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Lay Abstract

In this thesis, I study the statistics of matter distributions in our universe. Their

statistics are expected to be dependent on how we choose to average over the matter

content in a particular patch in the sky. For this work, I wrote Python code which

calculates the probabilities of these matter densities given an arbitrary averaging

scheme. After examining several cases, it was found that the statistics were qualita-

tively similar to one another. This suggests an overall universality in the statistics of

matter densities in our universe.
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Abstract

In this thesis, I studied the one-point probability distribution function (PDF) for av-

eraged matter densities over spherical cells, which can be used to non-perturbatively

probe the large-scale structure of our universe. The PDF depends on a function,

known as the filter/window function, which takes some weighted average over the

observed matter density within each cell. This averaging allows one to study the den-

sity field as some smoothed function rather than discrete points. In order to consider

filters of different kinds, the PDF’s are constructed numerically using Python code.

The PDF is analytically modeled using a path integral framework. By considering

a family of radial window functions interpolating between the TopHat and Gaussian

filters in coordinate space, I investigated the sensitivity of the PDF to the shape

of the window function. It was found that the sensitivity is rather mild suggesting

that the PDF is robust against the precise choice of the filter. Effective field theory

(EFT) corrections were included and used to examine how sensitive different filters

are to short-scale physics. Similar to the PDF, the effects coming from short-scale

physics appeared weakly dependent on the choice of filter, regardless of how smooth

the filter’s boundary was.The contribution coming from aspherical fluctuations to the

collapse dynamics of the cell were computed by comparing the numerical PDF to

high-resolution N-body simulations. It was found that this contribution factorizes as
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a prefactor to the PDF, which is redshift independent, with the exception of smaller

sized cells which display some mild redshift dependent shifting. These discrepancies

are thought to be associated with two-loop corrections to the PDF. We expect this

model to be flexible enough to study beyond the ΛCDM model and act as a probe

for new fundamental physics.
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Chapter 1

Introduction

Our universe contains everything we can see; all of the space, matter, and energy that

we can observe. When observed at large enough scales, the distribution of matter in

our universe appears to be homogeneous. This homogeneity, however, is not exact.

Dense distributions of matter, such as galaxies and galaxy clusters, are often sur-

rounded by vast regions of empty space. This large-scale structure (LSS), also known

as the cosmic web, is thought to be sourced by small matter fluctuations during the

inflationary era; a period in which the universe underwent a rapid accelerative expan-

sion. Over time, these fluctuations interacted gravitationally, forming the current LSS

we see today. Recently, there has been an abundance of observational data coming

from the growing number of cosmological surveys mapping LSS of the Universe. This

data does carry vital information on cosmological parameters, dark matter properties,

and fundamental physics occurring at the time of the early universe. The importance

of these data becomes even more apparent as we continue through the era of ’high-

precision cosmology’ where the uncertainties in the measurements are sub-percent

[1].
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Remarkably, despite its complexity, we can model the history and dynamics of

our universe using only six free parameters1; Ωb, Ωm, h, ns, σ8, and τ . Here, Ωb (Ωm)

represent the baryonic (matter) density parameter. This variable describes the ratio

of the baryonic (matter) density, ρb (ρm), to the total density ρtot of the universe

today2. Note that baryonic density includes all matter made from protons, neutrons,

and electrons which we can observe and interact with. The matter density includes

all baryons and dark matter, the latter of which is a type of matter which is not vis-

ible and does not interact with any known force or material, including itself, except

through gravity. The parameter h is related to the Hubble constant, H0, character-

izing the rate of expansion of the universe, and is conventionally represented in the

form3 H0 = h · 100 km · s−1 ·Mpc−1. The parameter ns represents the ’scalar spec-

tral index’ and characterizes initial matter density fluctuations. The parameter σ8

describes the variance of matter on scales of 8 h−1Mpc. In other words, by examining

the distribution of matter over scales of 8 h−1Mpc, σ8 then tells us how spread the

recorded values are from the average. Finally, τ represents the ’optical depth’, which

describes how opaque the universe is as light travels through it over time. Larger val-

ues of τ imply a more opaque medium while smaller values imply a more transparent

medium. This is closely related to the mean-free path of light, defined as the average

distance traveled by a particle before experiencing some interaction. All together,

this model of the universe is referred to as the ’lambda cold dark matter (ΛCDM)

1This holds true when we consider a universe with zero spatial curvature. If we have non-zero
curvature, then we can characterize the universe with more parameters.

2ρtot only describes the total density in our universe assuming we have zero spatial curvature.
This assumption is consistent with current data and observations about our universe.

3Here, Mpc stands for ’megaparsec’- a standard unit in cosmology defined as 1 Mpc=3.086×1022

meters.
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cosmology’. These parameters have been well studied and measured for our own uni-

verse using data collected from satellites [2]. We may, however, more generally define

a given ’cosmology’ as a universe with any specified values for these parameters.

Numerous models have since come out which extend and modify the above ΛCDM

one. Such models are known as ’beyond ΛCDM’ and consider additional effects on

cosmology such as non-Gaussian matter distributions, new gravitational affects, and

others [3]. One type of model considered in beyond ΛCDM is parametric dark energy.

This model describes dark energy, a type of energy expected to source the expansion

of our universe, using a non-standard ’equation of state’, w. The equation of state

relates the pressure, P and energy density, ρΛ, of dark energy through the relation

P = wρΛ. The current ΛCDM model assumes w = −1 while parametric dark energy

may consider non-constant and dynamical forms for w.

In order to extract useful information from cosmological data, one needs a com-

plete understanding of the non-linear collapse dynamics of matter within the specified

cosmology. Although numerical methods and simulations have commonly been used

to study these regimes, progress toward analytic methods has been developing at a

rapid rate in an attempt to reduce computational strain and provide a fundamental

understanding of the physics at play. Common analytic methods often relied on the

use of perturbation theory to study cosmic fluctuations on top of a uniform and homo-

geneous background. These fluctuations were known to be small in the early universe,

allowing perturbation theory to act as a successful and powerful tool. Its application

to the cosmic microwave background (CMB) in the early universe is a well-known

example of this. The CMB describes the background radiation of microwaves in the

universe today. This background was sourced by high-energy photons in the early

3
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universe which became less energetic as the universe expanded, eventually turning

into the low-energy microwave radiation we see today. The CMB allows us to see the

distributions of temperature in the early universe. Remarkably, it was found that the

temperature was uniform, with an average value of T = 2.7255 ± 0.0006 K [4] and

fluctuations from point to point of ∼ 10−5 [5]. These small temperature fluctuations

explain why linear perturbation theory has been so successful in studying the CMB.

As these thermal fluctuations are sourced by the same quantum fluctuations as in

LSS, the CMB has been able provide us with a plethora of data on the history of our

universe.

In the case of LSS, one treats the matter density contrast, δ(x) = ρ(x)/ρuniv − 1,

where ρ(x) is the matter density at a given position and ρuniv is the spatial averaged

density, as being small. With LSS, however, the small matter fluctuations formed

in the early universe have now grown well past the regime where perturbative ap-

proaches can be used. This has called for new analytic methods which can probe into

the non-linear regime of matter perturbations [6].

One of the earliest attempts to study non-linear effects of δ(x) was done by

Zel’dovich [7]. He found an approximate solution to δ(x) by applying Lagrangian

perturbation theory, which traces particle trajectories or fluid elements over position

and time [8]. By restricting the system to small displacements around the initial

position, corresponding to small density fluctuations around the homogeneous back-

ground, Zel’dovich found an analytic expression describing the growth of perturba-

tions. While quantitatively different, the approximation can qualitatively be used

to describe large, non-linear perturbations as well. More recent approaches, such as

standard cosmological perturbation theory [8] (SPT), have improved this approach by

4
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modeling dark matter dynamics as a pressureless fluid, which interacts only through

gravity. Using SPT, one can then compute various statistical quantities, such as the

2-point correlator, ξ(x1,x2), is defined by

ξ(x1,x2) = 〈δ(x1)δ(x2)〉 .

Here the angled brackets, 〈.〉, denote an ensemble average, ie. an averaging over all

possible configurations of the system. This correlator represents the probability of

finding two overdensity regions, ie. matter densities, galaxies, etc., separated by a

distance r = |x2 − x1|. Note that we can also examine the Fourier transform of

ξ(x1,x2). This quantity, denoted by P (k), is known as the ’power spectrum’. The

2-point correlator can also be generalized as an N -point correlators, ξ(x1, ...,xN),

defined by

ξ(x1, ...,xN) = 〈δ(x1)...δ(xN)〉 ,

which are also studied throughout cosmology. Once implemented, SPT introduces

higher-order corrections to these correlators, with the lowest-order correction often

referred to as the ’one-loop correction’. This one-loop correction captures the non-

linear behavior of the fluctuations and can extend the theory past the linear regime.

While SPT has a number of advantages, there are several drawbacks preventing

it from fully being able to describe LSS. As discussed in [9], the large-scale physics

of most physical systems is expected to be independent of how its short-scale physics

behaves. However, this is not true in SPT as the short-scale contributions to the sys-

tem are large. As a result, SPT alone cannot be expected to correctly describe LSS.

One successful method which is capable of properly capturing the effects of short-scale

5
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physics is ’effective field theory of LSS’ (EFTofLSS) [10, 11]. EFTofLSS addresses the

issue of small-scale physics by introducing a window function (or filter) that smooths

observable quantities, such as densities and velocities, over a large length scale. By

first smoothing our quantities over a large length scale, then applying our perturba-

tive expansion, the effects coming from small scales can be systematically accounted

for using only large-scale variables. This process, often described as ’integrating out’

the short-scale physics, now treats the previously described pressureless fluid as an

effective fluid, with some effective viscosity. This is to say that the effects of the mi-

croscopic, short-scale physics of the fluid are now captured as an effective viscosity in

the system. Once EFTofLSS is applied to the system, it introduces additional correc-

tion terms to the correlators, known as ’counterterms’. Inclusion of the counterterms

accounting for short-scale physics is referred to as ’renormalization’. This allows us to

probe mildly non-linear scales kNL . 0.3hMpc−1, where k is the wavenumber defined

in the Fourier transform. Since then, developments in its renormalization procedures

[12, 13], effects on the two-point correlator (power spectrum), three-point correlator

(bispectrum) [14, 15], and higher order corrections to the power spectrum [16] have

been studied.

While perturbative methods are commonly used to study non-linear matter clus-

tering, several non-perturbative approaches have been developed in the past. One

well-known example which does this is the Press-Schechter formalism [17]. In this

formalism, one can study present-day non-linear structure using the small, Gaussian

distributed density contrast in the early universe, δ0(x). As this density fluctuation is

initially small, one can use perturbation theory to examine the growth of structure in

the linear regime. Doing this, one finds that the linearly extrapolated density contrast,

6
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δL(x, t), known as the ’linear density contrast’, evolves as δL(x, t) = g(t)δ0(x). Here,

g(t) is defined as the ’linear growth factor’ and carries all of the time dependence for

how the initial density perturbation evolves. We emphasize here that δL(x, t) cannot

describe density fluctuations in present time, as non-linear effects become relevant.

