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Abstract

The foundations of deep learning are supported by the seemingly opposing perspec-

tives of approximation or learning theory. The former advocates for large/expressive

models that need not generalize, while the latter considers classes that generalize but

may be too small/constrained to be universal approximators. Motivated by real-world

deep learning implementations that are both expressive and statistically reliable, we

ask: ”Is there a class of neural networks that is both large enough to be universal but

structured enough to generalize?”

This paper constructively provides a positive answer to this question by identifying

a highly structured class of ReLU multilayer perceptions (MLPs), which are optimal

function approximators and are statistically well-behaved. We show that any L-

Lipschitz function from r0, 1sd to r´n, ns can be approximated to a uniform Ld{p2nq

error on r0, 1sd with a sparsely connected L-Lipschitz ReLU MLP of width Opdndq,

depth Oplogpdqq, with Opdndq nonzero parameters, and whose weights and biases take

values in t0,˘1{2u except in the first and last layers which instead have magnitude

at-most n. Unlike previously known ”large” classes of universal ReLU MLPs, the

empirical Rademacher complexity of our class remains bounded even when its depth
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and width become arbitrarily large. Further, our class of MLPs achieves a near-

optimal sample complexity of OplogpNq{
?
Nq when given N i.i.d. normalized sub-

Gaussian training samples.

We achieve this by avoiding the standard approach to constructing optimal ReLU

approximators, which sacrifices regularity by relying on small spikes. Instead, we

introduce a new construction that perfectly fits together linear pieces using Kuhn

triangulations and avoids these small spikes.
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Chapter 1

Introduction

The foundations of deep learning are typically investigated from two seemingly op-

posing perspectives: either analytically in terms of the approximation power of neural

networks [83, 61, 16, 70, 71] or statistically by guaranteeing that these models gener-

alize beyond the training data [6, 7]. On the one hand, the (universal) approximation

literature studies MLPs that approximate continuous functions using a minimal num-

ber of neurons, and it typically overlooks the regularity needed for them to exhibit

reliable statistical behaviour. In contrast, the learning theory literature studies re-

stricted classes of MLPs which generalize beyond their training data by limiting their

expressivity either through weights and biases restrictions [54, 49, 81] or Lipschitz

constraints [25]. Practical deep-learning implementations, however, exhibit both of

these characteristics: They are powerful approximators and reliably generalize. This

means that the deep learning theory community still has not identified a class of

MLPs that reflects the analytic and statistical properties of real-world deep learning

implementations.
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This paper addresses this gap between theory and practice by identifying a sub-

class of deep ReLU MLPs that exhibits both optimal approximation rates when ap-

proximating continuous functions on r0, 1sd and which generalizes well, even when

overparameterized. Informally, our main finding is that deep ReLU MLPs of max-

imal regularity are optimal (universal) approximators. Our sub-class of maximally

regular ReLU MLPs exhibits several familiar properties of real-world deep learning

implementations, such as sample interpolation [35, 72] and small derivatives [50, 30].

We find that it is enough to analyze the sub-class of real-valued ReLU MLPs

NN L,n
∆,W on Rd whose size is constrained by a prescribed depth ∆ and width W ,

and whose regularity is limited by restricting their maximal Lipschitz constant. Fur-

thermore, the trainable parameters in NN L,n
∆,W are highly structured in that, all the

weights and biases in their first and last layer are at most n, while in all other inter-

mediate layers, all biases are 0 and all weights are in t0,˘1{2u.

Our main result shows that structural constraints, imposed by L and n, does not

hinder the optimal approximation power of NN L,n
∆,W .

Theorem 1.0.1 (Optimal Approximation by ReLU MLPs with Maximal Regularity).

For any L-Lipschitz function f : r0, 1sd Ñ r´n, ns, there exists an L-Lipschitz ReLU

MLP Φ in NN L,n
W,D with width W ď 8dprLn

2
s ` 1qd, depth D ď rlog2 ds ` 4, at most

16dprLn
2

s` 1qd nonzero parameters, which satisfies

max
xPr0,1sd

|fpxq ´ Φpxq| ď
d

n
.

If we relax the Lipschitz and weights constraints in Theorem 1.0.1, by sending

both L and n to infinity, then we recover the optimal approximation guarantees for

unconstrained ReLU MLPs, which are now well-known in the approximation theory
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literature. However, Theorem 1.0.1 shows that optimal approximation rates can be

achieved while simultaneously imposing regularity on Φ.

Our main result, namely Theorem 1.0.1, confirmed that the class of MLPs NN L,n
∆,W

is rich/large enough to be a universal approximator. The statistical viability of this

class is guaranteed by our second result, which shows this class is tame/small enough

to generalize well.

We consider training data for a classification task tpXn, Ynqu
N
n“1 in Rdˆr0, 1s. Our

second result quantifies the (uniform) generalization gap for the class NN L,n
∆,W , which

is defined as the largest absolute difference between the true risk RpΦq, computed

over the true distribution pX1, Y1q „ P, and the empirical risk RNpΦq, computed on

the training data, for any ReLU MLP Φ in NN L,n
∆,W , where

RpΦq def.
“ EpX,Y q„P

“

`pΦpXq, Y q
‰

, RNpΦq
def.
“

1

N

N
ÿ

n“1

`pΦpXnq, Ynq.

Theorem 1.0.2 (Nearly Optimal Sample Complexity Without Explosion for Deep

and Wide MLPs). Given the sample set tpXn, Ynqu
N
n“1 where tXnu

N
n“1 are i.i.d. cen-

tered, sub-Gaussian random variables with normalized covariance ErX1X
J
1 s “

1
N

Id,

and Id is the dˆ d identity matrix then, for each δ P p0, 1q

sup
ΦPNNL,1

∆,W

ˇ

ˇRpΦq ´RNpΦq
ˇ

ˇ P Õ

˜

a

logp4{δq
?
N

`min

"

W 3∆{2

2∆
?
N
,
Ld{pd`3q

d`3
?
N

*

¸

holds with probability at least 1´ δ.

Our generalization bound in Theorem 1.0.2 guarantees a nearly optimal sample

complexity of OplogpNq{
?
Nq observed in parametric generalization bounds of ReLU

MLPs, e.g. [54, 6, 7]. However, unlike parametric generalization bounds, our bound

3
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in Theorem 1.0.2 converges even in the overparameterized regime where ∆ and W are

allowed to be arbitrarily large (compared to the sample size N). Typically, only non-

parametric generalization bounds, such as e.g. [33], do not explode when ∆ and W

are taken to be arbitrarily large since they can account for the enumerable parametric

symmetries in large neural networks; see e.g. [17, 2] for a discussion on these paramet-

ric symmetries. However, unlike the non-parametric bounds, the sample complexity

of generalization bound for NN L,n
∆,W converges at a dimension-free rate.

(a) Our Strategy - “Maximally Regular”
Networks: The networks constructed in
Theorem 1.0.1 interpolate a given grid

linearly with the optimal slope between any
two grid points. These ReLU MLPs

constructed from finite sample values of the
target function can never have Lipschitz
constant (or, more generally, modulus of

regularity, as shown in Lemma 7.5.4)
exceeding that of the target function.

(b) Standard Approach - “Spiky” Networks:
Following methods such as [83, 70], ReLU
MLPs are constructed by first computing
piecewise constant approximators of the

target function matching its values at grid
points (flat black lines) outside of

so-called trifling regions (shaded in red).
The piecewise constant approximators are

then “glued together” via linear
interpolation (steep red lines).

Figure 1.1: How our method works: Our method (left) against the usual approach
(right) of [83, 70] for ReLU MLPs achieving the optimal convergence rate when

approximating a (blue dashed) target function. Both methods memorize the value of the
target function (black dots) at a specific set of grid points.

What issue does our construction resolve? The trouble in standard construction
(right) is that as approximation becomes more accurate, these small trifling regions

become very small, which can result in extremely steep red interpolating segments. Using
our Kuhn triangulation-based construction (for the multi-dimensional case), we can

construct optimal ReLU approximators with no trifling regions, meaning that we do not
need these steep red segments; therefore, our ReLU approximators are not irregular.

4
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Our construction of universal MLPs, with one-dimensional cartoons illustrated

by Figure 1.1, relies on a new proof technique based on the Kuhn triangulation of the

hypercube r0, 1sd, see [41], and not on the trifling regions perfected by [70]. This new

geometric construction allows us to construct approximating ReLU MLPs of maximal

regularity. Surprisingly, Theorem 6.1.1 shows that there is no other triangulation (up

to reflections) which can be used to construct an approximating ReLU MLP with a

minimal Lipschitz constant; thus, our new construction is essentially unique.

Remark 1.0.1 (Approximation of Smooth Functions). The approximate piecewise

polynomial variant of this construction sketched in Figure 1.1b, which applies for

smooth enough functions and which was developed by [84] and subsequently refined

by [85, 61, 46], uses approximate implementations of piecewise polynomials instead of

piecewise constant functions “outside trifling regions”. Nevertheless, these methods

still “glue together” several of these (approximate) local polynomial approximators

using steep interpolators on these little “trifling regions”. Thus, they, too, still can

have little regions where the resulting ReLU MLPs have very steep linear segments.

Remark 1.0.2 (Approximation in Lipschitz Norm). Theorem 1.0.1 guarantees that

any bounded L-Lipschitz function can be uniformly approximated by bounded ReLU

MLPs whose Lipschitz constant never exceeds L. Thus, the approximation hap-

pens within the compact (thus separable), by Arzelà-Ascoli theorem, set of uniformly

bounded L-Lipschitz functions in the Banach space of continuous functions on the

d-dimensional cube Cpr0, 1sdq. Our result does not claim that one can approximate

any Lipschitz function f : r0, 1sd Ñ R with ReLU MLPs with respect to the Lipschitz

norm }f}Lip
def.
“ maxxPr0,1sd |fpxq|`Lippfq; which is impossible as the space of the Ba-

nach space of Lipschitz functions on r0, 1sd with this norm is not separable whereas

5
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the set of ReLU MLPs is.

1.1 Further Results

Our analysis yields additional results concerning the expressivity of regular ReLU

MLPs.

Memorization/Interpolation with ReLU MLPs of Minimal Lipschitz Con-

stant The memorization (i.e. interpolation) problem for the MLP model dates back,

at least, to [65, Theorem 5.1] where the author showed, amongst other things, that

real-valued shallow MLPs with non-polynomial activation function and width n can

memorize/interpolate n ` 1 points in a domain of Rd. The following is a shallow

version of our main universal interpolation result (Theorem 7.4.1), which guarantees

interpolation of N data points with minimal parameter usage and minimal Lipschitz

constant is possible with ReLU MLPs depending on OpNq trainable parameters, con-

stant depth, and Op
?
Nq width.

Theorem 1.1.1 (Optimal Interpolation with ReLU MLPs of Maximal Regularity

(Shallow Version)). Let ppxn, ynqq
N
n“1 be distinct pairs of training datapoints in RˆR

(with xn ă xn`1 for n “ 1, . . . , N ´ 1). There exists a ReLU MLP Φ : R Ñ R of

width at most 2r
?
N s, depth 2, and with at most 2N ` 8r

?
N s nonzero parameters

such that

Φpxnq “ yn for n “ 1, . . . , N

Furthermore, Φ is linear on the intervals rxn, xn`1s for n “ 1, . . . , N´1, and constant

on p´8, x1s and rxN ,8q.

6
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This (shallow) version of our main memorization/interpolation theorem matches

the optimal (in the sense of VC-dimension) parameter usage of a ReLU interpolator, as

in [78]. The construction of [78], however, can easily be seen to have a large Lipschitz

constant, whereas the Lipschitz constant of our interpolating ReLU MLPs cannot be

improved as they are exactly the best piecewise linear interpolator of the training

data. It is worth noting that, in [62, Theorem 9.6], the authors recently constructed

interpolating ReLU MLPs, which also obtain the optimal Lipschitz constant (with

respect to the `1 norm) in the multi-dimensional case. Those networks, however,

require depth OplogpNqq and width OpNq, making them sub-optimal in terms of

parameter usage. Instead, the memorizers of Theorem 1.1.1 are optimal for both

literature streams as they both have minimal parameter usage and minimal Lipschitz

constant.

Our main one-dimensional universal interpolation theorem (Theorem 7.4.1) is a

deep version of Theorem 1.1.1, where the user can exactly specify the depth L ě 4

as well as the layer widths of the interpolating ReLU MLP, subject to the restriction

that no MLP layer (bottleneck) is less than 12 and the total layer widths are at-least

Op
?
N{Lq. What is most interesting about that result is that, unlike the memorizers

constructed in [80], which require very large information bottlenecks if the training

data points are close together, both Theorem 1.1.1 and its deep generalization in

Theorem 7.4.1, show that no such restriction is needed. Moreover, the result shows

that for most depth and width specifications, one can interpolate the training data.

Optimal Global Lipschitz Constant The full version of Theorem 1.0.1, namely

Theorem 4.1.1, allows for functions of arbitrary regularity. Furthermore, Corol-

lary 5.1.1 guarantees that Φ can be chosen to be globally L-Lipschitz, not only

7
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L-Lipschitz on r0, 1sd, by increasing its depth by 1. A consequence of this is Corol-

lary 5.1.2, which shows that for any L-Lipschitz function there is an at-most L-

Lipschitz ReLU MLP of comparable depth and width to that of Theorem 1.0.1, such

that

sup
xPRd

|fpxq ´ Φpxq|
l jh n

Approximation Error in r0,1sd

´L max
i“1,...,n

rpxi ´ 1q` ` p´xiq`s
l jh n

Extrapolation Error beyond r0,1sd

À
1

n

where for each u P R, u`
def.
“ maxt0, uu and À hides a dimensional constant of the

order of OpLdq; here maxi“1,...,nrpxi ´ 1q` ` p´xiq`s is simply the `8 distance to

from a point x P Rd to the hypercube r0, 1sd. This is an additive formulation of the

multiplicative global approximation result of [13].

Best Achievable Approximation of Discontinuous Target Function Our

main version (Theorem 4.1.1) of Theorem 1.0.2 even applies to “regular” but discon-

tinuous target functions. In these cases, the approximation error does not converge to

0 but, rather, to the minimal achievable approximation error (details in Section 3.2.2).

This latter result is rather interesting since it allows us to quantify the best uniform

approximation of discontinuous target functions instead of having to rely on an Lp,

for 1 ď p ă 8, relaxation of the notion of approximability or via randomization as

in [40]. However, as one would expect from the Uniform Limit Theorem; see e.g. [51,

Theorem 21.6], this approximation error does not converge to 0 if the target function

is genuinely discontinuous; however, we can quantify how small it can be made.

Additional Structure of the weights and biases in the class NN L,n
∆,W Propo-

sition 4.1.1 provides details on the weights and biases, as well as the encoding scheme,

used to construct the universal sub-class of NN L,n
∆,W described in Theorem 1.0.1.

8
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1.1.1 Organization of Paper

Our paper is organized as follows. Section 2 overviews related results in the approx-

imation theory literature, focusing on our main result (Theorem 1.0.2). Section 3

contains the preliminary notation, terminology, and background required for the for-

mulation of our main results and their proofs. Section 4 contains our main results,

these are the full version of our “regular” approximation theorem (Theorem 1.0.1) as

well as the version of our main generalization bound (Theorem 4.2.1) with explicit

constants.

Section 5 discusses consequences of our main result, such as extrapolation rates

(Corollary 5.1.2), global Lipschitz regularity (Corollary 5.1.1). A discussion on how

our result fit into the modern theory landscape is given in Section 6; where we also

discuss the uniqueness (up to symmetries) of the Kuhn triangulation we used to

construct our optimal ReLU MLPs of maximal regularity. This later result shows

that our new geometric argument is essentially unique and cannot be improved.

All proofs are relegated to Section 7.

9
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Chapter 2

Related Literature

2.1 Lipschitzness in Neural Networks

Neural networks of a prescribed Lipschitz regularity are common in various areas of

deep learning; with applications ranging from generative adversarial learning [4, 12,

39], conditional distribution estimation [10], to certifiable deep learning [18], amongst

many applications. This has led to several optimization pipelines, e.g. [54, 76, 66, 25,

58], and architectural designs, e.g. [45, 44, 3], enforcing Lipschitzness of trained neural

networks. Various computational tools, e.g. [36, 11, 82], have also been developed to

efficiently estimate the Lipschitz constant of neural networks. Despite extensive work,

there is no guarantee that there will be no loss of model expressivity when imposing

Lipschitz constraints; our main result fills this gap, thus adding additional theoretical

foundations to deep learning areas relying on Lipschitz neural networks. We mention

that the Lipschitz constant of (untrained) randomly initialized neural networks has

recently been studied in [20].

10
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2.2 Approximators with Parameter Restrictions

To the best of the authors’ knowledge, the tightest available approximation results in

the literature, which provide weight and bias size limits, are given in [61, Theorem

3.1]. There, the authors consider an Lp-type approximation, for 0 ă p ă 8, of

any α-Hölder function on r0, 1sd, with α-Hölder coefficient at-most 1 is shown to be

possible using a ReLU MLP depending on Opε´α{dq parameters, organized into at-

most p2 ` rlog2pαqsqp11 ` α{dq layers, and whose weights all belong to r´ε´s, ε´ss;

where s ě 1 is an integer depending at-least on the Hölder exponent (α) of the target

function and on the dimension. For simplicity, examining the proofs of [61, Lemmata

A.3] one sees that s ě 7. Now, [57, Theorem 1] guarantees that the width of any

universal (in the Lp sense) class of ReLU MLPs must have a width at least d ` 1.

Therefore, these observations, together with the fact that the operator norm }A}op:2Ñ2

of any dˆ d matrix by its componentwise 2-norm bound (and the elementary bound

on } ¨ }2 ď } ¨ }1): }A}op:2Ñ2 ď d maxi,j“1,...,d |Ai,j| implies that the upper-bound on

the Lipschitz constant Lippf̂q of ReLU MLP Lp (p ă 8) approximator f̂ which can

be deduced from [61, Theorem 3.1] must be at least

dp2`rlog2pαqsqp11`α{dq

ε7 p2`rlog2pαqsqp11`α{dq
ě

d33

ε231`21α{d
. (2.2.1)

Comparing the Lipschitz constant of a neural network whose weights achieve the

lower-bound in (2.2.1), to the Lipschitz constant of our main result (Theorem 1.0.1)

shows that the latter significantly improve the guarantees in the literature; as (2.2.1)

diverges as the approximation error tends to 0 while our Lipschitz constant remain

at the optimum.

11
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Approximation of Lipschitz functions with values in r´1, 1s by MLPs with the

ReQU activation function and weights in r´1, 1s is possible, however, there are no

such guarantees for MLPs with the most standard ReLU activation function. We

mention the work of [9] which controls the statistical properties of ReLU MLPs with

bounded weights and biases using their best approximation (assuming it is exoge-

nously bounded) and a correction term.

2.3 Approximation of Functions and Their Deriva-

tives

The approximation of a function and its derivatives has drawn significant attention

in the deep learning for partial differential equations (PDEs) literature [56, 28, 15,

14, 29, 43, 29, 47, 23, 68]. Guarantees that networks can approximate a function

while also approximating its (at least first) derivative date back to [32] with more

recent quantitative guarantees being given by [27, 28, 9, 52] (not all of which use

the ReLU activation function). Recall that, by the mean value theorem, every once

continuously differentiable function is Lipschitz on r0, 1sd with its Lipschitz constant

given by the maximum norm of its gradient thereon; and, as a partial converse, ev-

ery Lipschitz function on Rd is differentiable almost-everywhere on r0, 1sd; see [19,

Theorem 3.1.6]. Thus, for the subclass of Lipschitz functions which are once continu-

ously differentiable, these results guarantee that MLPs can approximate these maps

on r0, 1sp while also approximating their Lipschitz constant.

However, there is no guarantee that MLPs can approximate these functions while

exactly implementing their Lipschitz constant even locally. More generally, there is

12
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no result that MLPs can approximate functions of lower regularity (e.g. Hölder of

sub-Hölder functions) while also exactly matching their Lipschitz constant globally.

2.4 Global Universal Approximation

Theorem 4.1.1 provides exactly this guarantee showing, in particular, that ReLU

MLPs can globally implement concave moduli of continuity of any uniformly contin-

uous functions (e.g. Hölder or Lipschitz functions) while locally approximating them

in r0, 1sd. A global guarantee of the extrapolation rate for an approximation on r0, 1sd

will also be provided in Corollary 5.1.2, and this is possible due to our guarantee that

we may exactly and globally match the modulus of continuity of the target function

being approximated.

We note that there do exist qualitative global approximation theorems in the deep

learning [13], reservoir computing [26], and Stone-Weirestrass type [21] approximation

literature. However, although each of those results is qualitative, it is currently not

known what the extrapolation rates are for deep learning models, which are only

guaranteed to provide a uniform approximation on r0, 1sd.

2.5 Non-Linear Widths

In constructive approximation, one typically quantifies the “hardness to approximate”

a compact class K of functions in Cpr0, 1sdq by the size, so-called widths, of the set

K. Broadly speaking, most widths can be divided into either one of two classes. One

of them are distance-type widths, where one measures the size of K in relation to its

distance from relevant low-dimensional objects, describing what can be implemented

13
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by the relevant numerical scheme. The other are encoding-decoding-type widths,

where one quantifies the size of K by the recover-error incurred by first encoding its

elements into a low-dimensional parameter space and subsequently decoding them

back into the function space Cpr0, 1sdq; all the while trying to match them losslessly.

When the objective is to compress K by projecting it down onto the closest

m P N`-dimensional linear subspace Lm, yielding lower bounds on linear approxima-

tion algorithms, one obtains various notions of Kolmogorov linear widths dlinm pKq
def.
“

infLm supfPK infgPLm }f ´ g}L8pr0,1sdq of [38]; see e.g. [64]. However, as most contem-

porary numerical methods, such as sparse wavelet compression in signal processing

or deep neural networks in machine learning, are non-linear, then one often considers

non-linear quantification of the size of such classes K.

The main result of this paper can be interpreted as a highly non-linear width of

distance type. Here, we are interested in the best approximation of a compact class

of functions K Ă Cpr0, 1sdq by the class NN L,n
∆,W . Thus, we are studying the width

dL,n∆,W pKq
def.
“ sup

fPK
inf

ΦPNNL,n
∆,W

}f ´ Φ}L8pr0,1sdq. (2.5.1)

This is a highly non-linear width since NN L,n
∆,W is contained in the intersection of

the infinite-dimensional compact (by Arzela-Ascoli) convex set LippRd,R, Lq of real-

valued functions on Rd intersected with the finite-dimensional highly non-convex

(see [60, Theorem 2.1]) but closed (see [59, Theorem 3.8]) set of ReLU MLPs of

a given depth and width. Thus, dL,n∆,W pKq is a highly non-convex analogue of the Kol-

mogorov m P Op∆W 2q-dimensional linear widths, where m is the maximal number

of parameters defining such a neural network.

14
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2.6 Deficits of Parametric Generalization Bounds

for Overparameterized MLPs

Under the assumptions of Theorem 1.0.2, the Rademacher complexity bounds of [8,

Theorems 8 and 12] and [6], together with some result on random matrices with

independent rows in [79, Theorem 4.6.1] (see Appendix 7.8 for details) can only

imply the following much weaker bound: for each 0 ă δ ă 1 the following holds

sup
ΦPNNL,n

∆,W

ˇ

ˇRpΦq´RNpΦq
ˇ

ˇ P O
´

a

logp4{δq
?
N

¯

` Õ
ˆ

1

N3{2
`
W 3∆{2

a

logp4{δq
?
N

˙

(2.6.1)

with probability at least 1 ´ δ. We also note that, the nearly optimal VC-bounds

derived in [7] for ReLU MLPs also diverge when W and ∆ tend to infinity.
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Chapter 3

Preliminaries

This section contains the preliminaries needed to formulate our results. These include

both the notation used in this manuscript, as well as the background terminology

relating to multilayer perceptrons.

3.1 Notation

We use R,N,N`,Z to denote the set of real numbers, non-negative integers, positive

integers, and integers, respectively.

For any x P R, let txu
def.
“ maxtn P Z : n ď xu denote the floor of x, and

rxs
def.
“ mintn P Z : n ě xu denote the ceiling of x. For any n P N`, let rns denote the

set of integers t1, 2, ¨ ¨ ¨ , nu.

We denote the rectified linear unit (ReLU) activation function by σ : R Q t ÞÑ

maxt0, tu P R. It will always be applied componentwise to any vector, by which we

mean σpxq
def.
“ pσpxiqq

d
i“1 for each x “ px1, ¨ ¨ ¨ , xdq P Rd and every d P N`.

Vectors in dimensions above 2 are denoted by bold lowercase letters. Matrices are

16
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denoted by bold uppercase letters.

