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Lay Abstract
Cells in the brain perform well-defined functions, and are highly connected to their structures.

Patterns in their structure, function or molecular composition have served to group cells together

into cell types. Classically, approaches to defining cell types relied heavily on cell structure, their

appearance as viewed under the microscope. However, these approaches were entirely

descriptive, and alluded to complex shape properties that could not be quantified at the time.

Modern approaches to defining cell types classify cells based on the expression measurements of

thousands of genes per cell. Conversely, approaches to analyze and classify cells by their size

and shapes have remained comparatively simple, in terms of a single measurement, and have not

kept pace with more modern, molecular techniques. With an increased push for computational

methods in image analysis, a tool to quantify cell morphologies is needed. In this thesis I have

developed a tool that obtains 97 measurements that describe the size and shape of single cells for

a large number of cells. This tool was applied to Parvalbumin-positive (PV+) interneurons, a

well-defined subclass of neurons involved in sensory development, and disease.
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Abstract
Classic approaches to defining cell types have looked to describe the elaborate size and shape

characteristics of single cells.Classic approaches to neuroanatomy have remained a largely

descriptive gold standard. However, to keep pace with the advances made by single-cell

technologies, suitable data structures and analysis methods are needed to align the types of

insights afforded by these two major techniques.

Using open-access in situ hybridization (ISH) data from the Allen Institute Mouse

Neuroanatomy database, and the Allen Cell Types database , we developed a method to quantify

and characterize the cell morphologies of PV+ interneurons in the mouse primary somatosensory

(S1) and visual (V1) cortices. Using a custom image analysis pipeline in CellProfiler, we

obtained high-dimensional, cell morphology data for thousands of single-labelled cells. We

defined and characterized cell morphologies using Robust-Sparse K-Means Clustering (RSKC)

and the denSNE dimensionality reduction algorithm to determine the salient morphology

features that distinguish among groups of labelled cells. We show that our approach can integrate

data from ISH and whole-cell fill, establishing the multimodal potential of our

pipeline.Furthermore, we apply our pipeline to probe the morphological correlates of

transcriptomic classes of PV+ interneurons establishing the potential for morphological

differences highlighting different transcriptomic classes. Our pipeline identifies morphological

complexity comparable to the complexity seen in single-cell transcriptomics studies. Insights

from our work overcome the limitations in how cell morphologies are presented, using a

quantitative, data-driven and unsupervised approach.
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Chapter 1. General Introduction
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Defining cell types is a persistent, central question in cell biology. Having motivated decades

of research, classifying cells into cell types has encompassed both classic and modern

approaches. (Dance, 2024; Mao and Staiger, 2024). In the brain, classic approaches have relied

heavily on describing cells in terms of their morphologies(Cajal, 1995; Freemon, 1996), whereas

modern approaches expand on these classic morphology descriptions, integrating cell

morphology with additional modalities such as their locations in situ, transcriptomic profiles, or

electrophysiology. (Tasic et al., 2016; Zeng and Sanes, 2017; Gouwens et al., 2019; Peng et al.,

2021; Zeng, 2022; Mao and Staiger, 2024). The integrative approach taken by modern

techniques highlights a central problem in cell type classification studies: specifying the set of

characteristics that reliably distinguish among different groups of cells. This is crucial in defining

cell types that are both holistic, and biologically meaningful (Zeng, 2022). However, classic

approaches have inferred differences in function from differences in cell morphology, and have

served as the foundation for cell classification (Cajal, 1995).

Notably, work by Santiago Ramon Y Cajal defined cell types based on their appearance. This

seminal work was a comprehensive morphological profile of several brain and spinal cord

structures. The rich qualitative descriptions of the shapes served as a crucial foundation for

parameterizing the diversity of brain cells in terms of their appearance. Across several cortical

areas, Cajal provided elaborate descriptions of the cytoarchitecture of the layers, defining in

precise terms the differences in cell morphology that distinguish the cortical areas from each

other. For example, in the visual cortex, Cajal describes the morphologies of giant pyramidal

cells, a morphological subtype of pyramidal cells :

“Their pyramidal cell body has an unusually wide base to its height. Second, an even
more characteristic feature is the two, three, or more thick dendrites that arise from the
base and extend strictly parallel to the cortical surface. They sometimes may be even
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longer than the apical dendrite and they branch along the way, forming essentially
tangential bundles.”

This description of giant pyramidal cells in terms of their cell body and dendritic structure is

strikingly different from that of “polygonal” cells:

“Other neurons include large to medium-sized polygonal cells with a thick, more or less
tangential axon. The latter generates an arborization of very long oblique to tangential
branches whose terminal ramifications appear to form around giant pyramidal cells.
These nests are similar to those described earlier for the cortex in general.”

From these structural differences, Cajal also posited that different cell types perform different

functions because of their different structures. He also raised the notion that the different

structures themselves are highly optimized for the functions they perform (Cajal, 1995). Cajal’s

work has established morphology as a classic and central hallmark of cellular diversity in the

brain. These analyses have helped establish cells as the basic units of the nervous system and

profiled the properties of single cells as a guiding principle in reconciling cellular diversity to

understand cellular identities in the brain.

Newer approaches leveraging single-cell transcriptomics have revolutionized how we define

and understand cell types by grouping single cells into classes by their transcriptomic landscapes

(Tasic et al., 2016; Zeng and Sanes, 2017). This approach leverages high-dimensional

transcriptomics data, where the expression of thousands of genes can be quantified for a single

cell. These sparse data matrices can be analyzed to simultaneously identify and group common

transcriptomic patterns into cell types (Haque et al., 2017). These transcriptomically defined cell

types (T-types) identify common molecular signatures among different subsets of glutamatergic,

GABAergic, and non-neuronal cells (Tasic et al., 2018). Because they are defined in terms of

patterns of gene expression, T-types capture additional cellular diversity that was previously

3
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inaccessible. This additional cellular diversity has also been able to distinguish among cortical

areas, with V1 being most distinct from other areas (Jorstad et al., 2023).

Cajal’s seminal work has identified elaborate shapes and described morphological differences

that have not been robustly quantified or accessed through quantitative tools. T-types have

proven to be a critical and pivotal paradigm shift in accessing and reconciling cellular diversity.

However, insights into morphological complexity still need to be elucidated. To achieve this,

high-dimensional, cell morphology data need to be obtained, and methods to analyze these data

need to be comparable to methods applied to single-cell transcriptomics datasets (Colombo et al.,

2022; Kamat et al., 2024). This will provide a comparable morphological profile of sufficient

depth to capture subtle but characteristic morphological differences among different cell types.

1.1 High-Dimensional Analyses of Cell Morphology
Approaches to defining and classifying cell morphologies have mainly remained qualitative

and, consequently, have yet to be able to capture morphology on a scale comparable to the

molecular diversity uncovered in single-cell transcriptomics studies. From a classical

perspective, Cajal’s elaborate drawings capture more than the sizes of single cells, and his

descriptions of cell shapes allude to subtle, nuanced shape characteristics that could only be

described in qualitative terms. With his description of size and shape, he defined cell

morphologies found across cortical layers and brain areas (Cajal 1995). However, approaches to

quantifying those shapes remained elusive, in favor of semi-quantitative approaches combining

readily measurable parameters like cell size (Lewis and Lund, 1990; Group et al., 2008; Lingley

et al., 2018). Despite his work revealing tremendous morphological diversity and complexity

among cells in the brain, morphologically-defined cells are typically defined in terms of size and

4
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a limited range of shape parameters. Single-cell transcriptomics, conversely, characterizes single

cells with several features. These datasets are often very large, consisting of gene expression for

thousands of genes, quantified for hundreds of thousands of cells (Chen et al., 2019). By

leveraging high-dimensional data, modern single-cell transcriptomics has captured the fine

molecular diversity among cells by leveraging the gene expression levels of thousands of genes

for each cell (Haque et al., 2017). To address the problems with defining and classifying cell

morphologies, a comparable data structure is needed to characterize morphology in terms of

several parameters for a sufficiently large number of individual cells. The selected parameters

must preserve cell morphology's salient and defining aspects to provide structurally meaningful

information (Carpenter et al., 2006).