Now, as matter collapses under its gravitational attraction, its density will continue

to increase until it has reached a state of virial equilibrium, in which the collapsing

matter forms a stable bounded object. Such bounded objects are said to be ’viri-

alized’. In order to classify δL(x, t) as virialized in the present-day, its smoothed

density contrast, δL(x;R) is first calculated. Similar to EFTofLSS, this smoothed

density comes from convolving the density field with some window function over

some effective length scale, R. Note that the motivation to smooth over the density

fields is to allow us to conveniently work with smooth fields. For example, if one was

to examine the distribution of galaxies in our sky, one may describe their locations

using discrete points. However, galaxies are not discrete point-like objects as their

matter content is spread over some finite size. So to overcome this issue, they are

often smoothed over some scale and made into smooth distributions. According to

linear theory, once the smoothed linear density contrast is above some critical value,

δc, ie. δL(x;R) ≥ δc, it is then assumed to be virialized, representing a non-linear

bounded object in the current-day. Regions where δL(x;R) ≥ δc are often referred to

as ’peaks’. Through the Press-Schechter formalism, the number density of bounded

objects with a mass M is related to the probability of finding a peak. This process

involves constructing a probability distribution function (PDF) for density contrasts

at a fixed smoothing scale, then integrating over all probabilities in which δL ≥ δc.

7
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While this approach generally agrees well with simulations, it requires manually in-

serting a factor of 2 into the equations in order to get the correct fraction of virialized

objects in the universe. Without this, Press-Schechter would be underestimating the

fraction of virialized objects by half. However, this factor could not be rigorously

argued or justified in their original work.

An alternate formalism which non-perturbative examines non-linear density regimes

is the BBKS formalism [18]. This formalism analytically examines the number density,

N -point correlators, and other statistical properties of non-linear overdense structures

in a Gaussian random field. In order to construct the number density of bounded

structures, the BBKS formalism assumes that this must be equal to the number of

peaks in the system. This approach, however, suffers from an issue known as the

’cloud-in-cloud’ problem. This occurs when larger sized overdensities contain within

them smaller sized overdensities, each of which are virialized on their respective length

scale. With cases of virialized objects being contained within one another, it is pos-

sible that the statistics of bounded structures are not accurately be studied. The

cloud-in-cloud problem was also found to exist in the Press-Schechter approach, ex-

plaining the missing factor of two. It wasn’t until the excursion set formalism [19],

also known as the ’extended Press-Schechter formalism’, which could avoiding the

cloud-in-cloud problem. The issue faced in previous formalisms was that it does not

consider the scenario in which δ(x;R1) < δc but δ(x;R2) ≥ δc for R1 < R2 [20]. In

other words, previous methods did not take into account that a small underdense

region may be enclosed by a larger overdense region. In order to account for this,

the excursion set formalism first finds the largest smoothing scale corresponding to a

bound object. It then moves down the length scale to avoid miscounting any overdense

8
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regions. This process was also found to reproduce the factor of two in Press-Schechter

without imposing it by hand.

In this thesis, we compute the one-point probability distribution function (PDF) of

the matter density field. This observable is closely related to another non-perturbative

formalism known as ’counts-in-cells (CiC) statistics’ [21]. In this formalism, one di-

vides up the density field into spherical cells of radius r∗ then computes the averages

of the field in each cell using some window function. Given a collection of cell averaged

densities, a PDF for measuring a given density can be constructed. Note that the

deviation of the averaged density from the mean density of the universe does not need

to be small, hence the PDF carries information about non-perturbative dynamics.

Up to now, most studies have relied on the TopHat filter, with some exceptions

[22]. This filter provides a uniform weight to matter inside the cell, and zero weight

outside. For example, if one wanted to apply the TopHat filter to a galaxy cluster,

then the radius of the filter would correspond to the radius of the cluster. This would

ensure that the TopHat contains the entire structure within it, and that averaging

over the cell corresponds to averaging the matter content of only the cluster. One can,

however, also consider the statistics of the PDF for non-TopHat filters. For exam-

ple, applying a Gaussian weight would prioritize the matter distribution closer to the

center of the cell, and less near its boundary. Note that in the case of a general filter,

the average density may not only depends on the field content within the cell, but

outside it as well, as seen in the Gaussian case. We note here that, while we work with

spherical cells to construct statistics for LSS, the actual matter distribution is not

spherically symmetric. Rather, it is composed of filaments and sheet-like structures.

We will examine the effects of aspherical fluctuation using both analytic techniques

9
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from perturbation theory as well as N-body simulations. While not discussed in this

work, smoothing over cylindrical cells is also possible and was investigated in [23].

Here we apply a path integral formalism for the CiC method following [24, 25],

generalizing it to the case of an arbitrary filter. In this approach, the PDF is de-

scribed as a path integral over all possible density configurations, which is evaluated

in the saddle-point approximation. This approximation perturbatively expands the

integral around the solution that extremizes the action of our system, known as the

saddle-point configuration, using a small expansion parameter. In this work, the

linear matter variance of the matter density field within a cell plays the role of the

expansion parameter. While perturbatively expanding the integral, the saddle-point

solution dictates the exponential behavior of the PDF while next-to-leading order

corrections were found to contribute to the prefactor of the PDF, corresponding to

the one-loop EFT corrections in the background of the saddle-point configuration.

The work done in [24, 25] limits itself only to the use of TopHat filters. While

this case greatly simplifies the calculations, resulting in analytic expressions for the

saddle-point configuration and prefactor, there are a number of limitations in its

uses. One of them is that the spherical PDF becomes independent of the statistical

properties of the density field inside or out the cell. Instead, it only depends on the

power spectrum and the spherical collapse dynamics in a given cosmology. While

this simplicity may be advantageous in some cases, it removes any sensitivity of the

matter distribution in the neighborhood of the cell. This can become problematic

when studying objects such as voids, where the matter distribution along the walls

of the underdensity can play an important role in identifying and classifying them.

Furthermore, the TopHat filter introduces a sharp boundary of the cell in position

10
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space. This transition leads to momentum modes of all scales being included when

examined into Fourier space, making it inconvenient to work with [20]. Furthermore,

certain theories, such as excursion set theory [19], rely heavily on Sharp-k filters over

the TopHat, while some halo clustering models [26] prefer Gaussian’s. Recent work

studying the effects of different filters on the mass function of primordial black holes

[27] and galaxy parameters [28] have also been conducted, suggesting an interest in

using filters outside of TopHat.

Another motivation to study other filters has to do with how they limit effective

field theory (EFT) corrections of small scale physics. As discussed in [24], countert-

erm corrections using a TopHat filter can change the PDF up to ∼ 30% near the tails

of the distribution. Thus, it would be informative to study the influence that different

filter have on the counterterm and whether some choices can reduce this dependence

on EFT corrections.

The goal of this thesis is to develop a numerical pipeline to construct the PDF

given an arbitrary filter. To do this, we discretize our system over a lattice space

and apply a numerical minimization procedure to solve for the saddle-point config-

uration. Contributions coming from leading order corrections are also numerically

implemented. We find that our code is able to recreate the TopHat PDF within

3% error in the extreme overdense and underdense regions. Comparing the TopHats

results with PDF’s from non-TopHat filters, we find that qualitatively there is no

difference between any of the cases. A similar conclusion is reached when examining

different filters sensitivity to the short-scale physics of EFT corrections.

This thesis is organized as follows. In chapter 2 we review the path integral formu-

lation developed in [25, 24] to construct the 1-point PDF. In chapter 3 we discuss the

11
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discretization scheme needed to find the PDF numerically. In chapter 4 we validate

our pipeline and construct PDF’s of non-TopHat filters. In chapter 5 we investigate

perturbatively the effects coming from leading-order corrections in our saddle-point

approximation and their sensitivity to short-scale physics. In chapter 6 we examine

the higher order, aspherical fluctuations coming from our saddle-point expansion by

comparing our results with N-body simulations. Chapter 7 is dedicated to the dis-

cussion of our results and future directions.

Several appendices contain supplementary information. Appendix A lists the con-

ventions used in the thesis. Appendix B provides derivations of results used in chapter

2 and 3. Finally, Appendix C gives details on our convergence tests of the code.

12
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Chapter 2

Path integral for the PDF

Consider a density contrast averaged with a spherically symmetric window function,

with a characteristic radius of r∗,

δ̄W =

∫
d3x

r3
∗
W̃ (r/r∗) δ(x) =

∫
k

W (kr∗)δ(k), (2.0.1)

where δ(x) = ρ(x)/ρuniv − 1 where ρ(x) is the density field and ρuniv is the spatially

averaged density of the universe. W̃ (r/r∗) is the position space window function

obeying the normalization condition
∫

d3x
r3∗
W̃ (r/r∗) = 1, and W (kr∗) is its Fourier

transform. Conventions about the above notation, Fourier transform, and more can be

found in Appendix A. We emphasize here that δ(x) is the non-linear density contrast

seen today, which is sourced by the gravitational dynamics of matter throughout the

evolution of the universe. Here we also define the TopHat window function as

W̃th(r/r∗) =
3

4π
ΘH

(
1− r

r∗

)
⇐⇒ Wth(kr∗) =

3j1(kr∗)

kr∗
, (2.0.2)

13
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where ΘH(x) is the Heaviside function and j1(x) is the spherical Bessel function. Here

we assume the initial conditions in the far past for the density perturbations to be

adiabatic and Gaussian such that their two-point correlator can be written as

〈δi(k)δi(k
′)〉 = (2π)3δD(k + k′)g2(zi)P (k), (2.0.3)

where δD is the Dirac delta-function, P (k) is the linear power spectrum at z = 0, and

g(z) is the linear growth factor which evolves the state from an initial redshift zi. We

emphasize here that g2 plays the role of a small expansion parameter which will be

used when carrying out our saddle-point approximation. In reality, the linear matter

variance (introduced in chapter 4) is the true expansion parameter with g2 acting as

a book-keeping term to keep track of our perturbation order.

We will however find it more convenient to rescale the density field to redshift z

using the linear growth factor,

δL(k, z) =
g(z)

g(zi)
δi(k). (2.0.4)

This will be referred to as the ’linear density contrast’ and will omit the explicit

redshift-dependence to simplify notation.