3.2 Uniform Regularity

We first overview the standard notions of uniform continuity before introducing their

discontinuous generalizations for which our approximation results hold.

3.2.1 Uniform, Lipschitz, and Hölder Continuity

A map ω : r0,8q Ñ r0,8q is called a modulus of continuity if ω is monotonically

increasing and continuous (from the right) at 0 with ωp0q “ 0. Let pX, ρXq and

pY, ρY q be metric spaces and f : X Ñ Y . We say that ω is a modulus of continuity

for f if: for each x, x̃ P X

ρY pfpxq, fpx̃qq ď ωpρXpx, x̃qq.

We often consider uniformly continuous functions which are either Lipschitz and

Hölder continuous. If L ě 0, 0 ă α ď 1, and ωpxq “ Lxα, then we will say that f

is α-Hölder with constant L. The class of all such f : X Ě Ω Ñ R is denoted by

HolpL, α,Ωq. If α “ 1, we say that f is L-Lipschitz. Given any real-valued function

f on a subset X of Rd, we use Lippfq to denote its optimal Lipschitz constant with

respect to the restriction of the `1-norm to X; i.e.

Lippfq
def.
“ sup

x,yPX
x‰y

|fpxq ´ fpyq|

}x´ y}1
.

We are mostly interested in the case where X is a subset of the space pRd, `1q and

17
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pY, ρY q is a Euclidean line; where, for 1 ď p ď 8, `p indicates that we are equipping

Rd with the metric induced by the `p norm }x}pp
def.
“

řp
i“1 |xi|

p if p is finite and

}x}8
def.
“ maxi“1,...,d |xi| otherwise.

3.2.2 Uniform Regularity, Best Achievable Approximation

Error, and Discontinuity

We consider the following broad class of (possibly discontinuous) target functions,

including uniformly continuous functions. The reader which is only interested in

approximation guarantees for continuous functions, where an asymptotic error of 0

is achievable by ReLU MLPs, is encouraged to skip this section and swap the term

“modulus of regularity” for “concave modulus of continuity” in the remainder of the

paper. We rely on the following weakened version of a concave modulus of continuity.

Definition 3.2.1 (Modulus of Regularity). Let I “ r0,8q or I “ r0, T s for some

T ě 0. A function ω : I Ñ r0,8q is called a modulus of regularity if:

1. ωp0q “ 0,

2. ω is monotone increasing,

3. ω is concave.

Moduli of regularity allow us to quantify the best achievable approximation error,

when uniformly approximating discontinuous target functions. Before formalizing

this, we recall that concave functions on bounded domains Ω Ă Rd are continuous on

their interior but need not be on the boundary BΩ of Ω. For example, the indicator

function Ip0,8q of p0,8q is concave on Ω “ r0,8q, continuous on p0,8q, and has a

18
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discontinuity on BΩ “ t0u. We will often consider the best achievable approximation

error ω‹ P r0,8q, when minimizing such a modulus, which is given by

ω‹
def.
“ lim

tÓ0
ωptq.

Example 3.2.1 (Concave Moduli of Continuity are Moduli of Regularity). If ω :

r0,8q Ñ r0,8q is a concave modulus of continuity, then ω is a modulus of regularity,

with ωp0q “ 0, and ω is continuous at 0; i.e. lim
tÓ0

ωptq “ 0 and in particular ω‹ “ 0.

The previous example illustrates the main difference between moduli of continuity

and moduli of regularity; namely, the value of 0 need not be achievable by minimizing

ω from the right. Indeed, if ω is a modulus of regularity, then it is non-negative and

it fixes 0; thus, ωptq ě ωp0q “ 0 for all positive values of t. Consequentially,

ωp0q “ 0 ď ω‹ (3.2.1)

for any modulus of regularity. This inequality can be strict for discontinuous func-

tions.

Example 3.2.2 (Beyond Moduli of Continuity). Fix M ą 0 and L ě 0. The function

ω : r0,8q Ñ r0,8q given for each t P r0,8q by

ωptq
def.
“

$

’

’

&

’

’

%

M ` L t if t ą 0

0 if t “ 0

is a modulus of regularity but not a modulus of continuity, and the inequality in (3.2.1)

is strict.

19

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.Sc. Thesis – R. Hong; McMaster University – Mathematics

The class of continuous functions between metric spaces are precisely those func-

tions for which: for every compact subset of their domain, there is a modulus of

continuity bounding the distance between the images of all pairs of points therein,

see e.g. [51, Theorem 27.6], and such that the images of arbitrarily close points are

themselves arbitrarily close.

If one relaxes the second condition, we are left with the following functions con-

sidered in our paper. Our interest in this class stems from (3.2.1), wherein our main

result (Theorem 4.1.1) shows that for ω-regular function can be approximated by a

ReLU MLP with at-most ω-regularity, up to the best achievable approximation error

ω‹. In the very special case where the target function is additionally continuous,

we can guarantee the usual type of conclusion: our ReLU MLP approximators can

achieve zero approximation error asymptotically.

hpxq
def.
“

$

’

’

&

’

’

%

1, x ě 0

0, x ă 0

Figure 3.1: The heaviside function h is ω-regular with ωptq “ 1 if t ą 0 and 0 otherwise.

Definition 3.2.2 (ω-Regular Functions). Let ω be a modulus of regularity, pX, ρq

and pY, ρ1q be metric spaces. A map f : X Ñ Y is said to have ω-regularity at a pair

of points x, x1 P X if

ρ1
`

fpxq, fpx1q
˘

ď ω
`

ρpx, x1q
˘

.

If, moreover, f has ω-regularity at all pairs of points x, x1 P X then, we way that f is
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ω-regular (on X). The set of all ω-regular functions from pX, ρq to pR, | ¨ |q is denoted

by LipωpXq.

We will say that a function is regular if it is ω-regular for some modulus of

regularity ω. Geometric examples of discontinuous regular functions include quasi-

isometric [42] and certain coarse embeddings [55, 48]. Discontinuous regular maps

can also be constricted as additive perturbations of Lipschitz functions by some “de-

terministic bounded noise”, as follows.

Example 3.2.3 (Additive Perturbations of Lipschitz Functions). Fix L,M ě 0 and

fix any function η : R Ñ r´M{2,M{2s. For any L-Lipschitz function f : Rd Ñ R

define the perturbed function fη : Rd Ñ R as sending any x P Rd to

fηpxq
def.
“ fpxq ` ηpxq.

Then, fη is ω-regular with modulus of regularity as in Example 3.2.2.

Regular functions need not be well-behaved measure-theoretically. For instance,

in the context of Example 3.2.3 if A is the Vitali set in R and η “ M
2
IA then we see

that fη need not even be Lebesgue measurable even if f was Lipschitz.

Example 3.2.4 (Not all Functions are Regular). Not all functions are regular. The

following map is not regular: f : r0, 1s Ñ r0,8q given for each x P r0, 1s by

fpxq
def.
“

$

’

’

&

’

’

%

1
x

if x ą 0

0 if x “ 0.

However, any bounded function is regular. Nevertheless, their best achievable
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approximation error can be large.

3.3 Multilayer Perceptrons (MLPs) with ReLU Ac-

tivation Function

We now define multilayer perceptions. We then formulate notions of parameteric and

functional regularity often encountered in the literature considered herein.

Definition 3.3.1 (Multilayer Perceptrons with ReLU Activation Function (ReLU

MLPs)). Let ∆ P N` and consider a multi-index d
def.
“ rd1, . . . , d∆`1s P Nd

`. The class

NN pdq consists of all multilayer perceptrons with ReLU activation function (ReLU

MLPs) Φ : Rd1 Ñ Rd∆`1 admitting the following iterative representation

Φpxq “ Wp∆qxp∆q ` bp∆q

xpl`1q def.
“ ReLU ‚

`

Wplq xplq ` bplq
˘

for l “ 1, . . . ,∆´ 1

xp1q
def.
“ x.

(3.3.1)

where for l “ 1, . . . ,∆, Wplq is a dl`1 ˆ dl-matrix and bplq P Rdl`1 , and ReLU ‚

denotes componentwise application of the ReLU function. We denote widthvecpfq
def.
“

rd2, . . . , d∆s.

Given L,W, d,D P N`, we use NN pd,Dq to denote the class of maps f : Rd Ñ RD,

NN∆,W pd,Dq the subset of NN pd,Dq of ReLU MLPs with depth at-most ∆ and

width at-most W , and NN L
∆,W pd,Dq the subset of NN∆,W pd,Dq of L-Lipschitz

ReLU MLPs therein. When clear from the context, we suppress the notational de-

pendence on d and D.
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Given a ReLU MLP f with representation 3.3.1, we call the integers ∆ ´ 1 and

maxl“2,...,∆ dl its depth and width, respectively. Let P pdq
def.
“

ř∆
l“1 dlpdl`1` 1q. When

discussing the stability of the Φ on the parameters defining it via this representa-

tion, we will rely on the following vectorization of the parameters defining its weight

matrices (the Wplq) and its biases (the bplq)

RP pdq
Pθ ðñ pWplq,bplqq∆l“1 P

∆
ź

l“1

`

Rdl`1ˆdl ˆ Rdl`1
˘

. (3.3.2)

In particular, this vectorization of the parameters of Φ allows us to define the maxi-

mum norm of a set of weights and biases defining Φ, in representation (3.3.1), as the

`8 norm of its parameter vector θ in (3.3.2); via

|Φ|par
def.
“ max

i“1,...,P pdq
|θi|, (3.3.3)

where the operation |Φ|par is defined given the representation of Φ in (3.3.1). That

is, different representations of the same function Φ may have different maximum

parameter sizes, meaning that, |Φ|par is not a canonical intrinsic quantification of the

regularity of Φ. However, this is not the case for the optimal Lipschitz constant of

Φ which is independent of any parameterization thereof. Thus, the optimal Lipschitz

constant of Φ is a more natural measure of regularity of Φ than norms on its parameter

vectors; given a particular representation.
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Chapter 4

Main Results

We now present our main approximation result (Theorem 1.0.1) and then the full-

version of our statistical guarantee (Theorem 4.2.1).

4.1 Approximation Guarantees

The following is the full version of our optimal approximation theorem with maximal

regularity.

Theorem 4.1.1 (Optimal Regular Approximation by Sample-Interpolating ReLU

MLPs). Let f be a function from r0, 1sd to R, and let ω : r0, ds Ñ r0,8q be a modulus

of regularity of f . Then, for any n P N`, there exists a ReLU MLP Φ on r0, 1sd with

width at most 8dpn ` 1qd, depth at most rlog2 ds ` 4, at most 16dpn ` 1qd nonzero

parameters, which satisfies the approximation guarantee

}f ´ Φ}L8pr0,1sdq ď ω

ˆ

d

2n

˙
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Furthermore, ω is a modulus of regularity of Φ on r0, 1sd.

Remark 4.1.1. Theorem 4.1.1 provided guarantees on the modulus of regularity of

Φ on r0, 1sd; this guarantee can be extended to all of Rd at a cost of only a factor of

Op1q more non-zero parameters (Corollary 5.1.1 below). In this way, one may obtain

a global extrapolation variant of this result (Corollary 5.1.2 below).

The ReLU MLPs constructed in our main approximation theorem are constructed

from a finite number of samples from the target function at specific grid points. Given

degree of freedom n P N`, we draw

Npnq
def.
“ p1` nqd

samples from the target function the following grid points in r0, 1sd

Xn
def.
“ tx P r0, 1sd : x1, . . . , xd P tj{nu

n
j“0u (4.1.1)

We define the sampling-based encoder En by sending any function f : Rd Ñ R to the

following latent code in RNpnq

Epfq def.
“

`

fpxiq
˘Npnq

i“1
.

Our main universal approximation theorem guarantee, generalizing Theorem 1.0.2,

shows that our regular ReLU approximator of f can be constructed from the Npnq

sample values Epfq, and its construction only relies on the information of f contained

in these samples.

We rephrase the above main theorem in the context of encoder-decoder as follows.
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Theorem 4.1.2 (Theorem 4.1.1, Encoder-Decoder Formulation). Let ω be a modulus

of regularity. For every n P N`, there exists a decoder Dn : RNpnq Ñ NN pd,Dq

such that: for each f P Lipωpr0, 1s
dq, ω is a modulus of regularity of the ReLU MLP

Φ
def.
“ Dn˝Enpfq on r0, 1sd which has width at most 8dpn`1qd, depth at most rlog2 ds`4,

at most 16dpn` 1qd nonzero parameters, and it satisfies the approximation guarantee

max
xPr0,1sd

|fpxq ´ Φpxq| ď ω

ˆ

d

2n

˙

as well as the sample-interpolation guarantee

fpxiq “ Φpxiq for each i “ 1, . . . , Npnq.

Moreover, the parameter norm, path-norm, are all recorded in Table 4.1.
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Description of MLP Estimate

Parameteric Complexity

Depth rlog2pdqs` 4

Width 8dpn` 1qd

Nonzero parameters 16dpn` 1qd

Regularity

Modulus of Regularity Φ P Lipωptxiu
Npnq
i“1 q

Parameteric Regularity |Φ|par maxtn,maxiPrNpnqs |fpxiq|u

Misc. Structure

Encoding Dimension dimpdompDqq pn` 1qd

Support supppΦq Ď r´1{n, 1` 1{nsd

Table 4.1: ReLU MLP (Φ) constructed in Theorem 4.1.2 approximating

f P Lipωptxiu
Npnq
i“1 q on r0, 1sd: All maxima are indexed over i in t1, . . . , Npnqu. The depth,

width, and maximum parameter size |Φ|par are defined in (3.3.3). The regularity of the
encoder is with respect to the `8 norm on RNpnq. By the support supppΦq of Φ, we mean

the set points in Rd where it is non-zero.

Note that, the path-norm bound in Table 4.1 implies that most weights defining

the ReLU MLP must be small. Indeed, a detailed inspection of the construction of

Φ, see Remark 7.6.1, shows that most weights and biases defining Φ are in t0,˘1{2u.

A closer look at the proof of Theorem 4.1.1 reveals much more information about

the structure of the weights and biases of the approximating ReLU MLP constructed

therein, as well as their dependence on the target function. We summarize these

additional facts in the following Proposition; which is proven during the course of our

main result. The following result thus provides in-depth details of the structure of
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the decoder mapping the latent code Epfq to our constructed ReLU MLP.

Proposition 4.1.1 (Estimates for the Weights and Biases in the Construction of Φ

in Theorem 4.1.1). Consider the setting of Theorem 4.1.1, represent Φ as in (3.3.1);

note that 1 ă ∆ ď rlog2 ds` 4.

(i) Target Dependant Layers: The weights Wp∆q depend on f ,

(ii) Target Independents Layers: The weights tWplqu
∆´1
l“1 do not depend on f

but only depend on d, and the biases tbplqu∆l“2 are all 0,

(iii) Typical Weights: For each l “ 2, . . . ,∆´ 1, W
plq
i,j P t0,˘1{2u for each i, j,

(iv) Initial and Terminal Weights: }Wp1q
}`8 ď 1, }Wp∆q

}`8 ď max
iPrNpnqs

|fpxiq|, }b
plq
}`8 ď

n.

We conclude this section by noting that the shape of the optimal ReLU MLPs

in Theorem 4.1.1 can be very flexible. As the following variant of that result shows,

we may specify ReLU MLPs of virtually any width or depth to obtain our optimal

approximation guarantee with maximal regularity.

Proposition 4.1.2 (Theorem 4.1.1 with Variable Width and Depth). Let f be a

function from r0, 1sd to R, and let ω : r0, ds Ñ r0,8q be a modulus of regularity of

f . Then, for any master parameter n P N`, depth parameter L P N`, and width

parameters m1, ¨ ¨ ¨ ,mL P N` satisfying

m1 ` ¨ ¨ ¨ `mL “ pn` 1qd

there exists a ReLU MLP Φ on r0, 1sd with width at most 8dmaxtm1, ¨ ¨ ¨ ,mLu`d`2,

depth at most Lprlog2 ds ` 4q, at most 16dpn ` 1qd ` Lpd ` 2q nonzero parameters,
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which satisfies the approximation guarantee

}f ´ Φ}L8pr0,1sdq ď ω

ˆ

d

2n

˙

Furthermore, ω is a modulus of regularity of Φ on r0, 1sd.

In Corollary 4.1.2, if we take L “ d and m1 “ m2 “ ¨ ¨ ¨ “ md “ rpn` 1qd{ds, then

we can conclude that the same approximator Φ in Theorem 4.1.1 can be implemented

by another ReLU MLP with width Opndq and depth Opd log dq.

4.2 Statistical Guarantees

Next, we investigate the learning theoretic implications of our main result. We con-

sider i.i.d. training data for a classification problem pX1, Y1q, . . . , pXN , YNq „ P in

Rd ˆ r0, 1s and a loss function ` : R ˆ R Ñ r0, 1s. Our objective is to describe

the worst-case generalization gap for any ReLU MLP Φ in the class studied in The-

orem 4.1.1. The generalization gap for any such MLP is defined as the absolute

difference between the true risk RpΦq over the (unseen) test set and the empirical

risk RpΦq computed on the training data; where

RpΦq def.
“ EpX,Y q„P

“

`pΦpXq, Y q
‰

, RNpΦq
def.
“

1

N

N
ÿ

n“1

`pΦpXnq, Ynq.

Theorem 4.1.1 and Proposition 4.1.1 identifies a highly structured subclass of the set

of neural networks with depth ∆ and width W , for ∆,W P N`, which are expressive

enough to approximate any L-Lipschitz functions with range in r0, 1s to a uniform

precision of ωpd{2nq for any prescribed n P N`. Specifically, the class NN L,n
∆,W consists
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of all ReLU MLPs Φ : Rd Ñ R in NN L
∆,W pd, 1q, see Definition 3.3.1, for which the

weights Wp1q, . . . ,Wp∆q in (3.3.1) satisfy

}Wp1q
}8 ď 1, max

l“2,...,L´1
}Wplq

}8 ď
1

2
, and }WpLq

}8 ď n. (4.2.1)

Assumption 4.2.1 (Normalized Sub-Gaussian Training Data). The Rdˆr0, 1s-valued

random variables pX1, Y1q,. . . ,pXN , YNq are i.i.d and X1 is centered, sub-Gaussian,

with normalized covariance

E
“

XnX
J
n

‰

“
1

N
Id

and are defined on a common probability space pΩ,A,Pq; where Id is the dˆd identity

matrix.

Unlike the generalization bound in (2.6.1), deep and wide neural networks gen-

eralize well in practice. On the contrary, several recent results studying gradient

dynamics of “infinitely wide” neural networks suggest that highly overparameterized

neural networks (which may be extremely deep and wide) tend to generalize well and

tend to converge to highly regular networks after being optimized by gradient descent

on the training data. This is not captured by the generalization bound in (2.6.1) since,

when either ∆ or W become large, then the generalization bound in (2.6.1) diverges,

even if L is held constant.

The divergence of (2.6.1) is counter-intuitive since NN L,n
∆,W is contained in the

class of L-Lipschitz functions on Rd with image in r0, 1s; which is totally bounded by

Arzelà-Ascoli theorem, and thus its Rademacher complexity should be controllable by

Dudley’s entropy integral estimate (see e.g. [77, Corollary 2.2.8]). The reason is that

the bound in (2.6.1) is inherited from bounding the Rademacher complexity of the
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larger class NN∆,W which becomes unbounded as the depth and width parameters

grow. Upon noting that the Rademacher complexity of the class NN L,n
∆,W must be

no larger than that of the class of L-Lipschitz functions with values in r0, 1s and no

larger than that of the class NN∆,W , then using the bound on the former computed

for instance in [33, Lemma 25], we may improve (2.6.1) so that it remains bounded

as ∆ and W tend to infinity.

Theorem 4.2.1 (Non-Exploding Generalization Bounds for Arbitrarily Deep and

Wide ReLU MLPs). Let ∆,W, n, d P N`, L,L` ą 0, and consider a L`-Lipschitz loss

function ` : R2 Ñ r0, 1s. Under Assumption 4.2.1, for each δ P p0, 1q the generaliza-

tion gap supΦPNNL,n
∆,W

ˇ

ˇRpΦq ´RNpΦq
ˇ

ˇ is bounded above by

a

8 logp4{δq
?
N

l jh n

Prob. Satisfaction

`2L` min

"

4

N3{2
`

26 logpNq logp2W qW 3∆{2

2maxpt0,∆´2uN

`

?
d` Cd,X1

?
N ` Cd,X1

a

lnp4{δq
˘

l jh n

Parameter Space

, Cd
L

d
d`3

N
1

d`3
l jh n

Function Space

*

with probability at least 1 ´ δ; where Cd
def.
“

`

8pd ` 1q2p16qd
˘1{pd`3q

` 25{2 16d{pd`3q

p18pd`1qqpd`1q{pd`3q

and Cd,X1 ą 0 is a constant depending only on X1 and d.
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Chapter 5

Implications of Theorem 4.1.1

We now showcase the breadth of Theorem 4.1.1 by examining some of its implications

from approximation theory to learning theory.

5.1 Approximation Theory: Extrapolation Rates

Our main result guarantees that the approximating ReLU MLP Φ has a (modulus

of) regularity which is no worse than that of the target function. This allows us to

deduce a sharp extrapolation rate for our approximator outside of r0, 1sd.

We can thus directly obtain a version of a global universal approximation theorem.

However, our result differs from that of [13], which leverage topologies stronger than

the uniform convergence on compacts topology on CpRdq but weaker than the uni-

form topology thereon on suitable subspaces; e.g. the strict topology on continuous

bounded functions studied by [75, 21, 74]. Instead, we do not discount/compress

our error using weight functions outside the unit cube but rater we quantify how

fast it grows, using the moduli of both the target function and its neural network
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approximator.

The first step towards this result is given by our first consequence of Theorem 4.1.1.

Namely, this first corollary shows that we can easily extend the domain of the interpo-

lator Φ in Theorem 4.1.1 to all of Rd while maintaining its regularity. To formulate this

consequence, we consider the distance distr0,1sd from any point to the d-dimensional

unit cube, defined for each x P Rd by

distr0,1sdpxq
def.
“ min

zPr0,1sd
}z´ x}1.

Corollary 5.1.1 (Theorem 4.1.1 with Optimal Global Regularity). For any n P N`

and f : r0, 1sd Ñ R with modulus of regularity ω : r0, ds Ñ R, there exists a ReLU

MLP Φ : Rd Ñ R with width at most 8dpn ` 1qd, depth at most rlog2 ds ` 5, and no

more than 18dpn` 1qd nonzero parameters such that

}f ´ Φ}L8pr0,1sdq ď ω

ˆ

d

2n

˙

Moreover, the following extension of ω is a modulus of regularity of Φ on Rd:

ω̄pxq
def.
“

$

’

’

&

’

’

%

ωpxq, if x P r0, ds

ωpdq, if x ą d

, @x P r0,8q (5.1.1)

Using Corollary 5.1.2, we are able to deduce the following “global universal approx-

imation theorem” with additive correction term, instead of the usual multiplicative

corrective weight used in the global approximation literature [13, Theorem 4.13], in

the reservoir computing literature, e.g. [26, Corollary 9], or in the deep learning for

dynamical systems literature; e.g. [1, Theorem 4.11].
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Corollary 5.1.2 (Extrapolation Bounds for ReLU MLP Approximators). For any

n P N` and f : Rd Ñ R with modulus of regularity ω : r0, ds Ñ R on r0, 1sd, there is

a ReLU MLP Φ : Rd Ñ R with width at most 8dpn` 1qd, depth at most rlog2 ds` 5,

and no more than 18dpn` 1qd nonzero parameters satisfying

sup
xPRd

|fpxq ´ Φpxq|
l jh n

Approximation in r0,1sd

´ ω̄pdistr0,1sdpxqq
l jh n

Extrapolation: beyond r0,1sd

ď ω̄

ˆ

d

2n

˙

.

where ω̄ is defined in (5.1.1). Furthermore, ω̄ is a modulus of regularity of Φ on Rd.
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Chapter 6

Discussion

We now discuss some technical points of our main result, explaining how certain steps

in our construction cannot be improved on. The proofs of each of these results are

relegated to Section 7.9 below.

6.1 The Kuhn Triangulation is Unique for Regular

Approximation

The multi-dimensional analogue of the cartoon of our one-dimensional regular ReLU

approximator illustrated in Figure 1.1a, relies on a specific triangulation of the d-

dimensional cube r0, 1sd. This triangular called the Kuhn triangulation, defined

shortly afterwards, is the most “regular” triangulation in the sense that it is the only

triangulation whose continuous piecewise linear approximators always preserve the

regularity of the function that it approximates under some mild conditions; see [37,

Lemma 1]. This triangulation is used in one of the key technical steps in proving

35



M.Sc. Thesis – R. Hong; McMaster University – Mathematics

Theorem 4.1.1; namely, Lemma 7.5.4.

