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Lay Abstract

With thousands of exoplanet discoveries over the last three decades, exoplanet as-

tronomy has revolutionized our understanding of the planet population. Successive

surveys have shown that the two most common types of planets are rocky super-Earths

with radii between 1 and 1.7 Earth radii and sub-Neptunes with radii spanning 2 to

5 Earth radii. Between these two populations is dearth of planets dubbed the Radius

Valley. Super-Earths and sub-Neptunes are unrepresented in the solar system and

models that can reproduce their population and the Radius Valley have sharpened

our understanding of the planet formation process. We cannot reach a full under-

standing of the planet formation process without extending our understanding to the

full population of planet-forming stars. The smallest of these stars are mid-to-late

M dwarfs spanning from 8% to 40% the mass of our Sun and previous surveys have

been largely insensitive to their planets at a population level. In this work I present

my planet finding pipeline, and its deployment to survey 9,131 mid-to-late M dwarfs

observed by the Transiting Exoplanet Survey Satellite (TESS) for transiting planet

signals. By combining a population of 73 planets from this survey with a detailed,

empirically established understanding of my pipeline’s detection sensitivity to planets

of various properties, this survey finds that each mid-to-late M dwarf hosts 1.3 plan-

ets within 30 days on average. This population is dominated by super-Earths, with
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relatively few sub-Neptunes. This result is in agreement with theoretical predictions

of the planet population around the lowest mass stars and provides strong evidence

that the radius valley disappears in this mass stellar regime.
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Abstract

Around Sun-like stars and early M dwarfs alike, super-Earths and sub-Neptunes form

a bimodal distribution separated by a dearth of planets between 1.6 and 1.9 Earth

radii known as the radius valley. Modeling these planet populations and the radius

valley have refined planet formation models but full understanding of the planet for-

mation process requires a complete picture of the planet population extending to the

lowest mass stars. As of yet, transiting exoplanet surveys have been largely insensitive

to planets around mid-to-late M dwarfs. Fortunately, NASA’s Transiting Exoplanet

Survey Satellite (TESS) has opened a window into the exoplanet population around

mid-to-late M dwarfs. I have led a systematic search for small transiting planets

around 9,131 mid-to-late M dwarfs observed by TESS to characterize the planet pop-

ulation. I will present my pipeline to process TESS light curves and to detect and

vet signals from transiting planets. Over the set of targets, this survey recovers a

population of 73 manually vetted transiting planet signals. Using injection-recovery

tests, I characterize the sensitivity of my pipeline to transiting planets around stars in

the sample as a function period, instellation and radius. Using the recovered planet

population combined with my survey completeness, I measure an occurrence rate of

1.326+0.210
−0.208 planets per star, with radii < 6.5R⊕ and orbital periods within 30 days,

dominated by a population of sub- and super-Earths with very few sub-Neptunes

v



compared to more massive M dwarfs. This result is in agreement with previous work

in this regime, while surveying a factor of 25 more stars, and aligns with theoretical

predictions of the planet population. Along with our occurrence rate calculation, we

provide strong evidence that the radius valley disappears in this stellar mass regime.
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Chapter 1

Introduction

Astronomy’s modern history spans hundreds of years, proceeding millennia of night

sky observations from all peoples through all time. The movement of the inner six

planets of the solar system across the sky have been observable with the naked eye

since prehistory. Explaining their motions across the background stars has motivated

cosmological theories which eventually allowed astronomers to connect Kepler’s laws

to universal gravitation—a revolutionary connection that underpins modern physics.

The first addition to the original six was William Hershel’s discovery of Uranus with

observations in 1781 (Herschel, 1783). Neptune was discovered some decades later

when physically inconsistent measurements of Uranus’ orbit led astronomers to an

outer perturber (Smyth, 1846). These eight planets motivated our planet formation

theories, but could never offer a window into the full population of all planets over all

stars. Looking outside the solar system has only been made possible recently, and we

have only been able to observe extra-solar planets in the three decades since Mayor

& Queloz (1995) discovered a Jupiter-mass planet around 51 Pegasi. Since their

discovery, the number of conclusively confirmed and published exoplanets has grown

1
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Figure 1.1: Cumulative exoplanet discoveries to date labeled by discovery method.
Retrieved from the Exoplanet Archive on November 3rd 2024.

to 5,759 as of November 3rd 2024 (according to the NASA Exoplanet Archive at

https://exoplanetarchive.ipac.caltech.edu/), with thousands of unpublished

candidate planets and thousands more expected from coming surveys (see Perryman

et al. (2014), Johnson et al. (2020), and Rauer et al. (2014)). This wealth of recent

discovery has given us a robust understanding of the planet population, and in turn

challenged and refined our understanding of the astrophysics of planet formation.

The worlds revealed by successive searches have shown us populations of planets

completely unrepresented in the solar system. Of particular importance to this work

are sub-Neptunes and super-Earths. Super-Earths are rocky planets with iron cores,

larger than the Earth without an extended envelope like the gas giants. Their radii

span from 1− 1.7R⊕. Sub-Neptunes are planets smaller than Neptune, likely with a

2
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rocky core and a gasseous envelope. Their bulk composition can also be very high

in volatiles like water and their radii span 2 − 5R⊕. Exoplanet surveys have shown

super-Earths and sub-Neptunes represent the most common type of planet around

Sun-like stars (Youdin, 2011).

Despite our extensive and growing catalog of exoplanets, there are still gaps and

limitations to our understanding of the planet population. While we have a wide

window into the planet population around Sun-like stars, our understanding of the

planet population around smaller stars is more limited. There is relatively little

understanding of the planet population around the smallest stars in the universe for

reasons we will discuss. These stars—called mid-to-late M dwarfs—are anywhere

from 0.1 − 0.5R⊕, and are the most common type of star in the galaxy (Winters

et al., 2015). This work aims to fill this gap in our understanding with the deepest

comprehensive search for transiting planets around mid-to-late M dwarfs to date, and

provide a robust understanding of the planet population around these stars.

1.1 The Transit Method

The exoplanet detection method key to this work is the transit method. If an exo-

planetary system is aligned edge-on relative to the observer’s line of sight, the planet

will temporarily occult its host star as it passes in front of the star in a transit. This

phenomenon is sketched in figure 1.2. By carefully recording the brightness of stars

over time, we can detect dips which can be matched to physical transit-curves to

provide strong evidence of the existence of an exoplanet. Since it was first employed

to detect the transiting gas giant HD 209458 by Charbonneau et al. (2000), the tran-

sit has been responsible for the discovery of more than three-quarters of all known

3
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Figure 1.2: Sketch of the transit method: A telescope observing a star’s brightness
over time sees a decrease in brightness as an orbiting exoplanet transits the star.

exoplanets, illustrated in Figure 1.1.

Through the transit method, we can measure the planet’s period and the ratio

between its radius as the host star’s radius expressed as Rp/R∗: The signal observed

by the transit method, or more specifically the depth of the transit ∆, scales with

the stellar and planet radii as ∆ = (Rp/R∗)
2. This observed ratio, combined with

the stellar radius of the target, allows the planet’s radius to be determined. Smaller

stars produce deeper transit signals because a transiting planet of a given size blocks

relatively more of their light. This means that the planets around mid-to-late M stars

produce the deepest transit signals. However, their lower luminosity due to their cool

temperatures and small radii mean that the photometric precision with which we can

observe these stars is lower on average compared to earlier type stars. This means

that only nearby M dwarfs make suitable targets for a transit search.

NASA’s space-based transit survey satellites have contributed the bulk of discov-

ered exoplanets using the transit method. The Kepler space telescope observed over

150,000 stars in a 16◦ diameter patch of sky from 2009 to 2013 (Koch et al., 2010).

Following the failure of two of its reaction wheels, Kepler’s primary mission ended

4
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but it continued to observe as K2 until 2018. Although it’s pointing precision was

greatly decreased because of the mechanical failure it was able to continue pointing

along the ecliptic plane using radiation pressure from the Sun to slow its drift, along

with periodic thruster firings to realign the observatory. (Howell et al., 2014). The

telescope continued to discover exoplanets through the second phase of the mission.

Both of these phases were very successful exoplanet discovery missions, with Kepler

discovering 2,778 confirmed exoplanets with 1,982 yet to be confirmed. K2 carried on

to discover 547 more confirmed exoplanets with 975 yet to be confirmed. The primary

goal of the Kepler mission was to discover an Earth-like planet around a Sun-like star.

This motivated its long deep stare to detect what would be yearly transits from an

Earth double. This limited its access to the smallest M stars, because their low mag-

nitude meant that relatively few were accessible in the small region of sky that Kepler

surveyed (Cloutier & Menou, 2020).

In 2018, the Transiting Exoplanet Survey Satellite (TESS) launched. TESS uses

four cameras to image the sky, each with a 24◦ by 24◦ field of view, stacked to form

an observing area of 24◦ by 96◦ which spans from 6◦ above or below the ecliptic to

the over the ecliptic pole (Ricker et al., 2015). TESS observes the sky in sectors

which last 28 days where it observes the brightness of the stars in its field of view.

After each sector, the telescope rotates 27◦ about the ecliptic pole shifting its field

of view. With this strategy, TESS observed the southern hemisphere over its first

13 sectors, and the following 13 sectors observed the northern hemisphere. While

each sector represents a different pointing of the telescope, the top camera is always

aligned with one of the ecliptic poles meaning that TESS has two continuous viewing

zones (CVZs). The CVSs are observed for 13 sectors consecutively and targets near

5
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either ecliptic pole can overlap with multiple sectors of viewing. At time of writing

in November 2024, TESS continues to observe with its 86th sector of observation. It

has also been an incredibly successful mission, with 589 confirmed exoplanets, and

4,709 candidates which have yet to be confirmed.

TESS enables the investigation of the planet population around mid-to-late M

dwarfs in two key ways: Its large field of view and full sky access allows it to observe

every nearby M dwarf where Kepler was limited to the few in its field of view. TESS’s

bandpass is also significantly redder than Kepler’s, spanning 600-1000 nm (Ricker

et al., 2015). Compared to Kepler’s 420-900 nm bandpass (Koch et al., 2010), this

range provides better photometric precision by more fully capturing the spectral

profile of these cool, red stars.