Given that we are assuming a Gaussian random field for δi(k), then we know the

linear density contrast also forms a Gaussian random field. To construct a PDF, we

integrate the Gaussian weight over all initial configurations that produce a given final

density contrast, δ∗. This condition is implemented by inserting into the integral a

14
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Dirac delta function;

P(δ∗) = N−1

∫
DδL exp

{
− 1

g2

[∫
k

|δL(k)|2

2P (k)

]}
δD(δ∗ − δ̄W [δL]), (2.0.5)

where N is a normalization constant. Expanding the Dirac delta function using its

integral representations, one can rewrite the PDF as [25, 24]

P(δ∗) = N−1

∫ i∞

−i∞

dλ

2πig2

∫
DδL exp

{
− 1

g2

[∫
k

|δL(k)|2

2P (k)
− λ(δ∗ − δ̄W [δL])

]}
, (2.0.6)

where λ is a free variable which, when integrated over, reintroduced the Dirac delta

function enforcing the constraint δ̄W = δ∗. This constraint ensures that the averaged

density contrast of the cell, δ̄W , is equal to the density contrast we are interested

in δ∗. Note that λ can also be seen as the Lagrange multiplier enforcing this non-

linear constraint in our equations. Here we also want to emphasize that δ̄W carries

all information about the evolution of the density contrast from its initial value. This

evolution is carried out by the non-linear collapse dynamics of the cell, which we use

to relate the non-linear density contrast, δ(x), to the linear density contrast, δL(x).

Solving the integral using the saddle-point approximation, we expect the form of the

PDF to follow

P(δ∗) = exp

{
− 1

g2

(
α0 + α1g

2 + α2g
4 + ...

)}
. (2.0.7)

The leading order term α0 corresponds to the saddle-point solution which minimizes

the exponential term in (2.0.6). The next-to-leading term α1g
2 comes from the Gaus-

sian integral around the saddle-point configuration. This term corresponds to the one-

loop correction of the saddle-point and introduces a 1/g factor to the PDF through

a logarithmic term appearing in α1. Similarly, α2g
4 represents two-loop corrections.
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In this paper, we consider only up to one-loop corrections.

At this point, it will be useful to impose a symmetry in our system which will

help us look for saddle-point configurations. By enforcing that the filter is spherically

symmetric, and thus depends only on the magnitude of the momentum1, k, one finds

that the most probable configuration, δ̂L(k), is also spherically symmetric. Given

such a symmetry, we may construct a one-to-one mapping relating the linear and

non-linear density fields by

δ̄L(R) = F (δ̄(r))⇐⇒ δ̄(r) = f(δ̄L(R)), (2.0.8)

where the functions f and F come from equations governing the spherical collapse

dynamics of a spherical density perturbation and

δ̄(r) =
3

r3

∫ r

0

dr1r
2
1δ(r1), δ̄L(R) =

3

R3

∫ R

0

dR1R
2
1δL(R1). (2.0.9)

Here, R is the comoving radius of cell at some early time in the universe while r is

the comoving radius of cell as it undergoes the collapse process. Note that as we go

back in time to the early universe, then r → R. We may also interpret R and r as the

Lagrangian and Eulerian radii of the cell respectively. In the case of an Einstein-de

Sitter (EdS) cosmology, defined by Ωm = 1 and w = 0, the collapse dynamics for

overdense regions are given by

F+(θ) =
9(θ − sin θ)2

2(1− cos θ)3
− 1, (2.0.10a)

1Note that the vector k is a wavenumber coming from the Fourier transform and does not refer
to any physical momenta coming from velocities of the system. However, following the EFTofLSS
literature, we will refer to it as a momenta.
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G+(θ) =
3

20
[6(θ − sin θ)]2/3 , (2.0.10b)

where 0 ≤ θ ≤ 2π is a parametric variable used to track time throughout the col-

lapse. Here, F+ (G+) represent the averaged non-linear (linear) density contrasts,

δ̄ (δ̄L). From this, we see that the non-linear density go to infinity in finite time

(θ = 2π), implying that the overdensity collapses to zero size. In reality, matter over-

densities do not do this, but rather virialize and form objects of a finite size. This

virialization process is characterized by the value of linear density contrast at θ = 2π,

with G+(2π) ≈ 1.686. In other words, by examining the value of δ̄L, we can determine

if an overdensity is virialized or not by checking if δL(R) ≥ 1.686 (assuming an EdS

cosmology). Using the above functions, we may then define the functions F (x), f(x)

as

F (x) = G+(F−1
+ (x)), f(x) = F+(G−1

+ (x)). (2.0.11)

For underdense regions, the collapse dynamics are given by

F−(θ) =
9(sinh θ − θ)2

2(cosh θ − 1)3
− 1, (2.0.12a)

G−(θ) = − 3

20
[6(sinh θ − θ)]2/3 . (2.0.12b)

with the functions F (x), f(x) defined in the same way.

Using this mapping function, we can write (2.0.1) as

δ̄W =
4π

r3
∗

∫
dR R2W̃

[
R
(
1 + f

(
δ̄L(R)

))−1/3
/r∗

]
− 1. (2.0.13)
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When solving for a saddle-point solution of (2.0.6), we look for functions δL(k)

and λ which minimize the exponent of the integrand. Thus, the problem of looking

for saddle-point solutions turns to that of a constrained-minimization problem. To

approach this problem, we may define the exponent as,

Scon =

∫
k

|δL(k)|2

2P (k)
− λ(δ∗ − δ̄W [δL]), (2.0.14)

which we will refer to as the constrained action in what follows. By taking variations

of (2.0.14) with respect to δL(k) and λ, we get the following equations of motion,

δ̂L(k)

P (k)
+ λ̂

∂δ̄W
∂δL(k)

∣∣∣∣
δ̂L(k)

= 0, (2.0.15a)

δ∗ = δ̄W [δ̂L]. (2.0.15b)

The solutions δ̂L(k) and λ̂ which satisfy the above equations then describe our saddle-

point configuration. Note that, by this point on, any hatted quantities will be used

to describe saddle-point configurations of our system.

To study the prefactor, we first consider small perturbations around the saddle-

point solution up to order g2. This involves expanding our variables into δL(k) =

δ̂L(k) + δ
(1)
L (k) and λ = λ̂ + λ(1). Expanding δ

(1)
L (k) into spherical harmonics and

substituting into (2.0.6), we find that the PDF factorizes into the contributions with

different multipole numbers, `,

P(δ∗) = exp

{
− 1

g2

∫
k

|δ̂L(k)|2

2P (k)

}
·
∏
`=0

A`(δ∗). (2.0.16)
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Singling out the contributions of the monopole fluctuations, we define the ’spherical

part’ of the PDF as

PSP (δ∗) = A0(δ∗) · exp

{
− 1

g(z)2

∫
k

|δ̂L(k)|2

2P (k)

}
. (2.0.17)

We emphasize here that the function, which we will refer to as the spherical PDF is

not the true PDF. It does, however, make up a large fraction of the true PDF as it

has the strongest dependence on δ∗.

The monopole prefactor A0 is given by (see Appendix B for derivation)

A0 =
1√
2πg2

√√√√det
(

I(k1,k2)
4πP (k)

)
− detH

. (2.0.18)

Here, I(k1, k2) is the symmetric unit operator in radial k-space

I(k1, k2) =
(2π)3

k2
1

δD(k1 − k2). (2.0.19)

and H is the block matrix

H =

 0 S(k)

Sᵀ(k) O(k1, k2)

 , (2.0.20)

where

O(k1, k2) =
I(k1, k2)

4πP (k)
+

λ̂

2π
Q0(k1, k2) (2.0.21)

and S(k) and Q0(k1, k2) are some known functions (refer to appendix B). Note that

the determinants appearing in the monopole prefactor are functional determinants,
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and so cannot be evaluated in the usual way. These come from evaluating the leading

order, Gaussian path integrals in the saddle-point approximation (see Appendix B).

Before continuing to the aspherical contributions to the prefactor, we will first

discuss the redshift dependence of the spherical PDF. Looking at (2.0.17) and (2.0.18),

we see that g(z) carries all dependence about the redshift. We also see that g(z)

factors out of the prefactor and exponent as 1/g and 1/g2 respectively. This tells

us that in order to evaluate our spherical PDF at any given redshift, we can simply

rescale the prefactor and exponent accordingly.

The remaining aspherical contributions to the prefactor can now be defined as

Aasp(δ∗) =
∏
`≥1

A`(δ∗), (2.0.22)

which we will refer to as the aspherical prefactor. We do not attempt to calculate it

in this work (see [24, 25] for the results for TopHat filters). Rather, we will estimate

it by comparing our spherical PDF with N-body simulations (see chapter 6).
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Chapter 3

Numerical implementation

As summarized in chapter 1, Ref. [24], derived Euler-Lagrange equation for the

saddle-point configuration of (2.0.6). In general, this is a complicated non-linear

integral equation, which gets drastically simplified only in the case of the TopHat

filter. Solving it for a general filter is impractical. We follow a different route and

develop an approach to find the saddle-point configuration, as well as monopole pref-

actor in (2.0.18) based on numerical minimization. To do this, we have constructed

two separate codes which compute the saddle-point profiles and monopole prefactor

separately.

3.0.1 Numerical saddle-point

The saddle-point solution δ̂L(k) minimizes the Gaussian weight

S[δL] =

∫
k

|δL(k)|2

2P (k)
, (3.0.1)
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in (2.0.6), subject to the constraint δ̄W [δL] = δ∗. We will refer to this as the action.

For a given δ∗, we use the Scipy and Numpy libraries in Python to discretize

our position and momentum space over an evenly-spaced lattice using the following

parameters,

Rmax = DR∗, Rmin = Rmax/N, R∗ = r∗(1 + δ∗)
1/3,

kmax = N
π

DR∗
, kmin =

π

DR∗
.

(3.0.2)

Here N is the number of lattice points, D is some integer, and R∗ interpreted as

being the initial radius of the cell in the early universe. We have found that different

choices of δ∗ require different values of N and D to reach a given level of precision.

This is discussed in more detail in section 4.

As one applies this discretization procedure, the question of finding the saddle-

point configuration reduces to a multidimensional minimization problem of the action

subject to non-linear constraints. In order to see this, recall that the saddle-point

configuration and constraint condition in chapter 2 were found by extremizing the

constrained action. However, as we discretize our functions into arrays, the act of

performing functional extremization translates to that of multidimensional minimiza-

tion.

Once the system has been discretized, we can then study PDF’s of any filter given

that we are able to implement the window function numerically through the non-

linear constraint. Note that due to the constraints non-trivial structure, it sourced

many of the challenges and difficulties during the discretization procedure.

In order to solve this constraint minimization problem, we apply the following

algorithm:
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1. Define the functions ∆L(R) = RδL(R) and ∆L(k) = kδL(k) which are related

to one another through the sine transformation (A.0.5).

2. After discretizing onto the lattice (3.0.2), we construct a function which com-

putes Y = (∆L(k1), ...,∆L(kN)) given X = (∆L(R1), ...,∆L(RN)). This is done

by discretizing (A.0.5) as

Y[X] = 2π∆R DST[X], (3.0.3)

where ∆R = (Rmax − Rmin)/N and DST is the scipy discrete sine transform

(DST) function. Note that the scipy DST function is scaled by a factor of two

compared to its standard definition.

3. Discretize the action over the lattice as

S[X] =
∑
int.