Figure 6.1: Kuhn triangulations of a 2D (left) and a 3D (right) unit cube.

Definition 6.1.1 (Kuhn triangulation). For any d P N`, the d! different simplices

conv

˜#

k
ÿ

i“1

eτpiq : 0 ď k ď d

+¸

, τ P Sd (6.1.1)

form a triangulation of r0, 1sd, where Sd is the symmetric group on d letters, and

e1, ¨ ¨ ¨ , ed are the standard basis vectors of Rd. This triangulation is called the Kuhn

triangulation.

It is natural to ask if another triangulation could have been used during the proof

of our main result. Surprisingly, this is not the case as any other triangulation, other

than reflections of the Kuhn triangulation, yield approximators with larger Lipschitz

constants. This is the content of the following result which serves as a type of converse

to Lemma 7.5.4.

Theorem 6.1.1 (Uniqueness of the Kuhn Triangulation - up to Reflections). The

Kuhn triangulation is the only triangulation (up to reflections) that makes Lemma

7.5.4 true for the case n “ 1.
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6.2 Parameter Usage Compared to State-of-the-

Art Approximation

This section contains a statement and derivation of the main result of the state-of-

the-art (SOTA) approximation theorem for ReLU MLPs [70] which includes estimates

on the Lipschitz constant of the ReLU MLP constructed therein. We emphasize that

the optimality criterion in the following approximation theorem and its predecessor

was parameter usage, not regularity.

Theorem 6.2.1 (SOTA Universal Approximation Theorem of [70] with Regularity

Quantification). For any 2 ď n P N` and f P Holpν, α, r0, 1sdq with α P p0, 1s, we

have:

1. If d “ 1, then DΦ P NN p#input “ 1; widthvec “ r2n ` 1, 2nsq with Opn2q

nonzero parameters such that

}f ´ Φ}L8pr0,1sq ď
ν

p2n2q
α

Φ P Holpν, α, r0, 1sq

2. If d ą 1, then DΦ P NN p#input “ d; width ď maxtp2n ` 3qd, 6d ` 3, 2rpn `

1qd{2s` 2du; depth ď 23d` 9q with Opdndq nonzero parameters such that

}f ´ Φ}L8pr0,1sdq ď ν

ˆ

d2

np2d` 1q

˙α

LippΦq ď νpn` 1qdp2d` 1qdα
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Observe that the minor improvement of the main result of [70], given in Theo-

rem 6.2.1, yields significantly more irregular MLPs than our main theorem due to

sharp descents between trifling regions (illustrated by the red bands in Figure 1.1b).

In contrast, our Kuhn triangulation-based construction resolves this issue optimally

since the ReLU MLPs constructed using it do not require any trifling region.

Remark 6.2.1 (Improvement of Constant for Variant of [70, Theorem 1.1]). In the

multi-dimensional case, our version of the main result of [70] achieves the optimal ap-

proximation rate with a more efficient parameter usage than the original formulation

in [70]. In our version of their result, we achieve the same approximation rate while

dropping the dependence of the constant on d from exponential to linear.

6.3 Parameter Quantization

Part of the deep learning literature [78, 34] investigates quantized neural networks;

meaning, that their parameters belong to the grid ta{2j : j P t0, . . . , bu, a P Zu. The

reader will notice that most weights and biases in the ReLU MLP Φ constructed

in Theorem 4.1.1 belong to the set t´n,´n ` 1, . . . , n ´ 1, nu Y t´1{2, 1{2u. Since

Proposition 4.1.1 guarantees that the parameters of our MLP are remain bounded,

then [63, Theorem 3] could be used to fully quantize the neural network with only a

minor impact on its expressivity (approximation error). This is because that result

provides tight estimates on the effect of perturbing the weights and biases of an MLP

with fixed depth and width and bounded parameters. However, such perturbations

need not preserve its Lipschitz regularity. We thus mention this as an interesting

direction for future research.
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6.4 Path Norms and Lipschitz Constants

We mention that |Φ|par, defined in (3.3.3), is closely related to the so-called “path-

norm” seen in the literature, defined by

|Φ|path
def.
“

∆
ź

l“1

}Wplq
}op

where } ¨ }op denotes the spectral norm of a matrix. The path norm is typically used

to quantify the regularity of a parametric representation of a neural network [53],

and which is often used as a regularizer during training [54]. The path-norm provides

readily computable upper bound on the Lipschitz constant of Φ, which can be easily

computed from the parameter space of Φ. This is in stark contrast to the exact Lips-

chitz constant of ReLU MLPs, which can be difficult to exactly in practice [81]. Here,

we mention that |Φ|par can easily be estimated from the values in Table 4.1; however,

one readily sees that the path norm bounded in this way can severely overestimate the

Lipschitz constant of the function implemented by the ReLU MLP in Theorem 1.0.1.
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Chapter 7

Proofs

7.1 Additional Notation During Proofs

During our proofs, we will also adopt the following notational conventions, in addition

to those described in Section 3.1. A single layer of an MLP is considered as a column

vector. For each m P N`, the median of the real numbers x1, x2, ¨ ¨ ¨ , xm, denoted by

medianpx1, x2, ¨ ¨ ¨ , xmq, is

medianpx1, x2, ¨ ¨ ¨ , xmq
def.
“

$

’

’

&

’

’

%

xpm`1q{2 if m is odd

pxpm{2q ` xpm{2`1qq{2 if m is even

(7.1.1)

where txpiqu
m
i“1 “ txiu

m
i“1 and xp1q ď ¨ ¨ ¨ ď xpmq. With a slight abuse of notation,

we sometimes abbreviate a column vector in the following way: for example, if x “
„

x1 x2

J

and y “

„

y1 y2 y3

J

, then

„

x σp˘a˘ bq y

J
def.
“

„

x1 x2 σpa` bq σpa´ bq σp´a` bq σp´a´ bq y1 y2 y3

J

.
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For any p P r1,8q, the `p norm of a vector x “ px1, x2, ¨ ¨ ¨ , xdq P Rd is defined as

}x}p
def.
“ p|x1|

p
` |x2|

p
` ¨ ¨ ¨ ` |xd|

p
q
1{p

and its `8 norm is defined as

}x}8
def.
“ maxt|x1|, |x2|, ¨ ¨ ¨ , |xd|u

The Lp norm of a function f : Ω Ď Rd Ñ R is defined as

}f}LppΩq
def.
“

ˆ
ż

Ω

|f |pdµ

˙1{p

where µ is the Lebesgue measure, and its L8 norm is defined as

}f}L8pΩq
def.
“ inftC ě 0 : |f | ď C almost everywhere on Ωu.

This paper uses the `1 norm on the domain; for instance, when defining Lipschitz

constants and regularity. We use the (uniform) L8 norm when quantifying approxi-

mation estimates.

We use O for the big O notation, which is written as Õ when logarithmic factors

are ignored. We use Ω for the big Ω notation when it is clear from the context.

For a set S, let cardpSq denote its cardinality. For two sets S1 and S2, let S1ˆS2
def.
“

tps1, s2q : s1 P S1, s2 P S2u be the Cartesian product of S1 and S2, and denote the

Cartesian product of S1 with itself d times for d P N` as Sd1 , i.e. Sd1
def.
“

śd
i“1 S1 “

tps1, s2, ¨ ¨ ¨ , sdq : s1, s2, ¨ ¨ ¨ , sd P S1u.

For a finite subset S “ tv1,v2, ¨ ¨ ¨ ,vnu of Rd, let convpSq denote the convex hull
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of S, i.e.

convpSq
def.
“ tλ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λnvn : λ1, ¨ ¨ ¨ , λn ě 0, λ1 ` λ2 ` ¨ ¨ ¨ ` λn “ 1u.

For a set of sets S, let YS
def.
“

Ť

S1PS S
1 denote the union of all the sets in S.

We say that a 1-dimensional function f : Ω Ď RÑ R is continuous piecewise linear

if there exists a finite collection of intervals I1, ¨ ¨ ¨ , Im such that Ω Ď I1 Y ¨ ¨ ¨ Y Im,

and f is linear on I1, ¨ ¨ ¨ , Im. We say that x P Ω is a break point of f if the left

and right-hand derivatives of f at x are different. For example, σ is a continuous

piecewise linear function on R, and x “ 0 is the only break point of σ.

In what follows, given a ReLU MLP Φ with representation (3.3.1); when conve-

nient, we will use depthpΦq to denote its depth of a network Φ and widthpΦq to denote

its width. Emulating [70], we use NN pc1; c2; ¨ ¨ ¨ ; cmq to denote the class of functions

implemented by ReLU MLPs which satisfy conditions c1, c2, ¨ ¨ ¨ , cm. For example,

NN p#input “ 2; depth ď 3; width “ 4; #output “ 5q denote the class of functions

from R2 to R5 implemented by ReLU MLPs which have depth at most 3 and width

equal to 4.

One example of this is the notation NN pdq introduced in Definition 3.3.1. In this

case, the condition is widthvecpΦq “ d.

Compositional Notation During the course of our analysis, it will be convenient

to describe ReLU MLPs via the role of each of their (sets of) layers. Specifically,

the structure of a ReLU MLP Φ is represented in the following way: suppose Φ “

Lm ˝ pσ ˝ Lm´1q ˝ ¨ ¨ ¨ ˝ pσ ˝ L2q ˝ pσ ˝ L1q where the Li’s are affine transformations,
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then we express it as

x ùñ pσ ˝ L1qpxq ùñ pσ ˝ L2q ˝ pσ ˝ L1qpxq

ùñ pσ ˝ Lm´1q ˝ ¨ ¨ ¨ ˝ pσ ˝ L2q ˝ pσ ˝ L1qpxq

ùñ Lm ˝ pσ ˝ Lm´1q ˝ ¨ ¨ ¨ ˝ pσ ˝ L2q ˝ pσ ˝ L1qpxq

“ Φpxq

In other words, if x1,x2, ¨ ¨ ¨ ,xm´1 are the 1, 2, ¨ ¨ ¨ , pm´ 1q-th hidden layer of Φ and

xm is the output layer, then the structure of Φ is expressed as

x ùñ x1 ùñ x2 ùñ ¨ ¨ ¨ ùñ xm´1 ùñ xm “ Φpxq

If the structure of the network Φ with input x and output Φpxq is clear from the

context, then in the following expression, we mean that x and Φpxq are connected

via the network Φ:

¨ ¨ ¨ ùñ

»

—

—

—

—

–

...

x

...

fi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

–

...

Φpxq

...

fi

ffi

ffi

ffi

ffi

fl

ùñ ¨ ¨ ¨

In this case, there may be additional hidden layers between the two layers shown

above. Finally, if one of the layers we constructed in fact did not use any activation

functions, then it can be integrated with the layer after it, an does not require an extra

layer to process. We color them in green to indicate that we can ignore these layers

when estimating the size of the network. For example, if Φ
def.
“ L4˝pσ˝L3q˝pL2q˝pσ˝L1q

is constructed as a network with three hidden layers x1
def.
“ σ ˝ L1pxq, x2

def.
“ L2px1q
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and x3
def.
“ σ ˝ L3px2q, and x2 does not use any activation functions, then Φ can be

implemented by a network with only two hidden layers: Φ “ L4˝pσ˝pL3˝L2qq˝pσ˝L1q,

whose structure is expressed as

x ùñ x1 ùñ x2 ùñ x3 ùñ Φpxq

7.2 Computational Lemmata

We now compile a sequence of lemmata showing that various key functions can be

exactly implemented by “small” MLPs; such as the median function and piecewise

linear memorizes. Moreover, when relevant, we show that the MLPs implementing

these functions do not alter the regularity of their inputs (explained rigorously below).

7.3 The Median Function

This section focuses on the median function; defined in the following lemma. The

implementation of the median function will allow us to construct MLPs with lighted

absolute parameter usage (including constants) than in the available literature while

matching the available optimal approximation rates.

Lemma 7.3.1. Let d P N`, and x1, x2, ¨ ¨ ¨ , x2d`1 P R. Assume x1, ¨ ¨ ¨ , xd`1 P ry ´

ε, y ` εs for some y P R and ε ą 0. Then, medianpx1, x2, ¨ ¨ ¨ , x2d`1q P ry ´ ε, y ` εs.

Proof. Let’s relabel x1, x2, ¨ ¨ ¨ , x2d`1 as y1 ď y2 ď ¨ ¨ ¨ ď y2d`1. Then, at least one of

x1, x2, ¨ ¨ ¨ , xd`1, denoted xn, is in the set ty1, y2, ¨ ¨ ¨ , yd`1u, since the complement of

this set only has d elements. Similarly, at least one of x1, x2, ¨ ¨ ¨ , xd`1, denoted xm,
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is in the set tyd`1, yd`2, ¨ ¨ ¨ , y2d`1u. Therefore,

medianpx1, x2, ¨ ¨ ¨ , x2d`1q “ yd`1 P rxn, xms Ď ry ´ ε, y ` εs.

Lemma 7.3.2. For any d P N`, the median function on 2d ` 1 non-negative inputs

can be implemented by a ReLU MLP with width 6d` 3 and depth 11d` 3.

Proof. We label the nodes as n1, n2, ¨ ¨ ¨ , n2d`1, and let

Dpxq
def.
“

2d`1
ÿ

i“1

|x´ ni|

be the total distance from x to all the nodes. Then, D attains its minimum exactly at

the median since there are odd number of nodes. We will use the following algorithm

to compute the median:

1. Compute x0
def.
“ mintn1, n2, ¨ ¨ ¨ , n2d`1u

2. Compute s0
def.
“ mintDpn1q, Dpn2q, ¨ ¨ ¨ , Dpn2d`1qu

3. For i “ 1, 2, ¨ ¨ ¨ , d, let xi “ xi´1 `
Dpxi´1q ´ s0

2d` 1´ 2i

4. Output xd

We first show the correctness of this algorithm. We relabel the nodes as m1 ď

m2 ď ¨ ¨ ¨ ď m2d`1 and proceed by induction on i. For i “ 0, x0 “ m1 P rm1,md`1s.

For i “ k, suppose xk P rmk`1,md`1s for some k ď d ´ 1, we will show that xk`1 P

rmk`2,md`1s.
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If xk P rmk`1,mk`2s, then noting that for r ď d,

Dpmrq ´Dpmr`1q “ p2pd´ rq ` 1qpmr`1 ´mrq

and the same holds when mr`1 changes to any x P rmr,mr`1s, in particular:

Dpmk`1q ´Dpxkq “ p2pd´ r ´ 1q ` 1qpxk ´mk`1q

so we have

xk`1 “ xk `
Dpxkq ´ s0

2d´ 1´ 2k
“ xk `

Dpxkq ´Dpmd`1q

2pd´ kq ´ 1

“ xk `
Dpmk`1q ´ p2pd´ k ´ 1q ` 1qpxk ´mk`1q ´Dpmd`1q

2pd´ kq ´ 1

“ xk ´ pxk ´mk`1q `
Dpmk`1q ´Dpmd`1q

2pd´ kq ´ 1

“ mk`1 `
1

2pd´ kq ´ 1

d´k
ÿ

j“1

p2j ´ 1qpmd`2´j ´md`1´jq

then

xk`1 ď mk`1 `

d´k
ÿ

j“1

pmd`2´j ´md`1´jq “ md`1

xk`1 ě mk`1 `
1

2pd´ kq ´ 1

d´k
ÿ

j“d´k

p2j ´ 1qpmd`2´j ´md`1´jq “ mk`2

hence xk`1 P rmk`2,md`1s.

Otherwise, xk P rmk`2,md`1s, then suppose xk P rmk1`1,mk1`2s for some k ă k1 ď

d´ 1, so we know from above that

xk `
Dpxkq ´Dpmd`1q

2d´ 1´ 2k1
ď md`1
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thus

mk`2 ď xk ď xk`1 “ xk `
Dpxkq ´Dpmd`1q

2d´ 1´ 2k
ď xk `

Dpxkq ´Dpmd`1q

2d´ 1´ 2k1
ď md`1

hence xk`1 P rmk`2,md`1s, so we completed the induction step.

Therefore, xi P rmi`1,md`1s for i “ 1, 2, ¨ ¨ ¨ , d, so xd P rmd`1,md`1s, xd “ md`1,

which is the median.

In the following, we will use this algorithm to construct our ReLU MLP. In the

rest of this proof, column vectors represent layers of neurons, and functions apply to

them entry-wise, whose outputs are still column vectors.

Step 1: Compute x0 and s0

It is easy to see that

x “ σpxq ´ σp´xq, |x| “ σpxq ` σp´xq, @x P R

then

mintx, yu “
x` y

2
´
|x´ y|

2
“
σpx` yq

2
´
σp´x´ yq

2
´
σpx´ yq

2
´
σp´x` yq

2
, @x, y P R

so we can use this formula to construct the following building block for computing

s0: denote the column vector

„

n1 n2 ¨ ¨ ¨ n2d`1

J

as n, and let nk be the column

vector obtained from n by deleting its kth row, then

Dpnkq “

„

1 1 ¨ ¨ ¨ 1



¨ r|nk ´ nk|s “

„

1 1 ¨ ¨ ¨ 1



¨

»

—

–

σpnk ´ nkq

σpnk ´ nkq

fi

ffi

fl
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Using these results, we can compute x0 and d0 via the following network:

»

—

—

—

—

–

n

min
1ďiďk´1

ni

min
1ďiďk´1

Dpniq

fi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

–

n

min
1ďiďk´1

ni

σpnk ´ nkq

σpnk ´ nkq

min
1ďiďk´1

Dpniq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

–

n

σ

ˆ

˘ min
1ďiďk´1

ni ˘ nk

˙

Dpnkq

min
1ďiďk´1

Dpniq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

–

n

min
1ďiďk

ni

σ
´

˘ min
1ďiďk´1

Dpniq ˘Dpnkq
¯

fi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

–

n

min
1ďiďk

ni

min
1ďiďk

Dpniq

fi

ffi

ffi

ffi

ffi

fl

where σp˘a˘bq abbreviates the four neurons σpa`bq, σpa´bq, σp´a`bq and σp´a´bq.

Note that the terms without the σ are non-negative and thus are unaffected by the

activation function σ. Therefore, by connecting 2d such networks we can output

x0 “ min
1ďiďk´1

ni and s0 “ min
1ďiďk´1

Dpniq. Its width is dominated by the second layer in

the above, which is p2d`1q`1`2d`2d`1 “ 6d`3, and its depth is 4p2d`1q “ 8d`4

(not counting the first layer, which is the input layer).

Step 2: Compute xi for i “ 1, 2, ¨ ¨ ¨ , d

We use the following network:

»

—

—

—

—

–

n

xk´1

s0

fi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

–

n

σpxk´1 ´ nq

σpn´ xk´1q

xk´1

s0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

–

n

Dpxk´1q

xk´1

s0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

–

n

xk´1 `
Dpxk´1q ´ s0

2d` 1´ 2k
“ xk

s0

fi

ffi

ffi

ffi

ffi

fl
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Therefore, by connecting d such networks we can output xd, which is the median

as proven above. Its width is dominated by the second layer in the above, which is

p2d` 1q` 2d` 2d` 1` 1 “ 6d` 3, and its depth is 3d´ 1 (not counting the first and

the last layer, since the first layer is shared with the network in the previous step,

and the last layer is the output).

Connecting the two network in steps 1 and 2 gives the desired ReLU MLP for

computing the median of non-negative inputs. In total, this network has width 6d`3

and depth p8d` 4q ` p3d´ 1q “ 11d` 3.

Lemma 7.3.3 (Median function preserves regularity). If f1, f2, ¨ ¨ ¨ , fn P Holpν, α,Xq

are Lipschitz functions from a metric space X to R, then f
def.
“ medianpf1, f2, ¨ ¨ ¨ , fnq P

Holpν, α,Xq.

Proof. Take any x,y P X, then |fipxq ´ fipyq| ď ν}x ´ y}αX “: C for all i. Let

yi : r0, 1s ÝÑ R be a linear function such that yip0q “ fipxq, yip1q “ fipyq for all i,

then y1i ď C for all i. For any t P r0, 1s, let pptq “ ps1, s2, ¨ ¨ ¨ , snq, where s1, s2, ¨ ¨ ¨ , sn

is a permutation of 1, 2, ¨ ¨ ¨ , n such that fs1ptq ď fs2ptq ď ¨ ¨ ¨ ď fsnptq, and si ď sj

whenever fsiptq “ fsjptq. Consider any 1 ď i ă j ď n, there are two cases:

1. If fipxq ´ fipyq “ fjpxq ´ fjpyq, then y1i ” y1j, yiptq ´ yjptq is a constant, so the

relative position of i and j in pptq does not change as t goes from 0 to 1;

2. If fipxq ´ fipyq ‰ fjpxq ´ fjpyq, then as t goes from 0 to 1, yiptq and yjptq

coincide at most once, so the relative position of i and j in pptq changes at most

once.

Therefore, pptq changes at most npn´1q
2

times as t goes from 0 to 1, and the points where
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pptq changes split r0, 1s into finite intervals. Let yptq be the median of y1ptq, ¨ ¨ ¨ , ynptq,

then in each of these intervals:

1. If n is odd, then yptq “ yiptq for some fixed i, so |y1ptq| “ |y1iptq| ď C;

2. If n is even, then yptq “ yiptq
2
`

yjptq

2
for some fixed i and j, so |y1ptq| ď

ˇ

ˇ

ˇ

ˇ

´

yiptq
2

¯1
ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

´

yjptq

2

¯1
ˇ

ˇ

ˇ

ˇ

ď C
2
` C

2
“ C.

Therefore, |y1ptq| ď C in each of these intervals, then |fpxq ´ fpyq| “ |yp1q ´ yp0q| ď

C “ ν}x´ y}αX .

The next lemma shows that one dimensional continuous piecewise linear approxi-

mators have the same regularity as the function they approximate. See Lemma 7.5.4

for a generalization to higher dimensions.

Lemma 7.3.4 (Continuous piecewise linear approximators preserve regularity, and

L8 error estimate). Let f be a function from ra, bs to R with modulus of regularity

ω, and let Φ be a continuous piecewise linear function on ra, bs that passes through

the points tpxi, fpxiqqu
n
i“0 for a “ x0 ă x1 ă x2 ă ¨ ¨ ¨ ă xn “ b, and is linear on

rx0, x1s, rx1, x2s, ¨ ¨ ¨ , rxn´1, xns. Then, we have the error estimate

}f ´ Φ}L8pra,bsq ď ω

ˆ

max
i“0,1,¨¨¨ ,n´1

|xi`1 ´ xi|

2

˙

Moreover, ω is a modulus of regularity of Φ.

Proof. We first show that Φ has at least the same regularity as f . Take any x, y P

ra, bs, and assume without loss of generality that x ď y. If x, y lie in the same

interval in rx0, x1s, rx1, x2s, ¨ ¨ ¨ , rxn´1, xns, then x, y P rxm, xm`1s for some index m,
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by concavity of ω,

ωpy ´ xq “ ω

ˆˆ

1´
y ´ x

xm`1 ´ xm

˙

¨ 0`
y ´ x

xm`1 ´ xm
¨ pxm`1 ´ xmq

˙

ě

ˆ

1´
y ´ x

xm`1 ´ xm

˙

ωp0q `
y ´ x

xm`1 ´ xm
ωpxm`1 ´ xmq

ě
y ´ x

xm`1 ´ xm
ωpxm`1 ´ xmq

ě
y ´ x

xm`1 ´ xm
|fpxm`1q ´ fpxmq|

“
y ´ x

xm`1 ´ xm
|Φpxm`1q ´ Φpxmq|

“ |Φpyq ´ Φpxq|

where the last equality follows from the fact that Φ is linear on rxm, xm`1s. Otherwise,

x, y lie in different intervals in rx0, x1s, rx1, x2s, ¨ ¨ ¨ , rxn´1, xns, then xp ď x ď xp`1 ď

xq ď y ď xq`1 for some indices p, q, and let

A
def.
“

x´ xp
xp`1 ´ xp

, B
def.
“

xq`1 ´ y

xq`1 ´ xq

so 0 ď A,B ď 1. Without loss of generality, assume that A ď B. Then,

Φpxq “ p1´ AqΦpxpq ` AΦpxp`1q, Φpyq “ BΦpxqq ` p1´BqΦpxq`1q
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Since

y ´ x “

ˆ

xq`1 ´ y

xq`1 ´ xq
´

x´ xp
xp`1 ´ xp

˙

pxq ´ xpq `

ˆ

1´
xq`1 ´ y

xq`1 ´ xq

˙

pxq`1 ´ xpq

`
x´ xp

xp`1 ´ xp
pxq ´ xp`1q

“ pB ´ Aqpxq ´ xpq ` p1´Bqpxq`1 ´ xpq ` Apxq ´ xp`1q

with B ´ A ě 0, 1 ´ B ě 0, A ě 0 and pB ´ Aq ` p1 ´ Bq ` A “ 1, by concavity of

ω, we have

ωpy ´ xq “ ωppB ´ Aqpxq ´ xpq ` p1´Bqpxq`1 ´ xpq ` Apxq ´ xp`1qq

ě pB ´ Aqωpxq ´ xpq ` p1´Bqωpxq`1 ´ xpq ` Aωpxq ´ xp`1q

ě pB ´ Aq|Φpxqq ´ Φpxpq| ` p1´Bq|Φpxq`1q ´ Φpxpq| ` A|Φpxqq ´ Φpxp`1q|

ě pB ´ AqpΦpxqq ´ Φpxpqq ` p1´BqpΦpxq`1q ´ Φpxpqq ` ApΦpxqq ´ Φpxp`1qq

“ pBΦpxqq ` p1´BqΦpxq`1qq ´ pp1´ AqΦpxpq ` AΦpxp`1qq

“ Φpyq ´ Φpxq

Similarly, we can show that ωpy ´ xq ě Φpxq ´ Φpyq, thus

ωp|y ´ x|q “ ωpy ´ xq ě |Φpyq ´ Φpxq|

Therefore, we always have |Φpyq ´Φpxq| ď ωp|y ´ x|q for any x, y P ra, bs, thus ω is a

modulus of regularity of Φ.