Cell morphologies have garnered much attention, but in the brain, this has remained

largely unexplored across most cell types, with the majority of studies having been conducted in

microglia. As brain-resident immune cells, microglia are dynamic surveillants of their local

microenvironments, and their morphologies change in response to their functional

state(Nimmerjahn et al., 2005). Consequently, microglial morphologies are both dynamic and

highly variable and characterizing their morphologies has faced comparable challenges when

working with classical neuroanatomical data(Guillot-Sestier et al., 2021). This has motivated the

use of high-dimensional data, and unsupervised machine or statistical learning approaches to

identify patterns among microglial morphologies (Leyh et al., 2021; Kim et al., 2024). This

paradigm shift has identified robust morphological sex differences in microglia in response to

aging and in animal models of neurodegeneration(Guillot-Sestier et al., 2021; Colombo et al.,

2022). These morphological sex differences were only readily discernible from high-dimensional

analyses, and underscore the structural and functional correlates of increased microglial
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activation and reactivity in females, which serves as preliminary causal evidence for sex

differences in the prevalence of Alzheimer’s disease in females(Colombo et al., 2022). The work

done to characterize and ultimately describe progressive morphological changes in microglia

clearly demonstrate the value, or applying suitable analytical approaches to cell morphology, in

capturing several salient properties from a large number of morphology features. These insights

serve as a critical motivation to explore other brain-resident cell types and characterize their

morphological properties to begin to understand what and how changes in cell morphology are

associated with development and disease.

Shape metrics have been developed to quantify various objects and are commonly used in

optics and computer vision. For example, Zernike moments are a set of radial trigonometric

functions in polar coordinates that can quantify a range of shapes. First developed by Fritz

Zernike, these moments have been used in optics as a basis for quantifying and subsequently

correcting aberrations in lenses and other optical systems (Haque et al., 2017; Niu and Tian,

2022). Since their inception, Zernike moments have been applied broadly across several clinical

and biological fields. Their principal application in ophthalmology has been to quantify and

correct corneal aberrations. In image analysis and computer vision, Zernike moments have often

been applied as kernels that filter shape properties in the underlying image that align with the

distributions of pixel intensities described by their given Zernike polynomials (Teague, 1980;

Boland et al., 1998; Pincus and Theriot, 2007; Alizadeh et al., 2016). As seen in Figure 1,

Zernike moments capture different shape characteristics associated with single cells.

Lower-order Zernike moments (shown in the upper rows of Figure 1) capture shape

characteristics such as circularity, elongation, and the major axis of elongation that are readily

discernible by the eye. In contrast, higher-order Zernike moments (shown in the lower rows of
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Figure 1 capture subtle variations in symmetry and features, such as protrusions or bumps around

the edge of an object. Applying Zernike moments in image analysis and computer vision

established that shape is a high-dimensional characteristic of an object and can be decomposed

into subtle, latent components. For the analysis of cell morphology, this suggests that subtle

characteristics of cellular shapes can serve as distinguishing factors among different

morphological types of cells (Prasad and Alizadeh, 2019; Hagemann et al., 2021).

Zernike moments can reduce the dimensionality of images while still being able to

completely reconstruct objects in the image from sufficiently many Zernike moments (Pincus

and Theriot, 2007). In this way, Zernike moments are a compact basis system that captures cell

shapes and describes nuanced but marked shape characteristics that are otherwise lost with

reductive parameters (Pincus and Theriot, 2007). Furthermore, Zernike moments have been

described as orthogonal over the unit circle, eliminating redundancy (Niu and Tian, 2022).

Zernike moments are also favored for their size, scale and rotation invariance. These properties

allow Zernike moments to quantify elaborate shape characteristics, like symmetry, which are not

readily described in terms of basic shape parameters such as circularity and elongation (Teague,

1980). These properties make Zernike moments amenable to quantifying shapes and providing

high-dimensional shape data for single cells.
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Zernike moments have been used to quantify cell morphology. Several groups have

leveraged Zernike moments' sensitivity and optimal properties to distinguish between healthy

and cancerous cells across various cell and tissue types. For example, Zernike moments captured

progressive morphological changes with advancing cancer stages as a morphological correlate of

disease state (Tahmasbi et al., 2011; Alizadeh et al., 2016; Prasad and Alizadeh, 2019). These

cell-type classification studies highlight the importance of subtle shape characteristics and

information value in differentiating cell states. Further, Zernike moments have been applied to

neuronal morphologies to identify morphological patterns associated with neurodegeneration.
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Figure 1 - Fringe patterns for the first 21 Zernike moments arranged in rows by radial order,
and columns by azimuthal order. Higher radial orders are towards the bottom of the pyramid.
Image from : Nschloe, CC BY-SA 4.0 <https://creativecommons.org/licenses/by-sa/4.0>, via
Wikimedia Commons from :
https://commons.wikimedia.org/wiki/File:Zernike_polynomials_with_read-blue_cmap.png
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Hagemann and colleagues have found that Zernike moments quantify morphological differences

related to the progressive neurodegenerative phenotypes in human samples and rodent models of

ALS (2021). This supports the argument that subtle morphological characteristics can have a

large-scale functional impact. By mapping morphological change throughout disease

progression, Zernike moments are thought to give a phenotypic readout of the cell state as

degeneration progresses. These findings reinforce the importance of subtle shape characteristics

and that they can carry relevant biological information about the cells under study (Hu and

Murphy, 2004; Hagemann et al., 2021).

1.2 Parvalbumin-positive (PV+) interneurons
Approximately 80% of cortical neurons are excitatory, and 20% are inhibitory (Rubenstein

and Merzenich, 2003). Inhibitory interneurons are critical in gating information and modulating

activity through cortical circuits (Kepecs and Fishell, 2014). PV+ interneurons are the most

abundant class of inhibitory interneurons in the cortex. They derive from the medial ganglionic

eminence and are involved in various neural functions (Druga et al., 2023). PV+ interneurons are

abundant in primary sensory cortical areas, and their maturation is linked to the timing of critical

periods for experience-dependent plasticity in both primary visual and somatosensory cortices

(Morales et al., 2002; Lo et al., 2017). As integral regulators of experience-dependent plasticity,

PV+ interneurons contribute to regulating experience-dependent plasticity, as their

high-frequency firing rates act as timestamps , identifying coherent activity among cortical

circuits (Cardin et al., 2009) . This refinement tunes circuit activity to produce the precise

topographical maps involved in processing and spatially resolving sensory stimuli (Hensch et al.,

1998; Morales et al., 2002; Levelt and Hübener, 2012; Lo et al., 2017).
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PV+ interneurons have uniquely structured dendritic and axonal arbors, allowing a single

PV+ interneuron to make pre- and post-synaptic contacts with many local excitatory neurons.