1

(2π)2

Y2
i [X]

P (ki)
, (3.0.4)

where
∑

int. denotes the Simpson numerical integration scheme.

4. Discretize the constraint function as

δ̄W [X] = −1 +
4π

r3
∗

∑
int.

R2
i W

[
Ri

r∗
(1 + f[Avg[X]])−1/3

]
(3.0.5)

where W and f are numerical implementations of the window function and col-

lapse mapping (f(x) in (2.0.11)) respectively. Note that in order to solve for

f(x) numerically, we used a root finding algorithm to construct the inverse

function G−1
± (x). The function Avg[X] numerically computes (2.0.9) given the
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array X. Note that Avg takes in the array X and outputting an array of the form

(δ̄L(R1), ..., δ̄L(RN)).

5. Select a value for δ∗ and construct an initial array, Xi representing the initial

guess for optimization scheme.

6. Use the minimize function under the scipy.optimize library, minimize (3.0.4)

subject to the non-linear constraint δ̄W = δ∗. For the case of non-linear con-

straints, the sequential least squares programming (SLSQP) solver is used as

our optimizer.

This algorithm then returns the optimized array, X̂, representing the discretized func-

tion for Rδ̂L(R), at a given δ∗ for any specified window function. Using values of N

and D ranging from 300 ≤ N ≤ 450 and 20 ≤ D ≤ 30, this algorithm currently takes

on average ∼ 18 hours to complete.

Given the saddle-point configuration, δ̂L(R), we are able to compute the Lagrange

multiplier which we need for the prefactor (see Eq. (2.0.21)). To see this, we note

the following equality,

d lnP
dδ∗

=
λ̂

g2
, (3.0.6)

which comes from differentiating (2.0.6). Substituting in (2.0.16), we find that the

Lagrange multiplier, up to leading order in our saddle-point expansion, is given by

λ̂ = −dS[δ̂L]

dδ∗
. (3.0.7)

Thus, (3.0.7) tells us that given a sufficiently fine grid of points over δ∗, the Lagrange

multiplier can be computed via numerical differentiation of the minimized action,
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S[δ̂L]. In our case, we sample 100 values of 1 + δ∗ within the range [0.1, 10] which are

evenly-spaced on a log-scale. By running the minimization procedure for every δ∗,i,

the points (δ∗,i,S[δ̂L,i]) can be interpolated and differentiated over, giving us a way

to calculate λ̂.

3.0.2 Monopole prefactor

Given the optimized profile, X̂ = (∆̂L(R1), ..., ∆̂L(RN)), where ∆̂(Ri) = Riδ̂L(Ri), we

want to construct (2.0.18) numerically. To do this, we apply the following algorithm,

1. Interpolate X̂ over the lattice space defined in (3.0.2) using a cubic spline func-

tion.

2. Construct a denser lattice space by fixingRmax but changingN to some1 Ñ > N .

Define the array, X̂
′
, as the interpolated function from step 1 evaluated over this

new lattice.

3. Fourier transform δ̂L(R) to δ̂L(k) through a discrete sine transform (DST) on

X̂
′
.

4. Discretize I(k1, k2) over the lattice into a diagonal Ñ × Ñ matrix given by

Iij =
(2π)3

kikj

δij
∆k

, (3.0.8)

where i, j = 1, 2, ..., Ñ with k1 = k′min, kÑ = k′max, and ∆k = (k′max − k′min)/Ñ .

Note that k′min and k′max are the minimum and maximum momentum modes in

1At this point, the choice to create a denser lattice space may not seem obvious. However, it is
required to reach a high enough numerically accuracy. This will be discussed more in later sections.
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the new, denser lattice defined in step 2.

5. Discretize S(k) and Q0(k1, k2) by numerically implementing (B.0.8) over the

points ki, kj in [k′min, k
′
max].

6. Construct the (Ñ + 1)× (Ñ + 1) discretized H matrix as,

Hij =

 0 S(kj)

Sᵀ(ki) Oij

 , (3.0.9)

where we have defined

Oij =
2π2

∆k

δij

kikj
√
P (ki)P (kj)

+
λ̂

2π
Q0(ki, kj). (3.0.10)

7. Compute the determinant of Hij and Iij using the scipy.linalg library in

Python.

The average runtime of this algorithm is 10 minutes following the same range of values

for 300 ≤ N ≤ 450 and 20 ≤ D ≤ 30.
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Chapter 4

PDF’s of filters

In this section, we display the results of our numerical procedure described in the pre-

vious section for several different filters. Here, the linear power spectrum is generated

using the linear Boltzmann solver CLASS [29] with cosmological parameters matching

that of the Quijote N-body simulations [30] (see chapter 6 for the precise values of

the cosmological parameters in Quijote ΛCDM simulations). While the power spec-

trum and N-body simulations used in this paper are based on the ΛCDM cosmology,

the gravitational collapse mapping (2.0.8) is known to be robust against different

cosmologies [31]. Thus, we choose to use the Einstein-de Sitter (EdS) collapse map-

ping (2.0.10)-(2.0.12) as they have fully analytic expressions. The EdS cosmology is

defined as having Ωm = 1 and w = 0, ie. a matter filled universe with no dark energy.

Looking first at the TopHat case, we systematically examine the error in the code by

comparing the numerical results with the analytical solutions obtained in [24]. This

allows us to identify suitable values of the lattice parameters (N,D) from (3.0.2).

Afterwards, we apply the code to several window functions and compare with the

TopHat.
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4.0.1 Validation of numerical procedure

In order to test the accuracy of the numerical solutions, we first examine the case of

the TopHat filter and compare with the analytic solutions derived in [24]. For the

saddle-point profile, δ̂L(k), this solution is given by

δ̂L(k) =
F (δ∗)

σ2
L,R∗

P (k)Wth(kR∗), (4.0.1)

where σ2
L,R∗ is the linear density variance defined in (4.0.3). After implementing

(2.0.2) into our code1, we are able to construct the numerical solutions for our saddle-

point configuration. We choose the radius of the cell to be r∗ =10 Mpc/h and our

lattice parameters (N,D) = (450, 30) for δ∗ ≤ −0.4 and (300,20) for δ∗ > −0.4.

The choice of using different parameter spaces for different δ∗ comes from the need

to ensure the numerical convergence. For more details on our convergence tests, see

Appendix C.

In Fig. 4.1 we present the results of the saddle-point profiles, δ̂L(R), along with

residuals comparing the numerical data with the known analytical expressions. Over-

all, we see that both methods are in good agreement with one another, with the

residuals remaining less than 1-2% within the center of the profiles. This implies

that our numerical minimization indeed captures the right saddle-point configura-

tion. Note that as the radius grows in the linear profiles, so to does the error. This

does not, however, imply that our pipeline fails in this regime, but instead comes

from the fact that we are examining the relative error of the two solutions. As the

profile asymptote to zero for large R, any small deviations from numerical result may

1In order to construct ΘH(x) in such a way that it would be compatible with the minimize

function, it had to be approximated as a smooth curve using the sigmoid function.

28

http://www.mcmaster.ca/
https://physics.mcmaster.ca


M.Sc. Thesis – A. Kayssi; McMaster University – Physics & Astronomy

Figure 4.1: Comparison between the numerical (dots) and analytical (solid line)
saddle-point linear profiles for several values of δ∗. Left panels show the saddle-point
profiles while the right panels display the residuals. Overdense profiles are given in

the top panel, with underdense profiles in the bottom.

translate to a large relative error. So, this growing error is not expected to be of

concern if it occurs at the tails of the profile.

The virialization of the cell occurs when the linear profile exceeds a critical density

δc = 1.686 and shell-crossing occurs2. In this case, shell-crossing occurs for δ∗ & 7,

which is in agreement with [24]. Surprisingly, we find that the output of the code

2The critical density δc = 1.686 comes from the assumption that we are in an EdS universe.
While its value slightly changes in the ΛCDM cosmology, the change is very small as δc is known to
be weakly dependent on cosmology.
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Figure 4.2: Left panel: Comparison between the numerical (dots) and analytical
(solid/dashed line) non-linear saddle-point profiles δ̂(r) for several values of δ∗. Note

that underdense profiles (green and red) are reflected about the x-axis onto the
same quadrant as the overdense profiles (blue and orange). Right panel: Residuals

of the numerical results to the analytical.

remains robust even after virialization, producing smooth profiles matching the ana-

lytic solutions despite the break down of the spherical collapse mapping, F (δ̄(r)), for

δ∗ ≥ δc. This smooth continuation of the analytic solutions may be explained by the

due to the slow transfer of information from the center of the cell to its boundary.

As the averaged cell density contrast reaches its critical value, δc, the matter content

at its center would be the first to virialize. However, matter near the boundary may

not pick up on this effect until much later due to their slow velocities. As such, infor-

mation about virialization may take longer to imprint itself across the cell, allowing

the analytic solutions to hold even when δ∗ ≥ δc [24]. However, it is not entirely clear

why the numerics remain robust in this case.

We also display in Fig. 4.2 the numerical and analytical non-linear saddle-point

profiles, δ̂(r), with their residuals. Just like the linear profiles, we find that the nu-

merical result agrees with the analytics to within 1− 2% across the profiles center.
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Figure 4.3: Left panel : Comparison between the numerical TopHat spherical PDF
(dots) and its analytic expression (solid line) at redshift z = 0. Right panel :
Residuals of the numerical results compared to the analytical. Note that the
discontinuous jump occurring at δ∗ = −0.4 is a result of the different lattice

parameters used for smaller and larger δ∗. The relative height of the discontinuity is
∼ 10−3.

Using the profiles computed by our algorithm, we can examine the saddle-point

action, S[δ̂L]. By numerically differentiating the action, as per (3.0.7), we can then

construct the Lagrange multiplier. The following results, and its residuals, are shown

in Appendix C.

Having an estimate of the accuracy of the minimization code, we can now exam-

ine the results for the monopole prefactor. In order to reach a high enough accuracy

between the numerical and analytic prefactor, the resolution of the lattice had to

increase by a factor of 4 to 6 depending on the density. The prefactor code is initial-

ized such that the lattice space is given by (Ñ ,D) = (1800, 30) for δ∗ ≤ −0.4 and

(Ñ ,D) = (1800, 20) for δ∗ > −0.4. Out of all the cases studied, these parameters

were found to produce the minimal error for the TopHat filter. More detail about

this parametrization will be discussed in the following section. The results of the
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prefactor code when using the TopHat filter can be found in Appendix C. There we

see that the numerical scheme is able to reproduce the analytic expression to within

1% error towards the extreme underdense and central densities. As we grow to ex-

treme overdense regions, we start to see an climb in the error, growing to ∼ 3% for

1 + δ∗ = 10.