Now we prove the upper bound for the L8 error. Take any x P ra, bs, then
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x P rxk, xk`1s for some index k. For convenience, let L
def.
“ xk`1 ´ xk, then we have

|fpxq ´ Φpxq| “
ˇ

ˇ

ˇ
fpxq ´

´xk`1 ´ x

L
Φpxkq `

x´ xk
L

Φpxk`1q

¯
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ
fpxq ´

´xk`1 ´ x

L
fpxkq `

x´ xk
L

fpxk`1q

¯
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

xk`1 ´ x

L
pfpxq ´ fpxkqq `

x´ xk
L

pfpxq ´ fpxk`1qq

ˇ

ˇ

ˇ

ď
xk`1 ´ x

L
|fpxq ´ fpxkq| `

x´ xk
L

|fpxq ´ fpxk`1q|

ď
xk`1 ´ x

L
ωpx´ xkq `

x´ xk
L

ωpxk`1 ´ xq

ď ω
´xk`1 ´ x

L
px´ xkq `

x´ xk
L

pxk`1 ´ xq
¯

“ ω

ˆ

pL´ px´ xkqqpx´ xkq

L
`
px´ xkqpL´ px´ xkqq

L

˙

ď ω

¨

˝

´

L2

4

¯

L
`

´

L2

4

¯

L

˛

‚

“ ω

ˆ

L

2

˙

ď ω

ˆ

max
i“0,1,¨¨¨ ,n´1

|xi`1 ´ xi|

2

˙

Since x P ra, bs was chosen arbitrarily, we conclude that

}f ´ Φ}L8pra,bsq ď ω

ˆ

max
i“0,1,¨¨¨ ,n´1

|xi`1 ´ xi|

2

˙

.

This completes our proof.
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7.4 One-Dimensional Memorizers with Optimal Reg-

ularity

Proposition 7.4.1 (Efficient Universal Memorization by Two-Hidden-Layer MLPs

with Optimal Regularity). Let M,N P N`. For any set of MN samples pxi, yiq
MN
i“1 Ď

R2 (where x1 ă x2 ă ¨ ¨ ¨ ă xMN), there exists a ReLU MLP Φ with widthvec “

rM, 4N ´ 2s that can memorize this sample set; i.e.

Φpxiq “ yi for i “ 1, . . . ,MN.

Furthermore, Φ is linear on the intervals rxi, xi`1s for i “ 1, 2, ¨ ¨ ¨ ,MN ´ 1, and it

is constant on each of the segment p´8, x1s and rxMN ,8q. The number of nonzero

parameters in Φ is at most 2MN ` 2M ` 8N ´ 4.

Proof. Let f : RÑ R be the function to be implemented, i.e. it is the unique function

on R such that:

1. fpxiq “ yi for i “ 1, 2, ¨ ¨ ¨ ,MN ;

2. f is linear on rxi, xi`1s for i “ 1, 2, ¨ ¨ ¨ ,MN ´ 1;

3. f is constant on each of p´8, x1s and rxMN ,8q.

Then, it suffices to prove that f can be implemented by a ReLU MLP with widthvec “

rM, 4N ´ 2s.

Let’s relabel the samples as pxij, yijq
M,N
i,j“1 such that xij increases as pi, jq increases

lexicographically, i.e.

x11 ă x12 ă ¨ ¨ ¨ ă x1N ă x21 ă x22 ă ¨ ¨ ¨ ă x2N ă ¨ ¨ ¨ ă xM1 ă xM2 ă ¨ ¨ ¨ ă xMN
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For notational convenience, denote theM`1 intervals p´8, x11s, rx11, x21s, rx21, x31s,

¨ ¨ ¨ , rxM´1,1, xM,1s and rxM1,8q as I0, I1, ¨ ¨ ¨ , IM , respectively. The notations xij and

xi,j have the same meaning.

The idea of the proof is matching the jumps in the derivative of f step by step:

for r “ 1, 2 and j “ 2, 3, ¨ ¨ ¨ , N , let Sr
def.
“ tIr`2k : k P N, 1 ď r ` 2k ď Mu “

tIr, Ir`2, Ir`4, ¨ ¨ ¨ u, and construct the continuous piecewise linear function g
p`rq
j in

two steps:

1. Matching upward derivative jumps at the jth sample point in intervals

in Sr: let

X
p`rq
j

def.
“ txr`2k,j : k P N, f 1`pxr`2k,jq ´ f

1
´pxr`2k,jq ą 0u

be the set of the jth sample points in intervals in Sr where f has upward deriva-

tive jumps. Suppose the elements in X
p`rq
j are xi1,j ă xi2,j ă ¨ ¨ ¨ ă xim,j, then

for each 1 ď m1 ď m, let g
p`rq
j be linear on Iim1 with slope p´1qm

1
`

f 1`pxim1 ,jq ´

f 1´pxim1 ,jq
˘

, and g
p`rq
j pxim1 q “ 0;

2. Smooth extension to the rest of R: we have already defined g
p`rq
j on some

distinct closed intervals in Step 1 (unless X
p`rq
j is empty, in which case simply

let g
p`rq
j be the zero function on R), which separate R into some segments. For

each of these segments, if it is infinite then we have already defined g
p`rq
j at its

only endpoint, then let g
p`rq
j be constant on this segment matching its value

at this endpoint; if it is finite then we have already defined g
p`rq
j at both of its

endpoints, then let g
p`rq
j be linear on this segment such that it matches both of

its values at the two endpoints.
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We define X
p`rq
j and g

p´rq
j similar to the above, except that the condition f 1`pxr`2k,jq´

f 1´pxr`2k,jq ą 0 in Step 1 is changed to f 1`pxr`2k,jq ´ f
1
´pxr`2k,jq ă 0. It is easy to see

that all break points of g
p˘rq
j belong to tx11, x21, ¨ ¨ ¨ , xM1u, and it does not change

sign on the intervals tI0, I1, ¨ ¨ ¨ , IMuzSr. Thus, all break points of σpg
p˘rq
j q belong to

tx11, x21, ¨ ¨ ¨ , xM1uYtxr,j, xr`2,j, xr`4,j, ¨ ¨ ¨ u. Moreover, for any x P txr,j, xr`2,j, xr`4,j, ¨ ¨ ¨ u,

if f 1 has an upward jump at x then σpg
p`rq
j q also has an upward jump in the deriva-

tive with the same magnitude, if f 1 has an downward jump at x then σpg
p´rq
j q has an

upward jump in the derivative with the same magnitude, thus σpg
p`rq
j q´σpg

p´rq
j q has

the same jump in derivatives at x as f . Therefore, the function

ÿ

1ďrď2
2ďjďN

´

σpg
p`rq
j q ´ σpg

p´rq
j q

¯

and f has the same jumps in derivatives at txij : 1 ď i ď M, 2 ď j ď Nu, thus all

break points of the function

g0
def.
“ f ´

ÿ

1ďrď2
2ďjďN

σpg
p`rq
j q `

ÿ

1ďrď2
2ďjďN

σpg
p´rq
j q

belong to tx11, x21, ¨ ¨ ¨ , xM1u.

We have

f “
ÿ

1ďrď2
2ďjďN

σpg
p`rq
j q ´

ÿ

1ďrď2
2ďjďN

σpg
p´rq
j q ` g0

“
ÿ

1ďrď2
2ďjďN

σpg
p`rq
j q ´

ÿ

1ďrď2
2ďjďN

σpg
p´rq
j q ` σpg0q ´ σp´g0q (7.4.1)
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We now show that f can be represented by a ReLU MLP with widthvec “

rM, 4N ´ 2s. For notational convenience, we will let Xi “ xi1 for i “ 1, ¨ ¨ ¨ ,M

in the following.

We know from above that for any function g P tg
p˘rq
j : 1 ď r ď 2, 2 ď j ď

Nu Y t˘g0u, the set of break points of g is contained in tX1, X2, ¨ ¨ ¨ , XMu, and g is

constant on p´8, X1s. Then, by comparing the jumps in derivatives as what we did

above, we can see that the function

gpxq ´ gpX1q ´

M
ÿ

i“1

`

g1`pXiq ´ g
1
´pXiq

˘

σpx´Xiq

has no break points (thus is linear on all of R) and is 0 for all x ď X1, hence is 0 on

all of R. That is,

gpxq “ gpX1q `

M
ÿ

i“1

`

g1`pXiq ´ g
1
´pXiq

˘

σpx´Xiq

“

¨

˚

˚

˚

˚

˚

˚

˚

˝

g1`pX1q ´ g
1
´pX1q

g1`pX2q ´ g
1
´pX2q

...

g1`pXMq ´ g
1
´pXMq

˛

‹

‹

‹

‹

‹

‹

‹

‚

¨ σ

¨

˚

˚

˚

˚

˚

˚

˚

˝

x

¨

˚

˚

˚

˚

˚

˚

˚

˝

1

1

...

1

˛

‹

‹

‹

‹

‹

‹

‹

‚

´

¨

˚

˚

˚

˚

˚

˚

˚

˝

X1

X2

...

XM

˛

‹

‹

‹

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‹

‹

‹

‚

` gpX1q, @x P R (7.4.2)

Therefore, g can be represented by a neural network with one hidden layer consisting

of M neurons, with a single input neuron and a single output neuron. Moreover,

the weight matrix between the input and the hidden layer is always

„

1 1 ¨ ¨ ¨ 1

J

,

and the bias vector for the hidden layer is always

„

´X1 ´X2 ¨ ¨ ¨ ´XM

J

, which

is the same for all such g. Therefore, all these g’s can share their input layers and

hidden layers, so we can stack their output neurons (4N ´ 2 in total, one for each g)

57

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.Sc. Thesis – R. Hong; McMaster University – Mathematics

in the second hidden layer of the final network such that their outputs are unaffected

by each other, then finally f can be implemented by adding one more neuron in the

output layer based on Equation 7.4.1.

Finally, we tally the nonzero parameters in Φ. For the 4N ´ 2 neurons in the

second hidden layer, 4N ´ 4 of them are g
p˘rq
j for r “ 1, 2 and j “ 2, 3, ¨ ¨ ¨ , N . From

Step 1, we can see that g
p`rq
j has at most 2 card

`

X
p`rq
j

˘

break points (since Step 2

did not introduce additional ones), all of which belong to tX1, X2, ¨ ¨ ¨ , XMu. Thus,

at most 2 card
`

X
p`rq
j

˘

weights between the first hidden layer and the neuron that

outputs g
p`rq
j are nonzero. Therefore, the number of nonzero parameters between the

two hidden layers is at most

ÿ

1ďrď2
2ďjďN

2 card
`

X
p`rq
j

˘

`
ÿ

1ďrď2
2ďjďN

2 card
`

X
p´rq
j

˘

` 2M

“ 2 card
` 

xij : 1 ď i ďM, 2 ď j ď N, f 1`pxr`2k,jq ´ f
1
´pxr`2k,jq ‰ 0

(˘

` 2M

ď 2MpN ´ 1q ` 2M

“ 2MN

From Equation 7.4.1, the bias for the output is 0. Therefore, Φ has at most 2MN `

M ` 4N ´ 2 nonzero weights and at most M ` 4N ´ 2 nonzero biases. Altogether, Φ

has at most 2MN ` 2M ` 8N ´ 4 nonzero parameters.

In Proposition 7.4.1, if there are K sample points and take

M “ 2r
?
Ks, N “

R

r
?
Ks

2

V
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then, upon noticing that

MN ě K, 4N ´ 2 “ 4

R

r
?
Ks

2

V

´ 2 ď 4
r
?
Ks` 1

2
´ 2 “ 2r

?
Ks

we directly deduce the following corollary.

Corollary 7.4.1. Let K P N`. For any set of K samples pxi, yiq
K
i“1 Ď R2 (where

x1 ă x2 ă ¨ ¨ ¨ ă xK), there exists a ReLU MLP Φ with width at most 2r
?
Ks, depth

2, and with at most 2K ` 8r
?
Ks nonzero parameters that can memorize this sample

set; i.e.

Φpxiq “ yi for i “ 1, . . . , K.

Furthermore, Φ is linear on the intervals rxi, xi`1s for i “ 1, 2, ¨ ¨ ¨ , K ´ 1, and it is

constant on each of the segment p´8, x1s and rxK ,8q.

Theorem 7.4.1 (Efficient Universal Memorization by Deep MLPs with Optimal

Regularity).

Let K,L P N` with L ě 3. Given any set of K samples pxi, yiq
K
i“1 Ď R2 (with

x1 ă x2 ă ¨ ¨ ¨ ă xK) and any 11 ă n1, n2, ¨ ¨ ¨ , nL P N` satisfying the constraint:

K ď

L´1
ÿ

b“1

ˆ

pnb ´ 11q

Z

nb`1 ´ 9

4

^

´ 2

˙

there exists a ReLU MLP Φ with widthvec rn1, n2, ¨ ¨ ¨ , nL, 8s that can memorize this

sample set; i.e.

Φpxiq “ yi for i “ 1, . . . , K.

Furthermore, Φ is linear on the intervals rxi, xi`1s for i “ 1, 2, ¨ ¨ ¨ , K ´ 1, and it

is constant on each of the segment p´8, x1s and rxK ,8q. The number of nonzero
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parameters in Φ is at most

2K ` 23
L
ÿ

b“1

nb ´ 121L.

We note that, the factors 23 and 121 above can be further improved. For simplicity,

here we only prove this weaker bound below, which already shows the significance

of this theorem: as the minimum width nmin (i.e. minimum number of neurons in a

single hidden layer) goes to infinity, the efficiency of parameter usage

Efficiency
def.
“

degree of freedom of sample set

number of nonzero parameters
¨ 100%

goes to 100%. This is because, assuming

K “

L´1
ÿ

b“1

ˆ

pnb ´ 11q

Z

nb`1 ´ 9

4

^

´ 2

˙

then we have

Efficiency ě
K dimpR2q

2K ` 23
řL
b“1 nb ´ 121L

¨ 100%

ě
2K

2K ` 23
řL
b“1 nb

¨ 100%

ě
2K

2K ` 23pK ` 2pL´ 1qq{
X

nmin´9
4

\ ¨ 100%

ě
2

2` 23p1` 2pL´ 1qq{
X

nmin´9
4

\ ¨ 100%

Ñ 100%

when the depth L is kept fixed (or L “ opnminq) as nmin Ñ 8. The same is true for
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Proposition 7.4.1.

Proof of Theorem 7.4.1. Let f : R Ñ R be the function to be implemented, i.e. it is

the unique function on R such that:

1. fpxiq “ yi for i “ 1, 2, ¨ ¨ ¨ , K;

2. f is linear on rxi, xi`1s for i “ 1, 2, ¨ ¨ ¨ , K ´ 1;

3. f is constant on each of p´8, x1s and rxK ,8q.

Then, it suffices to prove that f can be implemented by a ReLU MLP with widthvec “

rn1, n2, ¨ ¨ ¨ , nL, 8s.

Clearly x1, ¨ ¨ ¨ , xK contain all possible break points of f , so we may assume that

all of them are break points of f , i.e. the left and right hand derivatives of f at any

of the xi’s are different.

The idea of the proof is the same as in the proof of Proposition 7.4.1: instead of

implementing the target function f directly, we match the jumps in its derivative,

which is mostly done by adding up L´ 1 functions f1, ¨ ¨ ¨ , fL´1 (to be defined later),

each matching those jumps in different intervals.

We divide the break points txiu
K
i“1 of f into L ´ 1 batches: for a batch number

b “ 1, 2, ¨ ¨ ¨ , L ´ 1, let kb
def.
“ nb ´ 11 (and kL

def.
“ nL ´ 11), and denote the bth batch

of break points to be

x
pbq
1 , x

pbq
2 , ¨ ¨ ¨ , x

pbq
Kb
, Kb

def.
“ pnb ´ 11q

Z

nb`1 ´ 9

4

^

´ 2

and let XB, YB, ZB P R for B “ 1, 2, ¨ ¨ ¨ , L be “separation points” between different
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batches of break points such that

X1 ă Y1 ă Z1 ă x
p1q
1 ă ¨ ¨ ¨ ă x

p1q
K1
ă X2 ă Y2 ă Z2

ă x
p2q
2 ă ¨ ¨ ¨ ă x

p2q
K2
ă X3 ă Y3 ă Z3

ă ¨ ¨ ¨

ă x
p2q
L´1 ă ¨ ¨ ¨ ă x

p2q
KL´1

ă XL ă YL ă ZL

Let fb : RÑ R be a function that satisfies the following conditions:

1. Continuous piecewise linear on R with few “pieces”: all break points of

fb belong to
 

x
pbq
1 , x

pbq
2 , ¨ ¨ ¨ , x

pbq
Kb
, Zb, Xb`1

(

;

2. Matching derivative jumps at the bth batch of break points:

pfbq
1
`pxq ´ pfbq

1
´pxq “ f 1`pxq ´ f

1
´pxq, for x “ x

pbq
1 , x

pbq
2 , ¨ ¨ ¨ , x

pbq
Kb

3. Vanishing at other batches of break points:

fbpxq “ 0, @x P p´8, Zbs Y rXb`1,8q

Then, adding up all the fb’s would recover most informations of f .

We first need to show the existence of these fb’s: let tb be the linear function on

R such that tbpZbq “ fpZbq and tbpXb`1q “ fpXb`1q, then it is easy to verify that the
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function fb defined by

fbpxq
def.
“

$

’

’

&

’

’

%

fpxq ´ tbpxq, if x P rZb, Xb`1s

0, otherwise

satisfies Conditions 1 to 3.

Now, for each fb, we build a network Φb implementing fb using the construction in

the proof of Proposition 7.4.1: for b “ 1, 2, ¨ ¨ ¨ , L´1, take M “ kb, N “ tpkb`1`2q{4u

and sample set
 `

x
pbq
i , fbpx

pbq
i q

˘(MN´2

i“1
(namely the bth batch of samples) along with

the two endpoints pZb, 0q and pXb`1, 0q in Proposition 7.4.1, and then denote the

structure of the resulting network as

x ùñ h
pbq
1 pxq ùñ h

pbq
2 pxq ùñ Φbpxq

where h
pbq
1 pxq,h

pbq
2 pxq are column vectors representing the two hidden layers, and

h
pbq
1 ,h

pbq
2 are considered as functions of x P R. By Proposition 7.4.1, the length of

h
pbq
1 pxq is M “ kb, and the length of h

pbq
2 pxq is 4N ´ 2 ď kb`1, which we treat as

exactly kb`1 for simplicity. Moreover, we know that

h
pbq
1 pxq “

»

—

—

—

—

–

σ
`

x´B
pbq
1

˘

...

σ
`

x´B
pbq
kb

˘

fi

ffi

ffi

ffi

ffi

fl

, @x P R

Fix a batch number 1 ď b ď L ´ 2. Define Ib
def.
“ rZb, Xb`1s, as Φb only matches

the jumps in f 1 inside this interval. Next, we modify Φb so that its second hidden

layer h
pbq
2 can also serve as the first hidden layer in Φb`1 on the next interval Ib`1.
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There are kb`1 functions in h
pbq
2 , we denote them as σ

`

g
pbq
1

˘

, σ
`

g
pbq
2

˘

, ¨ ¨ ¨ , σ
`

g
pbq
kb`1

˘

, i.e.

h
pbq
2 “

»

—

—

—

—

–

σ
`

g
pbq
1

˘

...

σ
`

g
pbq
kb`1

˘

fi

ffi

ffi

ffi

ffi

fl

Take any g
pbq
j with 1 ď j ď kb`1, which is an affine transformation of h

pbq
1 , and it is

linear on rXb`1,8q. Let

g̃
pbq
j pxq

def.
“ g

pbq
j pxq ` p

pbq
j σ

`

x´Xb`1

˘

` q
pbq
j σ

`

x´ Yb`1

˘

, @x P R

for suitable choices of p
pbq
j , q

pbq
j P R such that:

1. g̃
pbq
j

`

Yb`1

˘

‰ 0;

2. g̃
pbq
j pB

pb`1q
j q “ 0;

3. g̃
pbq
j pXb`1qg̃

pbq
j pYb`1q ě 0, so that σ

`

g̃
pbq
j

˘

doesn’t have any additional break points

between Xb`1 and B
pb`1q
j .

Since B
pb`1q
j ě Zb`1 ą Yb`1, there exist such choices for p

pbq
j , q

pbq
j P R. Also, we note

that the g̃
pbq
j is a modification of the g

pbq
j outside Ib, i.e.

g̃
pbq
j pxq “ g

pbq
j pxq, @x P Ib
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thus we define the following modification layer:

h̄
pbq
2

def.
“

»

—

—

—

—

–

σ
`

g̃
pbq
1

˘

...

σ
`

g̃
pbq
kb`1

˘

fi

ffi

ffi

ffi

ffi

fl

(7.4.3)

and we have that

h̄
pbq
2 pxq “ h

pbq
2 pxq, @x P Ib

Let L
h
pbq
2 ,Φb

be the affine transformation that maps the second hidden layer h
pbq
2 of Φb

to its output. Then, the function

Φ̃b
def.
“ L

h
pbq
2 ,Φb

ph̄
pbq
2 q

“mimics” the output of Φb on Ib, in the sense that

Φ̃bpxq “ L
h
pbq
2 ,Φb

ph̄
pbq
2 pxqq “ L

h
pbq
2 ,Φb

ph
pbq
2 pxqq “ Φbpxq, @x P Ib

Here, we emphasize that Φ̃b is treated as a function, not a network.

Now, g̃
pbq
j is linear on rZb`1,8q and crosses the x-axis at B

pb`1q
j with slope s

pbq
j ‰ 0,

so we have

σ
`

g̃
pbq
j pxq

˘

“

$

’

’

&

’

’

%

s
pbq
j σ

`

x´B
pb`1q
j

˘

, if s
pbq
j ą 0

s
pbq
j x´ s

pbq
j σ

`

x´B
pb`1q
j

˘

, if s
pbq
j ă 0

, @x P rZb`1,8q
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Correspondingly, we define affine transformations

Lpbqj px, yq “

$

’

’

&

’

’

%

y{s
pbq
j , if s

pbq
j ą 0

´y{s
pbq
j ` x, if s

pbq
j ă 0

, @x, y P R

which recover σpx´Bjq on rZb`1,8q upon composing with σ
`

g̃
pbq
j

˘

, i.e.

Lpbqj
´

x, σ
`

g̃
pbq
j pxq

˘

¯

“ σ
`

x´B
pb`1q
j

˘

, @x P rZb`1,8q

We will see that, in the final construction of Φ, we will keep a copy of the input x

in every hidden layer. Now, we have the following “mimic layer” having exactly the

same behavior as h
pb`1q
1 on Ib`1 Ď rZb`1,8q:

h̃
pb`1q
1 pxq

def.
“

»

—

—

—

—

–

Lpbq1

´

x, σ
`

g̃
pbq
1 pxq

˘

¯

...

Lpbqkb`1

´

x, σ
`

g̃
pbq
kb`1
pxq

˘

¯

fi

ffi

ffi

ffi

ffi

fl

, @x P R (7.4.4)

In other words,

h̃
pb`1q
1 pxq “ h

pb`1q
1 pxq, @x P Ib`1

Notice that, from Equations 7.4.4 and 7.4.3, we can see that the function h̃
pb`1q
1 pxq

is simply an affine transformation of

„

h̄
pbq
2 pxq x

J

, and thus does not need an extra

layer to process.