This allows a single PV+ interneuron to control and respond to inputs from several glutamatergic

neurons (Fries et al., 2007; Levelt and Hübener, 2012). Furthermore, electrical and chemical

synaptic coupling among PV+ interneurons forms larger networks where PV+ interneurons not

only gate excitatory activity but also synchronize large pools of glutamatergic neurons and

organize their synchronous firing to produce gamma oscillations, a high-frequency oscillation

(30-100 Hz ) that is involved in sensory processing and learning from sensory input (Galarreta

and Hestrin, 2002). PV+ interneurons are necessary for establishing and maintaining the gamma

rhythm because of the extensive networks of neural circuits they form. Specifically, inactivating

PV+ interneurons resulted in loss of gamma oscillations, whereas PV+ interneuron activation

orchestrated synchronous gamma frequency activity in pyramidal cells, indicating that PV+

interneuron activity and their network structure carries a large influence in directing

synchronous, high-frequency activity (Sohal et al., 2009).

Moreover, in the barrel cortex, gamma frequency activity of PV+ interneurons gates

excitatory activity, refining and modulating sensory processing (Cardin et al., 2009). It is also

through this network-level structure that PV+ interneurons contribute to the large-scale

refinement of circuits in primary sensory cortical areas associated with critical period closure

through filtering sensory information in a spike-timing dependent manner (Galarreta and Hestrin,

2002; Fries et al., 2007; Levelt and Hübener, 2012). PV+ interneuron recruitment is critical to

perceptual coding in V1, sharpening feature selectivity and discrimination between different

visual stimuli (Lee et al., 2012). Work by Lee and colleagues demonstrates that PV+
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interneurons, as a specific subtype of GABAergic interneuron, play crucial roles in visual

processing and perception.

PV+ interneurons are preferentially enwrapped by perineuronal nets (PNNS), a lattice-like

networks of extracellular matrix proteins surrounding the cell body (Seeger et al., 1994; Sorg et

al., 2016; Fawcett et al., 2019; Carceller et al., 2020, 2023). These structures develop around the

cell body coincident with the closure of the critical period and act as a brake on plasticity by

restricting the lateral mobility of receptors and excessive synaptic connections (Sorg et al.,

2016). The link proteins in the PNN connect the rigid lattice to the cell body, so the PNN can

exert mechanical forces that influence the shape of the cell body (Yue, 2014). However, previous

work investigating the influence of PNNs on cell morphology has yet to be conclusive in

describing the impact of the PNN on cell body morphology (Sigal et al., 2019). In addition to the

potential influence of PNNs on PV+ interneuron morphologies, PNNs are a transiently stable

structure with variable density. They can be remodeled in response to sensory experience,

attention and learning (Sanchez et al., 2023). In sensory areas, their presence around PV+

interneurons has often been described as activity-dependent, and their presence is thought to

confer a neuroprotective effect to prevent metabolic stress and act as a cation sink (Brückner et

al., 1993). Together, the role of the PNN suggests that PV+ interneuron morphologies are

dynamic, and variations in their morphologies occur during development, aging, and disease

could be linked to the presence or absence of PNNs.

PV+ interneurons are an important player in maintaining the structure and function of

cortical circuits. Consequently, their dysfunction at both structural and functional levels are

broadly implicated in several brain disorders. From a structural perspective, PV+ interneurons
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form extensive synaptic contacts with local pyramidal cells. Their synaptic connectivity is highly

organized, and refined in an activity-dependent manner (Levelt and Hübener, 2012). Conversely,

in animal models of autism spectrum disorder, PV+ interneurons have excessive dendritic

arborization, which is typically associated with more juvenile developmental stages (Janickova et

al., 2020). Additionally, perineuronal nets (PNNs), an extracellular matrix preferentially

associated with PV+ cells, plays a role in maintaining the structural and functional integrity of

PV+ interneurons(Sorg et al., 2016; Fawcett et al., 2019). Degradation, and loss of PNNs has

been linked to loss of PV+ inhibition across the brain, combined with persistent, dystrophic PV+

cell morphologies(Yang et al., 2023). However, structural abnormalities in PV+ interneurons

have often been elucidated alongside functional abnormalities. PV+ interneurons have a higher

excitatory drive, and higher frequency firing rates compared to other interneurons(Gulyás et al.,

1999). Together with their elaborate synaptic connectivity, these functional factors establish PV+

interneurons as centrally important regulators of excitation/inhibition (E/I) balance, and

coordinators for gamma oscillations in the cortex, which are involved in sensory perception, and

memory(Fries et al., 2007; Cardin et al., 2009). In several brain disorders, disruptions to gamma

rhythms accompany cognitive deficits in schizophrenia (Marín, 2024), runaway excitation in

epilepsy and seizure disorders and memory deficits in Alzheimer’s disease ( Leitch 2024;

Smeralda et al., 2024). Taken together, structural and functional factors contribute to the

common patterns of PV+ interneuron dysfunction seen across several brain disorders.

PV+ interneurons are classically identified from their immunoreactivity to the PV protein,

thereby labelling all PV+ interneurons homogeneously, often describing them as a single entity

(Celio and Heizmann, 1981; Lewis and Lund, 1990). The impact of PV+ morphology function

needs to be better understood because, despite their involvement in a broad range of functions,
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PV+ interneurons are homogeneously classified (Celio and Heizmann, 1981; Kepecs and Fishell,

2014; Song et al., 2023). Subsequently, analyses of PV+ interneuron morphologies from classic

anatomical modalities have mainly remained descriptive, with qualitative descriptions of shape

and limited, quantitative approaches using cell size (Blümcke et al., 1990; Brederode et al., 1990;

Group et al., 2008; Lingley et al., 2018). This has led to a primarily descriptive characterization

of PV+ cells (Group et al., 2008).

Conversely, modern single-cell transcriptomics studies have further elucidated the extensive

diversity among PV+ interneurons. A single, classically homogeneous cell class has been

stratified into ten molecularly distinct subtypes (Tasic et al., 2016; Gouwens et al., 2019).

Single-cell transcriptomics has elucidated molecularly distinct subclasses of PV+ interneurons

that are defined by the genes they express by quantifying several genes per cell. This enables a

more precise definition of PV+ cells beyond a single marker gene or protein (Tasic et al., 2016;

Mayer et al., 2018; Chartrand et al., 2023). This also enables a more nuanced definition of

different types of PV+ cells defined by their different transcriptomic landscapes (Tasic et al.,

2016, 2018; Gouwens et al., 2019, 2020). These transcriptomic types, or “T-types,” have

captured unique electrophysiological properties and laminar distribution patterns specific to

specific subsets of PV+ interneurons (Tasic et al., 2018)). T-types have revealed novel insights

into cell types in the brain. Notably, T-types have identified V1-specific cell types, suggesting

that the transcriptomic landscapes of cortical areas give rise to different populations or

proportions of cell types that contribute to their functions (Jorstad et al., 2023).

Taken together, single-cell transcriptomics reveal additional molecular complexity beyond

the singular marker genes and proteins used to define cell classes in classic neuroanatomical

approaches. This supports the notion that morphological complexity exists beyond the simple,
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semi-quantitative descriptive approaches used to characterize morphologically distinct cell types

using classical neuroanatomical data. It is unknown whether morphological differences can

recapitulate the unique transcriptomic organization of different cortical areas. This would require

a comparable analytical framework that aligns cell morphology data with single-cell

transcriptomics.

1.3 High-Dimensional Workflows for Cell Morphologies
Differences in cell morphologies have been the classic, longstanding factors contributing to

reconciling cellular diversity in the brain. These differences have served as crucial in the first

definitions of cell types and allude to subtle differences that define entire cell types. However,

analyses of cell morphologies have yet to keep pace with the high-dimensional analysis

approaches applied in single-cell transcriptomics studies. With a lack of appropriate,

high-dimensional quantification, subtle but characteristic morphological differences still need to

be discovered. High-dimensional, cell morphology data need to be acquired to address this

knowledge gap, and a suitable, data-driven analytical framework needs to be leveraged to align

morphological data with single-cell transcriptomics data.

