guarantee that MLPs can approximate these functions while

exactly implementing their Lipschitz constant even locally. More generally, there is

12
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no result that MLPs can approximate functions of lower regularity (e.g. Holder of

sub-Holder functions) while also exactly matching their Lipschitz constant globally.

2.4 Global Universal Approximation

Theorem 4.1.1 provides exactly this guarantee showing, in particular, that ReLU
MLPs can globally implement concave moduli of continuity of any uniformly contin-
uous functions (e.g. Holder or Lipschitz functions) while locally approximating them
in [0,1]%. A global guarantee of the extrapolation rate for an approximation on [0, 1]%
will also be provided in Corollary 5.1.2, and this is possible due to our guarantee that
we may exactly and globally match the modulus of continuity of the target function
being approximated.

We note that there do exist qualitative global approximation theorems in the deep
learning [13], reservoir computing [26], and Stone-Weirestrass type [21] approximation
literature. However, although each of those results is qualitative, it is currently not
known what the extrapolation rates are for deep learning models, which are only

guaranteed to provide a uniform approximation on [0, 1]%.

2.5 Non-Linear Widths

In constructive approximation, one typically quantifies the “hardness to approximate”
a compact class K of functions in C([0,1]?) by the size, so-called widths, of the set
K. Broadly speaking, most widths can be divided into either one of two classes. One
of them are distance-type widths, where one measures the size of K in relation to its

distance from relevant low-dimensional objects, describing what can be implemented

13
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by the relevant numerical scheme. The other are encoding-decoding-type widths,
where one quantifies the size of K by the recover-error incurred by first encoding its
elements into a low-dimensional parameter space and subsequently decoding them
back into the function space C([0,1]¢); all the while trying to match them losslessly.

When the objective is to compress K by projecting it down onto the closest
m € N, -dimensional linear subspace L,,, yielding lower bounds on linear approxima-
tion algorithms, one obtains various notions of Kolmogorov linear widths d“"(K) =
infr,, sup e infyer,, | f — gl ze(joye) of [38]; see e.g. [64]. However, as most contem-
porary numerical methods, such as sparse wavelet compression in signal processing
or deep neural networks in machine learning, are non-linear, then one often considers
non-linear quantification of the size of such classes K.

The main result of this paper can be interpreted as a highly non-linear width of

distance type. Here, we are interested in the best approrimation of a compact class

of functions K = C([0,1]%) by the class NN i?/v Thus, we are studying the width

dg’;,V(K) < sup infL } If = @]z (po,1]4)- (2.5.1)
feK ®eNNY,

This is a highly non-linear width since NN Z?,V is contained in the intersection of
the infinite-dimensional compact (by Arzela-Ascoli) convex set Lip(R%, R, L) of real-
valued functions on R? intersected with the finite-dimensional highly non-convex
(see [60, Theorem 2.1]) but closed (see [59, Theorem 3.8]) set of ReLU MLPs of
a given depth and width. Thus, dg’f{,V(K ) is a highly non-convex analogue of the Kol-
mogorov m € O(A W?)-dimensional linear widths, where m is the maximal number

of parameters defining such a neural network.

14
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2.6 Deficits of Parametric Generalization Bounds
for Overparameterized MLPs

Under the assumptions of Theorem 1.0.2, the Rademacher complexity bounds of [8,
Theorems 8 and 12] and [6], together with some result on random matrices with
independent rows in [79, Theorem 4.6.1] (see Appendix 7.8 for details) can only

imply the following much weaker bound: for each 0 < < 1 the following holds

sup |R(®) — Ry (®)| O(

L,n
PENN W

log(4/5)>+@< 1 W3A/2, /log(4/6)

Wi o+ Wi ) (2.6.1)

with probability at least 1 — . We also note that, the nearly optimal VC-bounds
derived in [7] for ReLU MLPs also diverge when W and A tend to infinity.

15
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Chapter 3

Preliminaries

This section contains the preliminaries needed to formulate our results. These include
both the notation used in this manuscript, as well as the background terminology

relating to multilayer perceptrons.

3.1 Notation

We use R, N, N, ,Z to denote the set of real numbers, non-negative integers, positive
integers, and integers, respectively.

For any = € R, let |#] = max{n € Z : n < z} denote the floor of x, and
[2] < min{n € Z : n > x} denote the ceiling of z. For any n € N, let [n] denote the
set of integers {1,2,--- ,n}.

We denote the rectified linear unit (ReLU) activation function by ¢ : R 3 ¢ —
max{0,t} € R. It will always be applied componentwise to any vector, by which we
mean o(x) = (o(x;))L, for each x = (z1,-- ,24) € R? and every d e N,

Vectors in dimensions above 2 are denoted by bold lowercase letters. Matrices are

16
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denoted by bold uppercase letters.

3.2 Uniform Regularity

We first overview the standard notions of uniform continuity before introducing their

discontinuous generalizations for which our approximation results hold.

3.2.1 Uniform, Lipschitz, and Holder Continuity

A map w : [0,0) — [0,00) is called a modulus of continuity if w is monotonically
increasing and continuous (from the right) at 0 with w(0) = 0. Let (X, px) and
(Y, py) be metric spaces and f : X — Y. We say that w is a modulus of continuity
for f if: for each z,7 € X

py (f(2), [(Z)) < w(px (2, T)).

We often consider uniformly continuous functions which are either Lipschitz and
Holder continuous. If L > 0, 0 < a < 1, and w(x) = Lz®, then we will say that f
is a-Holder with constant L. The class of all such f : X 2 2 — R is denoted by
Hol(L, o, Q2). If a = 1, we say that f is L-Lipschitz. Given any real-valued function
f on a subset X of RY we use Lip(f) to denote its optimal Lipschitz constant with

respect to the restriction of the !-norm to X; i.e.

Lin(f) & sup 9= FO

x,yeX ”X - YHI
XAy

We are mostly interested in the case where X is a subset of the space (R?,¢;) and
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(Y, py) is a Euclidean line; where, for 1 < p < o0, ¢, indicates that we are equipping

R? with the metric induced by the ¢ norm x| = 3P |alP if p is finite and

HXHOO = maxi;=1,..d ‘.1'1‘ otherwise.

3.2.2 Uniform Regularity, Best Achievable Approximation

Error, and Discontinuity

We consider the following broad class of (possibly discontinuous) target functions,
including uniformly continuous functions. The reader which is only interested in
approximation guarantees for continuous functions, where an asymptotic error of 0
1s achievable by ReLU MLPs, is encouraged to skip this section and swap the term
“modulus of regularity” for “concave modulus of continuity” in the remainder of the

paper. We rely on the following weakened version of a concave modulus of continuity.

Definition 3.2.1 (Modulus of Regularity). Let I = [0,00) or I = [0,T] for some

T > 0. A function w : I — [0,0) is called a modulus of regularity if:

2. w is monotone increasing,
3. w is concave.

Moduli of regularity allow us to quantify the best achievable approximation error,
when uniformly approximating discontinuous target functions. Before formalizing
this, we recall that concave functions on bounded domains Q2 = R? are continuous on
their interior but need not be on the boundary 02 of 2. For example, the indicator

function /(g of (0,00) is concave on § = [0,0), continuous on (0,0), and has a
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discontinuity on 0€2 = {0}. We will often consider the best achievable approrimation

error w* € [0,00), when minimizing such a modulus, which is given by

def. 7.
=1 t).
< e

Example 3.2.1 (Concave Moduli of Continuity are Moduli of Regularity). If w :
[0,0) — [0, 00) is a concave modulus of continuity, then w is a modulus of regularity,

with w(0) = 0, and w is continuous at 0; i.e. ltifgl w(t) = 0 and in particular w* = 0.

The previous example illustrates the main difference between moduli of continuity
and moduli of regularity; namely, the value of 0 need not be achievable by minimizing
w from the right. Indeed, if w is a modulus of regularity, then it is non-negative and

it fixes 0; thus, w(t) = w(0) = 0 for all positive values of t. Consequentially,

w(0) = 0 < w* (3.2.1)
for any modulus of regularity. This inequality can be strict for discontinuous func-
tions.

Example 3.2.2 (Beyond Moduli of Continuity). Fix M > 0 and L > 0. The function

w: [0,00) — [0,00) given for each t € [0,0) by

M+Lt ift>0

0 ift=20

is a modulus of regularity but not a modulus of continuity, and the inequality in (3.2.1)

1s strict.
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The class of continuous functions between metric spaces are precisely those func-
tions for which: for every compact subset of their domain, there is a modulus of
continuity bounding the distance between the images of all pairs of points therein,
see e.g. [51, Theorem 27.6], and such that the images of arbitrarily close points are
themselves arbitrarily close.

If one relaxes the second condition, we are left with the following functions con-
sidered in our paper. Our interest in this class stems from (3.2.1), wherein our main
result (Theorem 4.1.1) shows that for w-regular function can be approximated by a
ReLLU MLP with at-most w-regularity, up to the best achievable approximation error
w*. In the very special case where the target function is additionally continuous,

we can guarantee the usual type of conclusion: our ReLU MLP approximators can

achieve zero approrimation error asymptotically.

Figure 3.1: The heaviside function h is w-regular with w(t) = 1 if ¢ > 0 and 0 otherwise.

Definition 3.2.2 (w-Regular Functions). Let w be a modulus of regularity, (X, p)
and (Y, p') be metric spaces. A map f: X — Y is said to have w-regularity at a pair
of points z, 2’ € X if

P (f(@), f(2) < w(plz,a’)).
If, moreover, f has w-regularity at all pairs of points x, 2’ € X then, we way that f is
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w-regular (on X). The set of all w-regular functions from (X, p) to (R, |-|) is denoted
by Lip,(X).

We will say that a function is regular if it is w-regular for some modulus of
regularity w. Geometric examples of discontinuous regular functions include quasi-
isometric [42] and certain coarse embeddings [55, 48]. Discontinuous regular maps
can also be constricted as additive perturbations of Lipschitz functions by some “de-

terministic bounded noise”, as follows.

Example 3.2.3 (Additive Perturbations of Lipschitz Functions). Fix L, M > 0 and
fix any function n : R — [—~M /2, M /2]|. For any L-Lipschitz function f : R — R

define the perturbed function f, : R? — R as sending any x € R? to

Fa(x) = f(x) + 0(x).

Then, f, is w-regular with modulus of regularity as in Example 3.2.2.

Regular functions need not be well-behaved measure-theoretically. For instance,
in the context of Example 3.2.3 if A is the Vitali set in R and n = % 14 then we see

that f, need not even be Lebesgue measurable even if f was Lipschitz.

Example 3.2.4 (Not all Functions are Regular). Not all functions are regular. The

following map is not regular: f : [0,1] — [0, 0) given for each x € [0, 1] by

8=

ifz>0

0 ifz=0.

However, any bounded function is regular. Nevertheless, their best achievable
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approximation error can be large.

3.3 Multilayer Perceptrons (MLPs) with ReLU Ac-
tivation Function

We now define multilayer perceptions. We then formulate notions of parameteric and

functional regularity often encountered in the literature considered herein.

Definition 3.3.1 (Multilayer Perceptrons with ReLLU Activation Function (ReLU
MLPs)). Let A € N, and consider a multi-index d = [dy, ..., da11] € N¢. The class
NN (A) consists of all multilayer perceptrons with ReLLU activation function (ReL.U

MLPs) @ : R% — Réa+1 admitting the following iterative representation

B(x) = W) | p®)
<) 4 RALU .(W(l) x® 4 b(l)) fori=1,...,A—-1 (3.3.1)

def.
x5

where for [ = 1,...,A, W® is a d;;; x dy-matrix and b® e R%+1 and ReLU e
denotes componentwise application of the ReLLU function. We denote widthvec( f) =
[da, ..., dA].

Given L, W, d, D € N, we use NN (d, D) to denote the class of maps f : R? — RP,
NN aw(d, D) the subset of NN (d, D) of ReLU MLPs with depth at-most A and
width at-most W, and NN}y (d, D) the subset of NN aw(d, D) of L-Lipschitz
ReLLU MLPs therein. When clear from the context, we suppress the notational de-

pendence on d and D.
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Given a ReLU MLP f with representation 3.3.1, we call the integers A — 1 and
max;_o A d; its depth and width, respectively. Let P(d) < ZZA:I di(d;+1+1). When
discussing the stability of the ® on the parameters defining it via this representa-

tion, we will rely on the following vectorization of the parameters defining its weight

matrices (the W) and its biases (the b))

A
RFW 350 = (WO BO)E e [T (RAE4 x R+, (3.3.2)
=1

In particular, this vectorization of the parameters of ® allows us to define the maxi-
mum norm of a set of weights and biases defining @, in representation (3.3.1), as the

(% norm of its parameter vector # in (3.3.2); via

I 0; 3.3.3
[@lpar = | max 103 (3.3.3)

where the operation |®|,,, is defined given the representation of ® in (3.3.1). That
is, different representations of the same function & may have different maximum
parameter sizes, meaning that, |®|,., is not a canonical intrinsic quantification of the
regularity of ®. However, this is not the case for the optimal Lipschitz constant of
® which is independent of any parameterization thereof. Thus, the optimal Lipschitz
constant of ® is a more natural measure of regularity of ® than norms on its parameter

vectors; given a particular representation.

23


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

Chapter 4

Main Results

We now present our main approximation result (Theorem 1.0.1) and then the full-

version of our statistical guarantee (Theorem 4.2.1).

4.1 Approximation Guarantees

The following is the full version of our optimal approximation theorem with maximal

regularity.

Theorem 4.1.1 (Optimal Regular Approximation by Sample-Interpolating ReL.U
MLPs). Let f be a function from [0,1]¢ to R, and let w : [0,d] — [0,0) be a modulus
of regularity of f. Then, for any n € N, there exists a ReLU MLP ® on [0, 1] with
width at most 8d(n + 1), depth at most [logy d| + 4, at most 16d(n + 1)¢ nonzero

parameters, which satisfies the approximation guarantee

d
1f = @l oars < (50

24



M.Sc. Thesis — R. Hong; McMaster University — Mathematics

Furthermore, w is a modulus of reqularity of ® on [0,1]%.

Remark 4.1.1. Theorem 4.1.1 provided guarantees on the modulus of regularity of
® on [0,1]% this guarantee can be extended to all of R? at a cost of only a factor of
O(1) more non-zero parameters (Corollary 5.1.1 below). In this way, one may obtain

a global extrapolation variant of this result (Corollary 5.1.2 below).

The ReLU MLPs constructed in our main approximation theorem are constructed
from a finite number of samples from the target function at specific grid points. Given

degree of freedom n € N, , we draw
N(n) = (1+n)
samples from the target function the following grid points in [0, 1]¢
X, € {xe[0,1]": z1,...,zq€ {j/n}i_y} (4.1.1)

We define the sampling-based encoder &, by sending any function f : R? — R to the

following latent code in RV ()

Our main universal approximation theorem guarantee, generalizing Theorem 1.0.2,
shows that our regular ReLLU approximator of f can be constructed from the N(n)
sample values £(f), and its construction only relies on the information of f contained
in these samples.

We rephrase the above main theorem in the context of encoder-decoder as follows.
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Theorem 4.1.2 (Theorem 4.1.1, Encoder-Decoder Formulation). Let w be a modulus
of reqularity. For every n € N, there exists a decoder D, : RN — NAN(d, D)
such that: for each f € Lip,([0,1]%), w is a modulus of reqularity of the ReLU MLP
® = D,0&,(f) on [0,1]% which has width at most 8d(n+1)?, depth at most [log, d]+4,

at most 16d(n + 1)d nonzero parameters, and it satisfies the approximation guarantee

ms 170~ 09| < ()

x€[0,1]¢ 2n

as well as the sample-interpolation guarantee
f(x;) = ®(x;) foreachi=1,...,N(n).

Moreover, the parameter norm, path-norm, are all recorded in Table 4.1.
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Description of MLP Estimate

Parameteric Complexity

Depth [logy(d)] + 4
Width 8d(n + 1)
Nonzero parameters 16d(n + 1)?
Regularity

Modulus of Regularity ® e Lip,, ({x;}11)
Parameteric Regularity |®|par max{n, maxe[nmy |f(x:)|}

Misc. Structure
Encoding Dimension dim(dom(D)) (n+ 1)
Support supp(®) < [-1/n,1 + 1/n]?
Table 4.1: ReLU MLP (®) constructed in Theorem 4.1.2 approximating
fe Lipw({xi}i]i(f)) on [0,1]¢: All maxima are indexed over i in {1,..., N(n)}. The depth,
width, and maximum parameter size |®|p,, are defined in (3.3.3). The regularity of the

encoder is with respect to the /% norm on RV ), By the support supp(®) of ¢, we mean
the set points in R% where it is non-zero.

Note that, the path-norm bound in Table 4.1 implies that most weights defining
the ReLU MLP must be small. Indeed, a detailed inspection of the construction of
®, see Remark 7.6.1, shows that most weights and biases defining ® are in {0, +1/2}.

A closer look at the proof of Theorem 4.1.1 reveals much more information about
the structure of the weights and biases of the approximating ReLU MLP constructed
therein, as well as their dependence on the target function. We summarize these
additional facts in the following Proposition; which is proven during the course of our

main result. The following result thus provides in-depth details of the structure of
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the decoder mapping the latent code £(f) to our constructed ReLU MLP.

Proposition 4.1.1 (Estimates for the Weights and Biases in the Construction of &
in Theorem 4.1.1). Consider the setting of Theorem 4.1.1, represent ® as in (3.3.1);

note that 1 < A < [log, d| + 4.