1.2 Occurrence Rates and The Radius Valley

The wealth of planets discovered by the transit method have provided a strong sam-

ple to build demographic studies of exoplanets. By combining the population of

discovered planets with the likelyhood of having detected each planet, exoplanet sur-

veys with the transit method can build an understanding of the occurrence rates of

planets. These surveys have shown that the occurrence rate of close-in, sub-Neptune-

sized planets forms a bimodal size distribution around Sun-like stars known as the

Radius Valley separating super-Earths and sub-Neptunes (e.g. Fulton et al. (2017),

Van Eylen et al. (2018)) in the following subsection, I will more thoroughly outline

these observations.

Many theories are able to replicate the Radius Valley: Photoevaporative theories

proposed by Owen & Wu (2013) and elaborated on in Owen & Wu (2017) argue

6
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photoevaporation selectively strips enveloped cores, creating a population of H/He

enveloped sub-Neptunes and rocky super-Earths. Alternatively Gupta & Schlichting

(2019) introduce core-powered mass loss that rocky super-Earths and enveloped sub-

Neptunes can carve out the Radius Valley, but argue that the cooling luminosity of

the planet can drive away atmosphere to carve the valley. Planet synthesis models

offer an alternate window into the Radius Valley, and in particular Burn et al. (2024)

and Venturini et al. (2024) show that water-rich formation plays an important role

in shaping the Radius Valley. I will discuss these theories in depth following the

discussion of the observational Radius Valley.

1.2.1 The Observed Radius Valley

The first robust observation of the Radius Valley comes from Fulton et al. (2017)

which updated planet radii and provided an occurrence rate calculation based on the

sensitivity of the Kepler mission to each of the 2,025 exoplanets in its sample from

Sun-like FGK-type stars. These methods allowed the true size distribution to be

sharply defined and compared to the predicted distribution from models of the Radius

Valley’s emergence proposed in Owen & Wu (2013). Their results extended past a

one-dimensional characterization of the Radius Valley, and showed the occurrence of

planets in period/radius space, establishing that Sun-like stars generally host close-

in super-Earths and further-out sub-Neptunes. Because of this dichotomy, these two

populations can be separated by a line with positive slope in radius/instellation space.

This is illustrated in Figure 1.3. This positive slope is consistent with predictions of

thermally driven mass-loss models, with the difference in planetary radii owed to the

presence or lack of a thick hydrogen/helium (H/He) envelope.

7
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Figure 1.3: Occurrence rates of planets around Sun-like stars from Fulton et al.
(2017) in Instellation (interchangeable with period)/radius space. These populations

are separated by a negatively sloped curve in Period/radius space.

More careful data analysis by Van Eylen et al. (2018) restricted the sample of

planets to those whose radius could be tightly constrained with detailed stellar radii

derived with astroseismography and detailed transit modeling for each planet to best-

fit their radii. Their analysis finds that the slope which separates super-Earths and

sub-Neptunes in period/radius space is m = −0.09+0.02
−0.04 with 68% confidence. Their

sample is significantly smaller than the sample analyzed in Fulton et al. (2017), and

the average star in their sample is larger and older, but these biases do not significantly

effect the validity of their slope measurement because of the accuracy with which they

were able to measure the radii of the planets included in their sample.

Recall that a detailed analysis of planets around late type stars was intractable

with the Kepler mission. But despite these shortcomings, and with additional planets

discovered by the follow-up mission K2, Cloutier & Menou (2020) was able to detect

the Radius Valley in the population of planets around late K to early M type stars.

8
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Using 350 planets, again with detailed considerations of their survey’s completeness,

they found that while the Radius Valley still exists around smaller stars, the slope

in period-radius space is different. This is illustrated in Figure 1.4, and shows that

the slope in period/radius space is positive. This inconsistency suggests that the

dominant formation mechanism driving the Radius Valley around early M stars is

different than dominant sculptor of the Radius Valley the around Sun-like stars.

Figure 1.4: Occurrence rates of planets around early M type stars from Cloutier &
Menou (2020). The best fit slope which separates these two populations is

computed and various Radius Valley models’ slopes are overplotted.

There is currently very little observational understanding of the Radius Valley

in planets around the lowest mass M dwarf stars. Using data from TESS, Ment

& Charbonneau (2023) present seven planets around mid-to-late M dwarfs within

15 parsecs of the Earth to derive an occurrence rate. Based on occurrence rate

calculations, they find that sub-Neptunes are significantly less abundant in this stellar

mass regime, being outnumbered at least 14-to-1 by super-Earths. They report an

9
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occurrence rate of 0.61+0.24
−0.19 terrestrial planets per star, but their sample is far too

small to confirm the existence of a Radius Valley in this stellar mass regime.

1.2.2 Theoretical Radius Distributions

The first model which predicted the Radius Valley comes from Owen & Wu (2013).

The then newly discovered populations of super-Earths and sub-Neptunes already

showed hints of two planet populations years before Fulton et al. (2017) were able to

compile their robust occurrence calculation. These two populations motivated a the-

ory which could produce both. The photoevaporation theory proposed in Owen & Wu

(2013) and refined in Owen & Wu (2017) begins by assuming that each planet emerges

from the protoplanetary disk as a rocky core surrounded with a hydrogen/helium en-

velope. During the first 100 Myrs of their lives, stars are XUV active emitting strong

radiation beyond their red blackbody spectrum, and the envelopes of these planets

are subject to stripping by the strong radiation from their host star. After the XUV

active phase ends, planets are either stripped rocky cores observable as super-Earths

or have retained their envelopes and are observable as sub-Neptunes. In this way, a

smooth initial distribution of planets is split into the two populations separated by

the Radius Valley. While this photoevaporation theory is consistent with the Fulton

et al. (2017) Radius Valley, it’s predictions are not completely consistent with the

refined Radius Valley outlined in Van Eylen et al. (2018) indicating that this picture

may not be sufficient.

Gupta & Schlichting (2019) provide an alternate channel which can also explain

the Radius Valley through core-powered mass loss. As planets form, their gravita-

tional energy superheats their cores to between 10,000 K and 100,000 K and this
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energy is radiated away as the planets cool. Gupta & Schlichting (2019) present a

comprehensive argument that this cooling luminosity is significant enough to carve

out the Radius Valley without the effects of photoevaporation. Loosely, the ability

of core-powered mass loss to strip planets of their envelopes depends on the compar-

ison between the liberated thermal energy and the gravitational binding energy of

the atmosphere. By dynamically evolving a population of enveloped Earth-like cores

and without invoking photoevaporation, Gupta & Schlichting (2019) shows that core-

powered mass loss is sufficient to replicate the slope and shape of the Radius Valley

around Sun-like stars, matching Van Eylen et al. (2018) measurements very well.

As we’ve seen however, the slope found by Cloutier & Menou (2020) in Figure 1.4

is inconsistent with theories of thermally-driven atmospheric escape such as photoe-

vaporation and core-powered mass loss suggesting that the planet population cannot

be completely explained by appealing to evaporation. The theories discussed thus far

have attempted to re-create the Radius Valley from a population of enveloped rocky

cores, and their models do not investigate the role that water plays in forming planets

and differentiating super-Earths from sub-Neptunes.

The Bern New Generation Planetary Population Synthesis (NGPPS) model (Em-

senhuber et al. (2021a), Emsenhuber et al. (2021b), Schlecker et al. (2021), Burn

et al. (2021)) aims to provide a complete understanding of the exoplanet popula-

tion by synthesizing planets from planetessimal in a protoplanetary disk. Their suite

of simulations completely evolves the protoplanetary disk and the planets formed

from planetesimals therein, providing a full description of the exoplanetary systems

it produces. These simulated planets’ composition can include a large contribution

from water accreted from ice-rich planetessimals. Using the Bern model Burn et al.
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(2024) shows that including water-rich planets with condensed water cannot accu-

rately reproduce the Radius Valley. However, by accurately treating water vapour

mixed with H/He in a steam atmosphere, a population of water-rich sub-Neptunes

matching the sub-Neptune population observed by Fulton et al. (2017) emerges. Ac-

cording to the Bern model, the dominant driver of the Radius Valley is composition,

not post-formation photoevaporation.

Using their own pebble-based planet synthesis model Venturini et al. (2024) sim-

ulated the formation of planets around stars with 0.1, 0.4, 0.7, 1.0, 1.3, and 1.5 M�.

Their model considers the coagulation, fragmentation, drift, diffusion and ice sub-

limation of pebbles based on Birnstiel et al. (2011) and Drazkowska et al. (2016).

In agreement with Burn et al. (2024), Venturini et al. (2024) find steamy water-rich

sub-Neptunes are responsible for the second peak in the Radius Valley. Their model

find a much more prominent bimodal distribution in density illustrated in Figure 1.5

with two distinct populations of rocky and water-rich planets, separated in density

along the highlighted curves. Without the effects of atmospheric steam puffing up

their atmospheres, these two populations of planets overlap in radius space, and the

Radius Valley only manifests because of the inflated sub-Neptunes. This effect weak-

ens in lower-mass stars, which causes a so-called fading Radius Valley towards the

lowest mass stars and they predict that the Radius Valley is filled in around stars

with 0.1-0.4M�.
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Figure 1.5: Figure 1 from Venturini et al. (2024). Distribution of planets in
mass/radius space generated by their simulations, showing that a water-rich and
water-poor population can reproduce a bimodal distribution in radius, which is

prominent around larger stars, and fades in mid-to-late M dwarfs.

1.3 Investigating the Radius Valley around the Low-

est Mass Stars

To characterize the Radius Valley around mid-to-late M dwarfs, we survey a sample

of 9,131 nearby stars. Data for these targets was acquired through a TESS Guest

Investigator-approved programs G03274, G04214, G05152, and G05152 authored by

Ryan Cloutier to observe the survey’s targets from sectors 27-69. The programs’

goal was to observe a uniform sample of mid-to-late M dwarfs and determine the

central radius of the valley around this population of stars. The experiment was

designed to determine which theoretical model is the dominant driver of the Radius

Valley by comparing their model predictions to the population of planets in nature.

The distribution of the targets’ distances and radii is plotted in Figure 1.6. Each

target’s brightness was recorded with a cadence of two minutes for a minimum of

28 days. This set of targets was selected based on the detectability of transiting

planets whose radii span the Radius Valley. This detectability can be assessed based
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Figure 1.6: Distribution of the survey’s targets in radius and distance with the
distribution’s mean and 1σ intervals marked.
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on the expected signal-to-noise ratio (SNR). This is the ratio between the expected

photometric noise, and the signal of transiting planets with varying radii and periods.