Primary research objective: to develop a data-driven, high-dimensional analysis pipeline

for a cell morphology dataset to characterize neuronal morphologies in the cortex.
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Specific Research Aims :

1. To acquire a large cell morphology dataset comparable in size and dimension to

single-cell transcriptomics datasets, I will use neuroanatomical images of labelled

neurons in the visual and somatosensory sensory cortex of the mouse and a modern

image analysis toolbox to quantify many size and shape parameters.

2. To develop a data-driven analysis pipeline to quantify neuronal morphologies, I will use

the size and shape parameters as the input to a high-dimensional analysis pipeline to

identify clusters of morphological subtypes of PV+ neurons and explore the features and

laminar locations of the different subtypes.

3. To determine whether differences in cell morphology properties recapitulate the

differences seen among different PV+ transcriptomic types, I will apply my morphology

analysis pipeline to a series of ISH images labelling PV and genes associated with PV+

T-types. This will compare how morphologies for cells labelled for different genes align

with both PV+ interneurons and whether the combinations of genes across these

morphologies align with gene distributions seen in PV+ T- types.
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Chapter 2. Parvalbumin-Positive Interneuron

Morphologies in the Mouse Primary Visual and

Somatosensory Cortices
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Abstract
Classical neuroanatomical approaches have presented Parvalbumin-positive (PV+ )

interneurons in a homogeneous manner, with descriptive, semi quantitative approaches to

defining their morphologies. Consequently, cell morphology data do not align with the

high-dimensional structures used in single-cell transcriptions, which have identified additional

molecular complexity among PV+ cells. The contrast in data structures between these two

modalities underscored the importance of treating cell morphologies in a comparably robust, and

data-driven manner. We quantified 97 morphometric features for several cell morphology

datasets consisting of tens of thousands of cells, and identified more than 10 different

morphologically defined PV+ cell types, which is comparable to the diversity summarized in

single-cell transcriptomic taxonomies. We connected high-dimensional cell morphologies to

patterns in dendritic arbors from whole-cell fill data, and also explored morphological

differences across a range of cells labelled for genes associated with PV+ T-types. Our approach

captured subtle, but characteristic morphological differences among PV+ interneurons identified

from classic neuroanatomical data Our results motivate further investigations into the fine

structural details of PV+ interneurons to elucidate and characterize the structural correlates of

PV+ dysfunction in disease, or tracking morphological changes in development and plasticity.

17



M.Sc. Thesis - M. Panday; McMaster University - Neuroscience

2.1 Introduction

Parvalbumin-positive (PV+) interneurons are the brain's most abundant subclass of

GABAergic interneurons. Recent single-cell RNAseq studies have identified multiple

sub-categories of molecularly distinct PV+ neurons in the cortex. In contrast, PV+ interneurons

are often categorized anatomically as a homogeneous group of neurons based on their

immunoreactivity to the PV protein (Celio and Heizmann, 1981; Brederode et al., 1990; Rio et

al., 1994) despite their unique and extensive dendritic and axonal arbor morphology differences

(i.e., basket and chandelier cells) (Lewis and Lund, 1990; Wang et al., 2002; Jiang et al., 2015).

(Galarreta and Hestrin, 2002). This gap between the single-cell RNA and morphological

definitions of this important inhibitory interneuron class is partly due to the qualitative and

semi-quantitative approaches used to study the morphology and anatomical location of PV+

neurons. PV+ neurons are intimately involved in critical period closure, spike-time-dependent

plasticity, and regulation of the excitatory-inhibitory balance (Levelt and Hübener, 2012).

Furthermore, changes to PV+ neurons are linked to a variety of neurological and psychiatric

disorders including epilepsy, schizophrenia, autism as well as neurodegenerative disorders (Wöhr

et al., 2015; Janickova et al., 2020; Ruden et al., 2021; Leitch, 2024) Here, we present a new

approach to studying PV+ morphology that uses multiple measurements of morphological

features and high-dimensional analyses to quantitatively categorize the organization of these

cells in the mouse somatosensory and visual cortex.

PV+ interneurons are implicated in a broad range of complex processes. As fast-spiking

interneurons, they deliver and maintain highly temporally resolved inhibitory tone, to pyramidal

cells. In this way, PV+ interneurons act as cellular timekeepers, gating the flow of information

through cortical circuits (Cardin et al., 2009). Forming elaborate networks of synaptic
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connections, PV+ interneurons also control the synchronous firing of excitatory neurons, and are

necessary for setting and maintaining gamma oscillations across larger cortical domains (Sohal et

al., 2009; Levelt and Hübener, 2012). This establishes a centrally important role for PV+ cells in

modulating sensory cortical circuitry in response to experience. Structurally, PV+ interneurons

also influence plasticity through structural interactions through both myelin and associations

with the extracellular matrix. Myelin surrounding cortical PV+ interneurons forms shorter,

“patchy” internodes that are more dynamic in response to sensory experience, and remodel

readily in response to abnormal experience (Micheva et al., 2018; Yang et al., 2020). PV+

interneurons also associate with elaborate extracellular matrix structures, perineuronal nets, that

act as a structural brake to plasticity, by restricting the lateral mobility of receptors, and

anchoring synaptic connections (Levelt and Hübener, 2012; Sorg et al., 2016).

Cell morphology has been the classic approach to reconciling cellular diversity in the

brain. From Cajal’s foundational work in the nineteenth century, there have been a range of

extensive shapes that have been described in elaborate but qualitative terms. (Cajal, 1995). This

has persisted in classic anatomical investigations of PV+ cells, where their morphologies were

defined in terms of descriptions of their appearance together with their laminar locations in the

cortex (Mikkonen et al., 1997; Zhu et al., 2018; Song et al., 2023). This gap in knowledge stems

from a widening technical gap surrounding how to analyze single cells in anatomical techniques.

Emerging approaches to quantifying and studying cell morphologies have identified subtle

changes in cell shape that are imperceptible in conventional image analyses, carry salient,

biologically relevant information about cell states in disease and quantitatively define disease

progression at a single-cell level (Alizadeh et al., 2016; Hagemann et al., 2021). As single-cell

transcriptomics have clearly demonstrated specific transcriptomic types of PV+ interneurons are
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uniquely implicated in neurodegenerative disorders (Gabitto et al., 2024), it remains unknown

whether there are specific PV+ interneuron morphologies that are indicative of an increased

susceptibility to disease. To obtain these insights, comparable approaches to data acquisition and

analysis are needed to align classic neuroanatomical data with single-cell transcriptomic

approaches (Gliko et al., 2024).

In this study, we developed a sensitive, data-driven approach to define and characterize the cell

morphologies of PV+ interneurons. We also applied an unsupervised, standardised approach to

mapping the cortical layers. We robustly interrogate the morphology of the cell body, and

explore the patterns and relationships that may be present with dendritic structure using an

integrated dataset of ISH-labelled, and whole-filled cells. Finally, we explore the relationship

between cell morphologies and transcriptomics by applying our pipeline to a collection of genes

associated with PV+ transcriptomic types.

2.2 Methods

Animals

All anatomical data were retrieved from the Allen Brain Institute mouse ISH database

(https://mouse.brain-map.org/) (Lein et al., 2007). The images in this database were from male

C57BL6 mice at postnatal day 56 (P56). For the current study, PV+ data was collected from 6

mice but in the quality control step (described below), the images from one animal did not meet

the criteria for inclusion, so the animal’s data were not included in subsequent analyses.
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Assessing Label Quality

For the dataset of PV+ cells, we assessed the label quality among the 6 animals. A single

sample colorimetric ISH from S1 and V1 were processed and analyzed in FIJI. Images were first

converted to grayscale, followed by a 50-pixel rolling ball background subtraction, before being

binarized. In these processed images, the integrated density was obtained for all cells in the

image. Estimation statistics were performed comparing the unpaired median differences for

integrated density values among the six animals (using the dabestr package - version 0.3.0 in R)

(Ho et al., 2019).