Combining the profile and prefactor results, we can then construct the numerical

solution for the spherical PDF, Psp(δ∗), following (2.0.17). Here we note that the

redshift dependence of the spherical PDF, captured in g(z), is known. The result and

its residuals can be seen in Fig. 4.3. We see that Psp(δ∗) can be estimated to within

a 3% error for the central part of the PDF and its overdense tails. The underdense

regions, however, begin to accumulate a higher error of 7%. By using a larger and

denser lattice, we expect that this error can be improved on. However, this increase

would become more computationally taxing, requiring a runtime of over 24 hours for

each density point. While this runtime is not an issue for most cases, it becomes

problematic if one were to use this pipeline for Monte Carlo simulations, where fast

processes become necessary. This is discussed in more detail in chapter 7.

Comparing the analytic and numerical results not only validates the minimiza-

tion and prefactor code, but also presents us with an understanding of the errors for

non-TopHat filters, where no analytic solutions are available.

We also note that, unless otherwise stated, any analysis using the TopHat filter in

the following sections will be done using its analytical expressions and not with the

reconstructed numerical results of our pipeline.
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Figure 4.4: Comparison between the radial Gaussian, TopHat, and Tanh filters. The
parameters r∗ and a are taken from Table 4.1 to ensure that all filters have the same
linear variance, σ2

L,r∗=0.506. Left panel: Displays the filter profiles scaled by (r/r∗)
3.

This is a dimensionless value. Right panel: Profiles of the filters themselves. Note
the normalization in (2.0.1) which factors out the r−3

∗ from the filters.

4.0.2 PDF’s with non-TopHat filters

Now that we have validated the code, we are able to apply it to a variety of different

window functions. In this section, we examine the following radial filters,

Gaussian :

W̃g(r/r∗) =
1

(2π)3/2
e−

1
2( r

r∗ )
2

⇐⇒ Wg(kr∗) = e−
(kr∗)2

2 , (4.0.2a)

Hyperbolic Tangent (Tanh):

W̃ht(r/r∗) =
3

2π(4 + a2π2)

[
tanh

(
1− r

r∗

a

)
+ tanh

(
1 + r

r∗

a

)]
. (4.0.2b)

Here the Tanh function represents a family of curves parameterized by a. Note that

for the Tanh filter, its Fourier transform does not have a simple analytic expression.

Plots of these filters can be seen in Fig. 4.4 which visually compare the Gaussian and
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Smear, a r∗ (Mpc/h)
TopHat - 10

Gaussian - 4.7186
Tanh 1 4.2267
Tanh 1/2 6.7547
Tanh 1/5 9.1121
Tanh 1/30 9.9695

Table 4.1: Parameters for (4.0.2) needed to ensure that all filters share the same
linear density variance as the TopHat filter with r∗ = 10 Mpc/h. In this case, we

have that σ2
L,r∗ = 0.506.

Tanh filters to the TopHat. Filters given by (4.0.2b) are intended to describe a family

of functions which approximately interpolate between the Gaussian and TopHat filter.

In the limit where a→ 0 we recover the case for the TopHat filter exactly, while for

a ∼ 1, we approach a curve which is qualitatively similar the Gaussian. We emphasize

however that the function does not exactly reproduce the Gaussian in this limit.

With the goal to compare the statistics of PDF’s with different filters, we enforce

the condition that they all share the same linear density variance, σ2
L,r∗ , defined by

σ2
L,r∗ =

∫
k

P (k)|W (kr∗)|2. (4.0.3)

This condition is further supported by the fact that the linear density variance plays

the role of the expansion parameter in our perturbative solution of the PDF. Table

4.1 summarizes the parameters needed for all filters which will be considered in this

paper to have the same variance compared to the TopHat.

Applying our code to these new filters with the above parameters, the results for

the saddle-point density profiles are shown in Fig. 4.5. Here we had also set our

lattice parameters to be (N,D) = (450, 30) for δ∗ ≤ −0.4 and (300,20) for δ∗ > −0.4.
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Figure 4.5: Profiles for several density contrasts using the Gaussian and Tanh filters
(dots). For comparison, we show the profile for the TopHat filter (solid line). Top

panels show the overdense profiles, with underdense profiles in the bottom.

As previously mentioned, this choice is made to ensure the convergence of the saddle-

point configuration in the minimization code. This was done by gradually varying

the N and D parameters in the lattice space and producing the corresponding action

and prefactor curves. Once the difference between consecutive trials was less than

2%, the values for N and D would be selected. This tolerance of 2% was held only for

δ∗ ≥ −0.8 as attempting to improving the accuracy for small underdensities would

not only be more computationally taxing, but may not be required due to the high
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Figure 4.6: Comparison of the non-linear saddle-point profiles for the TopHat,
Gaussian, and Tanh filters. Left panel displays an overdense profile while the right

panel shows an underdense profile.

uncertainties associated with extreme underdense regions. We emphasize here that

using convergence testing is a crucial step when examining non-TopHat filters. We

have found that with the Gaussian and Tanh filters, the numerical results are more

sensitive to the lattice than for the TopHat filter. Thus, using parameters for the

TopHat filter do not always ensure the correct parameters for arbitrary filters in our

minimization code.

Examining the profiles in Fig. 4.5, we see that in both overdense and underdense

cases, the Tanh profiles for a = 1/30 appear to reproduce the TopHat results with

high accuracy while larger values of a interpolate towards the Gaussian results. From

the plots, we can also get an idea of the virialization process for a given filter. Re-

call that when δ∗ & 7, shell-crossing begins to occur for a TopHat filter. Given the

Gaussian and Tanh a = 1, 1/2, 1/5, 1/30 filters, we now find that the critical density

occurs at δc ≈ 3, 3, 4, 6, 7 respectively. Again, note how the Tanh filters agree with

the TopHat and Gaussian for the appropriate value of a. We see that Gaussian filters
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Figure 4.7: Spherical PDF for the Gaussian and Tanh filters compared to the
TopHat at z = 0. The PDF’s are cut at δ∗ = δc. Spherical PDF’s at different

redshift may constructed according to (2.0.17), where the monopole prefactor and
action (3.0.1) are divided by g(z) and g2(z) respectively.

virialize at a significantly lower δ∗ compared to the TopHat, cutting off the domain

of its PDF much sooner. This is further confirmed by the gradual growth of δc in the

Tanh functions as it goes from its Gaussian approximation to its TopHat limit. This

early virialization may be explained by the way Gaussian and TopHat filters smooth

over the density field in a given cell. Whereas TopHat filters would uniformly average

the field within the cell, Gaussian filters weigh the matter content near the center of

the cell more heavily compared to its edges. On average, the cell would effectively

contain more matter towards its center, inducing stronger gravitational interactions

between matter. The matter in the cell thus virializes more easily compared to a
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uniformly spread field like in the case of the TopHat.

In Fig. 4.6, we plot the non-linear saddle-point profiles for an overdense (δ∗=2.944)

and underdense (δ∗ = −0.596) cell for the TopHat, Tanh, and Gaussian filters. Look-

ing at the overdense case, we see that the centers of the profile can vary drastically

from one another. Profiles of Gaussian-like filters are shown to be an order of mag-

nitude larger than the TopHat filter. This should not be too surprising, however, as

we already saw that Gaussian-like filters lead to faster virialization than TopHat-like

filters. This is related to the fact that Gaussian filters have smaller effective radius,

r∗, for the the same linear variance (see Table 4.1). Hence, the corresponding density

profiles are more non-linear. Moving towards the tail of the profiles, we see that all

the curves begin to qualitative match with one another. Looking at the underdense

case, we see that all filters produce qualitatively same profiles across the whole plot.

Even the center of the curves match with one another, peaking at around ∼ −0.7.

This suggests that the non-linear profile of voids exhibits some universality to the

choice of filter.

Fig. 4.7 compares the spherical PDF for multiple filters. From it, we see that

Gaussian-like filters lead to a very similar PDF at overdense regions as the TopHat.

The difference is more pronounced at underdensities, where Gaussian-like filters lead

to smaller probability, by a factor of a few. However, we also see that the PDF’s are

not significantly different from one another, with all curves being qualitatively the

same.
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Chapter 5

Perturbative examination of the

PDF

In this section, we closely follow the approach of [24] and examine analytic properties

of the PDF at small density contrasts, |δ∗| � 1, using perturbative methods.

Having now constructed a pipeline for the spherical PDF, we now want to include

the effects coming from the aspherical contributions. While this is typically done

using comparisons with N-body simulations (see chapter 6), analytic expressions can

be derived for it within the perturbative regime. As discussed in [24], it is shown that

the aspherical prefactor can be written as

Aasp = Atot
√
D0, (5.0.1)

where

D0 = det[I + 2λ̂
√
PQ0

√
P ], (5.0.2)
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and

Atot =
1√
Dtot

, (5.0.3)

with

Dtot = det[I + 2λ̂
√
PQtot

√
P ], (5.0.4)

and

Qtot(k1,k2) =
1

2

∂2δ̄W
∂δL(k1)∂δL(k2)

. (5.0.5)

Here, I refers to the operator given by (2.0.19) while the quantities
√
PQi

√
P in

(5.0.2) and (5.0.4) describe the operators given by
√
P (k1)Qi(k1, k2)

√
P (k2), with

P (k) being the linear power spectrum. The quantity Atot is referred to as the total

prefactor and is generated from all multipole fluctuations. Note that (5.0.1) holds for

all δ∗ and not just small values. By using standard cosmological perturbation theory

(SPT) [8] and expanding up to second order in δ∗, it was shown that SPT corrections

to the total prefactor correspond to 1-loop corrections of the linear power spectrum.

While this is done assuming a TopHat filter, the effects of the loop correction for

arbitrary filters will be examined here. By further considering effective field theory

(EFT) corrections and examining the counterterm contributions, we then estimate

the sensitivity that different filters have to the short-scale physics.