In the ideal case, the photometric noise—expressed as σlc, is a function of the target’s

TESS magnitude, was computed using ticgen (Barclay, 2017). The photometric

noise is calculated assuming that the signal is integrated over the transit duration.

The transit signal is the transit depth ∆, computed as:

∆ =

(
Rp

R∗

)2

, (1.3.1)

where R∗ and Rp are the radii of the host star and planet respectively. The ratio

between ∆ and σlc provides the SNR of a single transit. By combining a number of

transits Ntransits, the SNR can be enhanced and for a given planet. With some Ntransits

in a light curve, the SNR can be expressed as:

SNR =
∆

σlc

√
Ntransits. (1.3.2)

Using the SNR, calculated from the host stars’ properties and planet parameters we

can determine which planets ought to be detectable around a given star. This is shown

in Figure 1.7, which illustrates that this survey should have compete sensitivity to

sub-Neptunes, and good sensitivity to super-Earths based on the target’s properties

and the planet’s period. Each of the sensitivity curves in the figure represent the

maximum magnitude a fiducial planet would be observable at. The true sensitivity of

this survey can only be computed by empirically testing a particular pipeline which

is outlined in Chapter 3.
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Figure 1.7: Targets plotted as a function of TESS magnitude and radius with
fiducial sensitivity curves for a 6σ detection with a 28 day light curve. Each of the
sensitivity curves in the figure represent the maximum magnitude a fiducial planet

would be observable at. In ideal conditions, the set of targets with a detectable
planet of the given characteristics are left of the respective curve.
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Chapter 2

Finding Transiting Exoplanets

This chapter is a description of the pipeline I have used to search my set of targets for

transiting exoplanets. Building a pipeline was necessary to characterize the exoplanet

population, because a complete understanding can only be established when the found

population of planets is combined with the completeness of the survey. The latter

is only possible to deduce by testing the pipeline that was used to find the planets.

So, while there are known planets around stars in my sample, the completeness of

the searches that discovered them is unknown. My pipeline was custom built for

this survey and its development, testing and deployment at scale represents a large

portion of the work in my Master’s thesis.
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2.1 TESS Light Curve Data and Stellar Parame-

ters

All of the light curve data used in this survey is hosted on the Mikulski Archive

for Space Telescopes (MAST) (https://dx.doi.org/10.17909/T9RP4V) which com-

prises all of TESS’s observations of our targets up to its 85th sector of observation.

Each target was observed with a 2-minute cadence over the sectors where they were

in-frame from sectors 27 to 69 because of the aforementioned TESS Guest Investiga-

tor proposals. Many targets also have additional 2-minute cadence light curves from

sectors 1-27 and 70-85 because of TESS’s primary mission and other GI programs,

respectively.

TESS records the brightness of each target using Simple Aperture Photometry

(SAP) using an aperture of pixels subtended by the star on TESS’s detector. SAP

derives the flux from a target by summing the dark-subtracted, debiased pixels within

the TESS predetermined photometric aperture. This flux is subject to instrumen-

tal variations, but the Presearch Data Conditioning Corrected SAP (PDCSAP) flux

works to correct these variations. The PDCSAP uses principal component analy-

sis over all light curves from the detector to remove large-scale correlated variations

exhibited in all the sources on the detector. The PDCSAP flux best preserves the

astrophysical variability of each target while removing instrumental variability exhib-

ited by every star on the detector.

For each sector in which a given target was observed, my pipeline retrieves the light

curve and supplementary data products, which comprise the following series: The

BJD timestamp of each observation, the PDCSAP flux, the 1σ error on the PDCSAP
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flux, the exposure time, the data quality flags, and the sector of the observation. Any

data with a nonzero quality flag (indicating some issue) is excised from each time

series.

My pipeline saves these data as a set of light curves by concatenating consecutive

sectors of data up to a limit of four consecutive sectors. This light curve length limit

reduces the computational cost of processing each target’s data, because some steps

of the pipeline scale super-linearly with the length of the time series.

For each target, my pipeline also retrieves the effective temperature, radius, radius

uncertainty, mass, and mass uncertainty from the TESS Input Catalog (TIC, Stassun

et al. (2019)). The effective temperature is calculated in the TIC with established

colour relations, or values from literature where available. The masses of the targets

are derived using parallax measurements characterizing the distance combined with

the luminosity where available. Without parallax, mass is estimated using colours

as well as effective temperature. For targets missing mass or radius measurements,

my pipeline estimates the missing parameter using the other quantity based on the

relationships from Pecaut & Mamajek (2013). Targets with both mass and radius

missing were removed from the original sample requested by the aforementioned TESS

GI proposal. My pipeline also saves the target’s quadratic limb-darkening parameters

for each target from Claret (2017), which characterizes the source intensity from the

center to the limb, which is necessary to accurately model transit light curves.
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2.2 Detrending

Before each light curve can be searched for transit signals, we must remove any

systematic variability which was not removed by the PDCSAP correction. This vari-

ability can be due to the star’s changing brightness residual instrumental systematics.

In particular, photometric variability caused by stellar rotation and flares must be

treated before each light curve can be searched for evidence of transiting planets.

Trends are removed from each light curve by normalizing each data point by the slid-

ing 12-hour median of the light curve. This detrending is illustrated in Figure 2.1.

The median filter is insufficient however, in the case of the aforementioned flare and

rotation signals. These both require treatment before the median filter is applied.

These prescriptions are outlined in the following subsections, with plots illustrating

situations where they are relevant.

Figure 2.1: Top: TESS light curve from each observed sector of TIC 170636897 with
consecutive sectors concatenated and trend overplotted. Bottom: Detrended light

curve with rolling 12-hour median trend removed.
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2.2.1 Flares

Stellar flares from our targets can be seen in many light curves as sharp increases in

brightness with a decaying exponential tail (see Figure 2.2). For our purposes, flares

are nuisance signals that we identify and mask from our light curves. Since they span

very short sections of our light curves, we identify and remove them from the data.

This step is done before any detrending methods are applied.

This process of flare removal follows Chang et al. (2015). We start by identifying

data points which are ≥ 3 median absolute deviations from the median of the light

curve. If there are three or more consecutive outlying points, the 30 data points on

either side of the identified flare are taken as part of the series which may contain the

flare. With this sequence of data we apply the change-point algorithm described in

Chang et al. (2015). With a sequence of flux measurements x1, x2, ..., xn with some

mean x̄ we define the kth cumulative sum as

Sk =
k∑

i=0

(xi − x̄) . (2.2.1)

A change-point corresponds to the maximum value of |Sk| and its significance is

determined by boostrapping and comparing its value to the cumulative sum from

shuffled xi series. If its magnitude exceeds 90% of the boostrapped change-points, it

is significant, and the series is divided into two sets on either side of the change-point.

This process continues recursively on those subsets until no new change-points are

identified. Identifying these change-points allows the pipeline to identify the extent

of a flare, and the change-points, along with the data in between them are excised.

Flares identified with this algorithms and the data points the pipeline would excise
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are illustrated in Figure 2.2.
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Figure 2.2: Left: Normalized TESS light curve with two flares highlighted and the
excised data has been marked in orange, identified by looking for sets of 3

consecutive 3σ outliers, and masked by using the change-point algorithm described
in Chang et al. (2015). Right: Zoom-in plots of the two flares showing their extent.

2.2.2 Stellar Rotation

It is particularly common for M dwarfs to show strong quasi-periodic photometric

variability because of rotation. Large star spots can rotate in and out of view in-

troducing a quasi-periodic signal into their light curves. This signal is illustrated by

the light curve in Figure 2.3 from TIC 98796344. We identify this variability using a

Lomb-Scargle periodigram implemented by Schröter et al. (2019). Before computing

the periodigram, I bin-down the light curve’s points to 0.05 days to reduce the expense

of the computation. The Lomb-Scargle periodigram for TIC 98796344 is illustrated

in Figure 2.3 showing evidence of strong 1.39 day periodicity.
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Figure 2.3: Top: Normalized light curve from sector 4 observations of TIC 98796344
with binned points overplotted. Bottom: Lomb-Scargle periodigram of the binned

points with the peak period highlighted.

The primary peak of the periodigram prescribes the period, phase and amplitude
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of the dominant periodic signal. To test whether the rotation signal is significant we

use a Bayesian Information Criterion (BIC) to compare a sinusoidal model with a

median model. Where L̂ is the likelihood of a model, n is the number of data points,

and k is the number of free parameters in the model, we compute the criterion as:

BIC = k ln (n)− 2 ln(L̂). (2.2.2)

Taking the difference between the BICs for the sinusoidal and median models char-

acterizes how well one fits over the other and is expressed as the ∆BIC. Should the

BIC favour the rotation model with ∆BIC ≤ −50, we consider the rotational signal

significant. Additionally, we require rotation signals with a period of more than 1

day to have an amplitude greater than the median reported photometric error. This

extra condition is imposed because of the 12 hour length of our median filter, which

deals significantly worse with short period variability. The rotational characteristics

of each target in our sample of stars are illustrated in Figure 2.4.
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Figure 2.4: Detected rotation period of each of the stars in my sample, plotted
alongside how well a ∆BIC test favours a rotational model over a flat median

model. Rotators are favoured by the ∆BIC test by at least 50, and must have a
rotational amplitude greater than the median photometric error.

Gaussian processes (Rasmussen & Williams, 2006) produce a nondeterministic

model of a physical process that is difficult to model physically. It has been shown

by Angus et al. (2018) that Gaussian processes can remove the quasi-periodic signals

introduced by stellar rotations. Pure sinusoids are an inaccurate model for these

rotation signals because of other stochastic and non-periodic contributing factors,

25

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.Sc. Thesis – E. Gillis; McMaster University – Physics and Astronomy

and physical models require a large and degenerate parameter space to accurately

model the signals we observe, and are unsuitable for deployment at the scale of this

survey.

Each light curve with significant rotation is detrended using a Gaussian process

with the rotation term kernel provided by celerite2 (Foreman-Mackey, 2018). This

kernel is a combination of two simple harmonic oscillator kernels, with two modes

in Fourier space: one at the rotation period and one at one-half the rotation period.