Datasets

A summary of the composition of each dataset is shown in Table 1.
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Table 1 - Dataset composition summary

Dataset
Number
of
Animals

S1 cell
count

V1
cell

count
PV Ndnf Cux2 Rorb Deptor Foxp2 Ctgf Cacna2d3 Calb1 Bdnf Col25a1 Etv1 Fxyd6 Kit Krt12 Nfib Snca Tac1 Thsd7a Tpbg

PV+ cells 5 8823 5451 ✔

Laminar
Marker
Genes

6 1383 645 ✔ ✔ ✔ ✔ ✔ ✔

Whole,
Filled Cells

3 0 36 ✔

PV+ Cells
and
Associated
Genes

13 2980 2162 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔
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Four datasets were constructed.

1. A dataset of ISH-labeled PV+ cells in S1 and V1.

2. A dataset of ISH-labeled cells for 6 laminar marker genes in S1 and V1.

3. A dataset of whole-cell filled PV+ cells in V1.

4. A dataset of ISH-labeled cells for 13 genes associated with PV+ transcriptomic types.

For the first three datasets, the colorimetric ISH and processed expression images were

retrieved at full resolution (1 pixel = 1 μm). The expression images were preprocessed by the

Allen Brain Institute to remove the background (black) and color-code the cells by their

integrated optical density, reflecting the density of the ISH labelling (blue = minimum integrated

density, red = maximum integrated).

The first dataset of PV+ cells used 11 images from sagittal sections containing S1 and V1 for

each of the 5 animals. The reference atlas (https://atlas.brain-map.org/ ) was used to identify the

middle of S1 & V1, and 5 images medial and lateral to that image were added for a total of 11

images. Each sagittal image contained both S1 and V1. Sampling boxes from the pial surface to

the white matter (567μm X 1525μm) for the colorimetric ISH and expression images were

extracted from S1 and V1 using Adobe Photoshop 2024. Thus, S1 and V1 had a total of 11 ISH

and expression image sampling regions extracted for analysis.

The second dataset used images from 6 laminar marker genes associated with a specific

cortical layer (L1 - Ndnf, L2/3/4 - Cux2, L4 - Rorb, L5 - Deptor, L6A - Foxp2, L6B - Ctgf). One

ISH and the corresponding expression image were taken from the middle of S1 and V1 for each

gene, and a sampling box, as described above, was extracted from each cortical area.
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The third dataset used images from S1 and V1 for 13 genes (Bdnf, Calb1, Cacna2d3,

Col25a1, Etv1, Fxyd6, Kit, Krt12, Nfib, Snca, Tac1, Thsd7a, Tpbg) associated with PV+ T-types

(Tasic et al., 2016). Among the marker gene list for PV+ T-types in Tasic et al., 2016, these 13

genes had good quality labelling in the ISH database. Furthermore, these genes also represent the

multimodal PV+ transcriptomic types defined in Gouwens et al., 2020. Again, one ISH and the

corresponding expression image from the middle of S1 and V1 were used for each of the 13

genes.

The fourth dataset used 36 whole-cell filled PV+ cells from the Allen Cell Types Database

(https://celltypes.brain-map.org/data) (Hodge et al., 2019). The cells used for analysis were from

the 5 PV+ transgenic lines (Htr3a-Cre_NO152|Pvalb-T2A-Dre, Pvalb-IRES2-Cre-Neo,

Pvalb-IRES-CRE, Pvalb-T2A-CreERT2, PVALB-T2A-FlPO|Vipr2-IRES2-CRE) and were

categorized as aspiny neurons with complete reconstructions. Cells were sampled from V1

(VISp) in layers ⅔ to 6A (no cells were filled from layers 1 or 6B). Mice from both sexes aged

P56 ± 3 days were in the database; however, the metadata did not specify the sex of individual

mice (Hodge et al., 2019).

Since the whole-cell filled dataset did not include expression images, an image of each soma

had to be extracted for analysis. Images of the 36 cells were downloaded from the database and

opened in Adobe Photoshop 2024. The magic wand tool (default tolerance parameters) was used

to identify and copy the cell body into a “simulated cortex”. Two of the 36 cells had a dark halo

around the cell body, so the levels tool was used to increase the contrast, and the soma was

extracted with the magic wand. The simulated cortex contained the 36 cells at their laminar

location identified in the Allen Cell Types Database.
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Image Processing and Analysis

A custom analysis pipeline was created in CellProfiler (Carpenter et al., 2006; Stirling et al.,

2021) to quantify the morphology of the cells from the PV+, PV+ associated genes and

whole-cell filled datasets. The first step converted the RGB expression images to grayscale using

the ColorToGray Module, where the red, blue, and green channels were given equal weights of

1. The grayscale images were binarized using the Threshold module and the global threshold

strategy because the expression images had uniform backgrounds. Otsu’s thresholding method

and two-class thresholding were used to distinguish labelled cells and particles from the

background. The thresholding was not smoothed and was not corrected. Next, the watershed

algorithm was applied to segment the cells. The default watershed parameters were used

(segmentation generated from a distance between adjacent objects, footprint of 8, and no

downsampling). Finally, measurements of the cell morphologies were obtained using the

MeasureObjectSizeShape module. This produced a data matrix where each row corresponds to a

cell, and columns contain cell coordinates, metadata, and morphometric features. Also, an image

of all the analyzed cells was generated. The unprocessed data file and CellProfiler-generated

images were exported using the ExportToSpreadsheet and SaveImages modules, respectively.

Cleaning and Extracting Cell Morphology Data

To prepare the unprocessed data file for analysis, a two-step data-cleaning process was

implemented in RStudio. First, the laminar location of all cells was converted into a standardized

cortical thickness. Second, the data were filtered to remove particles that were either too small

or irregularly shaped to be a cell (Kooijmans et al., 2020).
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Converting to Standard Cortical Thickness

In mice, cortical thickness is relatively uniform; however, for the subsequent analyses, it was

important to ensure that the laminar location of the cells was in standardized units as the relative

depth from the pial surface to the white matter. The distance from the pial surface to the start of

the white matter was measured at ten uniformly spaced intervals across the width of the image,

and the y coordinate for each cell was transformed such that 0 was the pial surface and 1 was the

bottom of layer 6B. Any cells with y coordinates outside the thickness of the cortex, either

above the pial surface or below layer 6B, were removed.

Removing Non-Cell Shaped Particles

The data file was filtered in RStudio to include cells within the known size (50-1500μm2) and

circularity for neurons (0.2-1.0) (Kooijmans et al., 2020). This step removed irregularly shaped

particles and small or large artifacts in the expression images. The final cell counts for each of

our datasets are shown in Table 2.

Table 2 - Cell Counts for Cell Morphology Datasets Prepared in this Study.