(i) Target Dependant Layers: The weights W2) depend on f,

(ii) Target Independents Layers: The weights {WWI2T do not depend on f

but only depend on d, and the biases {b"}2, are all 0,
(i1i) Typical Weights: For eachl =2,... A —1, Wilj) € {0,+1/2} for each i,j,

(iv) Initial and Terminal Weights: [WW||e < 1, [W®) | < AI[I]lVE%X)] |£(x:)], [BD e <
(1S n

n.

We conclude this section by noting that the shape of the optimal ReLU MLPs
in Theorem 4.1.1 can be very flexible. As the following variant of that result shows,
we may specify ReLU MLPs of virtually any width or depth to obtain our optimal

approximation guarantee with maximal regularity.

Proposition 4.1.2 (Theorem 4.1.1 with Variable Width and Depth). Let f be a
function from [0,1]¢ to R, and let w : [0,d] — [0,00) be a modulus of regularity of
f. Then, for any master parameter n € N, depth parameter L € N, and width

parameters my,--- ,my € N, satisfying
m1+---+mL= (n—i—l)d

there exists a ReLU MLP ® on [0, 1]* with width at most 8d max{m,,--- ,mp}+d+2,

depth at most L([logy d] + 4), at most 16d(n + 1)¢ + L(d + 2) nonzero parameters,
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which satisfies the approximation quarantee

d
If = @[ rooae) S w (%)

Furthermore, w is a modulus of reqularity of ® on [0, 1]¢.

In Corollary 4.1.2, if we take L = d and m; = my = -+ = mgq = [(n+1)?/d], then
we can conclude that the same approximator ® in Theorem 4.1.1 can be implemented

by another ReLU MLP with width O(n?) and depth O(dlogd).

4.2 Statistical Guarantees

Next, we investigate the learning theoretic implications of our main result. We con-
sider i.i.d. training data for a classification problem (X1,Y7),...,(Xy,Yn) ~ P in
R? x [0,1] and a loss function £ : R x R — [0,1]. Our objective is to describe
the worst-case generalization gap for any ReLU MLP @ in the class studied in The-
orem 4.1.1. The generalization gap for any such MLP is defined as the absolute
difference between the true risk R(®) over the (unseen) test set and the empirical

risk R(®) computed on the training data; where

R(®)  Boorys[A@(X.Y)]. Ry(®) S 1 3T UB(X,).Y,)

Theorem 4.1.1 and Proposition 4.1.1 identifies a highly structured subclass of the set
of neural networks with depth A and width W, for A, W € N, , which are expressive
enough to approximate any L-Lipschitz functions with range in [0,1] to a uniform

precision of w(d/2n) for any prescribed n € N, . Specifically, the class NN g?/v consists
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of all ReLU MLPs ® : RY — R in ./\/’./\/'ZW(CZ, 1), see Definition 3.3.1, for which the
weights W ... W) in (3.3.1) satisfy

1
WO, <1, ,_max_ WO, < =, and [WH |, <n. (4.2.1)

90y

[\

Assumption 4.2.1 (Normalized Sub-Gaussian Training Data). The R?x [0, 1]-valued
random variables (Xi,Y1),...,(Xy,Yy) are i.i.d and X; is centered, sub-Gaussian,

with normalized covariance

E[X, X, | = %Id

and are defined on a common probability space (2, A, P); where I is the d x d identity

matrix.

Unlike the generalization bound in (2.6.1), deep and wide neural networks gen-
eralize well in practice. On the contrary, several recent results studying gradient
dynamics of “infinitely wide” neural networks suggest that highly overparameterized
neural networks (which may be extremely deep and wide) tend to generalize well and
tend to converge to highly regular networks after being optimized by gradient descent
on the training data. This is not captured by the generalization bound in (2.6.1) since,
when either A or W become large, then the generalization bound in (2.6.1) diverges,
even if L is held constant.

The divergence of (2.6.1) is counter-intuitive since NN i?/v is contained in the
class of L-Lipschitz functions on R? with image in [0, 1]; which is totally bounded by
Arzela-Ascoli theorem, and thus its Rademacher complexity should be controllable by
Dudley’s entropy integral estimate (see e.g. [77, Corollary 2.2.8]). The reason is that

the bound in (2.6.1) is inherited from bounding the Rademacher complexity of the
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larger class NN A which becomes unbounded as the depth and width parameters
grow. Upon noting that the Rademacher complexity of the class NN i% must be
no larger than that of the class of L-Lipschitz functions with values in [0, 1] and no
larger than that of the class NN A w, then using the bound on the former computed
for instance in [33, Lemma 25|, we may improve (2.6.1) so that it remains bounded

as A and W tend to infinity.

Theorem 4.2.1 (Non-Exploding Generalization Bounds for Arbitrarily Deep and
Wide ReLU MLPs). Let A,W,n,de N, L, L, > 0, and consider a Ly-Lipschitz loss
function € : R? — [0,1]. Under Assumption 4.2.1, for each § € (0,1) the generaliza-

tion gap SUPgep AL, |R(®) — Ry (®)| is bounded above by

8log(4/9) (4 26log(N)log(2W) W32/2 Lt
T +2 L, min N2 + omax((0,A-2] N (\/34* Cd,X1 \/N+ Cd,Xl \/111(4/(5)), Cdﬁ

-~ ~ N b ~ . —

~ ~~ ~~ -

Prob. Satisfaction Parameter Space Function Space

925/2 16d/(d+3)
(18(d+1))(d+1)/(d+3)

with probability at least 1 — §; where Cy = (8(d + 1)2(16)d)1/(d+3) +

and Cy x, > 0 is a constant depending only on X; and d.
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Chapter 5

Implications of Theorem 4.1.1

We now showcase the breadth of Theorem 4.1.1 by examining some of its implications

from approximation theory to learning theory.

5.1 Approximation Theory: Extrapolation Rates

Our main result guarantees that the approximating ReLU MLP & has a (modulus
of) regularity which is no worse than that of the target function. This allows us to
deduce a sharp extrapolation rate for our approximator outside of [0, 1]%.

We can thus directly obtain a version of a global universal approximation theorem.
However, our result differs from that of [13], which leverage topologies stronger than
the uniform convergence on compacts topology on C(R%) but weaker than the uni-
form topology thereon on suitable subspaces; e.g. the strict topology on continuous
bounded functions studied by [75, 21, 74]. Instead, we do not discount/compress
our error using weight functions outside the unit cube but rater we quantify how

fast it grows, using the moduli of both the target function and its neural network
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approximator.

The first step towards this result is given by our first consequence of Theorem 4.1.1.
Namely, this first corollary shows that we can easily extend the domain of the interpo-
lator ® in Theorem 4.1.1 to all of R? while maintaining its regularity. To formulate this
consequence, we consider the distance disty ;3¢ from any point to the d-dimensional

unit cube, defined for each x € R? by

distg 174 (x) = zéﬁ)i?]d |z — x|;.

Corollary 5.1.1 (Theorem 4.1.1 with Optimal Global Regularity). For any n € Ny
and f :[0,1]¢ — R with modulus of regularity w : [0,d] — R, there exists a ReLU
MLP & : RY — R with width at most 8d(n + 1)%, depth at most [log,d] + 5, and no

more than 18d(n + 1)¢ nonzero parameters such that

d
|f = @[ rooaye) S w (%)

Moreover, the following extension of w is a modulus of reqularity of ® on R?:

w(z), ifxe]0,d]
w(x) = , Yz el0,) (5.1.1)

w(d), ifx>d

Using Corollary 5.1.2, we are able to deduce the following “global universal approx-
imation theorem” with additive correction term, instead of the usual multiplicative
corrective weight used in the global approximation literature [13, Theorem 4.13], in
the reservoir computing literature, e.g. [26, Corollary 9], or in the deep learning for

dynamical systems literature; e.g. [1, Theorem 4.11].

33


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

M.Sc. Thesis — R. Hong; McMaster University — Mathematics

Corollary 5.1.2 (Extrapolation Bounds for ReLU MLP Approximators). For any
ne Ny and f: RT — R with modulus of reqularity w : [0,d] — R on [0,1]¢, there is
a ReLU MLP ® : RY — R with width at most 8d(n + 1), depth at most [log, d] + 5,

and no more than 18d(n + 1)¢ nonzero parameters satisfying

sup  [f(x) —@(x)| — w(distpe(x) <@ (—) :

d - 2n
x€eR . ~ - N, 2

N

Approzimation in [0,1]1  Eztrapolation: beyond [0,1]4

where @ is defined in (5.1.1). Furthermore, @ is a modulus of regqularity of ® on R,
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Chapter 6

Discussion

We now discuss some technical points of our main result, explaining how certain steps
in our construction cannot be improved on. The proofs of each of these results are

relegated to Section 7.9 below.

6.1 The Kuhn Triangulation is Unique for Regular
Approximation

The multi-dimensional analogue of the cartoon of our one-dimensional regular ReLLU
approximator illustrated in Figure 1.1a, relies on a specific triangulation of the d-
dimensional cube [0,1]%. This triangular called the Kuhn triangulation, defined
shortly afterwards, is the most “regular” triangulation in the sense that it is the only
triangulation whose continuous piecewise linear approximators always preserve the
regularity of the function that it approximates under some mild conditions; see [37,

Lemma 1]. This triangulation is used in one of the key technical steps in proving
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Theorem 4.1.1; namely, Lemma 7.5.4.

Figure 6.1: Kuhn triangulations of a 2D (left) and a 3D (right) unit cube.

Definition 6.1.1 (Kuhn triangulation). For any d € N, the d! different simplices

k
conv ({Z e i :0<k< d}) , TESy (6.1.1)
i=1

form a triangulation of [0,1]¢, where S; is the symmetric group on d letters, and
e, -, ey are the standard basis vectors of R, This triangulation is called the Kuhn

triangulation.

It is natural to ask if another triangulation could have been used during the proof
of our main result. Surprisingly, this is not the case as any other triangulation, other
than reflections of the Kuhn triangulation, yield approximators with larger Lipschitz
constants. This is the content of the following result which serves as a type of converse

to Lemma 7.5.4.

Theorem 6.1.1 (Uniqueness of the Kuhn Triangulation - up to Reflections). The
Kuhn triangulation is the only triangulation (up to reflections) that makes Lemma

7.5.4 true for the case n = 1.
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6.2 Parameter Usage Compared to State-of-the-
Art Approximation

This section contains a statement and derivation of the main result of the state-of-
the-art (SOTA) approximation theorem for ReLU MLPs [70] which includes estimates
on the Lipschitz constant of the ReLU MLP constructed therein. We emphasize that
the optimality criterion in the following approximation theorem and its predecessor

was parameter usage, not regularity.

Theorem 6.2.1 (SOTA Universal Approximation Theorem of [70] with Regularity
Quantification). For any 2 < n € Ny and f € Hol(v,a, [0,1]¢) with o € (0,1], we

have:

1. If d = 1, then 3® € NN (#input = 1;widthvec = [2n + 1,2n]) with O(n?)

nonzero parameters such that

If = @] reqo)) < )"
® € Hol(v, o, [0, 1])

2. If d > 1, then 3® € NN (#input = d; width < max{(2n + 3)d,6d + 3,2[(n +

1)¥2] + 2d}; depth < 23d + 9) with O(dn®) nonzero parameters such that

d? “
— P ;0 < E—
1 = lueoary < » (o)

Lip(®) < v(n + 1)%(2d + 1)d”
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Observe that the minor improvement of the main result of [70], given in Theo-
rem 6.2.1, yields significantly more irregular MLPs than our main theorem due to
sharp descents between trifling regions (illustrated by the red bands in Figure 1.1b).
In contrast, our Kuhn triangulation-based construction resolves this issue optimally

since the ReLU MLPs constructed using it do not require any trifling region.

Remark 6.2.1 (Improvement of Constant for Variant of [70, Theorem 1.1]). In the
multi-dimensional case, our version of the main result of [70] achieves the optimal ap-
proximation rate with a more efficient parameter usage than the original formulation
in [70]. In our version of their result, we achieve the same approximation rate while

dropping the dependence of the constant on d from exponential to linear.

6.3 Parameter Quantization

Part of the deep learning literature [78, 34] investigates quantized neural networks;
meaning, that their parameters belong to the grid {a/2’ : j € {0,...,b},a € Z}. The
reader will notice that most weights and biases in the ReLU MLP & constructed
in Theorem 4.1.1 belong to the set {—n,—n +1,...,n — 1,n} u {—1/2,1/2}. Since
Proposition 4.1.1 guarantees that the parameters of our MLP are remain bounded,
then [63, Theorem 3] could be used to fully quantize the neural network with only a
minor impact on its expressivity (approximation error). This is because that result
provides tight estimates on the effect of perturbing the weights and biases of an MLP
with fixed depth and width and bounded parameters. However, such perturbations
need not preserve its Lipschitz regularity. We thus mention this as an interesting

direction for future research.
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6.4 Path Norms and Lipschitz Constants

We mention that |®|,,,, defined in (3.3.3), is closely related to the so-called “path-

norm” seen in the literature, defined by

A
[@lpaen = | T IW o
=1

where | - [op denotes the spectral norm of a matrix. The path norm is typically used
to quantify the regularity of a parametric representation of a neural network [53],
and which is often used as a regularizer during training [54]. The path-norm provides
readily computable upper bound on the Lipschitz constant of ®, which can be easily
computed from the parameter space of . This is in stark contrast to the exact Lips-
chitz constant of ReLU MLPs, which can be difficult to exactly in practice [81]. Here,
we mention that |®|,,, can easily be estimated from the values in Table 4.1; however,
one readily sees that the path norm bounded in this way can severely overestimate the

Lipschitz constant of the function implemented by the ReLU MLP in Theorem 1.0.1.
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Chapter 7

Proofs

7.1 Additional Notation During Proofs

During our proofs, we will also adopt the following notational conventions, in addition

to those described in Section 3.1. A single layer of an MLP is considered as a column

vector. For each m € N, , the median of the real numbers x1, zs, - - - , x,,, denoted by
median(zy, T9, -, Tpy,), is
e | T2 if m is odd
median(xy, xe, -+, Tp) = (7.1.1)

(x(m/g) + [E(m/2+1))/2 if m is even

where {z)}i%, = {2;}%, and zq) < -+ < 2y,). With a slight abuse of notation,

we sometimes abbreviate a column vector in the following way: for example, if x =
T

- T
1 IQ] andyz[yl Y2 y3] , then

B o(+a + b) y]Tdéf' [:cl 2y o(a+b) ola—b) o(—a+b) ol—a—b) y s yg]T.
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For any p € [1,0), the 7 norm of a vector x = (1, Z9, -+ ,z4) € R? is defined as

[xlp = (Jaal” + Jwal? + - - + |zal’) 7

and its ¢° norm is defined as

”X”OO = max{\a:l\, ’1'2’, T, ’xd‘}

The LP norm of a function f: Q € R? — R is defined as

o 1/p
luser ([ 117n)

where p is the Lebesgue measure, and its L® norm is defined as

def.

| fllze(y = inf{C = 0: |f| < C almost everywhere on Q}.

This paper uses the ¢! norm on the domain; for instance, when defining Lipschitz
constants and regularity. We use the (uniform) L* norm when quantifying approxi-
mation estimates.

We use O for the big O notation, which is written as @ when logarithmic factors
are ignored. We use ) for the big {2 notation when it is clear from the context.

For a set S, let card(S) denote its cardinality. For two sets S; and S, let Sy x Sy =
{(s1,82) : s1 € S1,89 € S} be the Cartesian product of S; and Sy, and denote the
Cartesian product of S with itself d times for d € N, as S¢, i.e. S¢ = H?Zl S) =
{(s1, 82, ,8a) : S1,82," -+ ,Sa € S1}.

For a finite subset S = {v{, vy, - ,v,} of R? let conv(S) denote the convex hull
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of S, i.e.

conv(S) = {Mvi +Aava - F AVt AL A =0 A + Ao+ A, = 1)

def.

For a set of sets S, let US = | Jgq S’ denote the union of all the sets in S.

We say that a 1-dimensional function f : 2 € R — R is continuous piecewise linear
if there exists a finite collection of intervals Iy, -- , I, such that Q < Iy U --- U I,
and f is linear on Iy,---,I,,. We say that x € Q is a break point of f if the left
and right-hand derivatives of f at x are different. For example, ¢ is a continuous
piecewise linear function on R, and = = 0 is the only break point of .

In what follows, given a ReLU MLP @ with representation (3.3.1); when conve-
nient, we will use depth(®) to denote its depth of a network ® and width(®) to denote
its width. Emulating [70], we use NN (¢1;¢2;- -+ ; ¢) to denote the class of functions
implemented by ReLU MLPs which satisfy conditions ¢y, cs, -+, ¢,. For example,
NN (#input = 2;depth < 3; width = 4; #output = 5) denote the class of functions
from R? to R® implemented by ReLU MLPs which have depth at most 3 and width
equal to 4.

One example of this is the notation N A (d) introduced in Definition 3.3.1. In this

case, the condition is widthvec(®) = d.