Note that our prefactor code also outputs the value of D0 since Q0(k1, k2) is needed

for the monopole prefactor as well.
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5.0.1 Perturbative expansion of the total prefactor

After applying SPT corrections and expanding Qtot up to its first two terms, we find

that [24]

Qtot(k1,k2) = F2(k1,k2)W (|k12|r∗) + 3

∫
q

F3(k1,k2,q)W (|k12 + q|r∗)δ̂L(q), (5.0.6)

where we denote k1..n = k1 + ...+ kn and F2, F3 are the SPT kernels (see [8]). Using

the trace equation and assuming small δ∗, we can now approximate Dtot as

Dtot = exp
[
Tr ln

(
I + 2λ̂

√
PQtot

√
P
)]

≈ exp
[
2λ̂Tr (QtotP )− 2λ̂2Tr (QtotPQtotP )

]
. (5.0.7)

Looking for the first non-zero contributions to the trace terms, we find that

Tr (QtotP ) = 3

∫
k

∫
q

F3(q,−q,k)W (kr∗)δ̂L(k)P (q), (5.0.8a)

Tr (QtotPQtotP ) =

∫
k1

∫
k2

F 2
2 (k1,k2)P (k1)P (k2)|W (k12r∗)|2. (5.0.8b)

By this point, we can begin to perturbatively expand the saddle-point quantities, λ̂

and δ̂L(k), using the Euler-Lagrange equations (2.0.15). Writing λ̂ in the following

power series,

λ̂ =
∑
i=1

aiδ
i
∗, (5.0.9)

41

http://www.mcmaster.ca/
https://physics.mcmaster.ca


M.Sc. Thesis – A. Kayssi; McMaster University – Physics & Astronomy

and expanding δ̄W up to its first term in SPT as

δ̄W =

∫
k

W (kr∗)δL(k), (5.0.10)

then the Euler-Lagrange equation (2.0.15a) tells us that δ̂L(k), up to leading order in

δ∗, is given by

δ̂L(k) = −a1δ∗P (k)W (kr∗). (5.0.11)

Substituting (5.0.11) into the the constraint condition, δ∗ = δ̄W , and expand δ̄W up

to O(δ∗), we can solve for a1 to get

a1 = − 1

σ2
L,r∗

. (5.0.12)

Putting all of this together, we find that Dtot, expanded to second order in δ∗, is given

by

Dtot = exp

[
−δ2
∗
σ2

1-loop

σ4
L,r∗

]
, (5.0.13)

where

σ2
1-loop =

∫
k

P1-loop(k)|W (kr∗)|2, (5.0.14a)

P1-loop(k) =

∫
q

(
6F3(k,−q,q)P (|k− q|)P (k) + 2F 2

2 (k− q,q)P (k)P (q)
)
. (5.0.14b)

This is exactly the 1-loop correction to the power spectrum which appears in SPT.

Using this result, we then find that the total prefactor, up to second order, is given
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by

Atot = exp

[
δ2
∗
2

σ2
1-loop

σ4
L,r∗

]
. (5.0.15)

Perhaps unsurprisingly, we find that the resulting equations have the exact same form

as that of the TopHat filter, but with σ2
1-loop computed using the new filter. Note that

(5.0.15) has zero derivative at δ∗ = 0. We will use the fact in the next section cross

check our formalism.

5.0.2 One-loop corrections to the variance

While SPT can successfully describe linear density perturbation associated with large

length, it is known to fail when describing short distance physics where perturbations

become become highly non-linear. However, EFT of LSS allows one to probe further

into the mildly non-linear regime by introducing a correction term, known as the

counterterm, to the SPT expansion. In this subsection, we will discuss the sensitivity

of the counterterm to the choice of filter. In particular, we want to see if smoother

filters reduce the contributions of the counterterm to the PDF. We will find that this

is not the case.

The counterterm is given by

δc(k) = −γ(z)k2δL(k), (5.0.16)

where γ(z) is a redshift dependent coefficient which scales with g as1 γ(z) ∼ g2(z).

Note that the EFT is applicable only if γk2 � 1. We note here that γ(z) is some free

coefficient that can only be found by fitting the model to data or N-body simulations.

1In reality, γ scales as γ(z) ∼ g8/3(z) in the mildly non-linear regime, but is included here as it
is less than O(g3).

43

http://www.mcmaster.ca/
https://physics.mcmaster.ca


M.Sc. Thesis – A. Kayssi; McMaster University – Physics & Astronomy

This comes as a consequence of using EFT, which introduces additional unknown

coefficients into your expansion meant to capture the effects coming from the short-

scale physics in the system. This, however, comes at the cost of not knowing their

analytic expression, and so must instead be found through data or simulations 2.

Because the counterterm enters through how the non-linear density field, δ(k),

relates to its linear field, δL(k), the Euler-Lagrange equations, and thus the saddle-

point configuration, δ̂L(k), changes. Following a similar process as the last subsection,

we expand λ̂ as λ̂ =
∑

i=1 ãiδ
i
∗. However, as we expand δ̄W up to its first term, it now

picks up the contributions from the counterterm, resulting in the expression

δ̄W =

∫
k

W (kr∗)δL(k)(1− γk2). (5.0.17)

Substituting this into the Euler-Lagrange equation we find that

δ̂L(k) = −ã1δ∗P (k)W (kr∗)(1− γk2). (5.0.18)

Using the constraint condition, δ∗ = δ̄W , we can solve for ã1 to get

ã1 = − 1

σ2
L,r∗

 1

1− γΣ2
r∗

σ2
L,r∗


≈ − 1

σ2
L,r∗

(
1 +

2γΣ2
r∗

σ2
L,r∗

)
, (5.0.19)

2One can actually find analytic expressions for these coefficients assuming we know the full short-
scale physics. However, this is usually not the case and so, they must be measured instead.
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Gaussian Tanh a = 1 Tanh a = 1/2 Tanh a = 1/5 Tanh a = 1/30

Σ2
r∗,i/Σ

2
r∗,TH 0.9369 1.0009 0.9263 0.8967 0.9794

Table 5.1: Ratios of the counterterm variance for different filters compared to the
TopHat.

where in the last line, we expanded assuming small γk2. Here we define

Σ2
r∗ =

∫
k

k2P (k)|W (kr∗)|2. (5.0.20)

Putting it all together, we find that our modified saddle-point profile, expanded to

leading order in δ∗ and γk2, is given by

δ̂L(k) =
δ∗
σ2
L,r∗

P (k)W (kr∗)

(
1− γk2 +

2γΣ2
r∗

σ2
L,r∗

)
. (5.0.21)

In order to calculate the contribution of the counterterm on the PDF, we repeat

the calculation of Atot in the previous subsection, but now using (5.0.21). Looking at

the leading exponential in the PDF, we find that

− 1

g2

∫
k

|δ̂L(k)|2

2P (k)
≈ − δ2

∗
2g2σ2

L,r∗

−
δ2
∗γΣ2

r∗

2g2σ4
L,r∗

, (5.0.22)

which gains a non-zero contribution at order g2.

Using (5.0.15) and (5.0.22), then we find that part of the PDF is given by

Atot exp

[
− 1

g2

∫
k

|δ̂L(k)|2

2P (k)

]
≈ exp

{
− δ2

∗
2g2σ2

L,r∗

+
δ2
∗

2σ4
L,r∗

(
σ2

1-loop −
2γΣ2

r∗

g2

)}
. (5.0.23)
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Thus, we may define the renormalized, 1-loop linear density variance

σ2
1-loop, ren = σ2

1-loop −
2γ

g2
Σ2
r∗ . (5.0.24)

By generalizing our equations, we can now explore to what extent the aspherical

prefactor of PDF’s with different filters is sensitive to short-scale counterterms. In

order to calculate the short-scale dependence, we must know the value of γ. As

mentioned earlier, this can only be done by fitting our model to data or N-body

simulations. In an attempt to remove our dependence on this nuisance parameter, we

will instead examine ratios of the counterterm variances coming from different filters3.

The results are shown in Table. 5.1. Here we see that most cases differ ∼ 10% between

the TopHat case, with the Tanh a = 1/5 case being the most different. Based off the

filters explored, we see that the short-scale physics of the PDF has somewhat of a

weak dependence on the filters used. Thus, despite having smoother boundaries, all

filters are equally sensitive to the short-scale physics.

3We note here that γ does not depend on the filter, so it cancels in the above ratio.
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Chapter 6

Aspherical contributions from

N-body simulations

With a pipeline to construct the spherical PDF of an arbitrary window function nu-

merically, we now want to discuss the effects coming from the aspherical fluctuations.

These are encapsulated by the aspherical prefactor, Aasp, (2.0.22). Computing this

prefactor semi-analytically is difficult as it requires solving a coupled set of partial

differential equations with initial conditions. This has been done for the case of the

TopHat [24]. Generalizing the method for arbitrary filters is expected to increase the

complexity of the equations, and so this approach is not considered in this work. As

such, we instead extract the aspherical prefactor from N-body simulations. To this

end, we use the high-resolution (HR) Quijote dataset [30]. The HD dataset consists

of 100 realizations of a given ΛCDM cosmology which evolve 10243 cold dark mat-

ter (CDM) particles in a cosmological volume of 1 (h−1Gpc)3 with a gravitational

softening length of 25 h−1 kpc. Initial conditions for all simulations were generated
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at z = 127 using second-order Lagrangian perturbation theory (2LPT). The simula-

tion uses the following cosmological parameters, which closely follow the Planck 2018

constraints: Ωm=0.3175, Ωb=0.049, h =0.6711, ns=0.9624, σ8=0.834, w = −1, and

massless neutrinos. The simulation saves snapshots at redshifts 0, 0.5, 1, 2, and 3.

From the N-body PDF, we can estimate the aspherical prefactor as

Aasp(δ∗) =
PN-body(δ∗)

Psp(δ∗)
. (6.0.1)

By this point, it is important to note that the aspherical prefactor can be used

to further validate our numerical pipeline described above. As shown in [24], the

aspherical prefactor is expected to be redshift independent for any choice of window

function1. This property can be used to cross-validate the simulations themselves.

In order to construct the N-body PDF, we use the Pylians library [32]. First,

the algorithm distributes particle masses over the grid space using the Cloud-in-Cell

mass assignment scheme (MAS). Then, by initializing our filter choice and sphere

radius, r∗, as per Table 4.1, Pylians constructs non-overlapping spheres2 over a

given simulation and computes a histogram of the smoothed cell densities. Note that

if one uses overlapping sphere, one increases the statistics used in constructing the

PDF, thereby reducing the statistical noise. However, this would also increase the

covariance between cells [33], which we choose to ignore here. The histogram is then

translated into the PDF by a proper normalization. This process is repeated using 10

snapshots and averaged over, giving us PN-body(δ∗). The error of the PDF extracted

1A small dependence comes from the counterterm and two-loop corrections.
2Non-overlapping in this case refers to the fact that the center of each cell is separated by a

distance of 2r∗. In reality, as the cells are smoothed over using Gaussian and Tanh filters, they pick
up contributions from outside the cell (unlike TopHat filters), causing them to overlap.
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Figure 6.1: Left panel: The aspherical prefactor of the TopHat filter over redshifts
z = 0, 0.5, 1, 2, 3. Right panel: Difference between aspherical prefactor at different

redshifts compared to the z = 0 case.

from simulations is modeled as the Poisson noise within each δ∗ bin.

In order to further verify our numerical pipeline, we examine the aspherical pref-

actor for the TopHat filter first. The results are shown in Fig. 6.1. There, we see

that, within error bars, the aspherical prefactor is redshift independent across differ-

ent values of δ∗, as expected. This agreement between theory and simulation further

confirms the validity of our pipeline.

The resulting aspherical prefactor for all other filters can be found in Fig. 6.2.