The parameters used in this model are summarized in Table 2.1. The power spectral

density of the simple harmonic oscillator is given by:

S(ω) =

√
π

2

S0ω0
4

(ω2 − ω0
2)2 + ω2ω0

2/Q2
, (2.2.3)

where ω0 is the undamped angular frequency, Q is the quality factor and S0 charac-

terizes the power at ω0
2. The rotation term kernel combines two harmonic oscillators

with the parameters:

Q1 = 1/2 +Q0 + ∆Q (2.2.4)

ω0,1 =
4πQ1

P
√

4Q1
2 − 1

(2.2.5)

S0,1 =
σ2

(1 + f)ω0,1Q1

(2.2.6)
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and

Q2 = 1/2 +Q0 (2.2.7)

ω0,2 =
8πQ2

P
√

4Q2
2 − 1

(2.2.8)

S0,2 =
fσ2

(1 + f)ω0,2Q2

. (2.2.9)

The free parameters in equations 2.2.4 through 2.2.9 are outlined in Table 2.1. The

effectiveness of this Gaussian process is illustrated by Figure 2.5, where it smoothly

removes significant stellar variability and produces a flat light curve.

While Gaussian processes are effective at modeling stellar rotation signals, they

can be expensive to run, and can degrade transit signals because the Gaussian process

does not distinguish stellar variability from planetary transits (Garcia et al., 2024).

For these reasons, my pipeline uses the Gaussian process to detrend where it is deemed

necessary by the period, ∆BIC test, and amplitude of the rotational signal.
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Parameter Explanation Prior

µ Light curve mean N (0, 10)

log(σjitter) Excess white noise U(−3, 2)

log(σgp) Spread of initial data U(−3, log(σrms))

σlc Measurement uncertainty Lognormal(log(σ̄), 0.1)

Prot Rotation period N (P, 0.1)

Q Secondary oscillation quality factor N (7.5, 2)

∆Q Difference between modes’ quality factors Lognormal(0, 1)

f Secondary mode fractional amplitude U(0.8, 1)

Table 2.1: Summary of the parameters used in the Gaussian Process used to remove
the strong stellar rotation signals from light curves. Here N denotes a normal

distribution, U denotes a uniform distribution, Lognormal denotes a log-normal
distribution, σrms is the standard-deviation of the light curve, P is the period found

by the Lomb-Scargle periodigram and σ̄ is the median flux error.

Figure 2.5: Top: TESS light curve from each observed sector of TIC 98796344 with
Gaussian Process trend overplotted. Bottom: Detrended light curve with Gaussian

Process trend removed.
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2.3 Transit Least Squares (TLS)

After each light curve for a target has been cleaned and detrended, my pipeline

searches the time series for signals from transiting planets. My pipeline employs the

Transit Least Squares (TLS) algorithm developed by Hippke & Heller (2019) imple-

mented in Python with the transitleastsquares package. This method improves

upon the Box Least Squares (BLS) algorithm developed by Kovács et al. (2002) which

has been employed in previous work such as Ment & Charbonneau (2023).

Both the BLS and the TLS employ a similar technique for detecting transit sig-

nals. I will sketch out the BLS algorithm and outline the key improvements that the

TLS algorithm offers over the BLS. Let us denote a time series of fluxes given by

{t1, t2, ..., tn} and {I1, I2, ..., In} where (ti, Ii) is a measurement at some time. In this

case, we assume that the median of {Ii} is 1, which is the case for our normalized

time series. These methods fold the time series on a period P by transforming the

time measurements by ti
′

= ti mod P . If P is the period of the transiting planet

with transit depth ∆, we expect that all of the in-transit points will fall between the

values of some tj
′

and tk
′
. Since all of the points between these values are in transit,

we expect that the means of the flux in and out of transit should differ by ∆, or that

over indices l where l < j or l > k and m where j ≤ m ≤ k, we expect Il - Im = ∆.

The BLS finds j and k and ∆ by the least-squares method, finding a two-valued

function which takes values of 1 out of transit and 1−∆ in transit.

The Transit Least Squares algorithm improves over the BLS’s approach by fitting

a physically modeled transit model to the phase folded time series. The TLS model

is also informed by the host star’s radius, mass and limb-darkening parameters. This

allows for a greater detection efficiency, because the best-fit model better physically
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resembles the transit signals we are searching for.

The approach outlined above based Kovács et al. (2002) is idealized, but without

optimizations the multidimensional search space is very large. Transit Least Squares

searches an array of transit periods, mid-transit epochs, and an array of transit dura-

tions between a maximum and a minimum transit time. The inner and outer ranges

of the duration search are set assuming a circular orbit, but allowing a large range

of planet and host star masses. The range of durations that TLS samples encom-

passes all known exoplanets at the time that Hippke & Heller (2019) was published.

Accurately sampling the period is particularly important because a proper fit must

line up each transit in the same folded time range. In a light curve spanning D days

we expect to be able to find transit signals with periods anywhere from 0.1 to D/2

days. A planet with a period of 2 days around a 0.3 M� star has an expected transit

duration of about 1 hour. In one sector of TESS data, spanning 28 days, we expect 14

transits from a 2 day planet. If we require our chosen period to fold all of the transits

within the transit duration with a tolerance of 25%, we require the chosen period to

be sampled within 8 × 10−4 days of the true period of 2 days. The consequences of

misaligning the transits in the folding process compound with longer light curves. The

accuracy required grows linearly with the length of the light curve, as does the upper

limit of the period search. This scaling of computational cost motivates limiting the

maximum number of concatenated consecutive sectors to four.

Once the TLS is run, it produces a signal detection efficiency (SDE) spectrum

illustrated in Figure 2.6 along with a best-fit period, mid-transit time, transit depth,

and transit duration. The best-fit values represent the peak in the signal detection

efficiency of the TLS. My pipeline considers this result significant if it corresponds to
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Figure 2.6: Left: Single sector detrended light curve with the in-transit points found
by the Transit Least Squares (TLS) highlighted in orange. Right: TLS spectrum

indicating a strong 5.3601-day periodic transit-like signal. Harmonics of the signal
are marked with dashed lines.

a peak in the SDE with SDE> 6. According to Hippke & Heller (2019), a peak in the

SDE spectrum greater than 6 corresponds to a 0.05 false alarm probability, in tests

with white noise. While a higher SDE threshold would result in fewer false positive

TLS results, it would also reduce the sensitivity of my pipeline to transiting planets.

Many of the targets in my sample are known to host multiple planets, so my

pipeline must be able to find multiple planet signals in a given light curve. Should the

TLS return a result with SDE ≥ 6 for a light curve, the search continues iteratively,

but if the search returns an insignificant result the search ends. When a significant

signal be found, my pipeline uses the TLS’s best-fit parameters to fit a physical

transit model using scipy’s optimization routine (Virtanen et al., 2020) and batman

(Kreidberg, 2015) to generate transit curves. This physical transit model is subtracted

from the light curve to remove the signal that the TLS has identified. Once the signal

has been removed, the TLS is run again on the new light curve. This process continues
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iteratively until the TLS fails to find a significant result or a maximum number of four

iterations is reached. I choose four as the maximum number of consecutive iterations

because no targets within my sample have more than three confirmed transiting

planets within the period range which we are sensitive to. This iterative TLS step is

illustrated in Figure 2.7.

Figure 2.7: An illustration of the pipeline’s iterative TLS search. Starting with a
detrended light curve (Top), a TLS is run to generate an SDE spectrum (Left). If a

significant signal is found with SDE≥ 6, the signal is modeled and masked out of
the light curve (Bottom). This process continues iteratively until a maximum or

four iterations are reached, or no significant signals are found.
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Many targets in our sample have multiple light curves corresponding to different

sectors of observations. For each of the light curves from a given target, this iterative

TLS search yields a set of results. At this point, many of these results represent

astrophysical and statistical false positives, and my pipeline employs a vetting proce-

dure to flag and remove false positive results that would otherwise contaminate our

occurrence rate inferences. Using the vetting procedures described in Ment & Char-

bonneau (2023) as a reference, each TLS result must pass the following four vetting

conditions:

1. The best-fit physical batman transit model must have a signal-to-noise ratio

(SNR) greater than three calculated using Equation 1.3.2.

2. The TLS result cannot have the same period, or be an integer multiple of the

star’s rotation period within a 0.3% tolerance. TLS results with SDE >15 are

exempt from this condition.

3. The period of a TLS result cannot match the period of another TLS result from

the same light curve within a tolerance of 0.1%.

4. In targets with four or more light curves, the TLS result’s period must match

the period of results from half the light curves or more, rounded down.

To compute the signal-to-noise ratio to fulfill vetting condition 1, with an empirical

characterization of σlc using the detrended light curve. The number of transits Ntransits

is counted based on the number of in-transit points times the cadence, divided by the

transit duration. σlc is calculated by taking the detrended light curve and binning

it with bin lengths equal to the transit duration. σlc is then calculated by taking

the standard deviation of this binned light curve. These vetting conditions do not
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rule out all false positive TLS results, but it reduces their number, meaning that the

next steps of the pipeline are less polluted. These vetting conditions are necessary to

reduce the final number of false positives from this survey to make manual vetting

possible.

2.4 Characterizing Planet Candidates

The next step of the processing pipeline involves transforming TLS results from each

light curve into a set of planet candidates characterized using all light curve data

from the target at once. This was not possible in earlier steps due to the prohibitive

cost of the TLS over very long light curves. From the sets of TLS results the iterative

search generates, the pipeline collects sets of results with common depths within

20%, durations within 40% and periods whose ratio is within 0.01% of an integer.

The period condition is motivated by the fact that transit signals can be picked up

as period aliases by the TLS and long-period transiting planets in short light curves

may still be detected at shorter period harmonics. The large ranges on durations and

depth are necessary to account for these misfolded signals. This process of collecting

sets of results is illustrated in Figure 2.8 using the results from the TIC 98796344 as

an example.
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Figure 2.8: Illustration of the sets of results from each light curve being combined to
characterize planet candidates.

Each set of results is used to characterize a planet candidate for which the pipeline

finds a best-fit model using the concatenated light curve data from the target. First

a very narrow TLS search is run within the period uncertainty of the result with the

highest SDE. Generally, a search over a long concatenated light curve is prohibitively

expensive, but in this case the very narrow range makes it tractable because only a

few hundred trial periods must be searched. Using the period fit by this narrow TLS

allows the pipeline to be confident that the transits will be folded correctly. With

this period, the pipeline then uses the folded light curve to fit the remaining transit
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parameters T0, Rp/R∗, b as well as an offset parameter to better characterize the

transit baseline using scipy’s curve fit (Virtanen et al., 2020) with batman transit

models (Kreidberg, 2015). This fit and subsequent vetting and characterization is

only run on the data within 2 transit durations of the folded transit’s midpoint,

because the transit only represents a small fraction of the folded data. The best-fit

model for the two planets around TIC 98796344 is illustrated in Figure 2.9.