Compositional Notation During the course of our analysis, it will be convenient
to describe ReLU MLPs via the role of each of their (sets of) layers. Specifically,
the structure of a ReLU MLP @ is represented in the following way: suppose ® =

Lyo(0oLyq)o---0(o0oLy)o(ooLy) where the £;’s are affine transformations,
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then we express it as

x — (00 L)(x) = (05Ls)o (00 L)(x)
= (0oL,_1)o--0(00Ly)o(00Ly)(x)
e Lo (o0 La )00 (50 La)o (070 £2)()

= d(x)

In other words, if x;,Xa, -+ ,X;,—1 are the 1,2, -+, (m — 1)-th hidden layer of ® and

X,, is the output layer, then the structure of ® is expressed as

X = X] = X = = X, ] = X, = P(X)

If the structure of the network ® with input x and output ®(x) is clear from the
context, then in the following expression, we mean that x and ®(x) are connected

via the network ®:

In this case, there may be additional hidden layers between the two layers shown
above. Finally, if one of the layers we constructed in fact did not use any activation
functions, then it can be integrated with the layer after it, an does not require an extra
layer to process. We color them in green to indicate that we can ignore these layers
when estimating the size of the network. For example, if ® = L 0(c0L3)o(Ls)o(00L;)

is constructed as a network with three hidden layers x; < ¢ o L1(x), Xo = Lo(x1)
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and x3 = oo L3(x5), and x5 does not use any activation functions, then ® can be
implemented by a network with only two hidden layers: ® = £ 0(c0(L30L5))o(c0Ly),

whose structure is expressed as

X = X] = Xy = X3 — P(x)

7.2 Computational Lemmata

We now compile a sequence of lemmata showing that various key functions can be
exactly implemented by “small” MLPs; such as the median function and piecewise
linear memorizes. Moreover, when relevant, we show that the MLPs implementing

these functions do not alter the regularity of their inputs (explained rigorously below).

7.3 The Median Function

This section focuses on the median function; defined in the following lemma. The
implementation of the median function will allow us to construct MLPs with lighted
absolute parameter usage (including constants) than in the available literature while

matching the available optimal approximation rates.

Lemma 7.3.1. Let d € N, and x1,29, - ,T2441 € R. Assume x1,--+ ,xq41 € [y —

e,y +¢| for some y e R and e > 0. Then, median(xq, 29, - ,T2441) € [y — €,y + €].

Proof. Let’s relabel x1, 9, -+ ,Zog41 as y1 < Yo < -+ < Yogr1. Lhen, at least one of
X1, To, -, Tar1, denoted x,, is in the set {y1, vy, -, Ya+1}, since the complement of

this set only has d elements. Similarly, at least one of x1, x5, -+ , 24,1, denoted x,,,
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is in the set {411, Yas2, -+, Yoar1}- Therefore,

median(wl, Zoy - ax2d+1) = Ydq+1 € [’Iny xm] - [y — &Y + 5]'

]

Lemma 7.3.2. For any d € N, the median function on 2d + 1 non-negative inputs

can be implemented by a ReLU MLP with width 6d + 3 and depth 11d + 3.

Proof. We label the nodes as ny,ns, -+ ,n9q.1, and let
2d+1
D(x) = ) |o—nil
i=1

be the total distance from z to all the nodes. Then, D attains its minimum exactly at
the median since there are odd number of nodes. We will use the following algorithm

to compute the median:
def. .
1. Compute x¢g = min{ny, ng, -+ ,Nag1}

2. Compute sg = min{D(ny), D(ny), -, D(nsqs1)}

D(l’i_l) — Sy

3. Fori=1,2,---,d, let z; = x;_ -
or 1 , 2, ,a, let x x1+2d+1_22

4. Output z4

We first show the correctness of this algorithm. We relabel the nodes as m; <
mae < -+ < Magyq and proceed by induction on i. For i = 0, 2o = my € [my, mgy1]-
For ¢ = k, suppose x € [myy1, may1] for some k£ < d — 1, we will show that zj,, €

[mk+2, md+1]-
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If xp € [Mgs1, Myyo], then noting that for r < d,

D(my) = D(mys1) = (2(d = 1) + 1)(my41 — my)

and the same holds when m,,; changes to any x € [m,, m,1], in particular:

D(mgs1) — D(zg) = (2(d —7r — 1) + 1)(zx — mp41)

so we have
B D(wy) —so D(zy) — D(mgy1)
T T o T ok T T o=k —1
gt D(myi1) — (2(d — k — 1) + 1)(@g — mys1) — D(mgy1)
g 2d—k)— 1
D(m — D(m
= o — (2% — Mypgr) + ( 2’6(21)_ 0 _( 1d+l)
1 d—k
= M1 + s (2] = 1) (Maraj — Mag1—))
2d—k) - 14
then
d—k
Tht1 S Mgy + Z(deerj - md+17j) = Md+1
j=1
d—k
1 :
Tpy1 2 Mpy1 + m Z (27 — D)(May2—j — Mar1-5) = Miy2

j=d—k
hence zj41 € [Mpy2, Mar1].
Otherwise, xy € [my12, Mgy 1], then suppose x € [mpr41, Mpsi2] for some k < k' <

d — 1, so we know from above that

D(zy) — D(may1)
2 1 _op S Man

T +
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thus

D) — D(mas) D(y) — Dlma,)
< <
2d —1_ 2k et T T o Ma+1

Miyo S Tp < Tyl = Tp +

hence xy41 € [My2, Mas1], so we completed the induction step.

Therefore, z; € [m;y1,mgs1] fori =1,2,--- d, so x4 € [mgr1, Mar1], Tg = Mas1,
which is the median.

In the following, we will use this algorithm to construct our ReLU MLP. In the
rest of this proof, column vectors represent layers of neurons, and functions apply to
them entry-wise, whose outputs are still column vectors.

Step 1: Compute xy and sg

It is easy to see that

then

min{z, y) = x;y_lﬁ;yl _ 0(932+ y)_d(—a;—y)_a(wz— y)_a(—a;+ y)7 Vr.yeR

so we can use this formula to construct the following building block for computing
T
sp: denote the column vector [711 Ny -+~ n2d+1] as n, and let n; be the column

vector obtained from n by deleting its kth row, then

D(nk)=[1 1 .. 1]“%_%”:[1 X 1]_ o(ng — ny)

o(nk — nk)
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Using these results, we can compute xg and dy via the following network:

n
min n; -
1<i<k—1
min  D(n;)
1<i<k—1
>

where o(+a+b) abbreviates the four neurons o(a+b), o(a—b),o(—a+0b) and o(—a—Db).
Note that the terms without the o are non-negative and thus are unaffected by the

activation function o. Therefore, by connecting 2d such networks we can output

o =
1<i<k—1

the above, which is (2d+1)+1+2d+2d+1 = 6d+3, and its depth is 4(2d+1) = 8d+4

min n; and sy =

| 1<i<k—1

n
min n;
1<i<k—1

o(ng — nyg)

O'(I’Ik — nk)

min D(n;)

n

min n;
1<i<k

TI<i<k—1

1<i<k—1

d

(not counting the first layer, which is the input layer).

Step 2: Compute z; fori =1,2,--- ,d

We use the following network:

Tr—1

S0

o(xp_1 —n)
o(n—xp_1)
Tp—1

S0

D(ZEk,l)
Tk—1

S0

48

n

+ min

o+
T i<i<k—1 i = nk)
D(ny,)
min D(n;)

1<i<k—1

—

_0( + min D(n;) + D(nk)>

Tp—1 +

n
min n;
1<i<k

min D(n;)

1<i<k

min D(n;). Its width is dominated by the second layer in

n
D(l’k,ﬂ — S0 _
2d + 1 — 2k
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Therefore, by connecting d such networks we can output x4, which is the median
as proven above. Its width is dominated by the second layer in the above, which is
(2d+1)+2d+2d+1+1 = 6d+ 3, and its depth is 3d — 1 (not counting the first and
the last layer, since the first layer is shared with the network in the previous step,
and the last layer is the output).

Connecting the two network in steps 1 and 2 gives the desired ReLU MLP for
computing the median of non-negative inputs. In total, this network has width 6d + 3
and depth (84 +4) + (3d — 1) = 11d + 3.

0

Lemma 7.3.3 (Median function preserves regularity). If f1, fo, -+, fn € Hol(v, o, X)
are Lipschitz functions from a metric space X to R, then f = median(fy, fo, -+, fa) €

Hol(v, o, X).

Proof. Take any x,y € X, then |fi(x) — fi(y)] < v|x —y|% =: C for all i. Let
y;  [0,1] — R be a linear function such that y;(0) = fi(x),y:(1) = fi(y) for all i,
then y, < C for all 4. For any ¢ € [0,1], let p(t) = (s1, 82, , Sn), Where s, 82, , S,
is a permutation of 1,2,---  n such that f (t) < fs,(t) < -+ < fs, (1), and s; < s

whenever f;,(t) = f;(t). Consider any 1 <7 < j < n, there are two cases:

1. If fi(x) — fily) = f;(x) — f;(y), then vy = y}, yi(t) — y;(t) is a constant, so the

relative position of i and j in p(¢) does not change as t goes from 0 to 1;

2. It fi(x) — fily) # fj(x) — f;j(y), then as ¢ goes from 0 to 1, y;(t) and y;(t)
coincide at most once, so the relative position of i and j in p(t) changes at most

once.

n(n—1)

5— times as ¢t goes from 0 to 1, and the points where

Therefore, p(t) changes at most
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p(t) changes split [0, 1] into finite intervals. Let y(¢) be the median of y; (¢), -+, y.(t),

then in each of these intervals:

1. If n is odd, then y(t) = y;(t) for some fixed 4, so |/ (t)| = |yi(t)| < C;

Yi (t) + Yj

¢ , .
5 D for some fixed i and j, so [/ (t)] <

2. If n is even, then y(t) = 3

()
2

Therefore, |y'(t)| < C in each of these intervals, then |f(x) — f(y)| = |y(1) — y(0)] <

<§$+5=C.

©[Q

C = vlx - yls. =

The next lemma shows that one dimensional continuous piecewise linear approxi-
mators have the same regularity as the function they approximate. See Lemma 7.5.4

for a generalization to higher dimensions.

Lemma 7.3.4 (Continuous piecewise linear approximators preserve regularity, and
L™ error estimate). Let f be a function from [a,b] to R with modulus of reqularity

w, and let ® be a continuous piecewise linear function on [a,b] that passes through

the points {(z;, f(x;))} iy for a = xg < w1 < 29 < -+- < x,, = b, and is linear on
[z0, 1], [x1, 22], -+, [Tn-1,2n]. Then, we have the error estimate
‘xiﬂ - xz|
_ o < e el
17 = Wl <o (g 0

Moreover, w is a modulus of reqularity of P.

Proof. We first show that ® has at least the same regularity as f. Take any x,y €
[a,b], and assume without loss of generality that = < y. If z,y lie in the same

interval in [zg, x1], [x1, 22], -, [Tn_1, %], then 2,y € [T, Tpy1] for some index m,
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by concavity of w,

w(y_gg):w((l_&).0+&.(xm+l_%))

Tm+1 — Tm Tm+1 — Tm

> (1 - &) w(0) + —L = (@t — T

Tm+1 — Tm Tm+1 — Tm

Tm+1 — Tm
y—x
> ———[f(@m+1) — flam)

Tm+1 — Tm

= B(wn) — Bl
= [®(y) ~ ()

where the last equality follows from the fact that @ is linear on [z, T, 11]. Otherwise,
x,y lie in different intervals in [zg, 1], [21, 22], - -, [Tn—1, %], then z, < & < 41 <

Tq <Y < 2441 for some indices p, ¢, and let

def. L — Tp def. Tg+1 — Y
Akt T gt Tarl 7Y
Tp+1 — Tp Tg+1 — g

so 0 < A, B < 1. Without loss of generality, assume that A < B. Then,

O(z) = (1 - A)0(zy) + AD(2ps1), D(y) = BO(z,) + (1 — B)P(x411)

o1
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Since

T — Tr—T T —
y_$:( Y > )(xq_xp)'{'(l_Ly)(qu_xp)
P

Tgr1 — Tq Tp+1 — T Tg41 — g
r—X
p
(g — Tpt1)
Tp+1 — Lp

= (B—A)(xg—xp) + (1 = B)(wg11 — xp) + Alzg — Tpy1)

with B—A>0,1-B>0,A>0and (B—A)+ (1—-B)+ A =1, by concavity of

w, we have

wly — 1) = w((B — Ay —2,) + (1= B)(@ger — 1) + Aley — 7p01))
> (B~ Awley — ) + (1~ Blw(wgr — ) + Aw(ty — 2p41)
> (B~ A)D(a,) — Bay)| + (1 - B)@(y11) — Dlay)] + AD(2,) — Dayr)]
> (B~ A)(@(z,) ~ () + (1 B)@(01) — Dlz,) + A®(2,) — Bzye1))
= (BO(x,) + (1~ B)(ag01)) — (1~ A)B(z,) + AB(,.1))

= ®(y) — ®(x)

Similarly, we can show that w(y — z) = ®(z) — ®(y), thus

w(ly —z]) = wly —z) = |2(y) — P(a)]

Therefore, we always have |®(y) — ®(z)| < w(|y — z|) for any z,y € [a, b], thus w is a
modulus of regularity of ®.

Now we prove the upper bound for the L* error. Take any x € [a,b], then
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. . def.
x € [z, T41] for some index k. For convenience, let L = xp,1 — %, then we have

r—x
(@)

Tpt1 — X

7 (I)({Ek) +

f(2) = (@) = |f(@) - (

= |f@) = (P ) + T )|

- [P @) = ) + T (@) = F )]

< @) = fla)] + S (@)~ flaen)

< ww(@" —Tg) + & _kaw(xkﬂ — )

< (W(l‘ —xp) + - _Lmk (Tps1 — x))

u ((L— oo =) , o= an)(E - <x—wk>))
().

(3

<o (2o m])

Since x € [a, b] was chosen arbitrarily, we conclude that

Hf - (I)HLOO([a,b]) <w ( max M) .

i=0,1,-- ,n—1 2

This completes our proof.
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7.4 One-Dimensional Memorizers with Optimal Reg-
ularity

Proposition 7.4.1 (Efficient Universal Memorization by Two-Hidden-Layer MLPs
with Optimal Regularity). Let M, N € N,. For any set of MN samples (x;,y;) MY <
R? (where ¥y < xy < -+ < xpyN), there exists a ReLU MLP ® with widthvec =

[M,4N — 2] that can memorize this sample set; i.e.
O(x;) =y fori=1,...,MN.

Furthermore, ® is linear on the intervals [x;, x;41] fori =1,2,--- ,MN — 1, and it
is constant on each of the segment (—o0,x1]| and [xpn,0). The number of nonzero

parameters in © is at most 2MN + 2M + 8N — 4.

Proof. Let f: R — R be the function to be implemented, i.e. it is the unique function

on R such that:
1. f(zy) =y; fori=1,2,---  MN;
2. f is linear on [z;, x; 1] fori=1,2,--- ,MN — 1;
3. f is constant on each of (—o0, z1] and [x 1y, 0).

Then, it suffices to prove that f can be implemented by a ReLU MLP with widthvec =
[M, 4N — 2).
Let’s relabel the samples as (z;, yw)%fl such that z;; increases as (4, j) increases

lexicographically, i.e.

T11 < T < <IN < P91 < T <+ < TN < -+ < Ty < Ty <+ < TMN
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For notational convenience, denote the M +1 intervals (—o0, z11], [x11, Z21], [T21, T31],
J@m—11, ] and [xa, 0) as Lo, Iy, - - -, Iy, respectively. The notations z;; and
x; ; have the same meaning.
The idea of the proof is matching the jumps in the derivative of f step by step:
for r = 1,2 and j = 2,3,--- N, let S, = {I,or : k€ N1 <7 +2k < M} =
(+7)

{I., 119,114, -}, and construct the continuous piecewise linear function g; ~ in

two steps:

1. Matching upward derivative jumps at the jth sample point in intervals

in S,: let
(+T def /
X; {Trion; k€N, fl(@ion;) — f(Tri2r;) > 0}

be the set of the jth sample points in intervals in S, where f has upward deriva-

(+7)

tive jumps. Suppose the elements in X; " are z;, j < @j,; < -+ < I, j, then

for each 1 < m’ < m, let g ) be linear on I; _, with slope (—=1)™ (f’(z;_,.;) —

fi(xim,,j)) and gj (551 ) = 0;

2. Smooth extension to the rest of R: we have already defined gj ) on some

(+7)

distinct closed intervals in Step 1 (unless X ; 1s empty, in which case simply

(*") be the zero function on R), which separate R into some segments. For

let g;
each of these segments, if it is infinite then we have already defined g§+r) at its
only endpoint, then let gj ) be constant on this segment matching its value
at this endpoint; if it is finite then we have already defined ng) at both of its

endpoints, then let gj " be linear on this segment such that it matches both of

its values at the two endpoints.
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We define X ](+7~) and g](-_r) similar to the above, except that the condition f’ (z,or ;) —
[ (@ri0r;) > 0in Step 1 is changed to f’ (z,42r;) — fL(2r42r,) < 0. It is easy to see
that all break points of gj(ir) belong to {11,221, -+ ,Zum1}, and it does not change

sign on the intervals {Io, I1,- -, Ip}\S,. Thus, all break points of a(g](-ﬂ)) belong to

{z11, 201, - s ean pO{Trj, Togo s Trya g, - - - }. Moreover, for any @ € {z,;, Tri2j, Tryaj, - -

if f' has an upward jump at x then a(g](.+r)) also has an upward jump in the deriva-

tive with the same magnitude, if f’ has an downward jump at x then a(gj(fr)) has an

upward jump in the derivative with the same magnitude, thus a(g§+r)) — U(gj(-_r)) has

the same jump in derivatives at x as f. Therefore, the function

> (o) = alel™)

1<r<2
2<j<N

and f has the same jumps in derivatives at {z;; : 1 <i < M,2 < j < N}, thus all

break points of the function

S =Y e+ D ol

1<r<2 1<r<2
2<j<N 2<j<N

belong to {x11,xao1, - ,Tan}-

We have

1<r<2 1<r<2
2<j<N 2<j<N
= > alg") = Y algy ) +olg0) — o(—g0) (7.4.1)
1<r<2 1<r<2
2<<N 2<5<N
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We now show that f can be represented by a ReLU MLP with widthvec =
[M,4N — 2]. For notational convenience, we will let X; = x4 for i = 1,--- M
in the following.