So far, we have tweaked the hidden layers h
pbq
2 and h

pb`1q
1 into h̄

pbq
2 and h̃

pb`1q
1

respectively, so that h̃
pb`1q
1 does not need an extra layer to process. At the same

time, we have a collection of the resulting tweaked versions of Φ1, ¨ ¨ ¨ ,ΦL´1, namely
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Φ̃1, ¨ ¨ ¨ , Φ̃L´1, with Φ̃b having the same output as Φb on Ib, for all batch number

b. However, these Φ̃b’s cannot be used directly, as they have other derivative jumps

outside Ib, which we now eliminate by post-processing the data Φ̃bpxq together with

x. For each b “ 1, 2, ¨ ¨ ¨ , L´ 1, let wb ą 0 be large enough so that the function

qbpxq
def.
“ Φ̃bpxq ` wbx, @x P R

is strictly increasing on R. Since Φ̃b is continuous piecewise linear with finite number

of “pieces”, its Lipschitz constant is finite, then wb only need to be larger than this

constant, so such choice of wb exists. Define the 1D map projecting R to qbpIbq “

rqbpZbq, qbpXb`1qs:

pbpyq
def.
“ σpy´qbpZbqq´σpy´qbpXb`1qq`qbpZbq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

qbpZbq, if y ă qbpZbq

y, if qbpZbq ď y ď qbpXb`1q

qbpXb`1q, if y ą qbpXb`1q

, @y P R

and then let

Qbpxq
def.
“ pbpqbpxqq ´ wbx, @x P R

We claim that Qbpxq “ Φ̃bpxq for all x P Ib, and Qb is linear on each of the two

segments of RzIb. Indeed, if x P Ib “ rZb, Xb`1s, then qbpZbq ď qbpxq ď qbpXb`1q as qb

is strictly increasing, thus Qbpxq “ pbpqbpxqq ´wbx “ qbpxq ´wbx “ Φ̃bpxq. If x ă Zb,

then qbpxq ă qbpZbq, thus Qbpxq “ pbpqbpxqq ´ wbx “ qbpZbq ´ wbx, which is linear.

If x ą Xb`1, then qbpxq ą qbpXb`1q, thus Qbpxq “ pbpqbpxqq ´ wbx “ qbpXb`1q ´ wbx,

which is linear.
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Therefore, Qb “ Φ̃b “ Φb on Ib, which has break points
 

x
pbq
i

(MN´2

i“1
along with

Zb, Xb`1. Moreover, Qb has the same derivative jumps at
 

x
pbq
i

(MN´2

i“1
as the target

function f . Thus, the function f ´
řL´1
b“1 Qb only has derivative jumps at X1, ¨ ¨ ¨ , XL

and Z1, ¨ ¨ ¨ , ZL. Then, by choosing appropriate real coefficients ub’s and vb’s, the

function

fpxq ´
L´1
ÿ

b“1

Qbpxq ´
L
ÿ

b“1

ubσpx´Xbq ´

L
ÿ

b“1

vbσpx´ Zbq

will have no break points on R, which makes it a linear function, say ux` v for some

u, v P R. Then,

fpxq “
L´1
ÿ

b“1

Qbpxq `
L
ÿ

b“1

ubσpx´Xbq `

L
ÿ

b“1

vbσpx´ Zbq ` ux` v, @x P R (7.4.5)

We can now implement f based on Equation 7.4.5. We will keep a copy of the

original input x via the identity σpxq ´ σp´xq “ x (@x P R) in every hidden layer

of the final network Φ, but for notational convenience we will omit the two neurons

σp˘xq in the following representations. Also, we define

UVA,Bpxq
def.
“

B
ÿ

b“A

ubσpx´Xbq `

B
ÿ

b“A

vbσpx´ Zbq, @x P R

to simplify notations later.

Now, we start by constructing the first few layers of Φ computing
řL´1
b“1 Qbpxq as
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follows:

x ùñ

»

—

—

—

—

—

—

—

–

h
p1q
1 pxq

σpx´X2q

σpx´ Y2q

σpx´ Z2q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

g
p1q
1 pxq

...

g
p1q
k2
pxq

σpx´X2q

σpx´ Y2q

σpx´ Z2q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

–

g̃
p1q
1 pxq

...

g̃
p1q
k2
pxq

UV2,2pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

–

h̄
p1q
2 pxq

σpx´X3q

σpx´ Y3q

σpx´ Z3q

σp˘UV2,2pxqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h̃
p2q
1

Φ̃1pxq

σpx´X3q

σpx´ Y3q

σpx´ Z3q

UV2,2pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

g
p2q
1 pxq

...

g
p2q
k3
pxq

q1pxq

σpx´X3q

σpx´ Y3q

σpx´ Z3q

UV2,2pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

g̃
p2q
1 pxq

...

g̃
p2q
k3
pxq

q1pxq ´ q1pZ1q

q1pxq ´ q1pX2q

UV2,3pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h̄
p2q
2 pxq

σpx´X4q

σpx´ Y4q

σpx´ Z4q

σpq1pxq ´ q1pZ1qq

σpq1pxq ´ q1pX2qq

σp˘UV2,3pxqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h̃
p3q
1

Φ̃2pxq

σpx´X4q

σpx´ Y4q

σpx´ Z4q

Q1pxq

UV2,3pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

g
p3q
1 pxq

...

g
p3q
k4
pxq

q2pxq

σpx´X4q

σpx´ Y4q

σpx´ Z4q

Q1pxq

UV2,3pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

g̃
p3q
1 pxq

...

g̃
p3q
k4
pxq

q2pxq ´ q2pZ2q

q2pxq ´ q2pX3q

Q1pxq

UV2,4pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h̄
p3q
2 pxq

σpx´X5q

σpx´ Y5q

σpx´ Z5q

σpq2pxq ´ q2pZ2qq

σpq2pxq ´ q2pX3qq

σp˘Q1pxqq

σp˘UV2,4pxqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(7.4.6)

As always, auxiliary layers are colored in green to indicate that we can ignore these

layers when estimating the size of the final network, as they are affine transformations

that do not use any activation functions, thus each of them can be integrated with the

layer after it and does not require an extra layer to process. Removing the auxiliary

layers and then extending this pattern, we obtain the final construction of the network

Φ:

x ùñ

»

—

—

—

—

—

—

—

–

h
p1q
1 pxq

σpx´X2q

σpx´ Y2q

σpx´ Z2q

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

–

h̄
p1q
2 pxq

σpx´X3q

σpx´ Y3q

σpx´ Z3q

σp˘UV2,2pxqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h̄
p2q
2 pxq

σpx´X4q

σpx´ Y4q

σpx´ Z4q

σpq1pxq ´ q1pZ1qq

σpq1pxq ´ q1pX2qq

σp˘UV2,3pxqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h̄
p3q
2 pxq

σpx´X5q

σpx´ Y5q

σpx´ Z5q

σpq2pxq ´ q2pZ2qq

σpq2pxq ´ q2pX3qq

σp˘Q1pxqq

σp˘UV2,4pxqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h̄
p4q
2 pxq

σpx´X6q

σpx´ Y6q

σpx´ Z6q

σpq3pxq ´ q3pZ3qq

σpq3pxq ´ q3pX4qq

σp˘pQ1pxq `Q2pxqqq

σp˘UV2,5pxqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ ¨ ¨ ¨

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h̄
pL´2q
2 pxq

σpx´XLq

σpx´ YLq

σpx´ ZLq

σpqL´3pxq ´ qL´3pZL´3qq

σpqL´3pxq ´ qL´3pXL´2qq

σ
`

˘
řL´4
b“1 Qbpxq

˘

σp˘UV2,L´1pxqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

h̄
pL´1q
2 pxq

σpx´X1q

σpx´ Y1q

σpx´ Z1q

σpqL´2pxq ´ qL´2pZL´2qq

σpqL´2pxq ´ qL´2pXL´1qq

σ
`

˘
řL´3
b“1 Qbpxq

˘

σp˘UV2,Lpxqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

–

σpqL´1pxq ´ qL´1pZL´1qq

σpqL´1pxq ´ qL´1pXLqq

σ
`

˘
řL´2
b“1 Qbpxq

˘

σp˘UV1,Lpxqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

–

řL´1
b“1 Qbpxq

UV1,Lpxq

ux` v

fi

ffi

ffi

ffi

ffi

fl

ùñ

L´1
ÿ

b“1

Qbpxq ` UV1,Lpxq ` ux` v “ fpxq
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Together with the omitted two neurons σp˘xq, each hidden layer in Φ has at most

11 additional neurons other than those of the h’s. Therefore, it has widthvec at most

rk1 ` 11, k2 ` 11, ¨ ¨ ¨ , kL ` 11, 8s “ rn1, n2, ¨ ¨ ¨ , nL, 8s.

Finally, we tally the nonzero parameters in Φ. From the detailed structure of Φ

shown in Formula 7.4.6, we can see that most connections (weights) between pairs

of hidden layers are the same as their counterparts in the network Φb: the neurons

in h
p1q
1 and h̄

p1q
2 are connected in the same way as the neurons in h

p1q
1 and h

p1q
2 are

connected; for b “ 1, 2, ¨ ¨ ¨ , L ´ 1, the neurons in h̄
pbq
2 and h̄

pb`1q
2 are connected in

the same way as the neurons in h
pb`1q
1 and h

pb`1q
2 are connected. From the proof of

Proposition 7.4.1, we know that there are at most 2kbtpkb`1 ` 2q{4u nonzero weights

between h
pbq
1 and h

pbq
2 . Therefore, assuming the worst case that each hidden layer has

11 additional neurons other than those in the h’s, we conclude that the number of

nonzero weights in Φ is at most

W
def.
“

L´1
ÿ

b“1

ˆ

2kb

Z

kb`1 ` 2

4

^

` 11kb ` 11kb`1 ` 11 ¨ 11

˙

` k1 ` 8pkL ` 11q ` 8

ď 2K ` 22
L
ÿ

b“1

kb ` 121pL´ 1q ` 88` 8

ď 2K ` 22
L
ÿ

b“1

pnb ´ 11q ` 121L´ 25

“ 2K ` 22
L
ÿ

b“1

nb ´ 121L´ 25

and the number of biases in Φ is at most

B
def.
“

L
ÿ

b“1

nb ` 8` 1
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Altogether, the number of nonzero parameters in Φ is at most

W `B ď 2K ` 23
L
ÿ

b“1

nb ´ 121L.

This completes our proof.

The following example elucidates Proposition 7.4.1, and frames it in a way which

is comparable to the memorization guarantees for MLPs derived in [80, 78]. Though

those networks utilize fewer neurons when performing their memorization, they ex-

hibit a much larger Lipschitz constant due to their highly irregular structure; since

they are only designed to optimize bit-extraction of [73, 67](see [5] for estimates on

the maximal bit-extraction “capacity” of MLPs).

Example 7.4.1 (A 1D MLP with width W and depth D can memorize OpW 2Dq data

points with optimal Lipschitz constant). Given any set of K samples pxi, yiq
K
i“1 Ď R2,

where x1 ă x2 ă ¨ ¨ ¨ ă xK , and

K “

ˆ

pW ´ 11q

Z

W ´ 9

4

^

´ 2

˙

pD ´ 2q

there exists an MLP with width at most W and depth at most D that can memorize

this sample set in such a way that it is linear on rxi, xi`1s for i “ 1, 2, ¨ ¨ ¨ , K´ 1, and

is constant on each of p´8, x1s and rxK ,8q. The number of nonzero parameters in

Φ is at most

2K ` p23W ´ 121qD.
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7.5 ReLU Approximations on Polytopes via the

Kuhn Triangulation

In this section, we generalize the concept of continuous piecewise linear approxima-

tors and the methods for constructing them to higher dimensions. As we will see,

compared to the ones in Theorem 6.2.1, these high dimensional continuous piecewise

linear approximators require more width, but they can achieve about the same level

of global error with much higher regularity (lower Lipschitz constant).

Definition 7.5.1 (Simplex). A d-dimensional simplex (or d-simplex) S is the convex

hull of d` 1 points v1, ¨ ¨ ¨ ,vd`1 in Rd that are affinely independent, i.e. the vectors

vd`1 ´ v1,vd`1 ´ v2, ¨ ¨ ¨ ,vd`1 ´ vd

are linearly independent in Rd, and

S
def.
“ convptv1, ¨ ¨ ¨ ,vd`1uq “

#

d`1
ÿ

i“1

λivi : λ1, ¨ ¨ ¨ , λd`1 ě 0,
d`1
ÿ

i“1

λi “ 1

+

.

Furthermore, v1, ¨ ¨ ¨ ,vd`1 are called the vertices of the simplex S.

Definition 7.5.2 (Triangulation of polytopes). A triangulation of a polytope P in

Rd is a finite collection of d-simplices tSiu
n
i“1 such that

1. S1 Y S2 Y ¨ ¨ ¨ Y Sn “ P ;

2. The set of all their vertices is the vertex set of P 1;

1Some literatures allow the existence of additional vertices inside P , but here we require that
there be no additional vertices other than those of P to simplify later arguments.
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3. Their interiors are pairwise disjoint.

Triangulations are generally not unique. For example, Figure 7.1 shows two dif-

ferent triangulations of a hexagon.

Figure 1: Two di↵er-
ent triangulations of a
hexagon.

Figure 7.1: Two different triangulations of a hexagon.

The next lemma shows how to triangulate all unit cubes tri, i` 1s : i P Zud of the

entire Rd simultaneously using hyperplanes. The triangulation of each of these unit

cubes will be a Kuhn triangulation.

Lemma 7.5.1. The set of hyperplanes in Rd

H
def.
“ txi ˘ xj “ 2k : 1 ď i ă j ď d, k P Zu Y txi “ k : 1 ď i ď d, k P Zu

triangulates each of the unit cubes in tri, i` 1s : i P Zud.

Proof. Let YH
def.
“

Ť

hPH h be the union of the hyperplanes (when considered as

subsets of Rd) in H. By the definition of H, YH has the following two properties:

1. YH has period 2 along each axis:

z P YH ðñ pz` 2eiq P YH, i “ 1, 2, ¨ ¨ ¨ , d
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2. YH is symmetric about each axis:

z P YH ðñ p´zq P YH, i “ 1, 2, ¨ ¨ ¨ , d

By property 1, we only need to show that YH triangulates r´1, 1sd. By property 2,

we only need to show that YH triangulates r0, 1sd.

By Definition 6.1.1, the d! simplices

conv

˜#

k
ÿ

i“1

eτpiq : 0 ď k ď d

+¸

, τ P Sd (7.5.1)

form the Kuhn triangulation of r0, 1sd. Fix any permutation τ P Sd. The simplex

conv

˜#

k
ÿ

i“1

eτpiq : 0 ď k ď d

+¸

has d` 1 faces

conv

˜#

k
ÿ

i“1

eτpiq : 0 ď k ď d, k ‰ j

+¸

, j “ 0, 1, ¨ ¨ ¨ , d.

For j “ 0, the corresponding face is contained in the hyperplane xτp1q “ 1 in H.

For j “ d, the corresponding face is contained in the hyperplane xτpdq “ 0 in H. For

1 ď j ď d´1, the corresponding face is contained in the hyperplane xτpjq´xτpj`1q “ 0

in H. Therefore, all the faces of all d! simplices are contained in some hyperplanes in

H. It remains to show that the intersection point of any d hyperplanes in H (if any)

is a lattice point.

Let h1, h2, ¨ ¨ ¨ , hd be any d hyperplanes in H that intersect at a single point

76

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.Sc. Thesis – R. Hong; McMaster University – Mathematics

px11, ¨ ¨ ¨ , x
1
dq, i.e.

h1 X h2 X ¨ ¨ ¨ X hd “ tpx
1
1, ¨ ¨ ¨ , x

1
dqu

We will proceed by induction to show that this is a lattice point, and the statement

is clearly true for d “ 1, 2. Thus, we assume that d ě 3.

If one of these hyperplanes has the form xi0 “ k, then the remaining d ´ 1

hyperplanes, when treated as equations and substituted xi0 “ k, are d´ 1 equations

on d´ 1 variables tx1, ¨ ¨ ¨ , xduztxi0u, which have the form xi˘xj “ 2k (if i ‰ i0 ‰ j)

or xi0 ˘ xj “ 2k and have a unique solution tx11, ¨ ¨ ¨ , x
1
duztx

1
i0
u by our assumption

above. By induction, tx11, ¨ ¨ ¨ , x
1
duztx

1
i0
u Ă Z, and we also have x1i0 “ k P Z, so

px11, ¨ ¨ ¨ , x
1
dq P Zd.

If any two of these hyperplanes have the form xi0 ` xj0 “ 2k and xi0 ´ xj0 “

2l, then x1i0 “ k ` l P Z, x1j0 “ k ´ l P Z. Similar to above, the remaining d ´

2 hyperplanes, when treated as equations and substituted xi0 “ k ` l and xj0 “

k ´ l, are d ´ 2 equations on d ´ 2 variables tx1, ¨ ¨ ¨ , xduztxi0 , xj0u, which have the

form xi ˘ xj “ 2k (if i, j R ti0, j0u) or xi0 ˘ xj “ 2k or xj0 ˘ xj “ 2k and have

a unique solution tx11, ¨ ¨ ¨ , x
1
duztx

1
i0
, x1j0u by our assumption above. By induction,

tx11, ¨ ¨ ¨ , x
1
duztx

1
i0
, x1j0u Ă Z, and we also have x1i0 “ k ` l P Z, x1j0 “ k ´ l P Z, so

px11, ¨ ¨ ¨ , x
1
dq P Zd.

Finally, if h1, h2, ¨ ¨ ¨ , hd all have the form xi˘xj “ 2k and they don’t contain two

hyperplanes of the form xi ` xj “ 2k and xi ´ xj “ 2k for any 1 ď i ă j ď d, then

consider the (undirected simple) graph G “ pV , Eq, where V “ tx1, x2, ¨ ¨ ¨ , xd} is the

vertex set, and edge set

E “ ttxi, xju : there is a hyperplane of the form xi ˘ xj “ 2ku
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Since G has d vertices and d edges, it has a cycle. Let txi1 , xi2u, txi2 , xi3u, ¨ ¨ ¨ , txim´1 ,

ximu, txim , xi1u be a shortest cycle, so that xi1 , ¨ ¨ ¨ , xim are distinct. Then, h1, h2, ¨ ¨ ¨ , hd

contain the following m´ 1 hyperplanes:

xis ˘ xis`1 “ 2ks, s “ 1, 2, ¨ ¨ ¨ ,m´ 1

By adding or subtracting these equations, we obtain an equation of the form

xi1 ˘ xim “ 2pk1 ˘ k2 ˘ ¨ ¨ ¨ ˘ kmq

Without loss of generality, assume that the above equation is of the form xi1 ` xim “

2k0 for some k0 P Z. If the hyperplane him,i1 corresponding to the edge txim , xi1u

has the form xi1 ` xim “ 2l0, then h1 X h2 X ¨ ¨ ¨ X hd is either empty (if l0 ‰ k0) or

infinite (if l0 “ k0 and the intersection is not empty, since the equation for him,i1 would

be redundant and there are essentially only d ´ 1 equations for d variables), which

contradicts our assumption that h1, h2, ¨ ¨ ¨ , hd intersect at a single point. Therefore,

the hyperplane corresponding to the edge txim , xi1u has the form xi1 ´ xim “ 2l0, so

x1i1 “ k0 ` l0 P Z, x1im “ k0 ´ l0 P Z. Proceeding by induction as above, we conclude

that px11, ¨ ¨ ¨ , x
1
dq P Zd is a lattice point.
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Figure 7.2: Finer Kuhn Triangulation (Definition 6.1.1) of a 2-dimensional square (left),
and a 3-dimensional cube (right), than in Figure 6.1.

Definition 7.5.3 (Continuous piecewise linear functions on polytopes). Let f be a

function from some polytope P Ď Rd to R. We say that f is continuous piecewise

linear on P if f is continuous on P , and there exists a triangulation of P such that f

is affine on each of its simplices.

We first show how to construct continuous piecewise linear approximators on

r0, nsd for some positive integer n.

Lemma 7.5.2. Let Ω Ď Rd be a connected open set, and f : Ω Ñ R be a function

such that for every point in Ω, it has a neighborhood on which f is affine. Then, f is

affine on Ω.

Proof. Fix any x P Ω. Then, there exists a neighborhood of x on which f ” g, for

some affine function g defined on all of Rd.

Assume for contradiction that there is some y P Ω such that fpyq ‰ gpyq, so

y ‰ x. Since Ω is connected, there exists a path γ that connects x and y inside Ω,

i.e. γ : r0, 1s Ñ Ω is continuous and γp0q “ x, γp1q “ y. Let

T
def.
“ tt P r0, 1s : fpγptqq ‰ gpγptqqu, t0

def.
“ inf T
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Since fpyq ‰ gpyq, fpγp1qq ‰ gpγp1qq, so t0 ď 1 exists. Since γp0q “ x and f ” g on

some neighborhood of x, t0 ą 0. By assumption, there exists an open neighborhood

U Ď Ω of γpt0q on which f is affine. Since γpt0q either belongs to γpT q or is a limit

point of γpT q, and γpT q Ď RdzU which is closed, γpt0q P RdzU , so γpt0q ‰ x. As

tÑ t0, γptq Ñ γpt0q, and since γpt0q ‰ x “ γp0q, there are infinite points in γpr0, t0sq

that are inside U . Since both f and g are affine on U and f ” g on γpr0, t0sq X U

which is infinite, f ” g on U .

However, there exists a sequence ptiq
8
i“1 in T that converges to t0, so γptiq Ñ

γpt0q P U as i Ñ 8, then there exists some i0 large enough so that γpti0q P U , but

fpγpti0qq ‰ gpγpti0qq, which contradicts our conclusion above. Therefore, f ” g on Ω,

thus f is affine on Ω.

The following lemma provides an explicit formula for the “hat functions” for the

Kuhn triangulation. Figure 7.3 shows two hat functions for the triangulation in

Lemma 7.5.1.

Figure 7.3: The supports of two hat functions in 3D view (left) and 2d view (right) with
respect to the triangulation in Lemma 7.5.1. Each of them is affine on any of the smallest
triangles, so any linear combinations of them is continuous piecewise linear with respect to

the triangulation in Lemma 7.5.1.

Lemma 7.5.3 (Constructing continuous piecewise linear approximators in Rd). Let
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f be a function from r0, nsd to R for some n P N`, then the function Φ defined by

Φpxq
def.
“

ÿ

yPt0,1,¨¨¨ ,nud

fpyqσ p1´max t|xi ´ yi| : yi is evenu ´max t|xi ´ yi| : yi is odduq

for x “ px1, ¨ ¨ ¨ , xdq P r0, ns
d is continuous piecewise linear on each of the nd unit

cubes tr0, 1s, r1, 2s, ¨ ¨ ¨ , rn´1, nsud of r0, nsd with respect to the triangulation in Lemma

7.5.1, and

Φpyq “ fpyq, @y P t0, 1, ¨ ¨ ¨ , nud

Proof. For convenience, we first define

Typxq
def.
“ σ p1´max t|xi ´ yi| : yi is evenu ´max t|xi ´ yi| : yi is odduq , @x P Rd

to be the hat function2 centred at y. Then,

Φpxq “
ÿ

yPt0,1,¨¨¨ ,nud

fpyqTypxq

For any y, z P t0, 1, ¨ ¨ ¨ , nud with y ‰ z, there is some i such that |yi ´ zi| ě 1, so

Tzpyq “ 0, thus

Φpyq “ fpyqTypyq `
ÿ

zPt0,1,¨¨¨ ,nud

z‰y

fpzqTzpyq “ fpyqTypyq “ fpyq

Now we show that g is continuous piecewise linear with respect to the triangula-

tions in Lemma 7.5.1. We only need to show that the hat functions tTyuyPt0,1,¨¨¨ ,nud

2This is the same as the hat function (or nodal basis function) discussed in [24], and here we
have provided its formula explicitly when the underlying triangulation is the one in Lemma 7.5.1.
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are continuous piecewise linear. Since the hat functions are obviously continuous, by

Lemma 7.5.2, we only need to show that each hat function is locally affine at every

point outside the union of those hyperplanes.