Dataset S1 cell count V1 Cell Count

PV+ Cell Dataset (14274 cells)

PV 8823 5451

Laminar Marker Gene Dataset (2028
cells)

L1 : Ndnf 47 10

L2/3/4 : Cux2 581 401

L4 : Rorb 515 71

L5 : Deptor 51 28
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L6A: Foxp2 82 95

L6B: Ctgf 107 40

PV+ Genes Dataset (19416 cells)

PV 8823 5451

Bdnf 210 177

Cacna2d3 495 336

Calb1 409 310

Col25a1 547 264

Etv1 157 155

Fxyd6 326 258

Kit 48 50

Krt12 62 62

Nfib 71 58

Snca 494 307

Tac1 20 28

Thsd7a 55 64

Tpbg 86 93

PV+ ISH and Whole-Cell Fill Dataset
(5487 Cells)

PV+ ISH Cells (V1 Only) - 5451

PV+ Filled Cells (V1 Only) - 36

Identifying Cortical Layers

The dataset of laminar marker genes was used to define cortical layer boundaries in standard

coordinates for S1 and V1. Laminar density profiles were calculated for each laminar marker

gene in both S1 and V1 using the density() function in R. The density profiles for laminarly
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adjacent pairs of genes ( e.g., L4 and L5) were used to calculate the intersections of the two

profiles. A function for the difference between the two density profiles was obtained by linear

interpolation using the approx() function before solving it to find the intersections between the

two linear density profiles. The intersections were calculated using the uniroot.all() function

from the rootSolve package in R (Soetaert and Herman, 2009) and serve as putative layer

boundaries for S1 and V1.

Cluster Analysis of Cell Morphologies

Preparing the Data Frames of Features and Cell Identifiers

We developed a sensitive, data-driven approach to analyze the cell morphology data and

characterize morphology clusters. The first step was to separate the cell metadata ( i.e., cortical

area, animal ID, gene symbols) and X, and Y coordinates from the morphology measurements,

creating 2 datafiles. Next, the redundant features (Central Moment 0_0, Spatial Moment 0_0,

Inertia Tensor 0_1, Inertia Tensor 1_0) that duplicate cell area were removed. The remaining 97

size and shape morphometric features are listed in Table 2. The data frame used for the cluster

analysis had a row for each cell and 97 columns of morphometric features.

Table 3 - 97 Morphometric Features for Cluster Analysis

Morphometrics included in cluster analysis

MaximumRadius SpatialMoment_1_2 SpatialMoment_2_3

MeanRadius SpatialMoment_2_1 Zernike_3_3

MinorAxisLength HuMoment_2 Zernike_7_5

EquivalentDiameter Zernike_5_1 Zernike_5_5

InertiaTensorEigenvalues_1 HuMoment_0 NormalizedMoment_1_1
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MinFeretDiameter Zernike_1_1 Zernike_5_3

Area Zernike_8_4 NormalizedMoment_2_0

MedianRadius Zernike_3_1 Zernike_7_3

ConvexArea SpatialMoment_0_3 CentralMoment_1_3

Perimeter Zernike_8_6 Zernike_7_1

MaxFeretDiameter InertiaTensor_1_0 NormalizedMoment_3_1

Eccentricity CentralMoment_2_2 AspectRatio

MajorAxisLength Zernike_8_0 Orientation

BoundingBoxArea CentralMoment_1_1 NormalizedMoment_2_2

Zernike_0_0 Compactness HuMoment_4

HuMoment_1 Zernike_8_8 NormalizedMoment_1_3

SpatialMoment_0_1 SpatialMoment_2_2 HuMoment_5

SpatialMoment_1_0 Zernike_6_0 NormalizedMoment_0_2

InertiaTensorEigenvalues_0 Solidity NormalizedMoment_3_3

HuMoment_3 Extent CentralMoment_0_3

InertiaTensor_1_1 SpatialMoment_1_3 CentralMoment_2_1

Zernike_4_0 Zernike_4_4 NormalizedMoment_2_1

Zernike_2_2 Zernike_9_7 CentralMoment_0_1

SpatialMoment_1_1 Zernike_6_6 NormalizedMoment_1_2

CentralMoment_2_0 Zernike_9_9 CentralMoment_1_2

InertiaTensor_0_0 Zernike_9_5 HuMoment_6

CentralMoment_0_2 Zernike_4_2 NormalizedMoment_0_3

SpatialMoment_2_0 Zernike_6_4 NormalizedMoment_3_0

Zernike_2_0 Zernike_7_7 CentralMoment_2_3

SpatialMoment_0_2 Zernike_6_2 CentralMoment_1_0

FormFactor Zernike_9_3 NormalizedMoment_2_3

Zernike_8_2 Zernike_9_1 NormalizedMoment_3_2

EulerNumber
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Before clustering the morphometric data, a logarithmic transformation was applied to the

seven Hu Moment Features (Hu Moments 0,1,2,3,4,5,6) to normalize the distribution. Then, all

the data were z-scored to ensure that each feature had the potential to contribute equally to the

cluster analysis.

Selecting the number of clusters

The elbow method was used to select the number of clusters by calculating the within-cluster

sum of squares (WCSS) for a range of different numbers of clusters (k-values). The optimal k is

identified as the point of maximal curvature, or “elbow”, on the WCSS graph. The elbow was

calculated using three different R packages and functions: the fviz_nbclust() function from the

factoextra package (Kassambara and Mundt, 2020), the find_curve_elbow() function from the

pathviewr package (Baliga et al., 2023), and the elbow function from the elbow package

(Casajus, 2020) and compared among the three results. Agreement among two or more elbow

plot methods confirmed the optimal k-value for cluster analysis.

Robust-Sparse K-Means Clustering

We applied the Robust-Sparse K-Means Clustering (RSKC) algorithm to cluster the

morphometric data. This adaptive, iterative clustering algorithm is robust to outliers and does not

create clusters with one or comparatively few members (Kondo et al., 2016). In addition, it

provides feature weights of the relative contributions of each morphological feature to the

clustering. The greater the contribution of a feature to the clustering, the higher the weight

assigned from RSKC. The top morphological features were defined as those carrying at least

50% of the maximum weight given to a single feature. We performed RSKC cluster analysis

using the rskc function from the RSKC package in R.
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Dimensionality Reduction and Visualization

To reduce the dimensionality and visualize the clusters in the high-dimensional cell

morphology space, we applied the density-preserving t-SNE (denSNE) algorithm. This is an

optimized implementation of the t-SNE algorithm (Maaten and Hinton, 2008) that better

preserves the density of data points around patterns in local and global structures in the

high-dimensional space (Narayan et al., 2021). The RSKC clustering was analyzed by

multiplying the z-scored morphometric feature data by the corresponding feature weights (Balsor

et al., 2021). Then, the cluster content was inspected by color-coding the denSNE plots using the

z-scored morphological values for the top-weighted features.

Characterizing Morphological Clusters

To quantify and characterize the representative morphological features in each cluster, the

median z-scored values for the top-weighted morphology features were plotted in a heatmap to

create a morphology phenotype matrix. The matrix had a column for each cluster and rows for

the top-weighted morphology features. The resulting heatmap was organized by unsupervised

hierarchical clustering (Ward.D2 method) to group similar clusters and features. The

morphology phenotype matrix was then used to identify which size and shape morphological

features drove the clustering.

The median z-scored values for the top-weighted size and shape features were used to

identify morphological motifs. The number of size and shape morphology motifs were

determined by applying unsupervised hierarchical clustering (Ward.D2) and the elbow method as

described previously.
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Cluster Analysis of the PV+ Cell Dataset

The morphological analysis pipeline, as described above, was applied to our dataset of 14274

PV+ cells labelled by ISH. In this analysis, cells from V1 and S1 were analyzed together. After

obtaining morphological clusters for PV+ cells, we assessed whether any morphology clusters

were specific to either V1 or S1. We compared the proportions of cells from each cortical area

for each morphology cluster to the global proportion of cells in this dataset (S1:V1 = 62%38%).

We assessed these proportions using the chi-square test for goodness-of-fit.