We know from above that for any function g € {gj(ir)

1< 7r<22<j<
N} U {£go}, the set of break points of g is contained in {X;, Xo,--- , X/}, and g is
constant on (—o0, X]. Then, by comparing the jumps in derivatives as what we did

above, we can see that the function
M
g9(x) — g(X1) = > (4, (X3) — ¢ (X)) oz — X))
i=1

has no break points (thus is linear on all of R) and is 0 for all < X3, hence is 0 on

all of R. That is,

9.(X) — ¢ (%)) AN
_ g+(X2) ig/(X2) P 1 B )‘Q +9(X1), VreR (7.4.2)
94 (Xar) — 9= (Xnr) 1 Xu

Therefore, g can be represented by a neural network with one hidden layer consisting
of M neurons, with a single input neuron and a single output neuron. Moreover,

-
the weight matrix between the input and the hidden layer is always [1 1 .- 1] ,

-
and the bias vector for the hidden layer is always | —-X; —X, ... — XM] , which
is the same for all such g. Therefore, all these ¢’s can share their input layers and

hidden layers, so we can stack their output neurons (4N — 2 in total, one for each g)
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in the second hidden layer of the final network such that their outputs are unaffected
by each other, then finally f can be implemented by adding one more neuron in the
output layer based on Equation 7.4.1.

Finally, we tally the nonzero parameters in ®. For the 4N — 2 neurons in the
second hidden layer, 4N — 4 of them are g " for r = 1,2and j =2,3,--- , N. From
Step 1, we can see that gj( ") has at most 2 card (Xjﬂn ) break points (since Step 2
did not introduce additional ones), all of which belong to {Xj, Xs, -, X/}. Thus,
at most 2 card (X ](M)) weights between the first hidden layer and the neuron that
(+7)

outputs g;

; are nonzero. Therefore, the number of nonzero parameters between the

two hidden layers is at most

2 2 card (X (+T 2 2 card (X, " ) +2M

1<r<2 1<r<2
2<5<N 2<j<N

= 2card ({ZEU 1< < M, 2 < j < N, fjr(QZTJer’j) - fi(xr+2k,j) #* 0}) +2M
<2M(N —1) +2M

=2MN

From Equation 7.4.1, the bias for the output is 0. Therefore, ® has at most 2M N +
M + 4N — 2 nonzero weights and at most M + 4N — 2 nonzero biases. Altogether, ®

has at most 2M N + 2M + 8N — 4 nonzero parameters. O

In Proposition 7.4.1, if there are K sample points and take
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then, upon noticing that

we directly deduce the following corollary.

Corollary 7.4.1. Let K € N,. For any set of K samples (z;,y:)X, = R? (where
Ty < Ty < - < Tg), there exists a ReLU MLP ® with width at most 2[v/' K|, depth
2, and with at most 2K + 8[v/K| nonzero parameters that can memorize this sample
set; t.e.

(I)(l’l):yl fOTizl,...,K.

Furthermore, ® is linear on the intervals |x;, x; 1] fori=1,2,--- | K — 1, and it is

constant on each of the segment (—0, x1]| and [zk, ).

Theorem 7.4.1 (Efficient Universal Memorization by Deep MLPs with Optimal
Regularity).
Let K, L € Ny with L > 3. Given any set of K samples (z;,y;)5, < R? (with

r1 < Ty <---<xi)and any 11 < nq,ng,--- ,ng € Ny satisfying the constraint:

K < Ig ((nb— 11) V“’%_QJ —2>

there exists a ReLU MLP & with widthvec [ny,ns,--- ,nr, 8| that can memorize this
sample set; i.e.

q)(xl)zyz fOT’izl,...,K.

Furthermore, ® is linear on the intervals |z;, ;1] for i = 1,2,--- /K — 1, and it

is constant on each of the segment (—oo,x1| and [xx,0). The number of nonzero
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parameters in ® is at most

L
2K + 23 Z ny — 121L.
b=1

We note that, the factors 23 and 121 above can be further improved. For simplicity,
here we only prove this weaker bound below, which already shows the significance
of this theorem: as the minimum width np;, (i.e. minimum number of neurons in a

single hidden layer) goes to infinity, the efficiency of parameter usage

. degree of freedom of sample set
Efficiency & & P -100%
number of nonzero parameters

goes to 100%. This is because, assuming

K= Z ((nb— 11) V*’%_ﬂ —2)

then we have

K dim(R?
Efficiency > lfl( ) -100%
2K +233F my— 1211
2K
> — - 100%
2K + 233 my
> 2K 100%
72K + 23(K +2(L — 1))/ [Lea=0] ’
2
-100%

m 23(1 4 2(L — 1))/ | tmin=2 |

— 100%
when the depth L is kept fixed (or L = 0(npin)) aS Nmin — . The same is true for
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Proposition 7.4.1.

Proof of Theorem 7.4.1. Let f : R — R be the function to be implemented, i.e. it is

the unique function on R such that:
1. flxy) =y fori=1,2--- K;
2. fis linear on [z;, x; ] for i =1,2,--- | K —1;
3. f is constant on each of (—0,x1] and [z, o0).

Then, it suffices to prove that f can be implemented by a ReLU MLP with widthvec =
[n1,n9, - ,nr,8].

Clearly z,--- , xx contain all possible break points of f, so we may assume that
all of them are break points of f, i.e. the left and right hand derivatives of f at any
of the z;’s are different.

The idea of the proof is the same as in the proof of Proposition 7.4.1: instead of
implementing the target function f directly, we match the jumps in its derivative,
which is mostly done by adding up L — 1 functions fi,-- -, fr—1 (to be defined later),
each matching those jumps in different intervals.

We divide the break points {x;}/X, of f into L — 1 batches: for a batch number
b=1,2,---,L—1,let ky = ny — 11 (and k; = ny — 11), and denote the bth batch

of break points to be

e _9
OB OB x% K, (ny — 11) {”IJ%J _9

and let Xp,Yg, Zgp e R for B =1,2,---, L be “separation points” between different
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batches of break points such that

X1<Y1<Z1<:v§1)<---<9:§?<X2<Y2<Z2

1

(2)

(2)<---<xK2<X3<Y3<Z3

< Ty
< v

<xle<---<x%_l<XL<YL<ZL

Let f, : R — R be a function that satisfies the following conditions:

1. Continuous piecewise linear on R with few “pieces”: all break points of
f» belong to

{'Tgb)a xgb)v e 71/’&? Zba Xb+1};

b?

2. Matching derivative jumps at the tth batch of break points:
() (@) = (F)(x) = fL(2) = ' (x), for o= a2y, i)
3. Vanishing at other batches of break points:

fb(ZL’) = 0, Vo e (—OO, Zb] U [Xb+1, OO)

Then, adding up all the f;’s would recover most informations of f.
We first need to show the existence of these f;,’s: let ¢, be the linear function on

R such that t,(Zy) = f(Zp) and t,(Xps1) = f(Xps1), then it is easy to verify that the
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function f;, defined by

def. f(fL‘) - tb(x)’ if v e [ZbaXb+1]
folz) =

0, otherwise

satisfies Conditions 1 to 3.
Now, for each f,, we build a network &, implementing f, using the construction in
the proof of Proposition 7.4.1: for b =1,2,--- | L—1, take M = ky, N = |(kp1+2)/4]

and sample set {(xz(»b), fb(x(b)))}?ijlv_Q

(2

(namely the bth batch of samples) along with
the two endpoints (Z,,0) and (Xp41,0) in Proposition 7.4.1, and then denote the

structure of the resulting network as
T = hgb)(x) — hgb)(x) = Oy(1)

where hgb) (a:),héb) (x) are column vectors representing the two hidden layers, and
hgb), hgb) are considered as functions of x € R. By Proposition 7.4.1, the length of
hgb) (x) is M = ky, and the length of héb) () is AN — 2 < kpy1, which we treat as

exactly ky, 1 for simplicity. Moreover, we know that
O'(I — Bib))
h(lb) (x) = : , VrxeR
b
a(x — Bl(%))
Fix a batch number 1 < b < L — 2. Define I, = [Z;, Xj11], as @}, only matches

the jumps in f’ inside this interval. Next, we modify ®, so that its second hidden

layer hgb) can also serve as the first hidden layer in ®,,; on the next interval I,,;.
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There are kj, 1 functions in hgb)7 we denote them as a(g?)),a(géb)), e 70(91(:;11)’ ie.
b
7(a”)
hy) =
(b)
O-(gkb+1)
Take any g§b) with 1 < 7 < kpy1, which is an affine transformation of hgb), and it is

linear on [Xj,y1,0). Let

3 (0) 2 g @) + 90 (r = Xpna) + ¢ (¢ = Yiir), VaeR

for suitable choices of pg.b), qj(b) € R such that:

L 3" (Yin) # 0;
2. g(b)(B(b+l)> _ O,

3. gj(b) (Xpt1) §j(-b) (Yp41) = 0, so that a(§§b)) doesn’t have any additional break points

between X,,; and BJ(-bH).

Since B§b+1) > Zyi1 > Yyi, there exist such choices for pg.b), qj(.b) € R. Also, we note

)

that the gj(.”) is a modification of the gj(b outside I, i.e.

i (x) = ¢(x), Vrel,
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thus we define the following modification layer:

n{ : (7.4.3)

and we have that

by’ (z) = hy(z), Vrel,

Let £ be the affine transformation that maps the second hidden layer hgb) of @,

h @,

to its output. Then, the function

By Ly 4, ()

h) o,

“mimics” the output of &, on I, in the sense that

dy(z) = chgw’%(ﬁgb) (2)) = zhg,)@b(hg’”(z)) = ®y(z), Vrel,

Here, we emphasize that ®, is treated as a function, not a network.

Now, gj(.b) is linear on [Z,41,00) and crosses the z-axis at BJ(.bH) with slope sg.b) # 0,
so we have
(b) (b+1) .0 (b)
. S a(x—Bj )7 if s;7 >0
a(g](-b)(x)) = , Ve [Zyq1,0)

séb)x — s(b)a(a: — B(-b+1)), if sg-b) <0
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Correspondingly, we define affine transformations

£ (2,y) = , Vr,yeR
—y/5§~b) +z, if 5§-b) <0

which recover o(z — B;) on [Z11,00) upon composing with a(§§b)), ie.

£ (r. (s @) = oa~ BY™), Vo Zon,0)

J J

We will see that, in the final construction of ®, we will keep a copy of the input x
in every hidden layer. Now, we have the following “mimic layer” having exactly the

. b+1
same behavior as h§ " on Iy < [Zy11,00):

£ (5.0 (60)
n{" () < : , VzeR (7.4.4)

£, (w0 (@), @)

In other words,

W™ (z) = " V(2), Vze

Notice that, from Equations 7.4.4 and 7.4.3, we (%an see that the function fl&bﬂ)(x)
is simply an affine transformation of lflg’) () x] , and thus does not need an extra
layer to process.
So far, we have tweaked the hidden layers hgb) and hgbﬂ) into ES’) and Bﬁb“)
= (b+1

respectively, so that h; ) does not need an extra layer to process. At the same

time, we have a collection of the resulting tweaked versions of ®,--- , ®;_;, namely
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él, e ,(iDL_l, with éb having the same output as ®, on I, for all batch number
b. However, these ®,’s cannot be used directly, as they have other derivative jumps
outside I, which we now eliminate by post-processing the data <:Db(a:) together with

x. Foreach b =1,2,--- , L — 1, let w, > 0 be large enough so that the function
@(z) < Oy(z) + wyr, VYreR

is strictly increasing on R. Since d, is continuous piecewise linear with finite number
of “pieces”, its Lipschitz constant is finite, then w, only need to be larger than this

constant, so such choice of wy exists. Define the 1D map projecting R to ¢,(1,) =
[46(Zb), ap(Xp41)]:

)
@w(Z), if y < q(Zp)

def.

() = o(y=a(Zs)) =0 (y—a(Xo11))+a(Zp) = 1 4, if (Z) <y < @p(Xpsa) -

ka(XbH)a if y > qp(Xps1)

and then let

Qs(2) = po(qp()) —wpz, VreR

We claim that Qy(z) = ®,(z) for all z € I,, and Q is linear on each of the two
segments of R\I,. Indeed, if z € I, = [Z,, Xpy1], then ¢,(Z)) < qp(x) < @p(Xp11) as g
is strictly increasing, thus Q,(z) = py(gs(x)) — wpx = qu(z) — wpz = Py(z). If & < Zy,
then ¢p(x) < qo(Zp), thus Qp(x) = pp(gp(x)) — wpr = @(Zp) — wpx, which is linear.
If 2 > X1, then gy(z) > qu(Xp41), thus Qp(2) = pp(qp(x)) — wer = ¢o(Xpt1) — Wy,

which is linear.
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Therefore, Q, = ®, = &, on I,, which has break points {:vl(-b)}j.\i]lvf2 along with

Zy, Xpi1. Moreover, Q) has the same derivative jumps at {xgb)}?ijlv_2 as the target

function f. Thus, the function f — Z{:ll @y only has derivative jumps at Xy, -+, X,
and Zy,---,Z;. Then, by choosing appropriate real coefficients u;’s and wv,’s, the
function

- Z_: Qv(z) — Z upo (v — Xp) — Z vpo (x — Zy)
b=1 b=1 b=1

will have no break points on R, which makes it a linear function, say ux + v for some

u,v € R. Then,

— L L
= Z Qv() + Z upo (v — Xp) + Z vo(r — 2Zy) +ur +v, YeeR (7.4.5)
- b=1 b=1

We can now implement f based on Equation 7.4.5. We will keep a copy of the
original input z via the identity o(x) — o(—x) = = (Vx € R) in every hidden layer
of the final network ®, but for notational convenience we will omit the two neurons

o(£x) in the following representations. Also, we define

B
UVag(x deubax—Xb +vaax—Zb VYreR
b=A b=A

to simplify notations later.

Now, we start by constructing the first few layers of ® computing Zf;ll Qp(z) as
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follows:
o ) -
] i g1 () ) B Bgl)(x>
h{")(x) gt ()
" o(x — X3)
o(x — Xs) Ty (x)
v — — — | | = -
o(x —Y3) olx — X5) i, ()
@-2) @Y UVialo) e
i 2) | 2 | UVas(z) | (4 UVha(e)) |
_O'(J - Zg)_
[ @ _ -
- N - 9 ( ) - | B l_lg2)<x)
e (@)
o) o(x — Xy)
P () [ (z)
_(2) o(z —Yi)
o(zr — X3) q(x) ks (z)
T oo | Jeemxo|  |a@-nm| | TETH
o\xr — Ys o(xr — Aj q1\T) — q1{ 41
( 2 ( va) () () o(qi(z) — qi(Z1))
o(x — 43 oxr — Y3 qi\T) — q1{A2
o(qi(r) — q1(X2))
UVas(x) o(x — Z3) UVas(x)
L = - - o(£UVa3(2))
i UVaa(x) | - -
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| 0@ | _—
~ B(lg) ] : i .(7@(’1) T hé )(x)
- 3) o(x — Xs)
b, () o (@) o
oz — X3) 4o (2) i9(z) . 25)
= |oz=Yy) | = |olz—-Xy)| = | @) —q@Z)| = ’
0(g2(z) — q2(Z2))
o(x — Zy) o(x —Yy) G2() — q2(X3)
o(q2(z) — q2(X3))
Q1(x) o(x — Zy) Q1(x)
) o(+Q1(z))
i UVss(x) | Q1(x) ] UV, a() ]
| o(£UVau(2))
| UVaa(z) |
(7.4.6)

As always, auxiliary layers are colored in green to indicate that we can ignore these
layers when estimating the size of the final network, as they are affine transformations
that do not use any activation functions, thus each of them can be integrated with the
layer after it and does not require an extra layer to process. Removing the auxiliary

layers and then extending this pattern, we obtain the final construction of the network

d:
[ We ]
W) by () oz — Xa)
oz — X3) o(x —Ya)
U(:L‘ - XQ)
r = - o(x —Y3) - o(z = Z4)
oz —Y3)
(v~ Z) o(x — Z) 7(@(@) —a(2)
| 2/ _a(iUVQ,z(ﬁﬂ))_ U(ql(l') - CZ1(X2))
o(xUVas(x)) |
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hy” (2) by (2)
o(x — X5) o(z — Xs)
oz —Ys) o(z — Ys)

. o(x — Zs) . o(x — Zg) .
o(g2(7) — ¢2(22)) o(gs(x) — g5(Zs))
0(g2() — q2(X5)) o(gs(r) — gs(X4))

o(+Q1(z)) o(+(Q1(z) + Q2()))
| o(2UVau(z)) (£UVo5(x)) |
e | e
olx — Xp) o(x — X1)
o(r—Yr) o(r — Y1)

. olx —Zp) . o(x — 7y)
o(qr-3(z) — qr-3(Z1-3)) o(qr—2(2) — qr-2(Z1—2))
o(qr-3() — qr-3(X1-2)) o(qr—2(r) — qr—2(Xr-1))

(£ 2,5 Q) o+ 25 Qula))
| o (£UVa o (2)) o(£UVa (7))
o(qr-1(x) = qr-1(Zr-1))

. o(qr-1(x) — qr-1(X1))

o(+ 37 Qi)
Vi) |
Sy Qul(x) L
S UV p(z) — ;Qb(xM—UVlL( ) +ur+v = f(z)
uT + v
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Together with the omitted two neurons o(+x), each hidden layer in ® has at most
11 additional neurons other than those of the h’s. Therefore, it has widthvec at most
[k1 + 11, ko + 11, -+ [k + 11,8] = [ny,n9, -+ ,ng, 8.