Figure 2.9: Fit models for the two planets around TIC 98796344, fit using the
combined results laid out in Figure 2.8.

At this stage, the best-fit model must have an SNR > 6 calculated according to

equation 1.3.2, derived using the same process described in the TLS vetting condi-

tions. The pipeline further characterizes these planet candidates by running a Markov

Chain Monte Carlo (MCMC) with the emcee package (Foreman-Mackey et al., 2013)

to model the posterior distributions of the 5 fit quantities. These quantities and their

priors are:
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• T0: Gaussian centered at the T0 found by the narrow TLS, with width given by

the TLS’s T0 uncertainty.

• P : Gaussian centered at the period found by the narrow TLS, with width given

by the TLS’s period uncertainty.

• Rp/R∗: Log-uniform from 0.005 to 0.5.

• b: Uniform between 0 and 0.95.

• Offset: Gaussian centered at 0 with width given by the standard deviation of

the light curve within 2 durations of the transit midtime.

Before running the MCMC, the fit planet models of the other planet candidates are

removed from the light curve by subtracting their modeled transit curves. The MCMC

runs 48 walkers for 4,000 steps to explore the posterior of the fit parameters. The

evolution of the walkers for a single planet candidate is illustrated in Figure 2.10.

The burn-in and number of steps were calibrated based on tests with targets hosting

known transiting planets. Fewer steps and a shorter burn-in are likely sufficient but

the MCMC does not dominate the runtime, so a long run and burn-in are favoured.

The walkers’ initial positions are sampled from the priors, with the exception of Rp/R∗

which is sampled from a Gaussian centered at
√

∆, with width
√

∆/20 where ∆ is the

narrow TLS’s found depth. The full MCMC chains are saved, as well as a truncated

chain with 1,000 steps of burn-in removed which characterizes the planet parameters’

posterior distributions. One of these distributions is illustrated in Figure 2.11.
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Figure 2.10: Evolution of the Monte Carlo Markov Chain walkers fitting the 5.36
day planet candidate around TIC 98796344. The black lines trace out each walker’s

path, with the red line tracing the median walker position at each step.
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Figure 2.11: Posterior distributions for the planet parameters of the 5.36 day planet
candidate around TIC 98796344. The prior distributions are overplotted as dashed

lines, and the 1σ confidence interval is shaded.

After each planet candidate is characterized by the MCMC, it must pass a final

set of statistical vetting conditions, calibrated to remove false positives in searches of

lightcuves without planet signals:

1. The fit model must pass a χ2 test with a value of 1.5 or less.

2. A ∆BIC test must favour the fitted transit model over a median model, which

is constant and equal to the median of the folded light curve within 1 transit

duration of the transit midpoint by -10 or more.
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3. A ∆BIC test must favour the fitted transit model over a null model, which

is constant and equal to the fit offset within 1 transit duration of the transit

midpoint by -10 or more.

These statistical tests do not rule out all false positives, but they reduce their numbers

enough that a visual verification of every planet candidate is feasible over our a large

number of. If a planet candidate passes all of these conditions it must finally pass a

visual check using the diagnostic plots outlined in Appendix A. The planets identified

by my pipeline are outlined in Chapter 4.
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Chapter 3

Pipeline Performance & Sensitivity

Characterization

The set of detected planets is on its own insufficient to characterize the true population

of planets. Accurately characterizing the planet population requires combining the

found population with detailed understanding of my pipeline’s sensitivity to different

types of transiting planets. The latter of these necessary parts is outlined in this

chapter, along with my pipeline’s ability to find known planet signals in the targets

of my survey.

3.1 Finding TOIs

All of the data in this survey have been previously processed by the proprietary

TESS pipeline, which has identified a set of known and probable planet signals called

TESS Objects of Interest (TOIs). Each TOI is recorded by the Exoplanet Follow-

up Observing Program (ExoFOP) and has been assigned a disposition by the TESS
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follow-up program working group (TFOPWG). There are 86 credible TOIs hosted by

the targets in this survey labeled as a Confirmed Planet, Planet Candidate or Known

Planet, with TOIs labeled False Alarm or False Positive disregarded.

As part of my pipeline’s testing, I use this set of TOIs to determine how well my

pipeline is able to recover transiting planet signals, without an exhaustive, extensive

set of injection-recovery tests such as those described in section 3.2. In its current

state, my pipeline is able to recover 70 out of the 86 TOIs, and 34 out of the 36

confirmed planets. These found and missed TOIs are illustrated in Figure 3.1 with

the confirmed planets highlighted. I have also determined why each missing TOI

was not found, which is tabulated in Table 3.1. The vetting condition that a TLS

result of a given period or period harmonic must result be found in half of the light

curves or more was responsible for more than half of the missed TOIs. Relaxing

this condition for targets with many light curves will result in fewer missed TOIs.

This is not currently feasible because maintaining the consistency of this survey and

my sensitivity calculations would also require rerunning the transit search and all

injection-recovery tests on targets which the new condition may affect.

3.2 Injection-Recovery

I have empirically measured my pipeline’s sensitivity using injection-recovery tests.

Starting with light curves without planet signals, I inject a transit signal, and process

the synthetic light curve using my end-to-end pipeline to determine whether the signal

is recovered. The recovery fraction of these injected signals, over many targets and

injected planets reveals my pipeline’s sensitivity to transiting planets as a function of

their injected periods and radii.
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Figure 3.1: Found and not Found TESS TOIs from the stars in our sample, plotted
as a function of period and radius. Multiplanet systems are connected with dashed

lines, and confirmed planets are encircled.
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Before running injection-recovery tests, I split up my sample into three sets based

on their TESS magnitude. These sets have TESS magnitude <12, 12-13 and >13

respectively, and roughly represent one third each of my sample of stars. As TESS

magnitude is one of the main factors contributing to photometric noise, splitting

up the sample of stars will allow me to more sharply resolve the boundary between

recoverable and non-recoverable planet populations. Because my pipeline treats stars

with strong rotating signals differently, I further subdivide these sets into rotating

and non-rotating stars using the criteria described in Chapter 2.

Before injecting a signal in a target’s light curve, my injection-recovery pipeline

masks any known planet signals in the light curve by cross-referencing the chosen light

curve’s TIC with ExoFOP’s TOI table and removing the data associated with the

TOIs in transit times. Each injected signal is generated by using batman (Kreidberg,

2015) with some prescribed T0, b, period P , and Rp/R∗, and are added to the pre-

detrended light curve. After the injection, the entire pipeline is run to recover the

signal as a planet candidate. Following Ment & Charbonneau (2023), a planet signal

is considered recovered if the pipeline finds and vets a planet candidate with recovered

period P ′ which matches the injected period P , Pn or P/n where n ∈ {2, 3, 4, 5, 6}

within a tolerance of 0.2%. This validation strategy follows Ment & Charbonneau

(2023). For each injection, the sampled TIC, T0, b, P and Rp/R∗ are saved alongside

the recovered T ′0, b
′, P ′ and R′p/R∗.

Within each TESS magnitude bin, I am primarily interested in characterizing my

pipeline’s sensitivity as a function of period from 0.2 to 30 days and Rp/R∗ from 0.01

to 0.2. Our injection strategy follows Ment & Charbonneau (2023) which explores the

recovery space recursively using a quadtree. This process starts with 200 injections
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over four quadrants in period vs Rp/R∗ space to create four regions of sensitivity.

These injections are drawn from log-uniform distributions in Rp/R∗ and period, with

T0 and b drawn uniformly from 0 to the sampled period and 0 to 1 respectively. This

process is repeated recursively for any quadrant whose recovery rate differs from a

neighboring area by more than 20%. This sampling scheme means that we sample

regions with a high gradient in recovery fraction most finely, without dedicating many

samples to regions where the recovery fraction is relatively uniform.

In total, I have injected 131,662 planet signals total over the six sets of targets

described above using the resources provided by the Digital Research Alliance of

Canada. While injection-recovery tests are still ongoing (subject to resource avail-

ability) the calculations completed so far provide a nearly complete picture of my

pipeline sensitivity. I do not expect the forthcoming refinements to my sensitivity

calculation to have a major effect on my planet occurrence rate inferences. The re-

covery fraction as a function of period and Rp/R∗ in the recursively sampled regions,

alongside a scatter-plot of injected and recovered planet signals for each set of targets

is plotted in Figures 3.2 and 3.3. Two main features dominate the shape of the sensi-

tivity in each plot: An upward slope from the bottom left to the top right comes from

the SNR cutoff imposed by the pipeline, and the drop-off at large radii and periods

comes from my pipeline’s inability to detect long period planets in single sectors of

TESS data.
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Injections (left) and Sensitivity (right) with non-Rotating Stars with Tmag 13-15

Figure 3.2: Left: Sensitivity of my pipeline to transiting planets around
non-rotating stars as a function of period and Rp/R∗. Right: All injection-recovery
tests to characterize the left plot, coloured blue if recovered, red if not recovered.