Take any x P Rd that is outside the union of these hyperplanes, and fix an arbitrary

y P t0, 1, ¨ ¨ ¨ , nud. We need to find a neighborhood of x on which Ty is affine. For

notational convenience, let

Sypzq
def.
“ 1´max t|zi ´ yi| : yi is evenu ´max t|zi ´ yi| : yi is oddu , @z P Rd

If Sypxq “ 0, then there are some i, j with i ‰ j such that

1´ |xi ´ yi| ´ |xj ´ yj| “ 0, yi is even, yj is odd

removing the absolute values results in an equation of the form

˘xi ˘ xj “ ˘yi ˘ yj ` 1

where ˘yi ˘ yj ` 1 is even, contradicting the assumption that x is outside those

hyperplanes. If Sypxq ă 0, then Ty ” σpSyq ” 0 on some neighborhood of x, and we

are done. Therefore, in the following we will assume that Sypxq ą 0, so there is some

neighborhood U1 of x on which Sy ą 0.

If |xi ´ yi| “ 0 for some i, then xi “ yi P Z, contradicting the assumption that x

is outside those hyperplanes. Then, |xi ´ yi| ‰ 0 for all i.

If there are some i, j with i ‰ j such that yi and yj are both even, and |xi ´

yi| “ |xj ´ yj|, then removing the absolute values results in an equation of the form
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˘xi ˘ xj “ ˘yi ˘ yj where ˘yi ˘ yj is even, contradicting the assumption that x is

outside those hyperplanes. Then, there is a unique i0 such that

max t|xi ´ yi| : yi is evenu “ |xi0 ´ yi0 |, yi0 is even

thus |xi ´ yi| ă |xi0 ´ yi0 | for all i ‰ i0 such that yi is even. Therefore, there exists

a neighborhood U2 of x such that for any z P U2, zi0 ´ yi0 does not change sign and

max t|zi ´ yi| : yi is evenu “ |zi0´yi0 | , so the function max t|zi ´ yi| : yi is evenu of z

is affine on U2. Similarly, there exists a neighborhood U3 of x such that the function

max t|zi ´ yi| : yi is oddu of z is affine on U3.

Now take U “ U1 X U2 X U3, so U is also a neighborhood of x. Moreover,

Sy ą 0 on U , so Ty ” Sy on U . Since U Ď U2 and U Ď U3, the functions

max t|zi ´ yi| : yi is evenu and max t|zi ´ yi| : yi is oddu of z are affine on U , so Sy

is affine on U , hence Ty is also affine on U .

Lemma 7.5.4 (Continuous piecewise linear approximators with respect to the Kuhn

triangulation preserve regularity under `1 norm). Let f be a function from r0, nsd to

R for some n P N`. Let ω : r0, nds Ñ R be a modulus of regularity of f under `1

norm of Rd. Let Φ : r0, nsd Ñ R be continuous piecewise linear on each of the nd unit

cubes tr0, 1s, r1, 2s, ¨ ¨ ¨ , rn´ 1, nsud with respect to the triangulation in Lemma 7.5.1,

and

Φpyq “ fpyq, @y P t0, 1, ¨ ¨ ¨ , nud

Then, Φ satisfies the approximation guarantee

}f ´ Φ}L8pr0,nsdq ď ω

ˆ

d

2

˙
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Furthermore, ω is a modulus of regularity of Φ under `1 norm of Rd.

During the proof of Lemma 7.5.4 we will make the following notational and ter-

minological conventions. For any vector z P Rd, we denote its i-th coordinate by pzqi.

The notation zi without brackets will have other contextual meanings specified when

appropriate. We say that a function g : Rd Ñ R has ω-regularity at a pair of points

u,v P Rd if |gpuq ´ gpvq| ď ωp}u´ v}1q.

Proof. We turn the problem into a path-finding problem: observe that, for any pair

of x,y P r0, nsd, if we can find a pair of corresponding finite linear paths γx, γy :

r0, T s Ñ r0, nsd and a time t0 P r0, T s such that the following conditions hold:

1. γxp0q, γxp1q are contained in the same simplex;

2. γyp0q, γyp1q are contained in the same simplex;

3. x “ γxpt0q;

4. y “ γypt0q;

5. As t changes linearly from 0 to 1, }γxptq´γyptq}1 changes linearly from }γxp0q´

γyp0q}1 to }γxp1q ´ γyp1q}1;

6. Φ has ω-regularity at γxp0q, γyp0q and γxp1q, γyp1q.

then we can conclude that Φ also has ω-regularity at x,y; here, by γx, γy being linear

we mean that each of their coordinates are linear functions of t.

This is because, by conditions 1 and 2, Φ is linear on the line segment connecting

γxp0q, γxp1q as well as the line segment connecting γyp0q, γyp1q, so

Φpxq “
t0
T

Φpγxp1qq `
T ´ t0
T

Φpγxp0qq, Φpyq “
t0
T

Φpγyp1qq `
T ´ t0
T

Φpγyp0qq
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by conditions 3,4 and 5, we have that

}x´ y}1 “
t0
T
}γxp1q ´ γyp1q}1 `

T ´ t0
T

}γxp0q ´ γyp0q}1

thus

|Φpxq ´ Φpyq| “

ˇ

ˇ

ˇ

ˇ

t0
T
pΦpγxp1qq ´ Φpγyp1qqq `

T ´ t0
T

pΦpγxp0qq ´ Φpγyp0qqq

ˇ

ˇ

ˇ

ˇ

ď
t0
T
|Φpγxp1qq ´ Φpγyp1qq| `

T ´ t0
T

|Φpγxp0qq ´ Φpγyp0qq|

ď
t0
T
ωp}γxp1q ´ γyp1q}1q `

T ´ t0
T

ωp}γxp0q ´ γyp0q}1q

(by condition 6)

ď ω

ˆ

t0
T
}γxp1q ´ γyp1q}1 `

T ´ t0
T

}γxp0q ´ γyp0q}1

˙

(since ω is concave)

“ ωp}x´ y}1q

In other words, for any pair of x,y P r0, nsd, if we can find two finite linear paths

such that:

11 Each path is entirely contained in some simplex;

21 ω-regularity of Φ is assured at the pair of starting points and the pair of ending

points;

31 As two points travel along the two paths, the `1 distance between them changes

linearly;

41 As two points travel along the two paths, they reach x,y respectively at the

same time,
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then the concavity of ω would guarantee the ω-regularity of Φ at any intermediate

pair of points, including x,y.

Now, we fix any pair of x,y P r0, nsd. For any z P r0, nsd, suppose it is con-

tained in some simplex Pz with vertices u1, ¨ ¨ ¨ ,ud`1 P t0, 1, ¨ ¨ ¨ , nu
d, then there

exists λ1, ¨ ¨ ¨ , λd`1 P r0, 1s such that

z “ λ1u1 ` ¨ ¨ ¨ ` λd`1ud`1, λ1 ` ¨ ¨ ¨ ` λd`1 “ 1

We say that z is contained in the interior of a k-dimensional face if exactly k ` 1 of

λ1, ¨ ¨ ¨ , λd`1 are nonzero, and define

dz
def.
“ mintk P N` : z is contained in the interior of a k-dimensional faceu

Using the idea above, we can find some linear paths that “push” x,y to some boundary

points x1,y1 of some pdx´1q, pdy´1q-dimensional faces which contain x,y respectively,

where we can use induction on dx ` dy to conclude ω-regularity at x,y.

Without loss of generality, assume x P r0, 1sd. We first assume that y P r0, 1sd and

demonstrate how to find such paths for x and y, then we generalize the result. As

argued above, let Fx, Fy Ď r0, 1s
d be pdx´1q, pdy´1q-dimensional faces which contain

x,y, and Px, Py be some simplices in r0, 1sd which contain Fx, Fy, respectively.

First, we define two infinite linear paths γx, γy : r0,8q Ñ Rd by:

γxptq
def.
“ tx, γyptq

def.
“ ty, @t P r0,8q

Note that, }γxptq ´ γyptq}1 “ t}x ´ y}1 changes linearly with time, and both x,y
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are reached at the same time t “ 1, thus conditions 31 and 41 are satisfied. Next, we

modify γx and γy so that conditions 11 and 21 are satisfied, while ensuring that both

conditions 31 and 41 remain satisfied.

From Equation 6.1.1, let τx, τy P Sd be the permutations corresponding to the

simplices Px, Py. Let tv1, ¨ ¨ ¨ ,vdxu, tw1, ¨ ¨ ¨ ,wdyu Ď t0, 1u
d be the vertices of Fx, Fy.

Then, vi’s and wi’s have the form

tv1, ¨ ¨ ¨ ,vdxu “

#

a1
ÿ

i“1

eτxpiq, ¨ ¨ ¨ ,

adx
ÿ

i“1

eτxpiq

+

, 0 ď a1 ă a2 ă ¨ ¨ ¨ ă adx ď d

tw1, ¨ ¨ ¨ ,wdyu “

$

&

%

b1
ÿ

i“1

eτypiq, ¨ ¨ ¨ ,

bdy
ÿ

i“1

eτypiq

,

.

-

, 0 ď b1 ă b2 ă ¨ ¨ ¨ ă bdy ď d

Define new paths γ˚x and γ˚y as follows: let pγ˚xqi “ pγxqi for all coordinate components

for which i ‰ τxp1q, ¨ ¨ ¨ , τxpa1q, otherwise let pγ˚xqi ” 1; similarly, let pγ˚yqi “ pγyqi for

all coordinate components for which i ‰ τyp1q, ¨ ¨ ¨ , τypb1q, otherwise let pγ˚yqi ” 1.

Finally, let

T
def.
“ maxtt P r0,8q : γ˚xpr0, tsq Ď Fx, γ

˚
ypr0, tsq Ď Fyu

For any i “ τxp1q, ¨ ¨ ¨ , τxpa1q, since pv1qi, ¨ ¨ ¨ , pvdxqi “ 1 and x is contained in the

convex hull of tv1, ¨ ¨ ¨ ,vdxu, pxqi “ 1, thus γ˚xp1q “ γxp1q “ x P Fx, and since

γ˚xp0q “
a1
ÿ

i“1

eτxpiq P tv1, ¨ ¨ ¨ ,vdxu Ď Fx,

where Fx is convex, γ˚xpr0, 1sq Ď Fx. Similarly, γ˚ypr0, 1sq Ď Fy. Thus, T ě 1. If T

is infinite, then both paths γ˚x, γ
˚
y are constant, in this case both x,y must be lattice

points, at which Φ has ω-regularity since the values of Φ and f are the same at x,y.
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Therefore, we may assume that T ě 1 is finite.

We now show that the finite linear paths γ˚xptq, γ
˚
yptq (t P r0, T s) satisfy conditions

11 to 41. Condition 11 is automatically satisfied by the definition of T . We have

proved above that γ˚xp1q “ x, and γ˚yp1q “ y can be proved similarly, also T ě 1, thus

condition 41 is satisfied.

For condition 21, since

γ˚xp0q “
a1
ÿ

i“1

eτxpiq P t0, 1u
d, γ˚yp0q “

b1
ÿ

i“1

eτypiq P t0, 1u
d

are lattice points on which the values of Φ and f are the same, we have ω-regularity

of Φ at γ˚xp0q and γ˚yp0q.

Since the faces Fx, Fy of the convex polytopes Sx, Sy are themselves convex poly-

topes, they are the convex hull of their vertices:

Fx “ tp
1
1v1 ` ¨ ¨ ¨ ` p

1
dxvdx : p11, ¨ ¨ ¨ , p

1
dx ě 0, p11 ` ¨ ¨ ¨ ` p

1
dx “ 1u

Fy “ tq
1
1w1 ` ¨ ¨ ¨ ` q

1
dywdy : q11, ¨ ¨ ¨ , q

1
dy ě 0, q11 ` ¨ ¨ ¨ ` q

1
dy “ 1u

By the definition of T , at least one of the ending points γ˚xpT q, γ
˚
ypT q lies on the

boundary of its face. Thus, without loss of generality, we may assume that γ˚xpT q lies

on the boundary of Fx. Then, when γ˚xpT q is expressed in the form p11v1`¨ ¨ ¨`p
1
dx

vdx ,

some of the coefficients p1i will be 0 (unless dγ˚x pT q “ 1, which is the base case), so γ˚xpT q

lies in the interior of some dγ˚x pT q-dimensional face with dγ˚x pT q ă dx, while γ˚ypT q is still

contained in the dy-dimensional face Fy, so dγ˚y pT q ď dy. By the induction hypothesis,

since dγ˚x pT q ` dγ˚y pT q ă dx ` dy, Φ has ω-regularity at γ˚xpT q, γ
˚
ypT q. In the base case

where dγ˚x pT q “ dγ˚y pT q “ 1, x and y are lattice points on which the values of Φ and
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f are the same, so we have ω-regularity of Φ at x and y. Therefore, condition 21 is

satisfied.

Finally, for condition 31, let i P t1, 2, ¨ ¨ ¨ , du be arbitrary. As t changes linearly

from 0 to T , pγxptqqi ´ pγyptqqi “ tppxqi ´ pyqiq changes linearly and does not change

sign. By definitions of γ˚x and γ˚y, compared to γx and γy, pγ˚xqi and pγ˚yqi are either

the same or always equal to 1. Then, there are three possibilities:

1. If both pγ˚xptqqi ” pγxptqqi and pγ˚yptqqi ” pγyptqqi for all t P r0, T s, then as t

changes linearly from 0 to T , pγ˚xptqqi ´ pγ
˚
yptqqi “ pγxptqqi ´ pγyptqqi “ tppxqi ´

pyqiq changes linearly and does not change sign;

2. If exactly one of pγ˚xptqqi and pγ˚yptqqi always equal to 1, without loss of generality

assume pγ˚xptqqi ” 1, then pγ˚xptqqi ´ pγ
˚
yptqqi “ 1´ pγyptqqi ě 1´ 1 “ 0 changes

linearly with t and does not change sign;

3. If both of pγ˚xptqqi and pγ˚yptqqi always equal to 1, then pγ˚xptqqi ´ pγ
˚
yptqqi ” 0

changes linearly with t and does not change sign.

Therefore, pγ˚xptqqi´pγ
˚
yptqqi always changes linearly with t and does not change sign,

thus

}γ˚xptq ´ γ
˚
yptq}1 “

d
ÿ

i“1

|pγ˚xptqqi ´ pγ
˚
yptqqi|

changes linearly with t, hence condition 31 is satisfied.

Now, we have found suitable paths for y P r0, 1sd, next we show how to find such

paths for an arbitrary y1 P r0, nsd. Suppose y1 P Qy1
def.
“ rm1,m1` 1s ˆ rm2,m2` 1s ˆ

¨ ¨ ¨ˆrmd,md`1s for some integers m1, ¨ ¨ ¨ ,md. Define the function Ty1 : r0, 1sd Ñ Qy1
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by:

pTy1pzqqi
def.
“

$

’

’

&

’

’

%

pzqi ` 2ki, if mi “ 2ki for some ki P N

2ki ´ pzqi, if mi “ 2ki ´ 1 for some ki P N
, i “ 1, 2, ¨ ¨ ¨ , d

Then Ty1 is a composition of reflections and translations, thus it is a linear bijection

between r0, 1sd and Qy1 .

Let YH be the union of the hyperplanes (which are considered as subsets of Rd)

in H, which is a subset of Rd that triangulates every unit cube in tri, i` 1s : i P Zud.

By the definition of H, YH has the following two properties:

1. Translation invariance:

z P YH ðñ pz` 2eiq P YH, i “ 1, 2, ¨ ¨ ¨ , d

2. Reflection invariance:

z P YH ðñ p2ei ´ zq P YH, i “ 1, 2, ¨ ¨ ¨ , d

Then, by the definition of Ty1 , the part of YH inside Qy1 is exactly the image of the

part of YH inside r0, 1sd under Ty1 , and vice versa: the part of YH inside r0, 1sd is

exactly the image of the part of YH inside Qy1 under T´1
y1 . Therefore, the simplices

in r0, 1sd and the simplices in Qy1 are in one-to-one correspondence via Ty1 .

Let y
def.
“ T´1

y1 py
1q. Since x,y P r0, 1sd, by the arguments above, there exist finite

linear paths γ˚xptq, γ
˚
yptq (t P r0, T s) that satisfy conditions 11 to 41. Using the same

notations as above, let Fx, Fy Ď r0, 1s
d be pdx ´ 1q, pdy ´ 1q-dimensional faces which
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contain x,y, and Px, Py be some simplices in r0, 1sd which contain Fx, Fy, respectively.

Define the path for y1 by:

γ˚y1ptq
def.
“ Ty1pγ

˚
yptqq, t P r0, T s

We now show that the finite linear paths γ˚xptq, γ
˚
y1ptq (t P r0, T s) satisfy condition

11 to 41. Since γ˚ypr0, T sq Ď Py, γ˚y1pr0, T sq Ď Ty1pPyq and Ty1pPyq is a simplex,

so condition 11 is satisfied. Similar as above, since γ˚xp0q, γ
˚
y1p0q “ Ty1pγ

˚
yp0qq are

lattice points and γ˚xpT q, γ
˚
y1pT q “ Ty1pγ

˚
ypT qq are in the boundary of their faces

Fx, Ty1pFyq, by doing induction on dx ` dy1 , we conclude that Φ has ω-regularity

at γ˚xp0q, γ
˚
y1p0q and γ˚xpT q, γ

˚
y1pT q, so condition 21 is satisfied. Since γ˚xp1q “ x and

γ˚y1p1q “ Ty1pγ
˚
yp1qq “ Ty1pyq “ y1, condition 41 is satisfied.

Finally, for condition 31, if pyqi P r0, 1s, then mi “ 0, ki “ 0, pγ˚y1qi “ 2ki`pγ
˚
yqi “

pγ˚yqi, and since pγ˚xptqqi´pγ
˚
yptqqi always changes linearly with t and does not change

sign, so does pγ˚xptqqi ´ pγ
˚
y1ptqqi. Otherwise, if pyqi ą 1, then mi ě 1, ki ě 1,

pγ˚y1qi ě 2ki ´ pγ
˚
yqi ě 2 ´ 1 “ 1 ě pγ˚xqi, so pγ˚xqi ´ pγ

˚
y1qi does not change sign, and

obviously it changes linearly with t. Thus,

}γ˚xptq ´ γ
˚
y1ptq}1 “

d
ÿ

i“1

|pγ˚xptqqi ´ pγ
˚
y1ptqqi|

changes linearly with t, hence condition 31 is satisfied.

Therefore, the paths γ˚x, γ
˚
y1 for x,y1 indeed satisfy conditions 11 to 41. By the

argument above, Φ has ω-regularity at x,y1. Since x,y1 were chosen arbitrarily, we

conclude that ω is also a modulus of regularity of Φ under `1 norm of Rd.

For the error estimate, fix any x P r0, nsd. Suppose x P Qx
def.
“ rn1, n1 ` 1s ˆ
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rn2, n2 ` 1s ˆ ¨ ¨ ¨ ˆ rnd, nd ` 1s for some integers n1, ¨ ¨ ¨ , nd. Let u1, ¨ ¨ ¨ ,ud`1 be the

vertices of a simplex Px Ď Qx which contains x, then there exist λ1, ¨ ¨ ¨ , λd`1 ě 0

such that

x “ λ1u1 ` ¨ ¨ ¨ ` λd`1ud`1, λ1 ` ¨ ¨ ¨ ` λd`1 “ 1

Since Φ is affine on this simplex,

Φpxq “
d`1
ÿ

i“1

λiΦpuiq “
d`1
ÿ

i“1

λifpuiq

thus

|Φpxq ´ fpxq| “ |λ1pfpu1q ´ fpxqq ` ¨ ¨ ¨ ` λd`1pfpud`1q ´ fpxqq|

ď λ1|fpu1q ´ fpxq| ` ¨ ¨ ¨ ` λd`1|fpud`1q ´ fpxq|

ď λ1ωp}u1 ´ x}1q ` ¨ ¨ ¨ ` λd`1ωp}ud`1 ´ x}1q

ď ωpλ1}u1 ´ x}1 ` ¨ ¨ ¨ ` λd`1}ud`1 ´ x}1q (7.5.2)

where (7.5.2) follows by the concavity of the modulus ω, and

d`1
ÿ

j“1

λj}uj ´ x}1 “
d`1
ÿ

j“1

λj

d
ÿ

i“1

|pujqi ´ pxqi|

“

d
ÿ

i“1

d`1
ÿ

j“1

λj|pujqi ´ pxqi|

“

d
ÿ

i“1

¨

˚

˚

˝

d`1
ÿ

j“1
pujqi“ni

λj|pujqi ´ pxqi| `
d`1
ÿ

j“1
pujqi“ni`1

λj|pujqi ´ pxqi|

˛

‹

‹

‚
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“

d
ÿ

i“1

¨

˚

˚

˝

d`1
ÿ

j“1
pujqi“ni

λjppxqi ´ niq `
d`1
ÿ

j“1
pujqi“ni`1

λjpni ` 1´ pxqiq

˛

‹

‹

‚

“

d
ÿ

i“1

¨

˚

˚

˝

ppxqi ´ niq
d`1
ÿ

j“1
pujqi“ni

λj ` p1´ ppxqi ´ niqq
d`1
ÿ

j“1
pujqi“ni`1

λj

˛

‹

‹

‚

for which we have

pxqi ´ ni “

˜

d`1
ÿ

j“1

λjpujqi

¸

´ ni

“

¨

˚

˚

˝

d`1
ÿ

j“1
pujqi“ni

λjni `
d`1
ÿ

j“1
pujqi“ni`1

λjpni ` 1q

˛

‹

‹

‚

´ ni

“

d`1
ÿ

j“1
pujqi“ni`1

λj

“ 1´
d`1
ÿ

j“1
pujqi“ni

λj

thus

ppxqi ´ niq
d`1
ÿ

j“1
pujqi“ni

λj “

¨

˚

˚

˝

1´
d`1
ÿ

j“1
pujqi“ni

λj

˛

‹

‹

‚

d`1
ÿ

j“1
pujqi“ni

λj ď
1

4

p1´ ppxqi ´ niqq
d`1
ÿ

j“1
pujqi“ni`1

λj “

¨

˚

˚

˝

1´
d`1
ÿ

j“1
pujqi“ni`1

λj

˛

‹

‹

‚

d`1
ÿ

j“1
pujqi“ni`1

λj ď
1

4
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Combining the results above, we have that

d`1
ÿ

j“1

λj}uj ´ x}1 “
d
ÿ

i“1

¨

˚

˚

˝

ppxqi ´ niq
d`1
ÿ

j“1
pujqi“ni

λj ` p1´ ppxqi ´ niqq
d`1
ÿ

j“1
pujqi“ni`1

λj

˛

‹

‹

‚

ď

d
ÿ

i“1

ˆ

1

4
`

1

4

˙

“
d

2

Therefore,

|Φpxq ´ fpxq| ď ω

˜

d`1
ÿ

j“1

λj}uj ´ x}1

¸

ď ω

ˆ

d

2

˙

Since x P r0, nsd was chosen arbitrarily, we conclude that

}f ´ Φ}L8pr0,nsdq ď ω

ˆ

d

2

˙

.

This concludes our proof.

Indeed, we may deduce an even stronger conclusion. Namely, we only used infor-

mation of f at the lattice points, so the modulus of regularity ωΦ of Φ can be the

minimum concave function that satisfies

ωΦpiq “ max
x,yPt0,1,¨¨¨ ,nud

}x´y}1“i

|fpxq ´ fpyq|, for i “ 0, 1, ¨ ¨ ¨ , nd

which is a polygonal function. Therefore, we have the following corollary.

Corollary 7.5.1. Let f be a function from r0, nsd to R for some n P N`. Let ωf be

a modulus of regularity of f under `1 norm of Rd. Let Φ : r0, nsd Ñ R be continuous
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piecewise linear on each of the nd unit cubes tr0, 1s, r1, 2s, ¨ ¨ ¨ , rn´1, nsud with respect

to the triangulation in Lemma 7.5.1, and

Φpyq “ fpyq, @y P t0, 1, ¨ ¨ ¨ , nud

Then, any monotone increasing and concave function ωΦ that satisfies the following

condition is a modulus of regularity of Φ under `1 norm of Rd:

ωΦpiq “ max
x,yPt0,1,¨¨¨ ,nud

}x´y}1“i

|fpxq ´ fpyq|, for i “ 0, 1, ¨ ¨ ¨ , nd

Moreover,

}f ´ Φ}L8pr0,nsdq ď ωf

ˆ

d

2

˙

7.6 Proof of the Main Result (Theorem 4.1.1)

Using the results above, we are able to derive our first main theorem, namely Theo-

rem 4.1.1.