Finally, we tally the nonzero parameters in ®. From the detailed structure of ®
shown in Formula 7.4.6, we can see that most connections (weights) between pairs
of hidden layers are the same as their counterparts in the network ®,: the neurons
in hgl) and Bgl) are connected in the same way as the neurons in hgl) and hél) are
connected; for b = 1,2,--- , L — 1, the neurons in ﬁéb) and BS’“) are connected in
the same way as the neurons in h(le) and hgbﬂ) are connected. From the proof of
Proposition 7.4.1, we know that there are at most 2kp|(kp1 + 2)/4] nonzero weights
between hgb) and hgb) . Therefore, assuming the worst case that each hidden layer has

11 additional neurons other than those in the h’s, we conclude that the number of

nonzero weights in ® is at most

L=t Kyt + 2
Wt (ka {—“14 | + 11ky 4+ 11k + 11 - 11) + ki +8(ky +11) + 8

b=1

L
<2K +22) ky+121(L — 1) + 88 + 8
b=1

L
<2K +22) (my — 11) + 121L — 25
b=1

L
— 9K + 222nb —121L — 25
b=1

and the number of biases in ® is at most

L
Bdéf'an+8+1

b=1
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Altogether, the number of nonzero parameters in ® is at most

L
W+B<2K+23an—121L.
b=1

This completes our proof. ]

The following example elucidates Proposition 7.4.1, and frames it in a way which
is comparable to the memorization guarantees for MLPs derived in [80, 78]. Though
those networks utilize fewer neurons when performing their memorization, they ex-
hibit a much larger Lipschitz constant due to their highly irregular structure; since
they are only designed to optimize bit-extraction of [73, 67](see [5] for estimates on

the maximal bit-extraction “capacity” of MLPs).

Example 7.4.1 (A 1D MLP with width 1 and depth D can memorize O(W?2D) data
points with optimal Lipschitz constant). Given any set of K samples (z;, )%, < R?,

where 11 < 29 < --- < xg, and

K- <(W—11) {@Lz) (D —2)

there exists an MLP with width at most W and depth at most D that can memorize
this sample set in such a way that it is linear on [x;, z;41] fori =1,2,--- | K —1, and
is constant on each of (—o0,z1] and [z, 00). The number of nonzero parameters in
® is at most

2K + (23W — 121)D.
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7.5 ReLU Approximations on Polytopes via the
Kuhn Triangulation

In this section, we generalize the concept of continuous piecewise linear approxima-
tors and the methods for constructing them to higher dimensions. As we will see,
compared to the ones in Theorem 6.2.1, these high dimensional continuous piecewise
linear approximators require more width, but they can achieve about the same level

of global error with much higher regularity (lower Lipschitz constant).

Definition 7.5.1 (Simplex). A d-dimensional simplex (or d-simplex) S is the convex

hull of d 4 1 points vy, - -+, Vg1 in R? that are affinely independent, i.e. the vectors

Va+1 — V1, Vg4l — Vo, -, V441 — Vg

are linearly independent in R¢, and

d+1 d+1
S = conv({vy, -, Va}) = {Z Aivi i A, A 2 0, Z Ai = 1} :
i=1 i=1

Furthermore, vy, -+ ,vg4,q are called the vertices of the simplex S.

Definition 7.5.2 (Triangulation of polytopes). A triangulation of a polytope P in

R? is a finite collection of d-simplices {S;} ; such that
1. S5uSu---us, =P;

2. The set of all their vertices is the vertex set of P !;

'Some literatures allow the existence of additional vertices inside P, but here we require that
there be no additional vertices other than those of P to simplify later arguments.

74


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

M.Sc. Thesis — R. Hong; McMaster University — Mathematics

3. Their interiors are pairwise disjoint.

Triangulations are generally not unique. For example, Figure 7.1 shows two dif-

ferent triangulations of a hexagon.

Figure 7.1: Two different triangulations of a hexagon.

The next lemma shows how to triangulate all unit cubes {[i,7 + 1] : i € Z}< of the
entire R? simultaneously using hyperplanes. The triangulation of each of these unit

cubes will be a Kuhn triangulation.

Lemma 7.5.1. The set of hyperplanes in R?

def.

H={z;,tz;=2k:1<i<j<dkeZlu{r,=k:1<i<dkel}

triangulates each of the unit cubes in {[i,i + 1] : i € Z}<.

Proof. Let UH <= e B be the union of the hyperplanes (when considered as

subsets of R?) in H. By the definition of H, UH has the following two properties:

1. UH has period 2 along each axis:

ze UH < (z+2e;)e UH, i=12---,d
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2. UH is symmetric about each axis:

z€e UH < (—z)e VH, i=1,2,---,d

By property 1, we only need to show that UH triangulates [—1,1]¢. By property 2,
we only need to show that UH triangulates [0, 1]%.

By Definition 6.1.1, the d! simplices

k
conv ({Z e 0<k< d}) , TEUSy (7.5.1)
i=1

form the Kuhn triangulation of [0, 1]?. Fix any permutation 7 € Sg. The simplex

k
conv ({Z e i :0< k< d})
i=1

k
conv ({ZeT(i):Oéde,k#j}>, J=0,1,---.d.
i=1

has d + 1 faces

For j = 0, the corresponding face is contained in the hyperplane z,q) = 1 in H.
For j = d, the corresponding face is contained in the hyperplane x4 = 0 in H. For
1 < j < d—1, the corresponding face is contained in the hyperplane z(jy —x,(j+1) = 0
in H. Therefore, all the faces of all d! simplices are contained in some hyperplanes in
H. Tt remains to show that the intersection point of any d hyperplanes in H (if any)
is a lattice point.

Let hi,hg,--- ,hg be any d hyperplanes in H that intersect at a single point
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hy nhe oo hg = {(a), -, 2))}

We will proceed by induction to show that this is a lattice point, and the statement
is clearly true for d = 1,2. Thus, we assume that d > 3.

If one of these hyperplanes has the form z;,, = k, then the remaining d — 1
hyperplanes, when treated as equations and substituted z;, = k, are d — 1 equations

on d — 1 variables {x1, - ,x4}\{z;,}, which have the form z; + z; = 2k (if i # iy # j)

or ;, + ; = 2k and have a unique solution {zf,---,z;}\{zj } by our assumption
above. By induction, {z7, - ,23}\{z] } < Z, and we also have 2} = k € Z, so
(2}, ) e Z°

If any two of these hyperplanes have the form z;, + x;, = 2k and z;, — x;, =
2l, then @i =k +1 € Z,2} =k —1 € Z. Similar to above, the remaining d —
2 hyperplanes, when treated as equations and substituted z;, = k + [ and zj, =

k — 1, are d — 2 equations on d — 2 variables {1, -, z4}\{;,, zj,}, which have the

form x; + xz; = 2k (if i, ¢ {io, jo}) or @, £ x; = 2k or z;, £ x; = 2k and have

a unique solution {z',---,zy}\{z] 2} } by our assumption above. By induction,
{7}, g \{z},, 2}, } = Z, and we also have z} =k + 1€ Z,z) = k—1¢€Z, so
(xllv e axii) YA

Finally, if Ay, ho, - - - , hg all have the form x; + 2; = 2k and they don’t contain two
hyperplanes of the form z; + x; = 2k and x; — x; = 2k for any 1 < i < j < d, then
consider the (undirected simple) graph G = (V, ), where V = {x1, 29, - , 24} is the

vertex set, and edge set

€ = {{x;, z;} : there is a hyperplane of the form z; + z; = 2k}
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Since G has d vertices and d edges, it has a cycle. Let {z;,,zi,}, {iy, i}, -+ s {20, _1,
x;, }, {x;,, x;, } be ashortest cycle, so that x;,, - - -, z;  aredistinct. Then, hy, ho,- - , hyq

contain the following m — 1 hyperplanes:

v, twi,, =2k, s=12,--,m-1

By adding or subtracting these equations, we obtain an equation of the form

leixlmzz(klikgiikm)

Without loss of generality, assume that the above equation is of the form x;, +z;,, =
2k for some ko € Z. If the hyperplane h;, ;, corresponding to the edge {z;,,z; }
has the form x;, + x;,, = 2ly, then hy N hy N -+ N hy is either empty (if Iy # ko) or

infinite (if Iy = ko and the intersection is not empty, since the equation for h would

imyil
be redundant and there are essentially only d — 1 equations for d variables), which
contradicts our assumption that hq, ho, - - , hy intersect at a single point. Therefore,
the hyperplane corresponding to the edge {x;,,z;, } has the form x; — x; = 2lo, so

xél = ko + Iy € Z, xém = ko — ly € Z. Proceeding by induction as above, we conclude

that (z},---, /) € Z% is a lattice point.
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Figure 7.2: Finer Kuhn Triangulation (Definition 6.1.1) of a 2-dimensional square (left),
and a 3-dimensional cube (right), than in Figure 6.1.

Definition 7.5.3 (Continuous piecewise linear functions on polytopes). Let f be a
function from some polytope P < R? to R. We say that f is continuous piecewise
linear on P if f is continuous on P, and there exists a triangulation of P such that f

is affine on each of its simplices.

We first show how to construct continuous piecewise linear approximators on

[0,n]? for some positive integer n.

Lemma 7.5.2. Let Q S R? be a connected open set, and f : Q — R be a function
such that for every point in €1, it has a neighborhood on which f is affine. Then, f is
affine on Q.

Proof. Fix any x € 2. Then, there exists a neighborhood of x on which f = g, for
some affine function g defined on all of R%.

Assume for contradiction that there is some y € Q such that f(y) # ¢(y), so
y # x. Since () is connected, there exists a path v that connects x and y inside €2,

ie. v:[0,1] — Q is continuous and v(0) = x, y(1) =y. Let

T={te[0,1]: f(4(#) # 9(v()}, to=infT
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Since f(y) # g(y), f(v(1)) # g(~(1)), so to < 1 exists. Since y(0) = x and f =g on
some neighborhood of x, t; > 0. By assumption, there exists an open neighborhood
U < Q of y(tg) on which f is affine. Since 7(to) either belongs to v(7") or is a limit
point of v(T), and v(T) < RNU which is closed, v(tg) € R\U, so y(ty) # x. As
t — to, Y(t) = (o), and since y(ty) # x = 7(0), there are infinite points in ([0, to])
that are inside U. Since both f and ¢ are affine on U and f = g on v([0,%y]) n U
which is infinite, f =g on U.

However, there exists a sequence (t;)72, in T' that converges to to, so y(t;) —
v(to) € U as i — oo, then there exists some i, large enough so that ~(¢;,) € U, but

f(y(ti)) # g(7(tiy)), which contradicts our conclusion above. Therefore, f = g on Q,
thus f is affine on (2. O

The following lemma provides an explicit formula for the “hat functions” for the
Kuhn triangulation. Figure 7.3 shows two hat functions for the triangulation in

Lemma 7.5.1.

Figure 7.3: The supports of two hat functions in 3D view (left) and 2d view (right) with

respect to the triangulation in Lemma 7.5.1. Each of them is affine on any of the smallest

triangles, so any linear combinations of them is continuous piecewise linear with respect to
the triangulation in Lemma 7.5.1.

Lemma 7.5.3 (Constructing continuous piecewise linear approximators in RY). Let
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f be a function from [0,n]¢ to R for some n € N, then the function ® defined by

d(x) < Z f(y)o (1 —max {|z; —vyi| : y; is even} — max {|z; — yi| : y; is odd})

ye{0,1,-- ,n}d
for x = (z1, -+ ,24) € [0,n]? is continuous piecewise linear on each of the n® unit
cubes {[0,1],[1,2],--- , [n—1,n]}? of [0, n]¢ with respect to the triangulation in Lemma
7.5.1, and

(I)(Y) :f(Y)v VyE{O,l,-~' 7n}d

Proof. For convenience, we first define

Ty(x) = o (1 — max {|z; — ;| : y; is even} — max {|x; — y;| : 9 is odd}), VYxeR?

to be the hat function® centred at y. Then,

ex)= ) LK)

ye{0,1, n}d

For any y,z € {0,1,--- ,n}? with y # z, there is some i such that |y; — ;] = 1, so

T,(y) = 0, thus

ze{0,1,--- ,n}¢
ZFy

Now we show that ¢ is continuous piecewise linear with respect to the triangula-

tions in Lemma 7.5.1. We only need to show that the hat functions {Ty}yefo1,... ny

2This is the same as the hat function (or nodal basis function) discussed in [24], and here we
have provided its formula explicitly when the underlying triangulation is the one in Lemma 7.5.1.
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are continuous piecewise linear. Since the hat functions are obviously continuous, by
Lemma 7.5.2, we only need to show that each hat function is locally affine at every
point outside the union of those hyperplanes.

Take any x € R? that is outside the union of these hyperplanes, and fix an arbitrary
y € {0,1,--- ,n}?. We need to find a neighborhood of x on which Ty is affine. For

notational convenience, let

Sy (z) =1 —max {|z; — yi| - ¥ is even} — max {|z; — y;| : y; is odd}, VzeR?

If Sy (x) = 0, then there are some i, j with ¢ # j such that

1 — |z —wy| —|z; —y;| =0, w;is even,y; is odd

removing the absolute values results in an equation of the form

ixiisziyiiyfrl

where +y; + y; + 1 is even, contradicting the assumption that x is outside those
hyperplanes. If Sy (x) < 0, then Ty = o(Sy) = 0 on some neighborhood of x, and we
are done. Therefore, in the following we will assume that Sy (x) > 0, so there is some
neighborhood U; of x on which Sy > 0.

If |z; — y;| = 0 for some i, then x; = y; € Z, contradicting the assumption that x
is outside those hyperplanes. Then, |z; — y;| # 0 for all 1.

If there are some ¢,j with ¢ # j such that y; and y; are both even, and |z; —

yi| = |z; — y;|, then removing the absolute values results in an equation of the form
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t+z;, + x; = +y; + y; where +y; + y; is even, contradicting the assumption that x is

outside those hyperplanes. Then, there is a unique ¢ such that
max {|z; — ;| : y; is even} = |z, — yio|, i, 18 even

thus |z; — yi| < |7, — s, | for all ¢ # iy such that y; is even. Therefore, there exists
a neighborhood U, of x such that for any z € Us, z;, — v;, does not change sign and
max {|z; — y;| : y; is even} = |z, — s, | , so the function max {|z; — v;| : y; is even} of z
is affine on U,. Similarly, there exists a neighborhood Uj of x such that the function
max {|z; — y;| : y; is odd} of z is affine on Us.

Now take U = U; n Uy n Usz, so U is also a neighborhood of x. Moreover,
Sy > 0on U, so T, = S, on U. Since U < U, and U < Us, the functions
max {|z; — ;| : y; is even} and max {|z; — y;| : y; is odd} of z are affine on U, so Sy

is affine on U, hence 7Ty is also affine on U. O

Lemma 7.5.4 (Continuous piecewise linear approximators with respect to the Kuhn
triangulation preserve regularity under ¢! norm). Let f be a function from [0,n]? to
R for some n € N,. Let w : [0,nd] — R be a modulus of reqularity of f under ¢*
norm of R%. Let ® : [0,n]? — R be continuous piecewise linear on each of the n® unit
cubes {[0,1],[1,2],- -+, [n — 1,n]}? with respect to the triangulation in Lemma 7.5.1,

and

(I)(y) :f<Y)> Vye{(),l,m 7n}d

Then, ® satisfies the approximation guarantee

d
If = @/ oo (fon]ey < w <§>
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Furthermore, w is a modulus of reqularity of ® under ¢* norm of R.

During the proof of Lemma 7.5.4 we will make the following notational and ter-
minological conventions. For any vector z € R?, we denote its i-th coordinate by (z);.
The notation z; without brackets will have other contextual meanings specified when
appropriate. We say that a function g : R — R has w-regularity at a pair of points

u,v e RYif [g(u) — g(v)| < w(fu —v]y).

Proof. We turn the problem into a path-finding problem: observe that, for any pair
of x,y € [0,n]? if we can find a pair of corresponding finite linear paths 7y, vy :

[0,T] — [0,n]? and a time ¢, € [0, T] such that the following conditions hold:

1. 7%(0),7%(1) are contained in the same simplex;
2. 7y(0),7y(1) are contained in the same simplex;
3. x = x(to);
4.y = Vy(t0>§

5. As t changes linearly from 0 to 1, |yx(t) =7y (¢)[1 changes linearly from ||y (0) —

Yy (0)ll1 to (1) = 2y (D35

6. ® has w-regularity at 7x(0), v, (0) and v« (1), 7y (1).

then we can conclude that ® also has w-regularity at x,y; here, by 7, 7y being linear
we mean that each of their coordinates are linear functions of ¢.

This is because, by conditions 1 and 2, ® is linear on the line segment connecting
7x(0),7x(1) as well as the line segment connecting v, (0), vy, (1), so

T —t
T

a0 (0))

B(1(0),  B(y) = Ldb(ry (1) +

D(x) = 2B(3(1)) + L

T
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by conditions 3,4 and 5, we have that

L0 % 01

to
Ix =yl = 7)) = (D +

thus
to T_tO
90~ B(3)] = | Z@0(1) - Bry(1) + T (B(0x(0)) ~ 2(00))
< 2 10((1) ~ By ()] + T2 D(35(0)) ~ B(5(0))

< Baslo(V) = 2 (D) + - 2l(0) = 3 (O)])

(by condition 6)

< (a0 = 0l + T2 2000) = 0011

(since w is concave)

= w([x =yl
In other words, for any pair of x,y € [0,n]?, if we can find two finite linear paths

such that:

1" Each path is entirely contained in some simplex;

2" w-regularity of ® is assured at the pair of starting points and the pair of ending

points;

3’ As two points travel along the two paths, the ¢! distance between them changes

linearly;

4" As two points travel along the two paths, they reach x,y respectively at the

same time,
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then the concavity of w would guarantee the w-regularity of ® at any intermediate
pair of points, including x,y.