Laminar Analysis of PV+ Morphology Clusters

The laminar location of the cells in each PV+ cluster was visualized by mapping the location

of each cell in a cluster using their standardized XY coordinates. This provided a visualization of

the laminar location of all the cells that could be used to define the laminar profile for each

morphological cluster using data from S1 and V1 for all animals. Then, laminar density profiles

for each cluster in S1 and V1 were calculated using the ggMarginal() function from the ggExtra

package in R (Attali and Baker, 2023). Laminar profiles were calculated separately for

morphology clusters in S1 and V1.

Identifying Laminar Patterns

To determine if PV+ morphology clusters had different laminar arrangements, the 130

laminar density profiles (13 morphology clusters x 2 cortical areas x 5 animals) clustered. Since

the laminar boundaries were at different depths in S1 and V1 we performed a cubic piecewise

spline fit to transform the Y coordinate of V1 cells into the S1 cortical space. This allows us to

compare the laminar profiles in V1 and S1, accounting for the difference in cortical thickness
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among the two cortical areas. To perform the interpolation, we first resampled the S1 cells, so

there were the same number of cells from S1 and V1. Then, we performed the spline fit on the

V1 cells. A single set of layer boundaries can be used by interpolating data from the two cortical

areas into a common cortical space.

Unsupervised hierarchical clustering (Ward.D2 method) was used to identify laminar

patterns. We started by constructing a dataframe of linear densities for each profile using the

density() function in R. Next, we z-scored the linear density values so each profile had equal

potential to impact the clustering. After determining the optimal number of clusters with the

elbow method, we applied the Ward.D2 unsupervised hierarchical clustering to the z-scored

linear density profiles for each morphology cluster from each cortical area for each animal. The

average laminar profile for each cluster was calculated using all the laminar profiles within a

cluster and visualizing those with a 95% confidence interval. We then assessed the area bias of

each of these laminar patterns by comparing the proportion of laminar profiles from each pattern

from each cortical area to the expected proportions (S1:V1 = 50%:50%). We assessed these

proportions using the chi-square test for goodness of fit. We calculated the Shannon Entropy for

each laminar pattern to quantify the morphological diversity in each laminar pattern.

Cluster Analysis of the Whole-Cell Filled Dataset

Clustering Cell Body Morphologies

As described above, the cluster analysis pipeline was applied to the whole-cell filled dataset

by combining it with the PV+ data from V1. Morphological data were prepared as described

previously, and clustering was performed on morphometric z-scores. We determined the optimal
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number of clusters using the elbow method, partitioned cells into clusters using the RSKC

algorithm, and visualized the clustering using the denSNE algorithm. For this dataset,

implementing the denSNE serves the additional purpose of identifying whether whole-cell filled

cells integrate into the clusters formed with V1 PV+ cells. We constructed morphology

phenotypes for each cluster, paying particular attention to the clusters that contained whole-cell

filled cells.

Clustering Dendritic Morphologies

In addition to the 97 cell body morphology measurements for the 36 whole-cell filled cells,

20 dendritic morphology features were available to quantify the dendritic arbor morphologies.

The features are listed in Table 4. We determined the optimal k using the elbow methods before

applying the RSKC algorithm to z-scored measures of dendritic morphology and obtained

weights for the 20 features. As there are fewer whole-cell filled cells, we used the .swc neuronal

reconstructions for these neurons to visualize each cell in a cluster. Reconstructions were plotted

using the Allen Institute’s Cell Types Explorer Jupyter Notebook (unmodified original available

from : https://alleninstitute.github.io/AllenSDK/cell_types.html), which we modified to automate

and pseudo-color the reconstruction plots for improved visualization. We then visualized the

correspondence between dendritic and cell body morphology clusters using the ggalluvial()

package in R (Brunson, 2023).

Table 4 - Dendritic Morphology Features for Whole-Cell Filled Cells.

Morphometric

number_nodes overall_height

total_length average_fragmentation
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average_contraction average_parent_daughter_ratio

average_diameter overall_depth

total_surface number_stems

number_tips max_euclidean_distance

number_branches max_path_distance

number_bifurcations soma_surface

total_volume average_bifurcation_angle_local

overall_width max_branch_order

Cluster Analysis of PV+ Associated Genes Dataset

The cluster analysis pipeline was applied to the dataset of 13 genes associated with PV+

T-types. In this analysis, we treated S1 and V1 separately.

For each cortical area, RSKC was used to identify morphological clusters, denSNE was used

to visualize the clustering and morphometric organization of the cell morphology space and

morphology phenotypes for each cluster. We assessed the proportions of genes present in each

morphology cluster to interrogate the relationship between cell morphologies and single-cell

transcriptomics. We compared the within-cluster proportions to the global proportion of genes

across the datasets for S1 and V1. We used the chi-square test for goodness of fit to determine if

any clusters over- or under-represented the PV+ associated genes.

To explore the laminar distributions of PV+ associated genes, we calculated the laminar

profiles of individual clusters for each gene. We calculated the profiles for clusters that had at

least 10 cells from a gene and z-scored them. This revealed the morphological heterogeneity

among groups of cells labelled for a single gene.
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Statistical Analyses

Estimation statistics were used to compare morphological differences among clusters

(dabestr package version 0.3.0) (Ho et al., 2019).

2.3 Results

Assessing ISH Label Quality Among Animals

The first step was to assess the quality of the ISH images among the animals to ensure

comparable labelling so differences in label intensity did not impact the analyses. This quality

control step was done by visual inspection and quantitative comparison of the distribution of

integrated densities for the PV+ ISH-labelled cells from each animal.

Visually, the ISH labelling of animal 2293 in both S1 and V1 appeared lighter than the other

five animals (Fig. 2A i-ii). Next, estimation statistics were used to quantitatively compare the

integrated density of labelled cells among the animals (Fig. 2B). That analysis showed that the

labelling intensity of cells from animal 2293 was less than the other animals and that the

distributions from the other animals overlapped. Because the labelling intensity of animal 2293

was different, it was excluded from the subsequent analyses.
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Figure 2 - Data quality assessment among animals. (A) Samples of In Situ Hybridization
taken from (i) S1, and (ii) V1 labelling the PV gene. In all images, scale bar = 100μm (B)
Distributions of integrated density measurements (product of cell area and mean gray value)
for all cells in each sample from each animal. Single points are single cells, and the
distribution is constructed from both S1 and V1. The median integrated density value is shown
as a white dot beside each bee swarm, and the 95% confidence interval is shown as the black
vertical bar beside each bee swarm. (C) Distributions of unpaired median difference for
integrated density values among animals, using data from animal 2293 as a reference. The
unpaired median difference is shown as a black dot, and the 95% confidence interval is shown
as the vertical bar.

Defining cortical layers

To provide a high throughput analysis of PV+ somata in an anatomical context, we needed to

define and map cortical layers an in a standardized and reproducible way. We used the laminarly

restricted patterns for a panel of 6 laminar marker genes ( L1 - Ndnf, L2/3/4 - Cux2, L4 - Rorb,

L5 - Deptor, L6A - Foxp2, L6B - Ctgf) to construct a quantitative pipeline that would identify

cortical layer boundaries in both V1 and S1.

We used the XY coordinates for each labelled cell in the ISH images shown in Figure 3 to

identify layer boundaries. The coordinates were standardized among samples into a standard

coordinate system, where the cortical depth ranged from 0 (pial surface) to 1 (bottom of L6B).

We also used this standard coordinate system to identify subcortical cells (with a standard depth

greater than 1) and excluded them from subsequent analyses.