45

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.Sc. Thesis – E. Gillis; McMaster University – Physics and Astronomy

100 101

Period (Days)

10−2

10−1
R
p
/R
∗

100 101

Period (Days)

3

4

12

18

21

28

5

17

11

21

20

0

5

0

8

11

7

4

7

34

53

36

58

64

74

58

67

36

46

29

39

60

72

64

70

76

93

89

94

78

89

87

31

38

16

29

51

78

34

57

21

28

45

39

49

72

85

73

85

62

69

89

0

0

7

1

3

0

0

24

39

46

30

34

12

23

40

26

31

48

70

59

63

81

82

69

80

47

57

41

58

70

81

61

83

8

8

27

15

16

4

20

35

38

25

47

65

75

56

74

35

55

95

100

85

96

97

78

96

81

79

70

82

91

96

0

0

17

3

8

23

48

45

41

46

21

40

1

13

30

33

22

35

10

13

2

7

21

29

29

30

0

2

1

13

6

4

0

2

71

67

62

73

77

55

71

79

31

52

42

54

63

33

57

62

54

38

79

86

74

75

69

82

83

90

94

88

92

80

92

89

25

39

22

32

42

41

34

54

13

26

74

57

53

59

82

71

65

71

39

41

31

23

45

52

18

29

8

17

27

12

16

67

82

68

81

86

92

78

68

45

55

44

44

69

63

36

32

75

85

75

92

95

82

81

82

58

67

39

42

70

61

42

41

35

36

19

22

36

41

27

22

0

20

40

60

80

100

P
e
rce

n
ta

g
e

R
e
co

v
e
re

d
Injections (left) and Sensitivity (right) with Rotating Stars with Tmag 6-12

100 101

Period (Days)

10−2

10−1

R
p
/R
∗

100 101

Period (Days)

0

6

18

34

17

38

4

11

22

6

22

54

61

83

75

75

26

46

33

53

58

75

62

64

0

3

11

12

6

2

8

25

52

26

35

52

71

58

65

20

29

11

33

50

67

40

61

0

0

7

0

11

13

10

14

23

34

52

37

41

14

32

46

31

29

3

9

31

39

11

38

9

18

90

93

93

87

76

86

96

94

81

95

79

84

68

77

95

90

98

66

81

60

77

85

92

87

95

62

67

60

59

85

94

86

87

94

96

96

98

41

73

38

57

80

75

62

68

40

51

38

42

59

83

63

71

91

88

92

86

83

89

96

96

0

1

4

7

19

20

16

0

6

1

2

0

0

24

50

19

27

57

79

48

64

22

29

16

37

47

60

46

59

80

78

70

85

90

71

85

20

40

7

30

37

25

27

54

75

58

78

84

95

77

84

56

56

31

53

78

94

95

84

87

4

15

2

11

40

47

22

45

55

73

38

62

25

25

50

30

35

2

7

22

27

17

26

5

18

80

84

78

82

74

84

80

89

47

58

51

31

65

74

44

36

95

92

83

91

91

80

93

85

71

63

43

38

70

67

44

45

30

33

30

27

32

21

25

37

46

43

41

38

41

43

40

31

35

15

8

42

33

14

30

0

20

40

60

80

100

P
e
rce

n
ta

g
e

R
e
co

v
e
re

d

Injections (left) and Sensitivity (right) with Rotating Stars with Tmag 12-13

100 101

Period (Days)

10−2

10−1

R
p
/R
∗

100 101

Period (Days)

0

0

5

22

3

19

0

3

8

5

5

0

0

2

5

0

0

0

0

33

42

29

36

58

73

60

67

37

39

67

42

54

75

94

72

87

65

71

80

32

25

25

33

52

68

43

50

23

48

48

34

28

68

85

63

63

70

75

88

95

13

21

9

15

38

42

33

42

12

22

35

21

37

54

67

50

65

75

59

60

47

65

71

83

71

77

6

12

31

12

16

10

21

47

59

39

46

50

70

64

78

30

53

30

38

65

65

62

58

84

96

86

86

80

79

95

79

91

92

0

0

0

0

0

8

18

0

17

1

8

28

44

16

46

48

57

46

62

23

28

12

25

40

54

51

48

3

10

17

10

9

35

40

30

44

14

16

35

21

44

71

88

67

81

86

97

89

100

62

67

47

66

78

51

68

88

91

78

81

0

6

26

0

5

0

4

40

50

20

28

77

77

68

71

82

85

79

78

61

52

19

32

63

63

36

33

10

23

10

12

23

37

13

18

0

20

40

60

80

100

P
e
rce

n
ta

g
e

R
e
co

v
e
re

d

Injections (left) and Sensitivity (right) with Rotating Stars with Tmag 13-15

Figure 3.3: Same as Figure 3.3 but for non-rotating stars
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TOI TLS
Result

TFOPWG
Disposition

Reason for non-detection

256.01 × KP Known planet, possibly not recoverable from
TESS light curve

732.02 X CP Planet candidate fit failed the χ2 test

789.01 X PC Found TLS results fail the half light curves or
more condition

789.02 X PC Found TLS results fail the half light curves or
more condition

789.03 X PC Found TLS results fail the half light curves or
more condition

1452.01 X CP Found TLS results fail the half light curves or
more condition

2142.01 X PC Median model favored by ∆BIC test

2267.02 X PC Found TLS results fail the half light curves or
more condition

2267.03 X PC Found TLS results fail the half light curves or
more condition

2495.01 X PC Planet Candidate SNR < 6

5716.01 X PC Found TLS results fail the half light curves or
more condition

6002.01 × PC 10 day TOI not found by TLS

6255.01 X PC Found TLS results fail the half light curves or
more condition

6599.01 X PC Planet Candidate SNR < 6

6714.01 × PC TOI signal not found by TLS

6716.01 × PC TOI signal not found by TLS

Table 3.1: TESS targets of interest missed by my pipeline’s planet survey.
Left-middle column indicates where the TOI signal was found by the TLS,

right-middle column records the TFOPWG Disposition, and the rightmost column
describes why the TOI was not found.
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Chapter 4

The Occurrence Rate of Planets

around mid-to-late M Dwarfs

In this chapter, I describe the results of my transit survey followed by a calculation

of the occurrence rate of close-in planets around mid-to-late M dwarfs. These results

represent the main scientific findings of my thesis and the occurrence rate around

the smallest and most common stars. In the discrete calculations following, I use an

18x18 log-log grid with a period range of 0.2 to 30 days, a radius range of 0.5R⊕ to

6.5R⊕ and an instellation range of 0.1S⊕ to 1000S⊕.

4.1 Transit Survey Results

Using my pipeline described in Chapter 2, I have processed data from 9,131 mid-to-

late M dwarfs observed in the first 85 sectors of TESS observation. This survey was

run using the resources available from the Digital Research Alliance of Canada. After

each target was processed, every planet candidate identified was manually vetted by
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visually inspecting the best-fit folded transit curve, the TLS spectra which led to the

planet candidate and the individual transits in the light curves.

In total, I have found and characterized 80 signals which pass all of the aforemen-

tioned vetting conditions. Of these, 71 are consistent with TOIs or known planets.

For the nine non-TOI signals, I have used TRICERATOPS, (Giacalone et al. (2021)

and Giacalone & Dressing (2020)) which is a tool for statistically validating signals

from TESS light curves, to compute the probability that the signal may be an astro-

physical false positive. TRICERATOPS accomplishes this by retrieving the properties

of all of the stars within the photometric aperture used to generate the target’s light

curve, and determines the proportional flux contributed from each star. TRICERATOPS

uses this information to calculate the marginal likelihood of each transit-producing

scenario and determines the probability of each scenario. These comprise eclipsing

binary signals from background stars or unresolved bound companions, as well as

transiting planets around background stars or unresolved bound companions. Ap-

plying TRICERATOPS to the set of found TOIs, I find that none have a false positive

probability (FPP) greater than 8%. For this survey, I will include any planet can-

didate signal with a TRICERATOPS FPP less than 10%. The TRICERATOPS FPPs and

other reasons for rejecting or accepting the 9 non-TOI signals are summarized in Ta-

ble 4.1. The signal from TIC 420112587 is strong, but its period closely matches that

of TOI 1452.01, a confirmed planet around another star in the aperture.
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TIC Measured Rp/R∗ Period (Days) FPP Status

420112587 0.0544± 0.0019 11.0619748± 7.9× 10−6 - Background TOI

170636897 0.0213± 0.001 0.6927215± 6.5× 10−7 8.7% Accepted

355815567 0.0487± 0.0028 3.519462± 1.9× 10−5 10.6% Rejected

417732194 0.0594± 0.003 5.3074071± 7.4× 10−6 17.3% Rejected

96202086 0.0237± 0.001 0.63048452± 3.1× 10−7 11% Rejected

149927512 0.0311± 0.0018 1.4646799± 1.8× 10−6 8.4% Accepted

61710094 0.0278± 0.0014 1.8389543± 1.4× 10−6 12% Rejected

171796577 0.0715± 0.0046 3.64946± 7.2× 10−4 10.2% Rejected

Table 4.1: Table of credible signals found through my survey which are not
confirmed planets or TESS TOIs. Signals with a TRICERATOPS FPP< 10% are

included in my survey.

For each accepted signal, I compute the physical radius of the transiting planet

using the host star’s radius from the TIC. I also compute each planet’s instellation

as:

Sp = S⊕

(
T∗
T�

)4(
P

1 year

)−4/3(
R∗
R�

)2(
M∗
M�

)−2/3
(4.1.1)

using the star’s effective temperature, mass and radius from the TIC. All of the

planets found by my survey are plotted in Figure 4.1, based on their radius, period,

and instellation. At this point, we can already see that my survey have found a large

number of super-Earths (1-1.7 R⊕), some sub-Earths (0.5-1 R⊕) but very few sub-

Neptunes (2-5 R⊕). This data is not sufficient to characterize the planet population,

however, as my pipeline’s likelihood of detecting these planets differs over the range

of our survey which is computed in the following section.
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Figure 4.1: Planets found by my survey plotted on 18x18 log/log grids as a function
of their periods, radii and instellation.

4.2 Survey Completeness

The completeness of my survey describes the average probability that my pipeline

has of detecting any planet around any star in my sample. Computing the complete-

ness requires the pipeline’s sensitivity and the geometric transit probability, i.e. the

probability that a planet of a given period and radius will transit its host star. I

compute the completeness as a function of period and Rp (i.e. physical planet radius)

and as a function of radius and instellation. The former allows my calculation to

be most easily compared to other established occurrence rates. The latter allows for
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Figure 4.2: Sensitivity of my pipeline to transiting planets on 18x18 log/log grids as
a function of period and radius (Left) and as a function of instellation and radius

(Right). This map was generated by transforming the injections illustrated in
Figures 3.2 and 3.3 and weighting the sensitivity map for each bin by the number of

targets in each bin.

an occurrence rate calculation that can link the physical properties of the planets to

radiation they receive from their host star, and roughly determine which planets may

experience Earth-like levels of instellation.

The sensitivity of my pipeline is computed using the injection-recovery tests out-

lined in Chapter 3. Each set of injections illustrated in Figures 3.2 and 3.3 is trans-

formed and binned in period/radius space and instellation/radius space. These sen-

sitivity maps are then combined together, weighted by the proportion of stars they

represent in the sample. The combined sensitivity maps are illustrated in Figure 4.2.

The transit probability is the probability that a planet at an orbital distance from

its star with a random inclination will transit. Assuming our orbits circular, the
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distance between the planet and it’s host is given by:

a = 1AU

(
P

1 year

)2/3(
M∗
M�

)1/3

, (4.2.1)

and the transit probability is computed as the ratio of the host star’s radius with the

orbital distance, following Dressing & Charbonneau (2015) as

Ptransit = R∗/a (4.2.2)

The transit probability is illustrated in Figure 4.3.
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Figure 4.3: Average geometric transit probability of planets around stars in the
survey’s sample on 18x18 log/log grids as a function of period and planet radius

(Left) and as a function of instellation and planet radius (Right).