4. For any z € [0,n]¢, suppose it is con-

Now, we fix any pair of x,y € [0,n]
tained in some simplex P, with vertices uy, - ,ug41 € {0,1,---,n}? then there

exists A1, -+, Agy1 € [0, 1] such that

z=Mu+ -+ AU, A+t A =1

We say that z is contained in the interior of a k-dimensional face if exactly k& + 1 of

A1, -+, Agy1 are nonzero, and define

d, = min{k € N, : z is contained in the interior of a k-dimensional face}

Using the idea above, we can find some linear paths that “push” x,y to some boundary
points x’, y’ of some (dx—1), (dy—1)-dimensional faces which contain x, y respectively,
where we can use induction on dx + dy to conclude w-regularity at x,y.

Without loss of generality, assume x € [0, 1]¢. We first assume that y € [0, 1]¢ and
demonstrate how to find such paths for x and y, then we generalize the result. As
argued above, let Fy, Fy < [0,1]? be (dyx—1), (dy —1)-dimensional faces which contain
x,y, and P, P, be some simplices in [0, 1] which contain Fy, Fy, respectively.

First, we define two infinite linear paths 7,y : [0,00) — R? by:

def.

Y (t) = 1x, 7, (1) = ty, Vte[0,0)

Note that, [v<(t) — 15 (t)]1 = t[|x — y[1 changes linearly with time, and both x,y
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are reached at the same time ¢ = 1, thus conditions 3’ and 4’ are satisfied. Next, we
modify v« and 7y so that conditions 1’ and 2" are satisfied, while ensuring that both
conditions 3’ and 4’ remain satisfied.

From Equation 6.1.1, let 7,7y € S4 be the permutations corresponding to the
simplices Py, Py. Let {vi, - ,vg.}, {wi, -+, wq, } < {0,1} be the vertices of Fy, Fy.

Then, v;’s and w;’s have the form

Ay

ai
{vi,-,va ) = {Zerx(z’),"' ,ZGTX(@')}, O<a<ay<--<ay <d
=1 =1

bay

b1
{Wla"'awdy}: ZeTy(i)7"'7ZeTy(i) ) 0<b1<b2<<bdy<d
=1 i=1

Define new paths v and 5 as follows: let (75); = (7x)i for all coordinate components
for which i # 7(1), -+, 7x(a1), otherwise let (v5); = 1; similarly, let (v;); = (7y): for
all coordinate components for which i # 7y (1), -+, 7y(b1), otherwise let (75); = 1.
Finally, let

T = max{t € [0,00) : v([0,t]) < Fy,75([0,t]) € Fy}

For any ¢ = 7y(1),- -+ ,7x(a1), since (vy1);,---,(va,); = 1 and x is contained in the

convex hull of {vy, -+ vy }, (x); = 1, thus v2(1) = (1) = x € Fy, and since

al
Y5 (0) = ZeTx(i) ef{vy, - ,va} S Fy,
i=1

where Fy is convex, 73([0,1]) € Fx. Similarly, 75([0,1]) € Fy. Thus, T'> 1. If T
is infinite, then both paths 73,75 are constant, in this case both x,y must be lattice

points, at which ® has w-regularity since the values of ® and f are the same at x,y.
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Therefore, we may assume that 7' > 1 is finite.

We now show that the finite linear paths ; (), vy (t) (¢ € [0,T7) satisfy conditions
1" to 4. Condition 1’ is automatically satisfied by the definition of 7. We have
proved above that 75(1) = x, and 75 (1) =y can be proved similarly, also T' > 1, thus
condition 4’ is satisfied.

For condition 2’, since

al

by
1(0) = > ernm € {0, 1}, 75(0) = > er € {0, 1}
i=1

i=1

are lattice points on which the values of ® and f are the same, we have w-regularity
of ® at 7:(0) and ~;(0).
Since the faces Fy, I}, of the convex polytopes Sx, Sy are themselves convex poly-

topes, they are the convex hull of their vertices:
Fx = {p/1V1 +"'+p:jxvdx plla 7p:ix = Oap/l + +p2lx = 1}

Fy:{CI1W1++C]&deyQ17aQZzy>07q/1++QZly:1}

By the definition of T, at least one of the ending points 73 (T'),v5(T) lies on the
boundary of its face. Thus, without loss of generality, we may assume that (7" lies
on the boundary of Fy. Then, when ~}(7) is expressed in the form pjvi+---+pj; va,,
some of the coefficients p; will be 0 (unless d.x ) = 1, which is the base case), so 7 (')
lies in the interior of some dx -dimensional face with d.x ) < dx, while v5(T) is still
contained in the dy-dimensional face Fy, so d.#() < dy. By the induction hypothesis,
since dyx(r) + dyg(r) < dx + dy, ® has w-regularity at 75 (7,75 (7). In the base case

where dx (1) = dyx(r) = 1, x and y are lattice points on which the values of ® and
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f are the same, so we have w-regularity of ® at x and y. Therefore, condition 2’ is
satisfied.

Finally, for condition 3', let ¢ € {1,2,--- ,d} be arbitrary. As ¢ changes linearly
from 0 to T', (7x(t));: — (7y(t)); = t((x); — (¥):) changes linearly and does not change
sign. By definitions of 7} and 75, compared to v and 7y, (75); and (15); are either

the same or always equal to 1. Then, there are three possibilities:

L. If both (v£()); = ((t))s and (v5(t)); = (15 (t))s for all ¢ € [0,T], then as t

changes linearly from 0 to T, (v(6))i — (5(6); = (1(£)); — ( () = #((); —

(y)i) changes linearly and does not change sign;

2. If exactly one of (v;(t)); and (5 (t)); always equal to 1, without loss of generality
assume (vx(t)); = 1, then (vi(t)): — (15 (t))i = 1 — (9y(t))i = 1 — 1 = 0 changes

linearly with ¢ and does not change sign;

3. If both of (vi(t)): and (v;(t)); always equal to 1, then (v5(t)); — (v5(t)):i = 0

changes linearly with ¢ and does not change sign.

Therefore, (7 (t))i — (75 (t)): always changes linearly with ¢ and does not change sign,

thus

|7 (®) =@l = Z (v (@))i — (5 (8))il

changes linearly with ¢, hence condition 3" is satisfied.
Now, we have found suitable paths for y € [0, 1]¢, next we show how to find such
paths for an arbitrary y’ € [0,n]?. Suppose y’ € Qy/ = [my, my + 1] x [mg, ma + 1] x

-+ x [mg, mg+1] for some integers my, - - - ,mg. Define the function Ty : [0,1]¢ — Q-

39


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

M.Sc. Thesis — R. Hong; McMaster University — Mathematics

(z); + 2k;, if m; = 2k; for some k; € N

2[1'1 — (Z)i, if m; = 2/{31 — 1 for some kz eN

Then Ty is a composition of reflections and translations, thus it is a linear bijection
between [0,1]¢ and Q.

Let UH be the union of the hyperplanes (which are considered as subsets of R%)
in H, which is a subset of R? that triangulates every unit cube in {[i,i + 1] : i € Z}%.

By the definition of H, UH has the following two properties:

1. Translation invariance:

ze UH < (z+2e¢)e UH, i=12,---,d

2. Reflection invariance:

ze UH < (2¢;, —z)e UH, i=1,2---.d

Then, by the definition of Ty, the part of UH inside @)y is exactly the image of the
part of UH inside [0,1]¢ under Ty, and vice versa: the part of UH inside [0, 1]¢ is
exactly the image of the part of UH inside )y, under T;l. Therefore, the simplices
in [0,1]% and the simplices in @+ are in one-to-one correspondence via Ty

Let y & T)jl(y/). Since x,y € [0,1]¢, by the arguments above, there exist finite
linear paths v (t), v (t) (t € [0,T]) that satisfy conditions 1’ to 4’. Using the same

notations as above, let Fy, Fy, < [0,1]¢ be (dy — 1), (dy — 1)-dimensional faces which
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contain x, y, and P, P, be some simplices in [0, 1]? which contain Fy, F},, respectively.

Define the path for y’ by:

Vi (t) = Ty (L), tel0,T]

We now show that the finite linear paths 75 (t),7;/(¢) (t € [0,T7]) satisfy condition
1" to 4. Since 15([0,T]) = Py, 75:([0,T]) < Ty (Py) and Ty/(Py) is a simplex,
so condition 1" is satisfied. Similar as above, since v5(0),75/(0) = Ty/(75(0)) are
lattice points and v (T), v (T) = Ty/(v5(T)) are in the boundary of their faces
Fy,Ty/(Fy), by doing induction on dyx + dy/, we conclude that ® has w-regularity
at 75(0),75(0) and v (T), 75 (T), so condition 2 is satisfied. Since 7;(1) = x and
Yy (1) = Ty (75(1)) = Ty (y) = y', condition 4 is satisfied.

Finally, for condition 3', if (y); € [0, 1], then m; = 0, k; = 0, (75:): = 2ki + (75)i =
(75 )i, and since (v (%)) — (73 (t)): always changes linearly with ¢ and does not change

sign, so does (Vi(t)); — (v (t));. Otherwise, if (y); > 1, then m; > 1, k; > 1

y

\Y

)i =2k —(vE);=2—-1=12= (7)), so (%) — (7%); does not change sign, and
Yy Yy Tx Vx Yy ge sig

obviously it changes linearly with ¢. Thus,

[ @®) =5 ()] = Z (v (@))i = (75 ()]

changes linearly with ¢, hence condition 3’ is satisfied.

Therefore, the paths 75,75, for x,y" indeed satisfy conditions 1’ to 4’. By the
argument above, ® has w-regularity at x,y’. Since x,y’ were chosen arbitrarily, we
conclude that w is also a modulus of regularity of ® under ¢! norm of R

For the error estimate, fix any x € [0,n]¢. Suppose x € Q o [n1,n1 + 1] x
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[n2,n9 + 1] X -+ x [ng,ng + 1] for some integers nq,--- ,ng. Let uy,--- ,ugzyq be the
vertices of a simplex Py € (Jx which contains x, then there exist Ay, -+, Ags1 = 0
such that

X=Au+ -+ Agy1larr, A+t Ag =1

Since ® is affine on this simplex,
d+1 d+1

(x) = D) N(w;) = > Aif (w)

thus

1B(x) — f(x)| = M (f(m1) = f(x) + - + Aap1 (f(ugsr) — f(x))]
< M| f(ay) = fX)]+ -+ Agpa|f(uge1) — f(X)]
< Mw(ug —x[1) + - + Agpw([uger — x|1)

< (,LJ()\lHI,ll — X”1 + -+ /\d+1Hud+1 — XH1> (752)

where (7.5.2) follows by the concavity of the modulus w, and

d+1 d+1 d
DAl = x =D A > l(wy); — (%)
j=1 j=1 =1
d d+1
= > > Al () = (x)il
i=1j=1
d d+1 d+1
=0 D0 M=+ D Al — (%)l
i=1 =1 =1
(u;)i=n; (uy)i=n;+1
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d d+1 d+1
=20 DL M®i—m)+ D N+ 1= (x))
=1 j=1 j=1
(uj)i=n; (u;)i=n;+1
d d+1 d+1
=2 (®i=m) D N —(xi—m) YA
=1 j=1 j=1
(u;)i=ni (w;)i=n;+1

for which we have

(x)i —n; = Z )\j(uj)i) — 1y

j=1
d+1 d+1
- Z A + Z Aj(ni +1) | —n;
J=1 j=1
(uj)i=n; (uy)i=n;+1
d+1
- :E: by
j=1
(uj)i=ni+1
d+1
j=1
(uj)i:ni
thus
d+1 d+1 d+1 1
((X)z - nz) Z /\] =11- /\] )\J < Z
J=1 j=1 j=1
(uj)i:nl (uj)z:ni (uj)Z:’ni

—
|
—~
—~
X
|
§
>~

<.
Il
—
|
>
<
>
<
N
= =
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Combining the results above, we have that

d+1 d+1 d+1
ZM\UJ XHl—Z i = i) Z NI =()i—m) YN
=1 =1
(uj)’L_n’L (Uj)‘ji=ni+1

Therefore,
d+1 d
20— F(x)| < (Z Al - x1> <o ()
j=1

Since x € [0,n]? was chosen arbitrarily, we conclude that

d
1f = oo < (5.

This concludes our proof. O

Indeed, we may deduce an even stronger conclusion. Namely, we only used infor-
mation of f at the lattice points, so the modulus of regularity we of ® can be the

minimum concave function that satisfies

W<1>(Z) = max ‘f(X)_f(yH? fOI'Z':071,"' ,TLd
x,y€{0,1,--- ,n}9
[x—yl1=i

which is a polygonal function. Therefore, we have the following corollary.

Corollary 7.5.1. Let f be a function from [0,n]% to R for some n € N.. Let w; be

a modulus of reqularity of f under (* norm of RY. Let @ : [0,n]? — R be continuous
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piecewise linear on each of the n? unit cubes {[0,1],[1,2],--- ,[n—1,n]}* with respect

to the triangulation in Lemma 7.5.1, and

(I)(Y):f<y)7 VyE{O,l,"' 7n}d

Then, any monotone increasing and concave function we that satisfies the following

condition is a modulus of reqularity of ® under * norm of R%:

w@(l): max ‘f(x)_f<y>‘7 fOTi:O717“' 7nd
x,y€{0,1,-- ,n}¢
[x—yl1=i

Moreover,

d
1 = @l <05 (3

7.6 Proof of the Main Result (Theorem 4.1.1)

Using the results above, we are able to derive our first main theorem, namely Theo-

rem 4.1.1.

Proof of Theorem 4.1.1. To apply the previous results, we first scale f into a function
f defined on [0, n]®:
Flx) % f (5) vx € [0, n]? (7.6.1)
n

Since w is a modulus of regularity of f, for all x,y € [0,1]%, we have

o0 =[1 ()1 ()] < (- 2) - (55321)
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then @ defined below is a modulus of regularity of f:
O(r) = w <§> ,  Vae[0,nd]

Let

where Ty be the hat function
T,(x) = o (1 — max {|v; — yi| : y; is even} — max {|z; — y;| : y; is odd})

for x = (z1,--- ,24) € [0,n]%. By Lemma 7.5.3, ® is continuous piecewise linear on
each of the n¢ unit cubes {[0,1],[1,2],--- ,[n — 1,n]}¢ of [0,n]? with respect to the

triangulation in Lemma 7.5.1, and

O(y) = fly), Vye{0,1,-- ,n} (7.6.2)

Then, by Lemma 7.5.4, & is also a modulus of regularity of ® under ¢! norm of R<.

Moreover,

~ - _[(d
If — @[ oo (po,n)ey < @ (§>

Now let

d(x) L d(nx), Vxel0,1]? (7.6.3)

Then, we deduce can ® uniformly approximates f on [0, 1]¢ since

. _[d d
f =@ reqone <@ <§> =w (%)
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Define the number of samples point N(n) ¢ (1 + n)? and the grid {x;} ¢ %

n~!-X,. Note that, together (7.6.1) and (7.6.2) along with the definition of ® given

in (7.6.3) implies that
O(x;) = f(x;) Vi=1,...,N(n).

In other words, ® interpolates f on the grid {xi}i]\i(f). Thus, Zi]i(f) |P(x;)—f(x;)] = 0.

Since & is a modulus of regularity of ®, for all x,y € [0, 1]¢,

[@(x) = 2(y)| = |®(nx) — ®(ny)| < O(|nx — ny|1) = w(|x —yl)

Therefore, w is a modulus of regularity of ®. Now we remain to show that & can
be implemented by a ReLU MLP with width at most 8d(n + 1)? and depth at most
[log, d] + 4.

It is easy to see that

then

- - + —z — — —z +
max{x7y}:$2y+lx2yl :0(932 y) of :82 @/)Jrcf(ﬂf2 y) ol 9; y)’ Vi.yeR

Using this formula, for any £ € N, ; we may compute the maximum value function on
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2% arguments via the following network structure:

Ty

(1)

2k

98

1) (1) def.
max{z! ), :1,'; Nty

I
max{x (5 ) 4

max{

(2)

(y dor (2)

! 1 def. 2
1.(2’”“)*1’ Iék)} = Zl?gk)fl i

2 2 def. 3
max{;v(l ), Jg )} = J(l )

IlléIX{.’liéz), ;1,'512)} < (;)

) 2)

) ) - def. (3)
Max{ Ty | |, L1} = Loy
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max{z{"", 2y & R

n’1ax{;l'_‘(f"71>, 517&“1)} def. I(Qkf)

(k) (k)
tx; Y (k
= [U <—1 5 2 )] = [111'(1}({;1:(1}'),fI/'gJ}} = [max{;z#&”.,’1;(2]), e ,;17;.,)

(7.6.4)

where o(+a+b) abbreviates the four neurons o(a+b), o(a—b),oc(—a+0b) and o(—a—b),
and the column vectors in green represent the “auxiliary” hidden layers which are
simply affine transformations that don’t use any activation functions, thus each of
them can be integrated with the layer after it, and does not require an extra hidden
layer to process. Therefore, we will ignore these layers. We denote this network as
My, thus My, : R R outputs the maximum value of its 2¥ input arguments, and
it has width 2¥*! and depth k + 1. We note that, after deleting an appropriate set
of neurons in My, (which we will still call My), it can be applied to k" arguments for
any 1 < k' < 2% and output their maximum.
Let

dy = [log, d]

For any lattice point y = (1,92, -+ ,%a) € {0, 1,--- ,n}?, suppose yi,, iy, - - - ) Yi, are

even and ¥y, Y;,, - ,¥;, are odd, for some 0 < p,q < d, then we can implement the
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hat function Ty using the network My, as follows:

T o(£(z1 — 1)) o(xy—1) +o(—(r1 —y1)) = |v1 — 11
X2 o(+(z2 — y2)) o(x2 —y2) + o(—(22 = 42)) = |22 — 42
- —
| Ld | _U(i(CEd - yd))_ _U(JIT(J —Ya) + o(— (24 — ya)) = |z — ?/d|_

-

M, ([’xil_yh’ ’xh_yiz‘ ‘xip_yip’]>
.