Note that we do not show plots for a = 1/30, 1 since they essentially coincide with

the TopHat and Gaussian cases. We observe a mild redshift dependence of the resid-

uals which becomes stronger for the Gaussian filter. The residuals follow a quadratic

curve near δ∗ = 0. We also note that the prefactor at δ∗ = 0 drifts away from its

theoretical value of Aasp(δ∗ = 0) = 1 as redshift grows3. We expect this behavior to

come from two-loop corrections to the PDF. This is because 1-loop contributions can

3This condition for Aasp comes from ensuring that the PDF remains normalized in the limit
g2 → 0. However, this relation only holds true up to 1-loop corrections.
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only influence second derivatives and higher of the PDF at δ∗ = 0 [25], suggesting

that any shifting effects must come from higher loop corrections. Furthermore, it

was found in [25] that effects from two-loop corrections became more noticeable on

smaller sized cells with radii r∗ = 5 and 7.5 Mpc/h. The results found in this work

appear to be consistent with these results as our Gaussian filter has r∗ ∼ 5 Mpch.

We also compare the results coming from our numerical aspherical prefactor with

the perturbative, analytical equations derived in chapter 5. From (5.0.1), we see that

the total prefactor can be written as

Atot = Aasp/
√
D0.

Given that both Aasp and D0 can be obtained numerically, we now have a way to

compare our analytic expression for Atot (5.0.15) to numerical results Aasp/
√
D0. This

can be seen in Fig. 6.3 where we have computed Aasp/
√
D0 for the Tanh a = 1/30

(left panel) and Gaussian (right panel) filters. According to (5.0.15), we expect that

at δ∗ = 0, the derivative of the total prefactor should be zero. Looking at the Tanh

a = 1/30 filter first, we see that this appears to hold true. This shows that the

numerical results are in agreement with theoretical expectations. In principle, EFT

allows one to calculate the coefficient in front of the δ2
∗ term in this ratio. This

however requires measuring the counterterm γ(z) from the N-body power spectrum.

This measurement is outside the scope of our work.

Looking at the results for the Gaussian filter, we find some discrepancy as it

appears to have a small but non-zero derivative at δ∗ = 0. The disagreement between

theory and results are expected to come from two-loop corrections to the PDF which,

as discussed earlier, were more prominent in the Gaussian-like filters.
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Figure 6.2: Left panels: Aspherical prefactor for multiple non-TopHat filters. Right
panel: Compares the residuals of the prefactor at different redshift to z = 0. Note

here that residuals come from the plots directly on its left.
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Figure 6.3: Plots of Aasp/
√
D0 computed using the numerical results from the

prefactor code and N-body comparison for redshift z = 0. Left panel displays the
total prefactor for the Tanh a = 1/30 filter while the right panel comes from the

Gaussian filter.
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Chapter 7

Conclusion

In this work, we developed a numerical pipeline to construct the one-point PDF for

matter densities given an arbitrary window function. By discretizing the system onto

a lattice, the question of constructing numerical solutions of the PDF could then

be rephrased as a multidimensional nonlinear constraint minimization problem. Our

numerics were validated using analytic expressions for the PDF for the case of the

Top-Hat filter. We found that the saddle-point profiles could be replicated numeri-

cally to within a sub-percent error. The overall spherical PDF, however, grew to a 3%

error near its overdense tails. Here we also concluded that the box size of the lattice

played an important role in accurately constructing the profiles while the number of

points played the same role for the prefactor code. This implies that, while it would

be possible to construct PDF’s with sub-percent level errors, it would require high

computational resources in order to run the code on a large and dense enough lattice.

By choosing the radii of cells such that the linear-matter variance for different

PDF’s were the same, we further examined the effects of several radial filters on the

statistics of the matter fields. These filters included the Gaussian function, as well as a
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family of curves which approximately interpolate between the Gaussian and TopHat.

We found that overall, the spherical PDF’s all qualitatively behaved the same, with

no unique signatures found to distinguish one from the other.

While not examined in this paper, other popular filters, such as the Sharp-k func-

tion used in excursion set theory [19], can be implemented and studied using our

code. Studying PDF’s coming from sharp-k, however, are expected to be more com-

putationally taxing when compared to the filters used in this paper. Due to the slow

decrease and oscillatory features of the filter in position space, it is expected that

a larger box size and number of lattice points would be needed to ensure the con-

vergence of the profiles to the correct configuration. This would likely increase the

runtime of the code to over 24 hours, requiring a significantly longer time to properly

construct an accurate PDF.

The effects of the short-scale physics on different filters was also examined. By

looking at the counterterm contributions coming from EFT corrections, it was found

that for Gaussian-like filters, they were ∼ 10% smaller compared to the TopHat case.

This suggests that different, despite using qualitatively different filters, our PDF is

not overly sensitive to the short-scale physics in our system.

Our PDF was compared with N-body simulations from the Quijote dataset. Re-

sults from this comparison showed that the aspherical contributions coming from the

PDF was mostly redshift independent, agreeing with theoretical predictions. How-

ever, a small redshift dependent evolution in the aspherical prefactor was found in

Gaussian-like filters, providing evidence for two-loop contributions.

As the runtime of our code currently sits on the order of tens of hours, further

work is needed to improve the efficiency of our pipeline. This need for a faster runtime
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comes from the requirement for quick and efficient code for Monte Carlo simulations

for parameter extraction. Such simulations use a large number of randomly sampled

sets of model parameters to make theoretical predictions and compare them with

actual data. As our pipeline has a runtime on the order of hours, it cannot be used

to efficiently construct and run Monte Carlo simulations, and so must be optimized.

Whereas our current algorithm uses Python and runs on CPUs to solve for the saddle-

point configuration, one could rewrite the minimization scheme in C/C++ code and

use Nvidia’s CUDA platform to GPU accelerate the process. Similarly, JAX [34] can

be used to provide GPU accelerated options while using a Python-like syntax. This

is expected to decrease the runtime of our code while also allowing us to construct a

larger, denser lattice space needed to run our code with a high degree of accuracy.

Another important step for this research is to translate the matter PDF, which is

not directly observable, to the statistics of galaxies. We plan to include the galaxy

bias following the methods in [35, 36]. Constructing a galaxy PDF would also involve

taking into account the effects of redshift-space distortion (RSD) [9].

It will also be useful to consider how this model relates to similar mass distribu-

tion schemes such as the excursion set theory [19]. As galaxy halo scales are typically

of the order ∼ 1 Mpc, but also represent extreme overdense regions of our universe,

constructing a mass function for the small r∗, large δ∗ limit of this theory may pro-

vide some insight on how it relates to or differs from other existing theories. However,

there are various problems which must be addressed to solve this. This includes the

treatment of virialized objects in this formalism and effects of baryonic physics on

galactic scales. Currently, it is not clear how to incorporate either of these effects.

One potential application of our work deals with constructing void profile and
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statics required to detect particle DM signals within extreme underdense regions of

space [37, 38]. Other applications include relating constructing lensing models using

spherical and cylindrical collapse functions [23] and relating our method to other sta-

tistical models, such as k−Nearest Neighbor (kNN) [39].

With semi-analytical methods able to study non-perturbative matter densities, we

can go beyond the ΛCDM model and study signatures of primordial non-Gaussanity

on the PDF. Another interesting direction would be to study the effects that long-

range forces in the dark matter sector can have on the PDF through modifications

of the spherical collapse dynamics. These are just two examples where our analytical

methods can be useful, with more potential applications expected in the future.
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Appendix A

Conventions

Following the same conventions as in [24], we define the Fourier transform of a field

δ(x) as

δ(x) =

∫
k

δ(k)eik·x (A.0.1)

where we define the integral measure over momentum space1 as

∫
k

=

∫
d3k

(2π)3
. (A.0.2)

Similarly, we define the radial integral measure in momentum space to be

∫
[dk] =

∫ ∞
0

dkk2

(2π)3
, (A.0.3)

1We emphasize here again that k describes the wavenumber defined from the Fourier transform
in (A.0.1) and not any physical momenta in the system. However, we adopt this terminology for
the thesis.
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and its generalization to multiple wavenumbers as

∫
[dk]n =

∫ ∞
0

n∏
i=1

dkik
2
i

(2π)3
. (A.0.4)

In the scenario where we work with spherically symmetric fields, the Fourier transform

turns into the following sine transform,

kδ(k) = 4π

∫
dxxδ(x) sin(kx), (A.0.5)

where x, k are the magnitudes of x,k respectively.

The power spectrum is defined as,

〈δ(k)δ(k′)〉 = (2π)3P (k)δD(k + k′) (A.0.6)

where δD is the Dirac delta function.

We also use the following definition for the spherical harmonics:

Y0(θ, φ) = 1, (A.0.7a)

Y`m(θ, φ) =
(−1)`+m

2``!

[
2`+ 1

4π

(`− |m|)!
(`+ |m|)!

]1/2

eimφ(sin θ)|m|
(

d

d cos θ

)`+|m|
(sin θ)2`

(A.0.7b)

for ` > 0 and −` ≤ m ≤ `. They obey the following relations,

∆ΩY`m = −`(`+ 1)Y`m, Y`m(−n) = (−1)`Y`m, Y ∗`m(n) = Y`,−m(n), (A.0.8)
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where ∆Ω is the Laplacian on the 2D sphere. The spherical harmonics also obey

the following orthogonal and normalization conditions when integrated over the 2D

sphere ∫
dΩY`mY

∗
`′m′ = (4π)δ0,`δ``′δmm′ (A.0.9)

where δij is the Kronecker delta.

Fields in position and momentum space can be decomposed over spherical har-

monics as,

δ(x) = δ0(r) +
∑
`>0

∑̀
m=−`

δ`m(r)Y`m(x/r), (A.0.10a)

δ(k) = δ0(k) +
∑
`>0

∑̀
m=−`

(−i)`δ`m(k)Y`m(k/k). (A.0.10b)

Using (A.0.9), the fields have the properties

(δ`m(r))∗ = δ`,−m(r), (δ`m(k))∗ = δ`,−m(k). (A.0.11)

The position and momentum coefficients in (A.0.10) are related by,

δ`m(r) = 4π

∫
[dk]j`(kr)δ`m(k) (A.0.12)

where j`(x) is the spherical Bessel function of order `. It is related to the Bessel

function of the first kind as

j`(x) =

√
π

2x
J`+1/2(x). (A.0.13)
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Spherical Bessel functions with product arguments of the form j`(kr) obey an orthog-

onal relation on the half-line given by

∫ ∞
0

drr2j`(k
′r)j`(kr) =

π

2k2
δD(k − k′). (A.0.14)
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Appendix B

Gaussian fluctuations around

saddle-point configuration

B.0.1 Derivation of kernel functions

As discussed in [24], contributions to the prefactor are found by examining small

perturbations around the saddle-point configuration. Focusing on the fluctuations

around , δ̂L(k), for now, we have δL(k) = δ̂L(k) + δ
(1)
L (k), then perturbations to the

averaged density contrast, up to second order, will take the form

δ̄W = δ∗ +

∫
k

S(k)δ
(1)
L (k) +

∫
k1

∫
k2

Qtot(k1,k2)δ
(1)
L (k1)δ

(1)
L (k2). (B.0.1)

Here, δ∗ is the target density contrast, whose statistics we are trying to find (see

chapter 4), and S,Qtot are defined as

S(k) =
∂δ̄W
∂δL(k)

∣∣∣∣
δ̂L

, (B.0.2a)
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Qtot(k1,k2) =
1

2

∂2δ̄W
∂δL(k1)∂δL(k2)

∣∣∣∣
δ̂L

. (B.0.2b)

Expanding the fluctuations into spherical harmonics

δ
(1)
L (k) = δ

(1)
L,0(k) +

∑
`>0

∑̀
m=−`

(−i)`δ(1)
L,`m(k)Y`m(k/k), (B.0.3)

and using the orthogonality condition of Y`m, we find that the monopole contributions

coming from (B.0.3) can be rewritten as

δ̄W,0 = δ∗ +

∫
[dk]4πS(k)δ

(1)
L,0(k) +

∫
[dk]216π2 〈Qtot(k1,k2)〉Ω1,Ω2

δ
(1)
L,0(k1)δ

(1)
L,0(k2),

(B.0.4)

where 〈.〉Ω1,Ω2
denotes the spherical average over Ω1 and Ω2. Note that we has used the

fact that a spherically symmetric ansatz for δL(k) also implies that S(k) is spherically

symmetric [24]. Here we emphasize that the quantity 〈Qtot(k1,k2)〉Ω1,Ω2
now depends

only on the magnitudes k1 and k2.