The survey completeness is calculated as the product of the transit probability

and detection sensitivity as a function of period and radius or instellation and radius,

which is illustrated in Figure 4.4.
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Figure 4.4: Completeness of the survey on 18x18 log/log grids, which is the product
of my pipeline’s sensitivity (Figure 4.2) and the transit probability of planets over

the survey’s sample (Figure 4.3).

The completeness c is combined with the planet count Nplanets(Rp, P ) and the

target count Nstars to compute the occurrence rate f as:

f(Rp, P ) =
Nplanets(Rp, P )

c(Rp, P )Nstars

(4.2.3)

The binned occurrence rate calculated using the data in Figures 4.1 and 4.4 is plotted

in Figure 4.5 as a function of period and radius, and in Figure 4.6 as a function of

instellation and radius.
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Figure 4.5: The occurrence rate of planets around mid-to-late M dwarfs as a
function of period and radius computed by combining the planets found in Figure
4.1 and with the survey’s completeness in Figure 4.4. Found planets are marked in
red, and the histograms represent the cumulative distribution over their respective

axes. The Fulton et al. (2017) Radius Valley highlighted between 1.64 and 1.97 R⊕.
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Figure 4.6: The occurrence rate of planets around mid-to-late M dwarfs as a
function of instellation and radius computed by combining the planets found in
Figure 4.1 and with the survey’s completeness in Figure 4.4. Found planets are

marked in red, and the histograms represent the cumulative distribution over their
respective axes. The Fulton et al. (2017) Radius Valley highlighted between 1.64

and 1.97 R⊕.

It is clear from these occurrence rate calculations that the Radius Valley does not

exist around mid-to-late M dwarf stars. The close-in planet population is made up

almost entirely of super- and sub-Earths which were overall less likely to be detected
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than the few sub-Neptunes my survey finds.

To analyze the uncertainty in this distribution we adopt binomial statistics follow-

ing Dressing & Charbonneau (2015). This is valid because my occurrence rate calcu-

lation can be viewed as a set of Bernoulli experiments in each bin whose probability

of success depends on the occurrence rate. The posterior probability distribution for

the occurrence in each cell is given by:

P (Occ. = f) = Bin(k, n, fc) (4.2.4)

where n is the total number of targets searched, c is the completeness in the cell, and

k is the number of planets found in that cell. By sampling this posterior for each

cell, I generate many realizations of the binned occurrence rate in period/radius space

and radius/instellation space. I do not sample from cells with k = 0, because many

distributions with a non-zero tail could add an arbitrarily large amount of occurrence

to the cumulative rate; however, the distributions in regions with zero occurrence can

still be used to set an upper limit on the occurrence of planets therein. Using these

occurrence rate realizations, I plot the occurrence rate of planets around mid-to-late

M dwarfs in Figure 4.7.
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Figure 4.7: Occurrence rate of planets in radius space, realized by sampling the
posterior distribution of each cell in Figure 4.5. Fulton et al. (2017) Radius Valley

highlighted between 1.64 and 1.97 R⊕.

Using the 18x18 occurrence rate grids I can also present the cumulative occur-

rence rate in 6x6 sub-grids, dividing the space into 9 equally spaced log bins in the

period/radius and instellation/radius map. In bins where non-detections make an

occurrence rate calculation impossible, I report the 1σ upper limit for the occurrence

rate. These calculations are summarized in Tables 4.2 and 4.3.

0.4-1.01R⊕ 1.01-2.57R⊕ 2.57-6.5R⊕

0.2-1.06 Days 0.051± 0.021 0.021± 0.006 < 0.03

1.06-5.65 Days 0.318± 0.095 0.313± 0.055 0.012± 0.006

5.65-30.0 Days 0.226± 0.157 0.387± 0.093 < 0.72*

Table 4.2: Number of planets per star versus planet radius and orbital period
calculated by sampling the posterior distributions of the occurrence rate illustrated

in Figure 4.5. *Unreliable upper limit.
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0.4-1.01R⊕ 1.01-2.57R⊕ 2.57-6.5R⊕

0.2-3.42 S⊕ 0.1± 0.071 0.051± 0.02 0.019± 0.014

3.42-58.48 S⊕ 0.228± 0.067 0.3± 0.051 0.005± 0.004

58.48-1000.0 S⊕ 0.007± 0.004 0.009± 0.003 < 0.026

Table 4.3: Number of planets per star versus planet radius and instellation
calculated by sampling the posterior distributions of the occurrence rate illustrated

in Figure 4.6.

4.3 Smooth Occurrence Rate Calculation

In this section, I present a smoothed occurrence rate calculation to parallel the binned

occurrence rate calculation carried out above. To generate a smooth completeness

map, each injection is added as a Gaussian with width equal to one third of the width

of the quadtree cell in which the injection was sampled (see Figures 3.2 and 3.3). A

distribution of injected planets and a distribution of recovered planets are created

this way, and the former is normalized by the latter to produce the map on left-hand

side of Figure 4.8. The transit probability is calculated exactly as before on a grid to

match the resolution of the smooth occurrence map.
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Figure 4.8: Left: Smoothed sensitivity of my pipeline to transiting planets in
Radius/Period space. Decades in the sensitivity are marked with black contour

lines. Right: High resolution transit probability map.

The planet distribution is generated by taking each planet as a Gaussian in pe-

riod/radius space. The width in period space is fixed at 5% of the period because the

planets’ periods are too tightly constrained to have any width in this space. The width

in period space is given by the 2.5 times the relative radius error. This extra spread

over the radius uncertainty smooths the radius occurrence rate out, and without this

smoothing the distribution would be too variable to be physically interpretable. Each

distribution added to the map integrates to 1 over the area in period/radius space that

it spans. Following equation 4.2.3, each distribution is divided by the completeness

at its center, and the total number of targets in the survey. This smooth occurrence

rate is plotted in Figure 4.9.
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Figure 4.9: Left: Smooth occurrence rate in period/radius space. Right: Occurrence
rate distribution in radius space. The primary line represents a smoothed radius

occurrence with stretched uncertainties while the light-grey dashed line showing the
distribution without the extra 2.5 factor spread in radius uncertainty. Fulton et al.

(2017) Radius Valley highlighted between 1.64 and 1.97 R⊕.

While the smooth occurrence rate may offer a better insight into the shape of the

planet distribution around mid-to-late M dwarfs compared to the binned distribution,

it disagrees in magnitude with the binned occurrence rate plotted in Figure 4.7.

This is somewhat expected because it does not account for the uncertainty in the

occurrence rate calculation, and the tails of the binomial posterior distributions have

an expectation value larger than their most likely value.
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Chapter 5

Discussion

In this chapter, I will contextualize the results of this survey by comparing the oc-

currence rates around mid-to-late M dwarfs to previous theoretical and observational

works which have published predictions and proclamations of the planet population.

5.1 Comparisons to Previous Calculations

This occurrence rate calculation follows a line of occurrence rate calculations pushing

towards an understanding of the population of planets around the lowest mass stars.

By appending my work to their understanding, we can understand trends in the

planet population in lower-mass stars.

In their survey of early-to-mid M dwarfs, Cloutier & Menou (2020) find a cumu-

lative occurrence rate around early-to-mid M dwarfs of 2.48 ± 0.32 and 2.26 ± 0.38

planets per star from Kepler and K2 planets, respectively. Across our sample of stars,

this survey finds a cumulative occurrence rate of 1.326+0.21
−0.208 planets per star. As we

proceed towards lower masses, planets tend to be half as plentiful. This deficit may
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be partially attributable to the lower maximum period of this survey with Cloutier

& Menou (2020) finding a significant contribution to their occurrence from planets in

the second peak of the Radius Valley from 20 to 40 days.

The most appropriate direct comparison we can make to this occurrence rate

calculation Ment & Charbonneau (2023) with their survey of 363 mid-to-late M dwarfs

within 15 parsecs, searching for transiting planets within 7 days. Their survey does

provide constraints for the occurrence rate of super-Earths, but without any sub-

Neptune detections, they could only set an upper limit on the occurrence of any

second peak of the Radius Valley. Their survey also provides a direct comparison of

their occurrence rate to the occurrence rate calculation from Dressing & Charbonneau

(2015), an earlier survey spanning mostly early type M dwarfs looking to characterize

the rate of habitable worlds. By cutting the search space of our survey, we can

directly compare the results of this survey to these two previous occurrence rate

calculations. In each subrange I generate 4x4 completeness grids and planet counts

in these subranges following the same processes illustrated in Figures 4.2 through 4.4.

An extension of the tables from Ment & Charbonneau (2023) is presented in Tables

5.1 and 5.2.

63

http://www.mcmaster.ca/
https://physics.mcmaster.ca/


M.Sc. Thesis – E. Gillis; McMaster University – Physics and Astronomy

Source DC15 MC23 This Work

Mass range 0.08− 0.65M� 0.1− 0.3M� 0.1− 0.4M�

Median Mass 0.5M� 0.17M� 0.22M�

Instellation (S⊕) Radius (R⊕) Occurrence Rate by Source

4-10 0.5-4.0 0.436+0.140
−0.113 0.303+0.120

−0.095 0.241+0.056
−0.056

10-50 0.438+0.096
−0.083 0.162+0.064

−0.051 0.216+0.061
−0.062

50-200 0.084+0.024
−0.022 0.030+0.012

−0.010 0.035+0.013
−0.013

4-200 0.5-1.0 0.233+0.122
−0.097 0.107+0.098

−0.055 0.206+0.058
−0.058

1.0-1.5 0.243+0.069
−0.068 0.370+0.162

−0.118 0.277+0.047
−0.047

1.5-2.0 0.198+0.066
−0.057 ≤ 0.060 0.033+0.011

−0.011

> 2.0 0.283+0.074
−0.067 ≤ 0.056 0.02+0.007

−0.007

0.5-4.0 0.99+0.16
−0.15 0.49+0.19

−0.15 0.405+0.077
−0.077

Table 5.1: Comparison of my occurrence rate calculation in planet radius and
instellation to Dressing & Charbonneau (2015) (DC15) and Ment & Charbonneau

(2023) (MC23). This table is an extended version of Table 7 from Ment &
Charbonneau (2023).
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Source DC15 MC23 This Work

Mass range 0.08− 0.65M� 0.1− 0.3M� 0.1− 0.4M�

Median Mass 0.5M� 0.17M� 0.22M�

Period (Days) Radius (R⊕) Occurrence Rate by Source

0.2-1 0.5-4.0 0.013+0.005
−0.005 0.047+0.019

−0.015 0.031+0.013
−0.012

1-2.7 0.106+0.024
−0.024 0.159+0.064

−0.050 0.127+0.033
−0.033

2.7-7 0.349+0.054
−0.051 0.402+0.162

−0.127 0.586+0.122
−0.122

7-30 1.54 -* 0.461+0.201
−0.194

0.2-30 0.5-1.0 0.453+0.047
−0.041 0.134+0.123

−0.072* 0.71+0.243
−0.233

1.0-1.5 0.547+0.035
−0.041 0.446+0.162

−0.118* 0.404+0.079
−0.079

1.5-2.0 0.411+0.022
−0.020 ≤ 0.073* 0.124+0.051

−0.051

> 2.0 0.516+0.025
−0.024 ≤ 0.072* 0.04+0.014

−0.014

0.5-4.0 1.927 0.47+0.19
−0.15∗ 0.93+0.16

−0.16

Table 5.2: Comparison of my occurrence rate calculation in planet radius and
period to Dressing & Charbonneau (2015) (DC15) and Ment & Charbonneau (2023)

(MC23). This table is an extended version of Table 7 from Ment & Charbonneau
(2023). *The occurrence rate calculation from Ment & Charbonneau (2023) extends

from 0.2-7 days.