Md0<|:|le_yj1| |Tj, — Yju| - \%‘%‘J])

max {|z; — y;| : y; is even}

max {|x; — ;| : y; is odd}

= [a (1 — max {|z; — y;| : y; is even} — max {|z; — y;| : y; is odd})]

~ Ty<[;,;1 S xdr> (7.6.5)

As before, o(+a) abbreviates the two neurons o(a),o(—a), and the column vectors
in green represent the “auxiliary” hidden layer which we can ignore. We call this

network Ty, which has width at most

width(Ty) = width(My,) + width(My,) < 297! 4 2%0F1 = odot2  ollos2 d+1)+2 _ g
(7.6.6)

and depth at most

depth(Ty) = 1 + depth(My,) +1 < dp + 3 (7.6.7)

100


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

M.Sc. Thesis — R. Hong; McMaster University — Mathematics

Let y1,¥2," ;¥ (n+1)¢ be the (n + 1)¢ lattice points inside the cube [0,n]?. Since

O(x) =d(nx) = > fly)Ty(nx), Vxe[0,n]"

ye{0,1,-- ,n}d
then ® can be implemented as follows:
TY1 (HX)

Ty, (nx (n+ )7
X = nx — ( ) - [ Z f(Yi)Tyi(nX)] = &(x) (7.6.8)

(nx)

_Ty(n+1)d

This network has width

(n+1)4 (n+1)4
width(®) = ) width(Ty,) < Y| 8d = 8d(n + 1)
=1 =1

and depth

depth(®) = max depth(Ty,) +1 < (dy +3) + 1 = [log, d] + 4.

1<i<(n+1)4

Finally, we tally the nonzero parameters in ®. From (7.6.4), the network M, has

no nonzero biases, and has nonzero weights at most
k—2
M2k 8. 327 <2.2F 4 8.2 =62
i=1

where the factor 4 colored in blue is the number of nonzero connections between the

second layer in (7.6.4) and the second layer in (7.6.5), after “integrating” the green
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auxiliary layer in (7.6.5) with the layer after it. In other words, this is because in
(7.6.5), each of the neurons in the input layer of M, is the sum of two neurons in the
second layer, so since in (7.6.4) each neuron in the second layer has 2 nonzero con-
nection with the first layer, in (7.6.5) this number will have to be doubled, becoming
4.

def.

From (7.6.5), the network T, has at most 7 = 2d + 1 nonzero biases, and has

nonzero weights at most

T =20+ M +2=2d+6-2% +2<2d+6(2d—1) +2 < 14d — 4

In total, the network Ty has nonzero parameters at most

T 470 - 16d -3 (7.6.9)

From (7.6.8), ® has no additional nonzero biases, thus it has nonzero parameters
at most

(n+ 1) + (n+ 1)% < 16d(n + 1)%. (7.6.10)
O

Remark 7.6.1 (Proof of Proposition 4.1.1 is given in the Proof of Theorem 4.1.1).
The proof of Proposition 4.1.1 directly follows from the proof of Theorem 4.1.1, upon
noting that all parameters except for the ones between the input layer and the first
hidden layer and the ones between the output layer and the last hidden layer come
from {0, +1/2}, and all parameters except for the ones between the output layer and

the last hidden layer are independent of the “sample values” {f (xz)},fi(ln ) i.e. the value
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of the encoder &,(f).

7.7 Proof of Secondary Approximation Results

Proof of Proposition 4.1.2. In the proof of Theorem 4.1.1, we constructed final net-
work in (7.6.8). Here, we only need to distribute the (n+1)¢ sub-networks Ty, ,- - , Ty .\
to L different layers.

We relabel the (n 4 1)? sub-network and function value pairs (Ty,, f(y;)) for j =
L, (n+1)as (Tgi), fl(i)), e (T,(f;)i, féi)) for i =1,---, L. To simplify notations,
fork=1,---,L, let

k m;

= Z Z f T (nx), VYxe[0,1]%,

i=1j5=1

Then, ®(x) = T (x). Now, we can construct ® as follows:

ST [ T®(nx) | [ T®(nx) |

T (nx)
x = | | = | m8m | = | T | = -
T}, (nx)
O'(iTl(X)) U(iTQ(X))

nx

- - | nx | | nx i
T (nx)

= T%L)(nx) = T (x) = ®(x)
o(+Tr-1(x))
L nX -
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where we used the fact that o(nx) = nx for any x € [0,1]%. We know from (7.6.6)
and (7.6.7) that the sub-networks Tg-i) has width W < 8d, depth D < [log, d| + 3,

and nonzero parameters T' < 16d — 3. Then, ® has width at most
width(®) < Wmax{my,--- ,mpr} +2+d =8dmax{my,--- ,mp} +d + 2

depth at most
depth(®) < L(D + 1) = L([log, d] + 4)

and nonzero parameters at most

L
par(®) < mT +d + Y \(mT + 2mi_y + 2+ d) + my, + 2
=2

< (T+2)imi+L(d+2)

i=1

< 16d(n + 1) + L(d + 2).

[]

Proof of Corollary 5.1.1. Since the support of & in Theorem 4.1.1 is contained in
[~1/n,1 4 1/n]? which is just slightly larger than [0, 1]¢, the original construction of
® could lead to a steep descent near the boundary of [0, 1]¢. To resolve this issue, we

avoid taking values of ® outside [0,1]? by first projecting R? to [0,1]¢ by applying
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the following 1D projection coordinate-wise:

0, ifz<0
pr) “ o(x) oz —1) =<4 ifzecl0,1], VYzeR (7.7.1)
1, ifz>1

For any x,y € Rd’ p(x)7p<y) € [07 1]d7 Hp(x) - p(Y)Hl < HX - YH17 thus

[@(p(x)) = 2(p(¥))] < wllp(x) = p(y)l1) = &(lp(x) = p(¥)lh) < ©(lx = yl1)

Therefore, @ is a modulus of regularity of ® o p, whose restriction on [0,1]? is the
same as ¢. Thus, the function ® o p satisfies our requirement, which is implemented

by the following network:
X = — [@(U(X) —o(x—1)| = 2(p(x) (7.7.2)

which has width
width(® o p) = max{2d, width(®)} < max{2d,8d(n + 1)*} = 8d(n + 1)*
and depth
depth(® o p) = depth(®) + 1 < [log, d]| + 5.

Finally, we tally the nonzero parameters in this network. From the proof of Theorem
4.1.1 (see the left-hand side of (7.6.10)), we see that the network ® has at most

(16d — 2)(n + 1)¢ nonzero parameters (we omitted the (—2) in the result to simplify
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the expression). Now, in the original construction of ® (see (7.6.5) and (7.6.8)), there
are 2d(n + 1) neurons in its first hidden layer, each connecting to m = 1 neuron in
its input layer. Here, in the network (7.7.2) implementing ® o p, this number m is

doubled, resulting in an additional
W1 = (2m —m) - 2d(n + 1)* = 2d(n + 1)?

nonzero weights. For the biases, it is clear that only B = d additional biases (namely

—1) were introduced in the first hidden layer. Lastly, the only additional nonzero

parameters in (7.7.2) are the weights between the input layer and the first hidden
ef.

layer, which are W, = 2d in total. Therefore, the number of nonzero parameters in

(7.7.2) is at most

(16d — 2)(n + D) + Wy + B + W, = 18d(n + 1)* — 2(n + 1)* + 3d
< 18d(n+1)4—2-2% 4+ 3d

< 18d(n + 1)%.

]

Proof of Corollary 5.1.2. Fix n € N,. First note that the metric projection onto the
unit cube in R?, given for each x € R? by II(x) € argmin,cf 134 |z —x]; is well-defined
since [0,1]? is closed and convex. One can readily verify that II = p, where p is
defined in (7.7.1).

Now, by Corollary 5.1.1, there exists a ReLU MLP ® : R* — R which is uniformly

continuous with modulus of regularity @, width at most 8d(n+1)¢, and depth at most
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[log, d| + 5, satisfying the uniform estimate

[ d
Lf = @] ooy <@ (%) - (7.7.3)

Consequentially, (7.7.3) implies that: for each x € R? the following holds

[f(x) = (x)] < [f(p(x)) = 2(p(x))| + [[(p(x)) = F(X)] + [2(p(x)) — (x|
= [f(p(x)) = 2(p(x))| + [f(p(x)) = F(x)] + [(p(x)) = 2(p(x))|

(7.7.4)
~ 1)) ~ 2(p(x))| + /(360 — £
< 1)) ~ 2(px)] + @(1p00) 1)
= () ~ @) + B(lp(x) ~x)1)
< s 17(w) = B + &) - )
<8 (5:) + (bl =)l (7.75)

where (7.7.4) followed by the proof of by Corollary 5.1.1, specifically in (7.7.2), we
see that the first layer of ® is given by pre-composition with p.
Since [0, 1]¢ is compact then the minimal distance to any given point is realized.

Also, since p is the metric projection of R¢ onto [0, 1]%, then

djo 110 (x) = [p(x) = %]

for every x € R, Consequentially, the right-hand side of (7.7.5) can be re-expressed

107


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

M.Sc. Thesis — R. Hong; McMaster University — Mathematics

as

o (o) + ol =1 = & () + @ldistpy ),

which concludes our proof. O

7.8 Proof of Statistical Result - Theorem 4.2.1

Let F be a non-empty set of functions from R? to R, Zi, ..., Zy be random vectors in
RY and let Z = (Z,)N_,. Its empirical Rademacher complezity, denoted by Rz (F),

is the (random) quantity

1 N
Rz(F) = —E,|su o 9(Zn 7.8.1
(F)= & Lejr;?; 9( )] (7.8.1)
where o = (0,,)Y_, and 0y, ..., 0y are i.i.d. Rademacher random variables; i.e. P(o; =

1) = P(oy = —1) = 1/2.

Proof of Theorem 4.2.1. Let 61,85 € [0,1), to be fixed retroactively. Let Z = {(X,,,Y,)}V

n=1"

By [8, Theorems 8 and 12|, the following holds with probability at-least 1 — §;

A/8log(2/6

sup  [R(P) — Ry (®)] < 2 L R (NNKT) + v/8log(2/61) (7.8.2)
@eNJ\/Z’f;V v IN

Since ./\/'Ni?,v < NNaw n Lip(R4, [0, 1], L) then, by the definition of the empirical

Rademacher complexity of a class in (7.8.1), we have that

Rz(N. Z’j;v) < min{fﬁg (NN aw), Rz (Lip(R%, [0,1], L)) } (7.8.3)

<

~ -

~~ ~~

@ (In
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Step 1 - Bounding Term (I):
Let X be the N x d random matrix with rows given by Xy, ..., Xy. Term (I) can be
bounded using the empirical Rademacher complexity bound derived in [6, Theorem

3.3] which implies that

A

1) < Nil;/Q N 2610g(N])Vlog (2W) (\X! 1—[ (2 ﬁ 2/3)3/2) (7.8.4)

=1 =1

where |||z and |- |2 respectively denote the Frobenius and the spectral matrix norms,
and s; denotes the maximum spectral norm of the [** matrix W® for any ReLU MLP
® with representation (3.3.1), and b; denotes the maximum | -||; » matrix norm thereof
(defined by the sum of the Euclidean norm of its columns?).

Recall that, if ® € N ZT{,V then by Proposition 4.1.1 the entries of all its weight
matrices have absolute value at-most 1/2if [ € {2, ..., A—1} and max{n, 1} otherwise.
These observations, together with the elementary matrix norm inequalities (all found
on [22, page 56]), and the fact that each ® € NN w has width at-most W, and
that by enlarging the class a bit, we may assume that s; = sp = nW?%? and that
b= s = %W3/2 for Il =1,...,A. Thus, the right-hand side of (7.8.4) simplifies to

I 4 26 log(N) log(2W)
( ) = N3/2 + 2maX{O,A72}N

X || p W32, (7.8.5)

Using the standard matrix-norm bounds | - |z < V/N| - [lop (where | - |lop denotes

the operator norm) and the fact that the operator norm of a matrix A equals to its

3The authors take a transpose in their main result; since this matrix norm is typically defined
by summing over the Euclidean norms of the rows of a matrix.
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largest singular value 0,,,:(A), we reduce the right-hand side of (7.8.5) to

4 26 log(N) log(2W)
(I) S N3/2 + omax({0,A—2} \J
4 N 26 log(NN) log(2W)
= o
N3/2 omax({0,A-2} /[

VN|X] o W22
7.8.6
maaz(X) WSA/Z. ( )

Define X < +/N - X. By the min-max characterization of singular values, see e.g. 31,
Theorem 4.2.11], we have that 0,,.,(X) = VN0 pas(X). Observe also that X is

isotropic since

E[XX'] =E[(VN)X(VNX)'| = NE[XX] = N%Id =1,

Therefore, a consequence to a version of Gordon’s Theorem given in [79, Theorem
4.6.1] applies to the random matrix X since it has independent, sub-Gaussian, and

isotropic rows; thus: with probability at-least 1 — 5 we have that

Omaz(X) < Vd + C (VN +1/In(2/5,)).

Therefore, with probability at-least 1—ds, the maximal singular value of X is bounded

above by *
d \/ln 2 52
Omaz(X) < %(ﬂ +C (VN ++/In(2/5,))) = \/*% +C jﬁ/ e (7.8.7)

Incorporating (7.8.7) into the right-hand side of (7.8.6), implies that: the following

4Remark that: without the correct scaling of % I, the covariance of each X7 the third term on
the right-hand side of (7.8.7) would not tend to 0 as N tends to infinity.
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holds with probability at least 1 — d

- (X) W3A/2

4 26 log(N) log(2W)
I <
( ) N3/2 2max({0,A—2}\/N g

4 2log N) log(2W) W34/ (Vd + C VN + C/In(2/8)).

( (7.8.8)
S N3/2 omax({0,A—2} \J

Fix § € (0,1) and set 6, = &, = §/2. By a union bound together with (7.8.8)

and (7.8.3) we deduce that: the following holds with probability at-least 1 — ¢

n 8log(4/6
sup  [R(®) — Ry ()] < 2L, R (WK ) + VO 0BUD)
@eNNi‘féV \/N
Ln : 1 26log(N) log(2W) W34/2
Rz (NN ) < mln{ e S (0A—TT (Vd+ CVN + C+/In(4/5)),

Rz (Lip(R?,[0,1], L)) }

~

(I11)
(7.8.9)

Step 2 - Bounding Term (II):

By [33, Lemma 25|, we have that

d d
Lifs o 165 Li%s
(1) < Oy === = (8(d + 1)216%) 77 + 42 T2 (7810)
Na+s (18(d + 1))a+s } Na+3

1 _d_
where Cy = (8(d + 1)%16%) ™3 + 4\/5%. Incorporating (7.8.10) into (7.8.9)

yields: the following holds with probability at-least 1 — ¢

8log(4/6
wp [R(®) — R(®)] < 2L, Ro(WAKT,) + VI8
@eNNi’féV \/ﬁ
d
L (4 26log(N)log(2W) W3A/2 s
Rz(NN ) < mln{ Nz Smax((0.5—3) (\/& +CVN+C In(4/9)),Cy prng §

111


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

M.Sc. Thesis — R. Hong; McMaster University — Mathematics

7.9 Proof of Results in the Discussion Section

Proof of Theorem 6.1.1. We will prove the following stronger statement: in the con-
text of Lemma 7.5.4, for n = 1, the Kuhn triangulation is the only triangulation (up
to reflections) such that for all Lipschitz functions f with modulus of regularity w
which is a linear function, w is also a modulus of regularity of . By a reflection, we
mean a transformation of the form z; — 1—x;, for some 7 =1, --- ,d. In other words,
we will only consider Lipschitz functions and linear moduli of regularity.

Note that, all reflections are involutions and they are commutative with each

other, so we will refer to a transformation as a reflection of the axes z;,,--- ,z;,, if
it is a composition of the reflections x; — 1 — z; for j = 41, , i, in any order; in
particular, we say that it reflects the x-axis if i € {i1, - ,in}-

For d = 1,2, the Kuhn triangulation is the only triangulation of [0,1]¢ up to
reflections, so we will assume that d > 3 throughout the rest of the proof.

Let S = {S;}7-, be any triangulation of [0, 1]¢ that makes Lemma 7.5.4 true. We
will prove that S is some reflected version of the Kuhn triangulation.