Had we originally expanded δ̄W over spherically symmetric configurations, δ̂L(k),

(B.0.1) may be written as,

δ̄W = δ∗ +

∫
[dk]4πS(k)δ

(1)
L (k) +

∫
[dk]24πQ0(k1, k2)δ

(1)
L (k1)δ

(1)
L (k2), (B.0.5)

for some spherically symmetric kernel, Q0(k1, k2). Given that the monopole con-

tribution (B.0.4) represents the spherically symmetric part of δ̄W , then we see that

Q0(k1, k2) and Qtot(k1,k2) are related to one another through the relation,

Q0(k1, k2) = 4π 〈Qtot(k1,k2)〉Ω1,Ω2
. (B.0.6)
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While this relation is not used in this paper, it provides a useful relation between the

three-dimensional kernel and its spherically symmetric counterpart.

In order to find explicit expressions for S(k) and Q0(k1, k2), we can consider taking

variations of δ̄W with respect to spherically symmetric configurations, δL(k). Going

up to second order, we find that1

δ̄W [δL] = δ̄W [δ̂L] + dδ̄W [δ̂L] + d2δ̄W [δ̂L]

= δ∗ −
16π2

r4
∗k

∫
[dk]dRR2W̃ ′ f ′

(1 + f)4/3
j1(kR) dδL(k)

+
32π3

r3
∗

∫
[dk]2dRR2Wth(k1R)Wth(k2R)

[
W̃
′′
R2

9r2
∗

(f ′)2

(1 + f)8/3

+
W̃ ′R

3r∗(1 + f)4/3

(
−f ′′ + 4

3

(f ′)2

1 + f

)]
dδL(k1) dδL(k2),

(B.0.7)

where the primes denote differentiation with respect to the argument of the function.

Here we have omitted the argument of some functions, with f = f(δ̂L(R)), where f

is the spherical collapse dynamics defined by (2.0.11), and W̃ = W̃ (R(1 + f)−1/3/r∗).

Comparing (B.0.7) with (B.0.5), we find that S(k) and Q0(k1, k2) are given by

S(k) = − 4π

r4
∗k

∫
dRR2W̃ ′ f ′

(1 + f)4/3
j1(kR), (B.0.8a)

Q0(k1, k2) =
8π2

r3
∗

∫
dRR2Wth(k1R)Wth(k2R)

[
W̃
′′
R2

9r2
∗

(f ′)2

(1 + f)8/3

+
W̃ ′R

3r∗(1 + f)4/3

(
−f ′′ + 4

3

(f ′)2

1 + f

)]
. (B.0.8b)

1To avoid the overuse of δ, we will denote the variation of functional as d.
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B.0.2 Monopole prefactor

Ref. [24] derives the results for the leading order corrections to the saddle-point

configuration. Here we provide a summary of the method and its results before

discussing the monopole prefactor.

Let us consider small fluctuations around the saddle-point configuration. We

expand the Lagrange multiplier as λ = λ̂ + λ(1) and the linear density field into

spherical harmonics following (B.0.3). Such fluctuations induces perturbations in δ̄W

which, up to second order, can be written as

δ̄W = δ∗ +

∫
[dk]4πS(k)δ

(1)
L,0(k) +

∫
[dk]24πQ0(k1, k2)δ

(1)
L,0(k1)δ

(1)
L,0(k2)

+
∑
`>0,m

∫
[dk]2Q`(k1, k2)δ

(1)
L,`,mδ

(1)
L,`,−m(k2),

(B.0.9)

where S(k), Q0(k1, k2), Q`(k1, k2) are some kernels, with S(k) and Q0(k1, k2) having

been discussed in the previous section.

Substituting the above perturbations into (2.0.6), we find that the PDF factorizes

over the multipole numbers `, resulting in (2.0.16). While the specific form for A` is

not relevant for this work, we find that the monopole prefactor has the form

A0 = N−1
0

∫ i∞

−i∞

dλ(1)

2πig2

∫
Dδ(1)

L,0 exp

{
−4π

g2

[∫
[dk]

2P (k)
(δ

(1)
L,0(k))2

+λ(1)

∫
[dk]S(k)δ

(1)
L,0(k) + λ̂

∫
[dk]2Q0(k1, k2)δ

(1)
L,0(k1)δ

(1)
L,0(k2)

]}
,

(B.0.10)

where N0 is the normalization constant given by

N0 =

∫
Dδ(1)

L,0 exp

{
−4π

g2

∫
[dk]

2P (k)
(δ

(1)
L,0(k))2

}
. (B.0.11)
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Note that by this point, the resulting equations do not depend on our choice of filter,

except in determining the explicit forms of the kernels S(k), Q0(k1, k2). Noticing that

both A0 and N0 are Gaussian path integrals, they can be solved and represented as

functional determinants. After evaluating the integrals and simplifying, we get the

following expression for the monopole prefactor,

A0 =
1√
2πg2

√√√√det
(

I(k1,k2)
4πP (k)

)
− detH

, (B.0.12)

where H and I are given by (2.0.20) and (2.0.19) respectively.
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Appendix C

Validation of the code

Using the lattice values (450,30) for δ∗ ≤ −0.4 and (300,20) for δ∗ > −0.4, we show

the results for the TopHat action and Lagrange multiplier at the saddle-point configu-

ration in Fig. C.1 and C.2 respectively. There we see that the error between analytic

and numerical results is less than 2% across all values of δ∗, except near δ∗ = 0 where

the error quickly grows. This large error does not come from a failure of the numerics,

but rather our use of the relative error for quantities which tend to zero, where small

deviations may result in large residuals. As such, this shows that the pipeline is able

to reconstruct the relevant statistics quantities to a good degree of accuracy.

If one uses the same lattice values (N,D) for all density contrasts in [−0.9, 9],

it was found that the underdense regions exhibited a slower convergence rate than

overdense regions, regardless of the choice of filter used. This can be explained by our

discretization procedure in (3.0.2). Recall that Rmax is dependent on the choice of δ∗.

As a result, for a fixed value of D, a small negative value of δ∗ may result in a signif-

icantly smaller box size, Rmax, for underdense values compared to overdense values.

In order to accurately represent the tails for extreme underdense profiles, we change
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our lattice space to include a larger box size for underdense regions, while keeping

the density of points the same across all δ∗. This suggests that box size is the key pa-

rameter needed to accurately capture the profiles. In fact, earlier test cases originally

used lattice parameters of (450,15) for δ∗ ≤ −0.4 and (300,10) for δ∗ > −0.4. The

profiles from these cases were found to perform worse when compared to the standard

parameters of (450,30) for δ∗ ≤ −0.4 and (300,20) for δ∗ > −0.4, producing errors on

the order of 10% near the tails of the profiles. Note that our optimal parameters dif-

fer from this earlier case by simply doubling the box size without increasing number

of lattice points. We found that increasing the latter does not significantly reduce

the error of the profiles, but dramatically increases the computation time. Thus, we

expect the size of the lattice to be the important parameter for constructing accurate

profiles.

This is in direct contrast with what happens in the prefactor code, however. After

running the prefactor algorithm using the optimal lattice parameters, we find that

the numerical TopHat solutions differ from the analytics up to 40% in the extreme

overdense regions, as shown in Fig. C.3. However, if the number of lattice points

is increased while holding the size of the box fixed, the relative error quickly drops.

After examining multiple cases, the new lattice parameters (Ñ ,D) = (1800, 30) for

δ∗ ≤ −0.4 and (Ñ ,D) = (1800, 20) for δ∗ > −0.4 (Fig. C.4) were found to produce

the smallest error among all our cases, peaking to around 3% near the extreme over-

dense tails.

As discussed in the main text, we found that non-TopHat filters required some

convergence testing to ensure the saddle-point and prefactor code were computed to

a high enough accuracy. We show in Fig. C.5 an example of this convergence testing
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in the Gaussian case. Here, we consider four lattice parameter sets, given by

Test 0:


(450, 15) δ∗ ≤ −0.4

(300, 10) δ∗ > −0.4

, Test 1:


(450, 20) δ∗ ≤ −0.4

(300, 15) δ∗ > −0.4

(C.0.1)

Test 2:


(360, 24) δ∗ ≤ −0.4

(225, 15) δ∗ > −0.4

, Test 3:


(450, 30) δ∗ ≤ −0.4

(300, 20) δ∗ > −0.4

.

There we see that as we compare consecutive trials, the amplitude in the errors

decrease, going from a maximum of 4% in both the action and prefactor, to ∼ 2%.
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Figure C.1: Left panel : Comparisons between saddle-point action from the
optimization algorithm (dots) and the analytic expression (solid line) as a function

of δ∗. Right panel : Plots the residuals of the numerical results compared to the
analytical.

Figure C.2: Left panel : Comparisons between numerical saddle-point Lagrange
multiplier (dots) and the analytic expression (solid line) as a function of δ∗. Right
panel : Plots the residuals of the numerical results compared to the analytical.
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Figure C.3: Results of the prefactor code without increasing the density of points on
the lattice Left panel : Comparisons between numerical spherical prefactor (dots)
and the analytic expression (solid line) as a function of δ∗. Right panel : Plots the

residuals of the numerical results compared to the analytical.

Figure C.4: Results of the prefactor code using optimal lattice parameters. Left
panel : Comparisons between numerical spherical prefactor (dots) and the analytic
expression (solid line) as a function of δ∗. Right panel : Plots the residuals of the

numerical results compared to the analytical.
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Figure C.5: Residuals of the action and prefactor between several tests cases
following (C.0.1). Red dashed lines display the 2% error lines. The top row
compares Tests 0 and 1, the middle compares tests 1 and 2, and the bottom

compares tests 2 and 3. Note that the underdense regions appear to converge at a
slower rate compared to the overdense regions, especially in the prefactor.
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