Proof of Theorem 4.1.1. To apply the previous results, we first scale f into a function

f̃ defined on r0, nsd:

f̃pxq
def.
“ f

´x

n

¯

, @x P r0, nsd (7.6.1)

Since ω is a modulus of regularity of f , for all x,y P r0, 1sd, we have

|f̃pxq ´ f̃pyq| “
ˇ

ˇ

ˇ
f
´x

n

¯

´ f
´y

n

¯
ˇ

ˇ

ˇ
ď ω

´
›

›

›

x

n
´

y

n

›

›

›

1

¯

“ ω

ˆ

}x´ y}1
n

˙
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then ω̃ defined below is a modulus of regularity of f̃ :

ω̃pxq
def.
“ ω

´x

n

¯

, @x P r0, nds

Let

Φ̃pxq
def.
“

ÿ

yPt0,1,¨¨¨ ,nud

f̃pyqTypxq

where Ty be the hat function

Typxq
def.
“ σ p1´max t|xi ´ yi| : yi is evenu ´max t|xi ´ yi| : yi is odduq

for x “ px1, ¨ ¨ ¨ , xdq P r0, ns
d. By Lemma 7.5.3, Φ̃ is continuous piecewise linear on

each of the nd unit cubes tr0, 1s, r1, 2s, ¨ ¨ ¨ , rn ´ 1, nsud of r0, nsd with respect to the

triangulation in Lemma 7.5.1, and

Φ̃pyq “ f̃pyq, @y P t0, 1, ¨ ¨ ¨ , nud (7.6.2)

Then, by Lemma 7.5.4, ω̃ is also a modulus of regularity of Φ̃ under `1 norm of Rd.

Moreover,

}f̃ ´ Φ̃}L8pr0,nsdq ď ω̃

ˆ

d

2

˙

Now let

Φpxq
def.
“ Φ̃pnxq, @x P r0, 1sd (7.6.3)

Then, we deduce can Φ uniformly approximates f on r0, 1sd since

}f ´ Φ}L8pr0,1sdq “ }f̃ ´ Φ̃}L8pr0,nsdq ď ω̃

ˆ

d

2

˙

“ ω

ˆ

d

2n

˙
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Define the number of samples point Npnq
def.
“ p1 ` nqd and the grid txiu

Npnq
i“1

def.
“

n´1 ¨ Xn. Note that, together (7.6.1) and (7.6.2) along with the definition of Φ given

in (7.6.3) implies that

Φpxiq “ fpxiq @i “ 1, . . . , Npnq.

In other words, Φ interpolates f on the grid txiu
Npnq
i“1 . Thus,

řNpnq
i“1 |Φpxiq´fpxiq| “ 0.

Since ω̃ is a modulus of regularity of Φ̃, for all x,y P r0, 1sd,

|Φpxq ´ Φpyq| “ |Φ̃pnxq ´ Φ̃pnyq| ď ω̃p}nx´ ny}1q “ ωp}x´ y}1q

Therefore, ω is a modulus of regularity of Φ. Now we remain to show that Φ can

be implemented by a ReLU MLP with width at most 8dpn ` 1qd and depth at most

rlog2 ds` 4.

It is easy to see that

x “ σpxq ´ σp´xq, |x| “ σpxq ` σp´xq, @x P R

then

maxtx, yu “
x` y

2
`
|x´ y|

2
“
σpx` yq

2
´
σp´x´ yq

2
`
σpx´ yq

2
`
σp´x` yq

2
, @x, y P R

Using this formula, for any k P N`, we may compute the maximum value function on
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2k arguments via the following network structure:

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

x
p1q
1

x
p1q
2

x
p1q
3

x
p1q
4

...

x
p1q

2k´1

x
p1q

2k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

σ

˜

˘x
p1q
1 ˘ x

p1q
2

2

¸

σ

˜

˘x
p1q
3 ˘ x

p1q
4

2

¸

...

σ

˜

˘x
p1q

2k´1
˘ x

p1q

2k

2

¸

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

maxtx
p1q
1 , x

p1q
2 u

def.
“ x

p2q
1

maxtx
p1q
3 , x

p1q
4 u

def.
“ x

p2q
2

...

maxtx
p1q

2k´1
, x
p1q

2k
u

def.
“ x

p2q

2k´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

σ

˜

˘x
p2q
1 ˘ x

p2q
2

2

¸

σ

˜

˘x
p2q
3 ˘ x

p2q
4

2

¸

...

σ

˜

˘x
p2q

2k´1´1
˘ x

p2q

2k´1

2

¸

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

maxtx
p2q
1 , x

p2q
2 u

def.
“ x

p3q
1

maxtx
p2q
3 , x

p2q
4 u

def.
“ x

p3q
2

...

maxtx
p2q

2k´1´1
, x
p2q

2k´1u
def.
“ x

p3q

2k´2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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ùñ ¨ ¨ ¨ ùñ

»

—

—

—

–

maxtx
pk´1q
1 , x

pk´1q
2 u

def.
“ x

pkq
1

maxtx
pk´1q
3 , x

pk´1q
4 u

def.
“ x

pkq
2

fi

ffi

ffi

ffi

fl

ùñ

«

σ

˜

˘x
pkq
1 ˘ x

pkq
2

2

¸ff

ùñ

„

maxtx
pkq
1 , x

pkq
2 u



“

„

maxtx
p1q
1 , x

p1q
2 , ¨ ¨ ¨ , x

p1q

2k
u



(7.6.4)

where σp˘a˘bq abbreviates the four neurons σpa`bq, σpa´bq, σp´a`bq and σp´a´bq,

and the column vectors in green represent the “auxiliary” hidden layers which are

simply affine transformations that don’t use any activation functions, thus each of

them can be integrated with the layer after it, and does not require an extra hidden

layer to process. Therefore, we will ignore these layers. We denote this network as

Mk, thus Mk : R2k Ñ R outputs the maximum value of its 2k input arguments, and

it has width 2k`1 and depth k ` 1. We note that, after deleting an appropriate set

of neurons in Mk (which we will still call Mk), it can be applied to k1 arguments for

any 1 ď k1 ď 2k and output their maximum.

Let

d0
def.
“ rlog2 ds

For any lattice point y “ py1, y2, ¨ ¨ ¨ , ydq P t0, 1, ¨ ¨ ¨ , nu
d, suppose yi1 , yi2 , ¨ ¨ ¨ , yip are

even and yj1 , yj2 , ¨ ¨ ¨ , yjq are odd, for some 0 ď p, q ď d, then we can implement the
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hat function Ty using the network Md0 as follows:

»

—

—

—

—

—

—

—

–

x1

x2

...

xd

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

–

σp˘px1 ´ y1qq

σp˘px2 ´ y2qq

...

σp˘pxd ´ ydqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

–

σpx1 ´ y1q ` σp´px1 ´ y1qq “ |x1 ´ y1|

σpx2 ´ y2q ` σp´px2 ´ y2qq “ |x2 ´ y2|

...

σpxd ´ ydq ` σp´pxd ´ ydqq “ |xd ´ yd|

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

–

Md0

˜

„

|xi1 ´ yi1 | |xi2 ´ yi2 | ¨ ¨ ¨ |xip ´ yip |

J
¸

Md0

˜

„

|xj1 ´ yj1 | |xj2 ´ yj2 | ¨ ¨ ¨ |xjq ´ yjq |

J
¸

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

–

max t|xi ´ yi| : yi is evenu

max t|xi ´ yi| : yi is oddu

fi

ffi

fl

ùñ

„

σ p1´max t|xi ´ yi| : yi is evenu ´max t|xi ´ yi| : yi is odduq



“ Ty

˜

„

x1 x2 ¨ ¨ ¨ xd

J
¸

(7.6.5)

As before, σp˘aq abbreviates the two neurons σpaq, σp´aq, and the column vectors

in green represent the “auxiliary” hidden layer which we can ignore. We call this

network Ty, which has width at most

widthpTyq “ widthpMd0q ` widthpMd0q ď 2d0`1
` 2d0`1

“ 2d0`2
ď 2plog2 d`1q`2

“ 8d

(7.6.6)

and depth at most

depthpTyq “ 1` depthpMd0q ` 1 ď d0 ` 3 (7.6.7)
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Let y1,y2, ¨ ¨ ¨ ,ypn`1qd be the pn` 1qd lattice points inside the cube r0, nsd. Since

Φpxq “ Φ̃pnxq “
ÿ

yPt0,1,¨¨¨ ,nud

f̃pyqTypnxq, @x P r0, nsd

then Φ can be implemented as follows:

x ùñ nx ùñ

»

—

—

—

—

—

—

—

–

Ty1pnxq

Ty2pnxq

...

Ty
pn`1qd

pnxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

«

pn`1qd
ÿ

i“1

f̃pyiqTyi
pnxq

ff

“ Φpxq (7.6.8)

This network has width

widthpΦq “

pn`1qd
ÿ

i“1

widthpTyi
q ď

pn`1qd
ÿ

i“1

8d “ 8dpn` 1qd

and depth

depthpΦq “ max
1ďiďpn`1qd

depthpTyi
q ` 1 ď pd0 ` 3q ` 1 “ rlog2 ds` 4.

Finally, we tally the nonzero parameters in Φ. From (7.6.4), the network Mk has

no nonzero biases, and has nonzero weights at most

M
def.
“ 4 ¨ 2k´1

` 8 ¨
k´2
ÿ

i“1

2i ď 2 ¨ 2k ` 8 ¨ 2k´1
“ 6 ¨ 2k

where the factor 4 colored in blue is the number of nonzero connections between the

second layer in (7.6.4) and the second layer in (7.6.5), after “integrating” the green
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auxiliary layer in (7.6.5) with the layer after it. In other words, this is because in

(7.6.5), each of the neurons in the input layer of Md0 is the sum of two neurons in the

second layer, so since in (7.6.4) each neuron in the second layer has 2 nonzero con-

nection with the first layer, in (7.6.5) this number will have to be doubled, becoming

4.

From (7.6.5), the network Ty has at most T pbq
def.
“ 2d` 1 nonzero biases, and has

nonzero weights at most

T pwq
def.
“ 2d`M ` 2 “ 2d` 6 ¨ 2d0 ` 2 ď 2d` 6p2d´ 1q ` 2 ď 14d´ 4

In total, the network Ty has nonzero parameters at most

T
def.
“ T pwq ` T pbq “ 16d´ 3 (7.6.9)

From (7.6.8), Φ has no additional nonzero biases, thus it has nonzero parameters

at most

pn` 1qdT ` pn` 1qd ď 16dpn` 1qd. (7.6.10)

Remark 7.6.1 (Proof of Proposition 4.1.1 is given in the Proof of Theorem 4.1.1).

The proof of Proposition 4.1.1 directly follows from the proof of Theorem 4.1.1, upon

noting that all parameters except for the ones between the input layer and the first

hidden layer and the ones between the output layer and the last hidden layer come

from t0,˘1{2u, and all parameters except for the ones between the output layer and

the last hidden layer are independent of the “sample values” tfpxiqu
Npnq
i“1 ; i.e. the value
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of the encoder Enpfq.

7.7 Proof of Secondary Approximation Results

Proof of Proposition 4.1.2. In the proof of Theorem 4.1.1, we constructed final net-

work in (7.6.8). Here, we only need to distribute the pn`1qd sub-networks Ty1 , ¨ ¨ ¨ ,Ty
pn`1qd

to L different layers.

We relabel the pn` 1qd sub-network and function value pairs
`

Tyj
, fpyjq

˘

for j “

1, ¨ ¨ ¨ , pn` 1qd as
`

T
piq
1 , f

piq
1

˘

, ¨ ¨ ¨ ,
`

T
piq
mi , f

piq
mi

˘

for i “ 1, ¨ ¨ ¨ , L. To simplify notations,

for k “ 1, ¨ ¨ ¨ , L, let

Tkpxq
def.
“

k
ÿ

i“1

mi
ÿ

j“1

f
piq
j T

piq
j pnxq, @x P r0, 1sd,

Then, Φpxq “ TLpxq. Now, we can construct Φ as follows:

x ùñ

»

—

—

—

—

—

—

—

–

T
p1q
1 pnxq

...

T
p1q
m1pnxq

nx

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

–

T
p2q
1 pnxq

...

T
p2q
m2pnxq

σp˘T1pxqq

nx

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

–

T
p3q
1 pnxq

...

T
p3q
m3pnxq

σp˘T2pxqq

nx

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ ¨ ¨ ¨

ùñ

»

—

—

—

—

—

—

—

—

—

—

–

T
pLq
1 pnxq

...

T
pLq
mLpnxq

σp˘TL´1pxqq

nx

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ TLpxq “ Φpxq
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where we used the fact that σpnxq “ nx for any x P r0, 1sd. We know from (7.6.6)

and (7.6.7) that the sub-networks T
piq
j has width W ď 8d, depth D ď rlog2 ds ` 3,

and nonzero parameters T ď 16d´ 3. Then, Φ has width at most

widthpΦq ď W maxtm1, ¨ ¨ ¨ ,mLu ` 2` d “ 8dmaxtm1, ¨ ¨ ¨ ,mLu ` d` 2

depth at most

depthpΦq ď LpD ` 1q “ Lprlog2 ds` 4q

and nonzero parameters at most

parpΦq ď m1T ` d`
L
ÿ

i“2

pmiT ` 2mi´1 ` 2` dq `mL ` 2

ď pT ` 2q
L
ÿ

i“1

mi ` Lpd` 2q

ď 16dpn` 1qd ` Lpd` 2q.

Proof of Corollary 5.1.1. Since the support of Φ in Theorem 4.1.1 is contained in

r´1{n, 1` 1{nsd which is just slightly larger than r0, 1sd, the original construction of

Φ could lead to a steep descent near the boundary of r0, 1sd. To resolve this issue, we

avoid taking values of Φ outside r0, 1sd by first projecting Rd to r0, 1sd by applying
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the following 1D projection coordinate-wise:

ppxq
def.
“ σpxq ´ σpx´ 1q “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0, if x ă 0

x, if x P r0, 1s

1, if x ą 1

, @x P R (7.7.1)

For any x,y P Rd, ppxq, ppyq P r0, 1sd, }ppxq ´ ppyq}1 ď }x´ y}1, thus

|Φpppxqq ´ Φpppyqq| ď ωp}ppxq ´ ppyq}1q “ ω̄p}ppxq ´ ppyq}1q ď ω̄p}x´ y}1q

Therefore, ω̄ is a modulus of regularity of Φ ˝ p, whose restriction on r0, 1sd is the

same as Φ. Thus, the function Φ ˝ p satisfies our requirement, which is implemented

by the following network:

x ùñ

»

—

–

σpxq

σpx´ 1q

fi

ffi

fl

ùñ

„

Φpσpxq ´ σpx´ 1qq



“ Φpppxqq (7.7.2)

which has width

widthpΦ ˝ pq “ maxt2d,widthpΦqu ď maxt2d, 8dpn` 1qdu “ 8dpn` 1qd

and depth

depthpΦ ˝ pq “ depthpΦq ` 1 ď rlog2 ds` 5.

Finally, we tally the nonzero parameters in this network. From the proof of Theorem

4.1.1 (see the left-hand side of (7.6.10)), we see that the network Φ has at most

p16d´ 2qpn` 1qd nonzero parameters (we omitted the p´2q in the result to simplify
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the expression). Now, in the original construction of Φ (see (7.6.5) and (7.6.8)), there

are 2dpn ` 1qd neurons in its first hidden layer, each connecting to m “ 1 neuron in

its input layer. Here, in the network (7.7.2) implementing Φ ˝ p, this number m is

doubled, resulting in an additional

W1
def.
“ p2m´mq ¨ 2dpn` 1qd “ 2dpn` 1qd

nonzero weights. For the biases, it is clear that only B
def.
“ d additional biases (namely

´1) were introduced in the first hidden layer. Lastly, the only additional nonzero

parameters in (7.7.2) are the weights between the input layer and the first hidden

layer, which are W2
def.
“ 2d in total. Therefore, the number of nonzero parameters in

(7.7.2) is at most

p16d´ 2qpn` 1qd `W1 `B `W2 “ 18dpn` 1qd ´ 2pn` 1qd ` 3d

ď 18dpn` 1qd ´ 2 ¨ 2d ` 3d

ď 18dpn` 1qd.

Proof of Corollary 5.1.2. Fix n P N`. First note that the metric projection onto the

unit cube in Rd, given for each x P Rd by Πpxq P argminzPr0,1sd }z´x}1 is well-defined

since r0, 1sd is closed and convex. One can readily verify that Π “ p, where p is

defined in (7.7.1).

Now, by Corollary 5.1.1, there exists a ReLU MLP Φ : Rd Ñ R which is uniformly

continuous with modulus of regularity ω̄, width at most 8dpn`1qd, and depth at most
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rlog2 ds` 5, satisfying the uniform estimate

}f ´ Φ}L8pr0,1sdq ď ω̄

ˆ

d

2n

˙

. (7.7.3)

Consequentially, (7.7.3) implies that: for each x P Rd the following holds

|fpxq ´ Φpxq| ď |fpppxqq ´ Φpppxqq| ` |fpppxqq ´ fpxq| ` |Φpppxqq ´ Φpxq|

“ |fpppxqq ´ Φpppxqq| ` |fpppxqq ´ fpxq| ` |Φpppxqq ´ Φpppxqq|

(7.7.4)

“ |fpppxqq ´ Φpppxqq| ` |fpppxqq ´ fpxq|

ď |fpppxqq ´ Φpppxqq| ` ω̄p}ppxq ´ xq}1q

“ |fpppxqq ´ Φpppxqq| ` ω̄p}ppxq ´ xq}1q

ď sup
uPr0,1sd

|fpuq ´ Φpuq| ` ω̄p}ppxq ´ xq}1q

ď ω̄

ˆ

d

2n

˙

` ω̄p}ppxq ´ xq}1q, (7.7.5)

where (7.7.4) followed by the proof of by Corollary 5.1.1, specifically in (7.7.2), we

see that the first layer of Φ is given by pre-composition with p.

Since r0, 1sd is compact then the minimal distance to any given point is realized.

Also, since p is the metric projection of Rd onto r0, 1sd, then

dr0,1sdpxq “ }ppxq ´ x}1

for every x P Rd. Consequentially, the right-hand side of (7.7.5) can be re-expressed
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as

ω̄

ˆ

d

2n

˙

` ω̄p}ppxq ´ xq}1q “ ω̄

ˆ

d

2n

˙

` ω̄pdistr0,1sdpxqq,

which concludes our proof.

7.8 Proof of Statistical Result - Theorem 4.2.1

Let F be a non-empty set of functions from Rd to R, Z1, . . . , ZN be random vectors in

Rd, and let Z def.
“ pZnq

N
n“1. Its empirical Rademacher complexity, denoted by RZpFq,

is the (random) quantity

RZpFq
def.
“

1

N
Eσ

«

sup
gPF

N
ÿ

n“1

σn gpZnq

ff

(7.8.1)

where σ “ pσnq
N
n“1 and σ1, . . . , σN are i.i.d. Rademacher random variables; i.e. Ppσ1 “

1q “ Ppσ1 “ ´1q “ 1{2.

Proof of Theorem 4.2.1. Let δ1, δ2 P r0, 1q, to be fixed retroactively. Let Z def.
“ tpXn, Ynqu

N
n“1.

By [8, Theorems 8 and 12], the following holds with probability at-least 1´ δ1

sup
ΦPNNL,n

∆,W

ˇ

ˇRpΦq ´RNpΦq
ˇ

ˇ ď 2L`RX pNN L,n
∆,W q `

a

8 logp2{δ1q
?
N

. (7.8.2)

Since NN L,n
∆,W Ă NN∆,W X LippRd, r0, 1s, Lq then, by the definition of the empirical

Rademacher complexity of a class in (7.8.1), we have that

RZpNN L,n
∆,W q ď min

"

RZ
`

NN∆,W

˘

l jh n

(I)

,RZ
`

LippRd, r0, 1s, Lq
˘

l jh n

(II)

*

. (7.8.3)

108

http://www.mcmaster.ca/
https://www.eng.mcmaster.ca/ece


M.Sc. Thesis – R. Hong; McMaster University – Mathematics

Step 1 - Bounding Term (I):

Let X be the N ˆ d random matrix with rows given by X1, . . . , XN . Term (I) can be

bounded using the empirical Rademacher complexity bound derived in [6, Theorem

3.3] which implies that

(I) ď
4

N3{2
`

26 logpNq logp2W q

N

˜

}X}F

∆
ź

l“1

sl

´

∆
ÿ

l“1

`bl
sl

˘2{3
¯3{2

¸

(7.8.4)

where }¨}F and }¨}2 respectively denote the Fröbenius and the spectral matrix norms,

and sl denotes the maximum spectral norm of the lth matrix Wplq for any ReLU MLP

Φ with representation (3.3.1), and bl denotes the maximum }¨}1,2 matrix norm thereof

(defined by the sum of the Euclidean norm of its columns3).

Recall that, if Φ P NN L,n
∆,W then by Proposition 4.1.1 the entries of all its weight

matrices have absolute value at-most 1{2 if l P t2, . . . ,∆´1u and maxtn, 1u otherwise.

These observations, together with the elementary matrix norm inequalities (all found

on [22, page 56]), and the fact that each Φ P NN∆,W has width at-most W , and

that by enlarging the class a bit, we may assume that s1 “ s∆ “ nW 3{2 and that

bl “ sl “
1
2
W 3{2 for l “ 1, . . . ,∆. Thus, the right-hand side of (7.8.4) simplifies to

(I) ď
4

N3{2
`

26 logpNq logp2W q

2maxt0,∆´2uN
}X}F W

3∆{2. (7.8.5)

Using the standard matrix-norm bounds } ¨ }F ď
?
N} ¨ }op (where } ¨ }op denotes

the operator norm) and the fact that the operator norm of a matrix A equals to its

3The authors take a transpose in their main result; since this matrix norm is typically defined
by summing over the Euclidean norms of the rows of a matrix.
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largest singular value σmaxpAq, we reduce the right-hand side of (7.8.5) to

(I) ď
4

N3{2
`

26 logpNq logp2W q

2maxpt0,∆´2uN

?
N}X}op W

3∆{2

“
4

N3{2
`

26 logpNq logp2W q

2maxpt0,∆´2u
?
N

σmaxpXqW
3∆{2.

(7.8.6)

Define X̄
def.
“
?
N ¨X. By the min-max characterization of singular values, see e.g. [31,

Theorem 4.2.11], we have that σmaxpX̄q “
?
NσmaxpXq. Observe also that X̄ is

isotropic since

E
“

X̄X̄J
‰

“ E
“

p
?
NqXp

?
NXqJ

‰

“ NE
“

XXJ
s “ N

1

N
Id “ Id.

Therefore, a consequence to a version of Gordon’s Theorem given in [79, Theorem

4.6.1] applies to the random matrix X̄ since it has independent, sub-Gaussian, and

isotropic rows; thus: with probability at-least 1´ δ2 we have that

σmaxpX̄q ď
?
d` C p

?
N `

a

lnp2{δ2qq.

Therefore, with probability at-least 1´δ2, the maximal singular value of X is bounded

above by 4

σmaxpXq ď
1
?
N

`

?
d` C p

?
N `

a

lnp2{δ2qq
˘

“

?
d

?
N
` C

a

lnp2{δ2q
?
N

` C. (7.8.7)

Incorporating (7.8.7) into the right-hand side of (7.8.6), implies that: the following

4Remark that: without the correct scaling of 1
N Id the covariance of each X1 the third term on

the right-hand side of (7.8.7) would not tend to 0 as N tends to infinity.
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holds with probability at least 1´ δ2

(I) ď
4

N3{2
`

26 logpNq logp2W q

2maxpt0,∆´2u
?
N

σmaxpXqW
3∆{2

ď
4

N3{2
`

26 logpNq logp2W qW 3∆{2

2maxpt0,∆´2uN

`

?
d` C

?
N ` C

a

lnp2{δ2q
˘

.

(7.8.8)

Fix δ P p0, 1q and set δ1
def.
“ δ2

def.
“ δ{2. By a union bound together with (7.8.8)

and (7.8.3) we deduce that: the following holds with probability at-least 1´ δ

sup
ΦPNNL,n

∆,W

ˇ

ˇRpΦq ´RNpΦq
ˇ

ˇ ď 2L`RZpNN L,n
∆,W q `

a

8 logp4{δq
?
N

RZpNN L,n
∆,W q ď min

"

4

N3{2
`

26 logpNq logp2W qW 3∆{2

2maxpt0,∆´2uN

`

?
d` C

?
N ` C

a

lnp4{δq
˘

,

RZ
`

LippRd, r0, 1s, Lq
˘

l jh n

(III)

*

.