Fori=1,--- ,dand § = 0,1, let

Fis ) [0, 1]d N A{(z1,- - ,mq) € RY: 2 = 5}

be some face of the unit cube [0,1]¢, and

Sis = {Sk N Fis:Skn Fisis a(d— 1)-dimensional simplex, k = 1,--- ,m}
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be the “restricted triangulation” of S on F;s. For any such (d — 1)-dimensional
face F; 5, we show that the finite collection S;s of (d — 1)-dimensional simplices is a

triangulation of Fj s:

1. US;s = Fis: assume for contradiction that US;s is a proper subset of F; ;.
Denote Fy; as the interior of Fj 5, then F5\(uS; ) is open and non-empty, since
otherwise (US;5) 2 FY;, which implies that (US;s) 2 Fi5 as US;; is a closed
set. Consider the Lebesgue measure on the (d — 1)-dimensional hyperplane
x; = 0 that contains F;s. The measure of E‘?&\(Usi,é) is positive as it is non-
empty and open. If Sp n Fjs is not (d — 1)-dimensional, then it is at most
(d — 2)-dimensional, which has measure 0. There are only a finite number of
these (d—2)-dimensional faces with 0 measure, so their total measure is 0, which
cannot fill up F5\(uS;s) as it has positive measure, so we get a contradiction

as desired;

2. The set of vertices of the simplices in S;s is {0,1}? N F} 5, which is the set of

vertices of Fj s;

3. The interiors of the simplices in S;s are pairwise disjoint: without loss of gen-
erality, consider the case ¢ = 1 and § = 0. Assume for contradiction that z
is contained in the interiors of S, and S, for two different simplices in 5 .
Assume S, = Sy N F o for some S,y € S, then compared to S, S, has an addi-
tional vertex in the “upper face” Fy; (otherwise S,y would not be a simplex in
R? as all its vertices lie in the (d — 1)-dimensional hyperplane z; = 0), so z + te;
is contained in the interior of S, for ¢ > 0 small enough. Similarly, assume

Sy = Sy N Fi for some Sy € S, then z + te; is also contained in the interior of
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Sy for t > 0 small enough, which is impossible as S is a triangulation and its

simplices has pairwise disjoint interiors, so we get a contradiction as desired.

Therefore, S; ;5 is indeed a triangulation of F;s, which is a translated and reflected
(d — 1)-dimensional unit cube [0, 1]¢L.

Assume for contradiction that ;s is not a reflected version of the Kuhn triangu-
lation. Without loss of generality, consider the case i = 1 and § = 0. By induction,
there exists a function f : Fi o — R and a linear modulus of regularity wy of f
which is not a modulus of regularity of the continuous piecewise linear approximator
O : 1y — R of f with respect to the triangulation S; . Consider the extension f*
of f to [0, 1] defined by:

def.

f*<l'1,l'2,x3,"' 7:Ed) = f(07x27x37"' ,.Td), v<$1,$2,x3,"' ,l’d) € [07 1]d

Clearly wy is also a modulus of regularity of f* as it is non-decreasing. Let ®*
be the continuous piecewise linear approximator of f on [0,1]¢ with respect to the
triangulation S, then the restriction of ®* on [ is @, but this implies that w; is not
a modulus of regularity of ®*, as this is not so even just on the subset Fjq of [0, 1]%.
Thus, we get a contradiction as desired.

Therefore, S, is indeed some reflected version of the Kuhn triangulation, for
i=1,---,dand § = 0,1. Since Fy, is the unit cube [0, 1]~ in the (d—1)-dimensional
hyperplane z; = 0, without loss of generality, we may assume that Sz is the “orig-
inal” Kuhn triangulation of Fyo without any reflections. Then, by definition of the
Kuhn triangulation, any simplex in S0 has an edge connecting u; ot (0,0,---,0,0)

def.

and uy = (1,1,---,1,0). Since Szp is the “restricted” triangulation of S on Fp,

there is some corresponding simplex in S that has an edge connecting u; and u,.
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Next, we identify the “separating hyperplanes” (i.e. each simplex lies on the same
side of it) in S and show that they are the same as the ones given in Lemma 7.5.1.
We first show that the hyperplanes x; —x; = 0 for all 1 <@ < j < d—1 are separating
hyperplanes of S.

Assume for contradiction that there is some 1 < ¢ < 7 < d — 1 such that the
hyperplane z; — z; = 0 is not a separating hyperplane. Without loss of generality,
assume that ¢ = 1,7 = 2. Then, there is some simplex in S that has two vertices
v1, vy on different sides of the hyperplane x; — x5 = 0, so it has an edge connecting
Vi,V as it is a simplex. Since vy, vy € {0, 1}d and they lie on different sides of the
hyperplane 27 — 25 = 0, v; = (0, 1,5§1), e ,(5&1)), Vo = (1,0,5:(,,2), e ,5&2)), where the
5" are either 0 or 1.

Now, consider the following “counterexample” function:
d
floy, ma, - xq) = oz —23) + Z%, (21,2, 2q) € [0,1]7
i=3

Clearly f is Lipschitz continuous with Lipschitz constant 1 (under ¢! norm of R?),
so w(z) = x(Vz = 0) is a modulus of regularity of f. However, for the continuous
piecewise linear approximator ® of f on [0,1]¢ with respect to the triangulation S:

consider the pair of points

def. U1 + U2 (1 1
u = =

9 57570707”'7070)

272’ 2 o 2 ’ 2

g VitV < I R S S ) e 55?)
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Since there is some simplex in S that has an edge connecting u; and us,

u; + uy P(uy) + P(uz)  f(uy) + f(uy)
2 )Z - =0

Mw=®( 2 2

Since there is some simplex in S that has an edge connecting v, and v,

d ¢(1) (2
B(v) = @ <v1 +V2> _ O (vy) + P(va) _ f(v1) + f(v2) 1 "’Z 6, +9;
2 2 2 242
Then, w is not a modulus of regularity of ® because
1 Go+ 5 4, 6 5<2
|@(u) — @(v)| = §+Z Z = w(fu—v)
=3 =3

This contradicts our assumption that the continuous piecewise linear approximators
of any Lipschitz continuous functions on [0, 1]¢ with respect to the triangulation S
always preserve regularity under ¢' norm of R%. Thus, we get a contradiction as
desired.

Therefore, the hyperplanes z; —2; = O for all 1 < ¢ < j < d — 1 are indeed
separating hyperplanes of S.

By similar arguments as above, switching to other “pivot axis” than x4, we can
conclude that for any 1 < ¢ < j < d, either z; —x; = 0 or z; + x; = 1 is a separating
hyperplane of S, taking possible reflections into account. We have shown above that
for all 1 <1 < j < d, the separating hyperplane is of the form z; — z; = 0. Thus, we
remain to show that all remaining hyperplanes either all have the form z; — x4 = 0
or all have the form x; + x4y = 1 for 1 <7 < d — 1, and then the result follows from

Lemma 7.5.1.
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Assume for contradiction that there are some distinct 7,7 with 1 < 4,5 < d—1
such that both z; — 24 = 0 and x; + x4 = 1 are separating hyperplanes of S. Without
loss of generality, assume that ¢ = 1, 5 = 2. Then, consider the following d separating

hyperplanes of S:

r1—24=0, To4+ax4=1 x11—29=0, 2p,=0for3<k<d-1

They intersect at a single point (%, %, 0,0,---,0, %), which must be a vertex of some
simplex in S, but this is impossible since it is not a lattice point. Therefore, we get

a contradiction as desired. O

Proof of Theorem 6.2.1. The proof is a mild modification of the one in [70], which
approximates the target function by assigning constant values (sample values) on
some pairwise disjoint cubes inside [0, 1]¢, and the rest of [0,1]¢ is called “trifling
regions” where errors are controlled by making these regions extremely small and
taking the median of 3¢ such MLPs with different trifling regions. The problem with
this approach is that the Lipschitz constant explodes in these extremely small trifling
regions. Here, we partially resolve this issue by taking the median of only 2d + 1 of
these MLPs, thus enabling these trifling regions to become as large as possible, which
leads to a lower Lipschitz constant.

For the case d = 1: Let 2; = 5 for i = 0,1,--- ,n? Since

5

then by Proposition 7.4.1 (taking M =2n+1, N = [2":2J), given the set of no more

l

{n+1| n+1 1 n
> _

2 2 2 2

than M N samples {(z;, f(x;)) : i = 0,1,---,n?}, there exists ® € NN (#input =
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1; widthvec = [2n + 1,2n]) such that ®(x;) = f(x;) for i = 0,1,--- ,n? and ® is
linear on [x;,z;41] for @ = 0,1,---,n? — 1. Then, the result follows from Lemma
7.3.4.

Therefore, in the rest of this proof, we will assume that d > 2. We will also assume
that f is non-negative, since otherwise we can first construct ® for the non-negative
function f — min f and then add back min f (which exists since f is a continuous

function on a compact domain) in the output layer.

For k = 1,2,--- ,2d + 1 we define some modifications of these “trifling region”
in [70]:
d n—1
1/ k-1 1 k
Q d;f. _ . O 1 d . ; - . - .
g L_Jl{x (21, 2a) €10, 1) s erO n\ear1 ™) nl\aar ™
(7.9.1)

Q. is the union of nd “thick hyperplanes”, where for each of the d axes, there are
n of these parallel and equispaced “thick hyperplanes” that are perpendicular to it.
Then, €, separates [0,1]% into n? (if k = 1 or 2d + 1) or (n + 1) (if 2 < k < 2d)

non-overlaping equispaced cuboids:

o o= [\ U (2 (575 00) L (s +0)) r 792

Most of these cuboids are d-dimensional cubes, except for the ones that touches some
face of [0,1]¢ for 2 < k < 2d. See Figure 7.4 for an illustration of Qy,--- €5 and

Q1, -+ ,Q5 for the case n = d = 2.

118


http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece

M.Sc. Thesis — R. Hong; McMaster University — Mathematics
y y y
y y
. .

Figure 7.4: An illustration of the trifling regions €y, -- ,€Q5 (colored in red) and
Q1, -, Q5 (colored in blue) for the case n = d = 2. Each of the smallest cubes appears in

blue regions (where approximation errors are controlled) for at least 3 times. By Lemma
7.3.1, the errors of their medians are also controlled.

Step 1: Construct the projection maps 7 : [0,1]? — R for each Q)

Fix 2 < k < 2d. The cases k = 1 or 2d + 1 can be treated similarly and require
less neurons, but we will assume that they require the same number of neurons as
other cases for convenience. We will define 7, in such a way that it is constant on

each cuboid of ), and different cuboids correspond to different constants. Notice

n—1
1 (k-1 L[ &
0,1 - )= '
10.1] g(n(deﬂ)’n(de”))

is the union of n + 1 equi-spaced closed intervals, so we define a map py : [0,1] - R

that

which maps the first of them (counting from the left) to 0, the second of them to 1,. ..,

the last one of them to n, and let p be linear on each of the remaining intervals such
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that it is continuous. Then, p; has 2n + 2 break points (including 0 and 1), so by [69,
Lemma 2.1], p; can be implemented by a ReLU MLP with width 2n + 1 and depth

1. Then, for x = (21, -+ ,z4) € RY, we define

d
TR(X) = Z(n + 1) e (ay)

which can be seen as the number (pg(z4)pr(24—1) - pr(z1)) in base n + 1, so it is

easy to see that m; indeed maps each of the (n + 1)¢ cuboids to different constants,

namely 0,1,2,---,(n + 1) — 1. Then, we implement 7 as follows:
1y pr(1)
T2 pk(fEQ) d ,
— — Z(n + 1) pp(ay)
i=1
| Ld | _pk:(l'd)_

so 7 has width (2n + 1)d and depth 3 (counting the output layer, which is still a
hidden layer of the final network).

Step 2: Construct a 1-dimensional memorizer ¢, : R — R for each @)

Fix 2 < k < 2d. As in Step 1, the cases k = 1 or 2d + 1 can be treated similarly
and require less neurons, but we will assume that they require the same number of
neurons as other cases for convenience.

For j = 0,1,2,--+,(n+1)?—1, let y; be the value of f at the center of the cuboid
that is mapped to j under m,. Note that the range of 7, is [0, (n + 1)? — 1], so we
don’t need to care about the behavior of our memorizer outside this interval.

Let {(4,4;) : 5 =0,1,2,--- ,(n+ 1)4 — 1} be a sample set of size (n + 1) for our
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memorizer. Since

DO |

{2[(71 + 1)%2] + 2J _ V(n + )42 + 1J . [(n+ D)7 ]+1 1 N (n +1)42
4 2 2 2

then by Proposition 7.4.1 (taking M = 2[(n + 1)¥?], N = [wp, there is a
ReLU MLP ¢, with width 2[(n+1)%2] and depth 3 (counting the output layer, which
is still a hidden layer of the final network) that memorizes this sample set, and ¢y, is
linear on [4,j + 1] for j =0,1,--- ,n? —2.

Step 3: Combine Step 1, Step 2 and Lemma 7.3.2 to construct the
final network ¢

We denote the ReLU MLP implementing the median function on 2d + 1 non-

negative arguments as Moy, 1, which has width 6d + 3 and depth 11d + 3 by Lemma
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E x = m (X) e
m1(x)
T (X)
_¢1071(X)_ _¢107T1(X>_
. T (X) . ¢ 0 ma(X)
| 7T2d+1(X) ] i 7T2d+1(X) l
¢1 0 m(X)
(g O Ty (X)

7.3.2, then we construct ® as follows:

7T1<X)

T (X)

= M2d+1

_¢2d+1 O Tad+1 (X)

Its width and depth are

[ m24(%)

i (x)
m2(x)
T2a(X)
_7T2d+1(X)_
| homb |
2 0 my(x)

_¢2d+1 O 7T2d+1(X)

width(®) = max {width(meg11) + 2d, width(peg.1) + 2d, width(Magi1)}

= max {(2n + 3)d,6d + 3,2[(n + )% + 2d}
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2d+1 2d+1
depth(®) = Z depth(mg) + Z depth(¢y) + depth(Magi1)
k=1 k=1

=3(2d+1)+3(2d+ 1)+ (11d + 3)

=23d+9

Step 4: Estimate the L™ error
We first show that the L® error of ¢, o 7 is controlled on ), for all k: pick any
W € @k, then since 7, maps the cuboid in @ containing w (whose center we denote

by W) to some constant j, which is further mapped by ¢ to y; = f(wy), we have

O Oﬂk(W) = f(Wo), S0

|0 0 me(w) = f(W)| = [f(wo) = f(W)| < v]wo — w7

Since the edge length of any cuboid in Qy is at most | = n(%‘il) (this can be seen
from Equation 7.9.2), [wo — w|; < 4l = n(%il), then

2 «
o0 mlw) = )] < vl — wit < v (5

Now, for any x = (21,2, ,zq) € [0, 1]¢, we show that it belongs to at least d+1
out of 2d + 1 Q}’s: notice that in the definition of the trifling regions €2 (Equation

7.9.1), each x; belongs to at most one of the following:

n—1

1 (k-1 1/ k

- ), - ' for k=1,2,--,2d + 1
L%<n<2d+1+j>’n<2d+l+j))’ R R

Jj=

so x belongs to at most d trifling regions, thus x belongs to at least d + 1 of the Q;’s.

Therefore, for any x = (21,7, -+ ,zq) € [0,1]¢, at least d + 1 of ¢, o m(x) (for
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k=1,2,---,2d + 1) belong to the interval [f(x) _ V(n( 42 ))a7f(x) n V(n( &2 ))a:|,

2d+1 2d+1

then by Lemma 7.3.1,

®(x) = median {¢p o mr(x) : 1 <k <2d + 1} € [f(x) - V(n(%il)f’f(x) - ,,(71(%11))&]

hence

42 “
— P, < —oq .1
If | £ee o1y < v (n(2d+ 1))

Step 5: Estimate the Lipschitz constants

To compute the Lipschitz constants, we first fix 2 < k < 2d, and compute the
Lipschitz constant of ¢ o 7. It is easy to see that ¢ o m; and ¢9g.1 © mag1 have at
least the same regularity since there are less cuboids in @)1 and (Qo441. Finally, by
Lemma 7.3.3, their median has the same regularity.

We first compute the Lipschitz constant of 7. Let x € [0,1]¢ and Ax small, we
want to find an upper bound for |m;(x + Ax) — 7 (x)|. By definition of py, it only

increases linearly by 1 inside intervals of length m, so |pi] < n(2d + 1), thus

[pr(x + Ax) = pe(x) 1 < n(2d + 1) Ax|y

N
where pj, applies to x elementwise. Let n = m+1)° (n+1) -~ (n+1)¥H
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then
|7k (x + AX) — (%) = |n - pr(x + AX) — n - pp(x)]
= n - (pr(x + Ax) — pr(x))|
< (n+ 1) pe(x + Ax) — pe(x)]4
< (n+ 1D%2d + 1)|Ax|,
therefore

Lip(m) < (n + 1)%(2d + 1)

Now we compute the Lipschitz constant of ¢;. As mentioned above, let
d
(@21 Q1 )ns1 = Z n+1)

denote the number @jas - - ag in base n + 1. Let P be the center of the

adad 101 )n+1

unique cuboid in () such that p; (P(k) = q; for i = 1,2,---,d. Note

(adadfl'”al)n-#l)
that a; € {0,1,2,--- ,n} for all .. Then, ¢ is the unique continuous piecewise linear
function that goes through {(7, f(Pj(k))) 17 =0,1,2,--- (n+ 1) =1} and is linear

between adjacent points in this set. Then,

Li = a P*Yy ¢ (p® < a ‘
1p<¢k) j:071’2?}7(§+1)4_2 f( g+1) f( ) j:071’271.1“17(§+1)d_21/
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Finally, by Lemma 7.3.3, the median function preserves regularity, hence

Llp(q)) S k=1,2n,l~?d)7(2d+1 Llp(¢k ° Trk)

< kzlgr?%:j(zd+l Llp(¢k) Llp(ﬂ—k)

<v(n+1)42d + 1)d~

This concludes our proof.
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