The results of this survey are in very good agreement with the findings of Ment

& Charbonneau (2023), and the occurrence rate of sub-Neptunes lies below their

lower limit. This agreement is expected, because my survey covers a very similar

mass range. While the occurrence rate of sub- and super-Earths is comparable to

the population presented in Dressing & Charbonneau (2015) this survey establishes

definite deficit of sub-Neptunes. Our very low sub-Neptune occurrence rate means
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we can confidently say that the Radius Valley disappears in this regime.

Our cumulative planet rate is greater than the occurrence rate computed in Ment

& Charbonneau (2023). This is possibly attributable to the larger maximum period

of this survey, with an occurrence of 0.461 found for planets orbiting between 7 and

30 days. We find that a factor of two fewer planets orbit the stars in our sample

compared to those surveyed in Dressing & Charbonneau (2015) which agrees with

our cumulative comparison to Cloutier & Menou (2020).

Terrestrial planets within the habitable zone (Earth-like planets) present a unique

opportunity in the search for life outside of the solar system. Atmospheric character-

ization through transmission spectroscopy determines an atmosphere’s composition

by observing the planet’s transit depth over a range of wavelengths and determining

which wavelengths the atmosphere’s molecules absorb. The deeper relative transit

depth of planets around M dwarfs makes the transit depth difference caused by the

occulting atmosphere easier to observe. This means that atmospheric characteriza-

tion of an Earth-like habitable planet will be accessible around mid-to-late M dwarfs

before any Earth-like planets around larger stars. My work provides constraints on

Earth-like planets around mid-to-late M dwarfs. Loosely defining an optimistic hab-

itable zone (HZ) as 0.2 to 2 S⊕, my survey finds a cumulative habitable zone occur-

rence rate of 0.169+0.097
−0.095, and an occurrence rate of HZ terrestrial (0.7-1.3R⊕) planets

of 0.141+0.092
−0.092. This range of habitability is very optimistic and includes Venus and

Mars, which are believed to be habitable at early times. A more realistic range from

Kopparapu et al. (2013) may be 0.2 to 0.9 S⊕ which is bounded by water loss at the

inner edge and the maximum greenhouse at the outer edge, however this survey lacks

the sensitivity to long-period planets to effectively probe this zone of habitability.
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5.2 Comparisons to Theoretical Predictions

The TESS Guest Investigator Proposals which sought the data used to complete this

survey looked to establish the dominant driver of the Radius Valley. While core-

powered mass loss and photoevaporation make consistent predictions of the Radius

Valley’s location for Sun-like stars, their predicted location of the Radius Valley

diverges towards mid-to-late M dwarfs (Cloutier & Menou (2020) comparing results

from Wu (2019) and Gupta & Schlichting (2019)). Unfortunately, without a concrete

emergence of the Radius Valley, this survey is not able to directly disentangle their

relative effects in sculpting the Radius Valley around higher-mass stars. This being

said, the non-detection of a Radius Valley in this stellar mass regime can still serve

to support Radius Valley models.

Burn et al. (2021) uses the Bern NGPPS models produce populations of planets

around 0.3 M� and 0.1 M� stars. These stellar masses overlap with the population

of stars surveyed here. Their cumulative occurrence rate of planets with periods less

than 100 days is dominated by sub-Earths and Earth-like planets (10− 30M�) with

0.89 and 1.34 of these planets per star around 0.1M� and 0.3M� stars respectively.

Their 0.1M� star simulations produce 0.01 Neptunes (10−30M�) per star, and their

0.3M� star simulations producing 0.08 Neptunes per star. Directly comparing these

populations is difficult because this survey’s planets do not have recorded mass. Their

finding that sub- and super-Earths dominate the planet population is consistent with

this survey, with their simulations possibly producing more of these planets. Their

higher occurrence of sub-Neptunes is a discrepancy with our results, but our median

stellar mass of 0.22 and limited sensitivity to long-period planets may explain the

difference. It bears noting that the Bern model’s treatment of water’s contribution
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to the radius sub-Neptunes in has been updated in Burn et al. (2024), which is

necessary to replicate the Radius Valley around Sun-like stars. However, the effect

of this update on their planet population around mid-to-late M dwarfs is unknown

because they have not considered these stars in their simulations.

The results of this survey strongly agree with the prediction from Venturini et al.

(2024) where a Radius Valley carved out between rocky super-Earths and water-

rich, sometimes steamy sub-Neptunes. This division fades towards lower mass stars

where the populations overlap illustrated in Figure 1.5. Their population of planets

matches the smooth occurrence rate illustrated in Figure 4.9, with a clear fall-off

towards larger radii, with much fewer sub-Neptunes. Venturini et al. (2024) also

propose that from Sun-like stars with a well-defined Radius Valley towards lower

mass M dwarfs, the Radius Valley becomes “filled in”. The Radius Valley detected

in Cloutier & Menou (2020) is shallower than the valley found around Sun-like stars

by Fulton et al. (2017), and occurrence rate curve from this survey completely lacks

a Radius Valley. These independent surveys of different stellar types support the

theoretical picture presented in Venturini et al. (2024), but deeper investigation is

still necessary. If the planet population in this survey is explained by overlapping

rocky and water worlds, a complete confirmation of their model’s predictions is only

possible with precise mass measurements which are beyond the scope of this survey.
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Chapter 6

Conclusions

This work comprises the deepest search for transiting planets to date around mid-

to-late M dwarfs to characterize the planet population around the smallest and most

common stars in the galaxy (Winters et al., 2015).

Using a custom-built pipeline I have searched TESS light curves from 9,131 mid-

to-late M dwarfs over the first 85 sectors of observation. This pipeline included robust

detrending with modules removing the effects of flares and stellar rotation. Each light

curve was iteratively searched for transit-like signals using Transit Least Squares

(Hippke & Heller, 2019), and my pipeline combined credible results to characterize

planet candidates. Each planet candidate was modeled with posterior parameter

distributions derived using Monte Carlo Markov Chains. This planet search produced

73 manually vetted transiting planet signals.

Robustly testing the pipeline with injection-recovery tests characterized its sensi-

tivity to transiting planet signals across the range of TESS magnitudes which stellar

sample spans. By combining the population of detected planets with my pipeline’s

completeness, I calculated the occurrence rate of planets around mid-to-late M dwarfs
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out to 30 days. I calculate a cumulative occurrence of 1.326+0.210
−0.208 planets per star,

with radii < 6.5R⊕ and orbital periods within 30 days, dominated by a population of

sub- and super-Earths with very few sub-Neptunes.

This survey expands upon previous work in this stellar mass regime (Ment &

Charbonneau, 2023) by expanding the stellar sample by more than an order of mag-

nitude ( 25 times). My occurrence rate is consistent with previous work and provides

the most refined understanding of the mid-to-late M dwarf planet population to date.

The low occurrence of sub-Neptunes provides strong evidence that the Radius Val-

ley fades in this stellar mass regime in agreement with planet population synthesis

predictions (Burn et al. (2024) and Venturini et al. (2024)).
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Appendix A

Visual Diagnostic Tests

In this section, I outline the visual diagnostic plots used to vet the planet candidates

identified by my pipeline. These plots for a randomly selected planet candidate are

illustrated below. Figure A.1 shows a best-fit model, which was useful in removing

planet candidates with poor fits, which were not ruled out by the statistical vetting

tests. Figure A.2 shows the highlighted transits in the detrended and non-detrended

flux measurements. This plot helped identify areas where outliers and edge-effects

were folded together to produce credible looking transit signals. Dips near the edges

of light curves, and binary eclipses were particularly responsible in this case. Finally,

Figure A.3 shows the TLS results from each sector where the planet candidate’s signal

was found by the TLS in the iterative transit search. These results can be cross-

referenced with the light curves in figure A.2 to determine where and why the planet

candidate was detected, ruling out planet candidates whose signal comes mainly from

outliers in one sector.
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Figure A.1: Diagnostic figure showing the fit transit model used to inspect the
goodness of fit.

Figure A.2: Diagnostic figure showing the transits in the raw and detrended
lightcurves.
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Figure A.3: Diagnostic plot illustrating the TLS results which contributed to the
detection of the planet candidate.
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Perryman, M., Hartman, J., Bakos, G. Á., & Lindegren, L. 2014, APJ, 797, 14,

doi: 10.1088/0004-637X/797/1/14

Rasmussen, C. E., & Williams, C. K. I. 2006, Gaussian Processes for Machine Learn-

ing (The MIT Press)

Rauer, H., Catala, C., Aerts, C., et al. 2014, Experimental Astronomy, 38, 249,

doi: 10.1007/s10686-014-9383-4

Ricker, G. R., Winn, J. N., Vanderspek, R., et al. 2015, Journal of Astronomical Tele-

scopes, Instruments, and Systems, 1, 014003, doi: 10.1117/1.JATIS.1.1.014003

Schlecker, M., Mordasini, C., Emsenhuber, A., et al. 2021, AAP, 656, A71, doi: 10.

1051/0004-6361/202038554
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