(7.8.9)

Step 2 - Bounding Term (II):

By [33, Lemma 25], we have that

(III) ď Cd
L

d
d`3

N
1

d`3

“

˜

`

8pd` 1q216d
˘

1
d`3 ` 4

?
2

16
d

d`3

p18pd` 1qq
d`1
d`3

¸

L
d

d`3

N
1

d`3

(7.8.10)

where Cd
def.
“

`

8pd ` 1q216d
˘

1
d`3 ` 4

?
2 16

d
d`3

p18pd`1qq
d`1
d`3

. Incorporating (7.8.10) into (7.8.9)

yields: the following holds with probability at-least 1´ δ

sup
ΦPNNL,n

∆,W

ˇ

ˇRpΦq ´RNpΦq
ˇ

ˇ ď 2L`RZpNN L,n
∆,W q `

a

8 logp4{δq
?
N

RZpNN L,n
∆,W q ď min

"

4

N3{2
`

26 logpNq logp2W qW 3∆{2

2maxpt0,∆´2uN

`

?
d` C

?
N ` C

a

lnp4{δq
˘

, Cd
L

d
d`3

N
1

d`3

*

.
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7.9 Proof of Results in the Discussion Section

Proof of Theorem 6.1.1. We will prove the following stronger statement: in the con-

text of Lemma 7.5.4, for n “ 1, the Kuhn triangulation is the only triangulation (up

to reflections) such that for all Lipschitz functions f with modulus of regularity ω

which is a linear function, ω is also a modulus of regularity of Φ. By a reflection, we

mean a transformation of the form xi ÞÑ 1´xi, for some i “ 1, ¨ ¨ ¨ , d. In other words,

we will only consider Lipschitz functions and linear moduli of regularity.

Note that, all reflections are involutions and they are commutative with each

other, so we will refer to a transformation as a reflection of the axes xi1 , ¨ ¨ ¨ , xim if

it is a composition of the reflections xj ÞÑ 1 ´ xj for j “ i1, ¨ ¨ ¨ , im, in any order; in

particular, we say that it reflects the xi-axis if i P ti1, ¨ ¨ ¨ , imu.

For d “ 1, 2, the Kuhn triangulation is the only triangulation of r0, 1sd up to

reflections, so we will assume that d ě 3 throughout the rest of the proof.

Let S
def.
“ tSku

m
k“1 be any triangulation of r0, 1sd that makes Lemma 7.5.4 true. We

will prove that S is some reflected version of the Kuhn triangulation.

For i “ 1, ¨ ¨ ¨ , d and δ “ 0, 1, let

Fi,δ
def.
“ r0, 1sd X tpx1, ¨ ¨ ¨ , xdq P Rd : xi “ δu

be some face of the unit cube r0, 1sd, and

Si,δ
def.
“ tSk X Fi,δ : Sk X Fi,δ is a pd´ 1q-dimensional simplex, k “ 1, ¨ ¨ ¨ ,mu
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be the “restricted triangulation” of S on Fi,δ. For any such pd ´ 1q-dimensional

face Fi,δ, we show that the finite collection Si,δ of pd ´ 1q-dimensional simplices is a

triangulation of Fi,δ:

1. YSi,δ “ Fi,δ: assume for contradiction that YSi,δ is a proper subset of Fi,δ.

Denote F o
i,δ as the interior of Fi,δ, then F o

i,δzpYSi,δq is open and non-empty, since

otherwise pYSi,δq Ě F o
i,δ, which implies that pYSi,δq Ě Fi,δ as YSi,δ is a closed

set. Consider the Lebesgue measure on the pd ´ 1q-dimensional hyperplane

xi “ δ that contains Fi,δ. The measure of F o
i,δzpYSi,δq is positive as it is non-

empty and open. If Sk X Fi,δ is not pd ´ 1q-dimensional, then it is at most

pd ´ 2q-dimensional, which has measure 0. There are only a finite number of

these pd´2q-dimensional faces with 0 measure, so their total measure is 0, which

cannot fill up F o
i,δzpYSi,δq as it has positive measure, so we get a contradiction

as desired;

2. The set of vertices of the simplices in Si,δ is t0, 1ud X Fi,δ, which is the set of

vertices of Fi,δ;

3. The interiors of the simplices in Si,δ are pairwise disjoint: without loss of gen-

erality, consider the case i “ 1 and δ “ 0. Assume for contradiction that z

is contained in the interiors of Sp and Sq, for two different simplices in S1,0.

Assume Sp “ Sp1 XF1,0 for some Sp1 P S, then compared to Sp, Sp1 has an addi-

tional vertex in the “upper face” F1,1 (otherwise Sp1 would not be a simplex in

Rd as all its vertices lie in the pd´1q-dimensional hyperplane x1 “ 0), so z` te1

is contained in the interior of Sp1 , for t ą 0 small enough. Similarly, assume

Sq “ Sq1 XF1,0 for some Sq1 P S, then z` te1 is also contained in the interior of
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Sq1 for t ą 0 small enough, which is impossible as S is a triangulation and its

simplices has pairwise disjoint interiors, so we get a contradiction as desired.

Therefore, Si,δ is indeed a triangulation of Fi,δ, which is a translated and reflected

pd´ 1q-dimensional unit cube r0, 1sd´1.

Assume for contradiction that Si,δ is not a reflected version of the Kuhn triangu-

lation. Without loss of generality, consider the case i “ 1 and δ “ 0. By induction,

there exists a function f : F1,0 Ñ R and a linear modulus of regularity ωf of f

which is not a modulus of regularity of the continuous piecewise linear approximator

Φ : F1,0 Ñ R of f with respect to the triangulation S1,0. Consider the extension f˚

of f to r0, 1sd defined by:

f˚px1, x2, x3, ¨ ¨ ¨ , xdq
def.
“ fp0, x2, x3, ¨ ¨ ¨ , xdq, @px1, x2, x3, ¨ ¨ ¨ , xdq P r0, 1s

d

Clearly ωf is also a modulus of regularity of f˚ as it is non-decreasing. Let Φ˚

be the continuous piecewise linear approximator of f on r0, 1sd with respect to the

triangulation S, then the restriction of Φ˚ on F1,0 is Φ, but this implies that ωf is not

a modulus of regularity of Φ˚, as this is not so even just on the subset F1,0 of r0, 1sd.

Thus, we get a contradiction as desired.

Therefore, Si,δ is indeed some reflected version of the Kuhn triangulation, for

i “ 1, ¨ ¨ ¨ , d and δ “ 0, 1. Since Fd,0 is the unit cube r0, 1sd´1 in the pd´1q-dimensional

hyperplane xd “ 0, without loss of generality, we may assume that Sd,0 is the “orig-

inal” Kuhn triangulation of Fd,0 without any reflections. Then, by definition of the

Kuhn triangulation, any simplex in Sd,0 has an edge connecting u1
def.
“ p0, 0, ¨ ¨ ¨ , 0, 0q

and u2
def.
“ p1, 1, ¨ ¨ ¨ , 1, 0q. Since Sd,0 is the “restricted” triangulation of S on Fd,0,

there is some corresponding simplex in S that has an edge connecting u1 and u2.
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Next, we identify the “separating hyperplanes” (i.e. each simplex lies on the same

side of it) in S and show that they are the same as the ones given in Lemma 7.5.1.

We first show that the hyperplanes xi´xj “ 0 for all 1 ď i ă j ď d´1 are separating

hyperplanes of S.

Assume for contradiction that there is some 1 ď i ă j ď d ´ 1 such that the

hyperplane xi ´ xj “ 0 is not a separating hyperplane. Without loss of generality,

assume that i “ 1, j “ 2. Then, there is some simplex in S that has two vertices

v1,v2 on different sides of the hyperplane x1 ´ x2 “ 0, so it has an edge connecting

v1,v2 as it is a simplex. Since v1,v2 P t0, 1u
d and they lie on different sides of the

hyperplane x1 ´ x2 “ 0, v1 “ p0, 1, δ
p1q
3 , ¨ ¨ ¨ , δ

p1q
d q, v2 “ p1, 0, δ

p2q
3 , ¨ ¨ ¨ , δ

p2q
d q, where the

δ
pbq
a ’s are either 0 or 1.

Now, consider the following “counterexample” function:

fpx1, x2, ¨ ¨ ¨ , xdq
def.
“ σpx1 ´ x2q `

d
ÿ

i“3

xi, @px1, x2, ¨ ¨ ¨ , xdq P r0, 1s
d

Clearly f is Lipschitz continuous with Lipschitz constant 1 (under `1 norm of Rd),

so ωpxq
def.
“ x(@x ě 0q is a modulus of regularity of f . However, for the continuous

piecewise linear approximator Φ of f on r0, 1sd with respect to the triangulation S:

consider the pair of points

u
def.
“

u1 ` u2

2
“

ˆ

1

2
,
1

2
, 0, 0, ¨ ¨ ¨ , 0, 0

˙

v
def.
“

v1 ` v2

2
“

˜

1

2
,
1

2
,
δ
p1q
3 ` δ

p2q
3

2
, ¨ ¨ ¨ ,

δ
p1q
d´1 ` δ

p2q
d´1

2
,
δ
p1q
d ` δ

p2q
d

2

¸
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Since there is some simplex in S that has an edge connecting u1 and u2,

Φpuq “ Φ
´u1 ` u2

2

¯

“
Φpu1q ` Φpu2q

2
“
fpu1q ` fpu2q

2
“ 0

Since there is some simplex in S that has an edge connecting v1 and v2,

Φpvq “ Φ
´v1 ` v2

2

¯

“
Φpv1q ` Φpv2q

2
“
fpv1q ` fpv2q

2
“

1

2
`

d
ÿ

i“3

δ
p1q
i ` δ

p2q
i

2

Then, ω is not a modulus of regularity of Φ because

|Φpuq ´ Φpvq| “
1

2
`

d
ÿ

i“3

δ
p1q
i ` δ

p2q
i

2
ą

d
ÿ

i“3

δ
p1q
i ` δ

p2q
i

2
“ ωp}u´ v}1q

This contradicts our assumption that the continuous piecewise linear approximators

of any Lipschitz continuous functions on r0, 1sd with respect to the triangulation S

always preserve regularity under `1 norm of Rd. Thus, we get a contradiction as

desired.

Therefore, the hyperplanes xi ´ xj “ 0 for all 1 ď i ă j ď d ´ 1 are indeed

separating hyperplanes of S.

By similar arguments as above, switching to other “pivot axis” than xd, we can

conclude that for any 1 ď i ď j ď d, either xi ´ xj “ 0 or xi ` xj “ 1 is a separating

hyperplane of S, taking possible reflections into account. We have shown above that

for all 1 ď i ď j ă d, the separating hyperplane is of the form xi ´ xj “ 0. Thus, we

remain to show that all remaining hyperplanes either all have the form xi ´ xd “ 0

or all have the form xi ` xd “ 1 for 1 ď i ď d ´ 1, and then the result follows from

Lemma 7.5.1.
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Assume for contradiction that there are some distinct i, j with 1 ď i, j ď d ´ 1

such that both xi´xd “ 0 and xj `xd “ 1 are separating hyperplanes of S. Without

loss of generality, assume that i “ 1, j “ 2. Then, consider the following d separating

hyperplanes of S:

x1 ´ xd “ 0, x2 ` xd “ 1, x1 ´ x2 “ 0, xk “ 0 for 3 ď k ď d´ 1

They intersect at a single point
`

1
2
, 1

2
, 0, 0, ¨ ¨ ¨ , 0, 1

2

˘

, which must be a vertex of some

simplex in S, but this is impossible since it is not a lattice point. Therefore, we get

a contradiction as desired.

Proof of Theorem 6.2.1. The proof is a mild modification of the one in [70], which

approximates the target function by assigning constant values (sample values) on

some pairwise disjoint cubes inside r0, 1sd, and the rest of r0, 1sd is called “trifling

regions” where errors are controlled by making these regions extremely small and

taking the median of 3d such MLPs with different trifling regions. The problem with

this approach is that the Lipschitz constant explodes in these extremely small trifling

regions. Here, we partially resolve this issue by taking the median of only 2d ` 1 of

these MLPs, thus enabling these trifling regions to become as large as possible, which

leads to a lower Lipschitz constant.

For the case d “ 1: Let xi “
i
n2 for i “ 0, 1, ¨ ¨ ¨ , n2. Since

Z

2n` 2

4

^

“

Z

n` 1

2

^

ě
n` 1

2
´

1

2
“
n

2

then by Proposition 7.4.1 (taking M “ 2n` 1, N “
X

2n`2
4

\

), given the set of no more

than MN samples tpxi, fpxiqq : i “ 0, 1, ¨ ¨ ¨ , n2u, there exists Φ P NN p#input “
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1; widthvec “ r2n ` 1, 2nsq such that Φpxiq “ fpxiq for i “ 0, 1, ¨ ¨ ¨ , n2, and Φ is

linear on rxi, xi`1s for i “ 0, 1, ¨ ¨ ¨ , n2 ´ 1. Then, the result follows from Lemma

7.3.4.

Therefore, in the rest of this proof, we will assume that d ě 2. We will also assume

that f is non-negative, since otherwise we can first construct Φ for the non-negative

function f ´ min f and then add back min f (which exists since f is a continuous

function on a compact domain) in the output layer.

For k “ 1, 2, ¨ ¨ ¨ , 2d ` 1 we define some modifications of these “trifling region”

in [70]:

Ωk
def.
“

d
ď

i“1

#

x “ px1, ¨ ¨ ¨ , xdq P r0, 1s
d : xi P

n´1
ď

j“0

ˆ

1

n

ˆ

k ´ 1

2d` 1
` j

˙

,
1

n

ˆ

k

2d` 1
` j

˙˙

+

(7.9.1)

Ωk is the union of nd “thick hyperplanes”, where for each of the d axes, there are

n of these parallel and equispaced “thick hyperplanes” that are perpendicular to it.

Then, Ωk separates r0, 1sd into nd (if k “ 1 or 2d ` 1) or pn ` 1qd (if 2 ď k ď 2d)

non-overlaping equispaced cuboids:

Qk
def.
“ r0, 1sdzΩk “

«

r0, 1s

K

n´1
ď

j“0

ˆ

1

n

ˆ

k ´ 1

2d` 1
` j

˙

,
1

n

ˆ

k

2d` 1
` j

˙˙

ffd

(7.9.2)

Most of these cuboids are d-dimensional cubes, except for the ones that touches some

face of r0, 1sd for 2 ď k ď 2d. See Figure 7.4 for an illustration of Ω1, ¨ ¨ ¨ ,Ω5 and

Q1, ¨ ¨ ¨ , Q5 for the case n “ d “ 2.
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Figure 7.4: An illustration of the trifling regions Ω1, ¨ ¨ ¨ ,Ω5 (colored in red) and
Q1, ¨ ¨ ¨ , Q5 (colored in blue) for the case n “ d “ 2. Each of the smallest cubes appears in
blue regions (where approximation errors are controlled) for at least 3 times. By Lemma

7.3.1, the errors of their medians are also controlled.

Step 1: Construct the projection maps πk : r0, 1sd ÝÑ R for each Qk

Fix 2 ď k ď 2d. The cases k “ 1 or 2d ` 1 can be treated similarly and require

less neurons, but we will assume that they require the same number of neurons as

other cases for convenience. We will define πk in such a way that it is constant on

each cuboid of Qk, and different cuboids correspond to different constants. Notice

that

r0, 1s

K

n´1
ď

j“0

ˆ

1

n

ˆ

k ´ 1

2d` 1
` j

˙

,
1

n

ˆ

k

2d` 1
` j

˙˙

is the union of n` 1 equi-spaced closed intervals, so we define a map pk : r0, 1s ÝÑ R

which maps the first of them (counting from the left) to 0, the second of them to 1,. . . ,

the last one of them to n, and let pk be linear on each of the remaining intervals such
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that it is continuous. Then, pk has 2n` 2 break points (including 0 and 1), so by [69,

Lemma 2.1], pk can be implemented by a ReLU MLP with width 2n ` 1 and depth

1. Then, for x “ px1, ¨ ¨ ¨ , xdq P Rd, we define

πkpxq “
d
ÿ

i“1

pn` 1qi´1pkpxiq

which can be seen as the number ppkpxdqpkpxd´1q ¨ ¨ ¨ pkpx1qq in base n ` 1, so it is

easy to see that πk indeed maps each of the pn ` 1qd cuboids to different constants,

namely 0, 1, 2, ¨ ¨ ¨ , pn` 1qd ´ 1. Then, we implement πk as follows:

»

—

—

—

—

—

—

—

–

x1

x2

...

xd

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

–

pkpx1q

pkpx2q

...

pkpxdq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

d
ÿ

i“1

pn` 1qi´1pkpxiq

so πk has width p2n ` 1qd and depth 3 (counting the output layer, which is still a

hidden layer of the final network).

Step 2: Construct a 1-dimensional memorizer φk : RÑ R for each Qk

Fix 2 ď k ď 2d. As in Step 1, the cases k “ 1 or 2d ` 1 can be treated similarly

and require less neurons, but we will assume that they require the same number of

neurons as other cases for convenience.

For j “ 0, 1, 2, ¨ ¨ ¨ , pn`1qd´1, let yj be the value of f at the center of the cuboid

that is mapped to j under πk. Note that the range of πk is r0, pn ` 1qd ´ 1s, so we

don’t need to care about the behavior of our memorizer outside this interval.

Let tpj, yjq : j “ 0, 1, 2, ¨ ¨ ¨ , pn ` 1qd ´ 1u be a sample set of size pn ` 1qd for our
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memorizer. Since

Z

2rpn` 1qd{2s` 2

4

^

“

Z

rpn` 1qd{2s` 1

2

^

ě
rpn` 1qd{2s` 1

2
´

1

2
ě
pn` 1qd{2

2

then by Proposition 7.4.1 (taking M “ 2rpn ` 1qd{2s, N “
X

2rpn`1qd{2s`2
4

\

), there is a

ReLU MLP φk with width 2rpn`1qd{2s and depth 3 (counting the output layer, which

is still a hidden layer of the final network) that memorizes this sample set, and φk is

linear on rj, j ` 1s for j “ 0, 1, ¨ ¨ ¨ , nd ´ 2.

Step 3: Combine Step 1, Step 2 and Lemma 7.3.2 to construct the

final network Φ

We denote the ReLU MLP implementing the median function on 2d ` 1 non-

negative arguments as M2d`1, which has width 6d` 3 and depth 11d` 3 by Lemma
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7.3.2, then we construct Φ as follows:

x ùñ

»

—

–

x

π1pxq

fi

ffi

fl

ùñ

»

—

—

—

—

–

x

π1pxq

π2pxq

fi

ffi

ffi

ffi

ffi

fl

ùñ ¨ ¨ ¨ ùñ

»

—

—

—

—

—

—

—

—

—

—

–

x

π1pxq

π2pxq

...

π2dpxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

—

—

—

–

π1pxq

π2pxq

...

π2dpxq

π2d`1pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

–

φ1 ˝ π1pxq

π2pxq

...

π2d`1pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ

»

—

—

—

—

—

—

—

–

φ1 ˝ π1pxq

φ2 ˝ π2pxq

...

π2d`1pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ ¨ ¨ ¨ ùñ

»

—

—

—

—

—

—

—

–

φ1 ˝ π1pxq

φ2 ˝ π2pxq

...

φ2d`1 ˝ π2d`1pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ùñ M2d`1

¨

˚

˚

˚

˚

˚

˚

˚

˝

»

—

—

—

—

—

—

—

–

φ1 ˝ π1pxq

φ2 ˝ π2pxq

...

φ2d`1 ˝ π2d`1pxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

˛

‹

‹

‹

‹

‹

‹

‹

‚

ùñ Φpxq

Its width and depth are

widthpΦq “ max twidthpπ2d`1q ` 2d,widthpφ2d`1q ` 2d,widthpM2d`1qu

“ max
 

p2n` 3qd, 6d` 3, 2rpn` 1qd{2s` 2d
(
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depthpΦq “
2d`1
ÿ

k“1

depthpπkq `
2d`1
ÿ

k“1

depthpφkq ` depthpM2d`1q

“ 3p2d` 1q ` 3p2d` 1q ` p11d` 3q

“ 23d` 9

Step 4: Estimate the L8 error

We first show that the L8 error of φk ˝ πk is controlled on Qk for all k: pick any

w P Qk, then since πk maps the cuboid in Qk containing w (whose center we denote

by w0) to some constant j, which is further mapped by φk to yj
def.
“ fpw0q, we have

φk ˝ πkpwq “ fpw0q, so

|φk ˝ πkpwq ´ fpwq| “ |fpw0q ´ fpwq| ď ν}w0 ´w}α1

Since the edge length of any cuboid in Qk is at most l
def.
“ 2d

np2d`1q
(this can be seen

from Equation 7.9.2), }w0 ´w}1 ď
d
2
l “ d2

np2d`1q
, then

|φk ˝ πkpwq ´ fpwq| ď ν}w0 ´w}α1 ď ν

ˆ

d2

np2d` 1q

˙α

Now, for any x “ px1, x2, ¨ ¨ ¨ , xdq P r0, 1s
d, we show that it belongs to at least d`1

out of 2d ` 1 Qk’s: notice that in the definition of the trifling regions Ωk (Equation

7.9.1), each xi belongs to at most one of the following:

n´1
ď

j“0

ˆ

1

n

ˆ

k ´ 1

2d` 1
` j

˙

,
1

n

ˆ

k

2d` 1
` j

˙˙

, for k “ 1, 2, ¨ ¨ ¨ , 2d` 1

so x belongs to at most d trifling regions, thus x belongs to at least d` 1 of the Qk’s.

Therefore, for any x “ px1, x2, ¨ ¨ ¨ , xdq P r0, 1s
d, at least d ` 1 of φk ˝ πkpxq (for
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k “ 1, 2, ¨ ¨ ¨ , 2d` 1) belong to the interval
”

fpxq ´ ν
`

d2

np2d`1q

˘α
, fpxq ` ν

`

d2

np2d`1q

˘α
ı

,

then by Lemma 7.3.1,

Φpxq “ median tφk ˝ πkpxq : 1 ď k ď 2d` 1u P

„

fpxq ´ ν
´ d2

np2d` 1q

¯α

, fpxq ` ν
´ d2

np2d` 1q

¯α


hence

}f ´ Φ}L8pr0,1sdq ď ν

ˆ

d2

np2d` 1q

˙α

Step 5: Estimate the Lipschitz constants

To compute the Lipschitz constants, we first fix 2 ď k ď 2d, and compute the

Lipschitz constant of φk ˝ πk. It is easy to see that φ1 ˝ π1 and φ2d`1 ˝ π2d`1 have at

least the same regularity since there are less cuboids in Q1 and Q2d`1. Finally, by

Lemma 7.3.3, their median has the same regularity.

We first compute the Lipschitz constant of πk. Let x P r0, 1sd and ∆x small, we

want to find an upper bound for |πkpx ` ∆xq ´ πkpxq|. By definition of pk, it only

increases linearly by 1 inside intervals of length 1
np2d`1q

, so |p1k| ď np2d` 1q, thus

}pkpx`∆xq ´ pkpxq}1 ď np2d` 1q}∆x}1

where pk applies to x elementwise. Let n
def.
“

„

pn` 1q0 pn` 1q1 ¨ ¨ ¨ pn` 1qd´1

J

,
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then

|πkpx`∆xq ´ πkpxq| “ |n ¨ pkpx`∆xq ´ n ¨ pkpxq|

“ |n ¨ ppkpx`∆xq ´ pkpxqq|

ď pn` 1qd´1
¨ }pkpx`∆xq ´ pkpxq}1

ď pn` 1qdp2d` 1q}∆x}1

therefore

Lippπkq ď pn` 1qdp2d` 1q

Now we compute the Lipschitz constant of φk. As mentioned above, let

padad´1 ¨ ¨ ¨ a1qn`1
def.
“

d
ÿ

i“1

pn` 1qi´1ai

denote the number a1a2 ¨ ¨ ¨ ad in base n ` 1. Let P
pkq
padad´1¨¨¨a1qn`1

be the center of the

unique cuboid in Qk such that pi

´

P
pkq
padad´1¨¨¨a1qn`1

¯

“ ai for i “ 1, 2, ¨ ¨ ¨ , d. Note

that ai P t0, 1, 2, ¨ ¨ ¨ , nu for all i. Then, φk is the unique continuous piecewise linear

function that goes through tpj, fpP
pkq
j qq : j “ 0, 1, 2, ¨ ¨ ¨ , pn ` 1qd ´ 1u and is linear

between adjacent points in this set. Then,

Lippφkq “ max
j“0,1,2,¨¨¨ ,pn`1qd´2

ˇ

ˇ

ˇ
fpP

pkq
j`1q ´ fpP

pkq
j q

ˇ

ˇ

ˇ
ď max

j“0,1,2,¨¨¨ ,pn`1qd´2
ν
›

›

›
P
pkq
j`1 ´ P

pkq
j

›

›

›

α

1
ď νdα
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Finally, by Lemma 7.3.3, the median function preserves regularity, hence

LippΦq ď max
k“1,2,¨¨¨ ,2d`1

Lippφk ˝ πkq

ď max
k“1,2,¨¨¨ ,2d`1

Lippφkq ¨ Lippπkq

ď νpn` 1qdp2d` 1qdα.

This concludes our proof.
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