The laminar profiles for each of the selected laminar marker genes were used to determine

the layer boundaries in the standard cortical space. As expected, each laminar marker gene had a

peak cell density in their respective layers. We determined the depth for layer boundaries in S1

(Fig.3A) and V1 (Fig. 3B) using the intersections of the laminar profiles for markers labelling
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pairs of adjacent cortical layers. These steps provided an unsupervised approach to identify the

laminar boundaries in all of the animals.
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Figure 3 - Defining cortical layer boundaries in S1 and V1 . (A) upper panel : ISH for
laminar marker genes extracted from S1, lower panel: laminar profiles for pairs of laminar
marker genes that label adjacent layers. Laminar profiles are obtained in standard coordinates,
where the depth ranges from 0 (pial surface) to 1 (bottom of L6B). The calculated intersections
of the curves are taken as putative layer boundaries. (B): laminar boundaries calculated for V1.
Upper panel : ISH for laminar marker genes. In all images, scale bar = 100μm. Lower panel:
calculated layer boundaries from laminar profiles in standard coordinates.

Laminar Cell Size Analysis of PV+ Cells

First, we tested whether the common approach, assessing cell size across the cortical layers,

could identify laminar differences in PV+ cells. Globally, between S1 and V1, the distributions

of cell sizes overlap as shown in Figure 4A (S1: Median = 203μm2, Mean = 200.97 μm2, 95% CI

= [199.06μm2-202.91μm2], V1: Median =184 μm2, Mean =184.39μm2 , 95% CI = [182.18μm2 -

186.59μm2] ). PV+ cell sizes overlapped in layers ⅔ to 6A. PV+ cells from Layer 1 in V1

(Median = 90 μm2, Mean = 114.27μm2 , 95% CI = [102.83μm2 - 125.71μm2]) and S1 Layer 1

were smaller (Median = 149 μm2, Mean = 164.51 μm2, 95% CI = [154.55μm2 - 174.47μm2])

compared to cells from other cortical layers. Cells in Layer 6B are smaller than cells from layers

⅔-6A, but unlike Layer 1, the distributions overlap when comparing between S1 and V1 (Fig.

4B). The distributions of cell sizes for S1 and V1 are consistently overlapping for L2/3-L6A

(Fig. 5) The summary statistics for PV+ cell size by layer for each cortical area are in Table 5.

Following this typical approach to analyzing PV+ cells in the cortex, we found that PV+ cell

sizes overlap across Layers ⅔-6A suggesting similar morphological organizations in those layers.

However, this analysis only used cell size, whereas CellProfiler measured 97 size and shape

parameters.
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Figure 4 - Size Distributions for PV+ interneurons in S1 and V1 (A) Raincloud plot
comparing the global distributions of soma sizes of PV+ cells among S1 (purple) and
V1(green). The global distribution is shown for each cortical area, above a horizontal boxplot.
The median is shown above the boxplot at the median size. Cell size values are also plotted
beneath the distribution curve, with single points as single cells. (S1: Median = 203μm2, Mean
= 200.97 μm2, 95% CI = [199.06μm2-202.91μm2], V1: Median =184 μm2, Mean =184.39μm2 ,
95% CI = [182.18μm2 - 186.59μm2] ). (B) Raincloud plots comparing the distributions of PV+
soma size among cortical areas for each cortical layer separately. Summary statistics
comparing between cortical areas for each cortical layer are shown in Table 5.

Table 5 - Summary Statistics for PV+ Cell Size by Cortical Layer for S1 and V1

Cortical
Area

Cortical
Layer

Number
of Cells

Median Cell
Area (μm²)

Mean Cell
Area (μm²)

95% CI
(Lower
Bound)

95% CI
(Upper
Bound)

S1 L1 345 149 164.51 154.55 174.46

V1 L1 139 90 114.27 102.83 125.71

S1 L2/3 808 215 203.12 196.19 210.04

V1 L2/3 745 192 191.63 185.32 197.94

S1 L4 2742 210 208.81 205.50 212.11

V1 L4 1258 201 199.94 195.25 204.64

S1 L5 3513 201 200.34 197.38 203.31

V1 L5 2379 178 179.31 176.18 182.43

S1 L6A 1059 218 211.16 205.22 217.10

V1 L6A 694 189.5 188.19 181.95 194.44

S1 L6B 356 138.5 147.36 139.17 155.54

V1 L6B 236 159.5 159.90 149.53 170.27
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Figure 5 - Estimation statistics comparing variation in PV+ soma size among cortical layers
and areas. The unpaired median difference for 12 comparisons against a shared control are
shown in the Cumming estimation plot. The reference distribution in this plot is all the data -
representing the global distribution of cell size for the entire dataset. Cell size values are
plotted on the upper axes as bee swarm plots. Purple bee swarms are from S1 and green
swarms are from V1. In the bee swarm plots, single points are single cells. Beside each bee
swarm, the median is shown as a white dot and the 95% confidence interval is plotted as a
vertical black line. On the lower axes, the unpaired median differences are plotted as
bootstrapped sampling distributions. The unpaired median difference is shown as a black dot
and the 95% confidence interval is indicated by the vertical black line .

Morphological Clustering of PV+ interneuron cell bodies

To determine if using a rich set of cell size and shape measurements would identify

morphological differences among PV+ cells, we constructed a large data matrix of 97

morphology features (columns) for each of the 14274 PV+ cells (rows). This produces
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high-dimensional, cell morphology data for each PV+ cell in our dataset. The optimal number of

clusters (k = 13) was found using the elbow method (Fig. 6A), and the data were clustered using

the Robust, Sparse K-Means Clustering (RSKC) algorithm. The RSKC algorithm was selected

because it is an iterative clustering algorithm that is robust to outliers. Additionally, RSKC

provides feature weights which inform us of the relative contribution of each morphology feature

to the overall clustering (Kondo et al., 2016)).

The feature weights from RSKC for the 13 morphology clusters of PV+ cells are shown in

Figure 6B. Top-weighted features (>50% max feature weight) include a combination of size and

shape parameters. Top-weighted size parameters include cell area, perimeter, diameters, axis

lengths and radii. Among top-weighted shape parameters, both size-varying parameters that are

proportional to the size of the cell (e.g., Spatial and Central Moments- which would also carry

size information) and size-invariant parameters (e.g., Eccentricity, Zernike moments 0_0, 2_0,

2_2, ad 4_0 and Hu Moments 1 and 3 ) that describe the circularity, elongation and symmetry of

the cell body. Morphology features carrying low weight include higher order Zernike, spatial

and central moments that quantify more subtle differences in shape related to the symmetry of

processes arranged around the cell body, and the Euler number, which describes the topology of

the cell (i.e., the presence of holes or distensions of the cell body). Collectively, RSKC identified

the morphology parameters that represent the largest variance among the cells. The distribution

of RSKC weights describes morphology differences among cells in terms of their size,

circularity, elongation, and symmetry of the cell body. Taken together, the feature weights from

RSKC indicate that despite a consistent topological structure, there are aspects of cell size and

shape that are sufficiently different to drive the separation of cells into distinct morphology

clusters.
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Visualizing PV+ Morphology Clusters

To visualize the 13 morphology clusters, we applied the density-preserving t-SNE (denSNE)

algorithm. For this analysis, the denSNE perplexity was set to 10, and the random number seed

was 13579. The z-scored value for each morphometric feature was multiplied by the feature

weight obtained from RSKC, and the denSNE algorithm was applied to these transformed

values. This allows each feature to contribute to the dimensionality reduction in a manner

consistent with their contribution to the clustering (Balsor et al. 2021). The denSNE plot was

color-coded for the 13 PV+ cell clusters and showed a mosaic of distinct morphological clusters

(Fig.7A).

We interrogated the distribution of features in the denSNE plot by color-coding the points

using the 14 top-weighted size and shape features (Fig.7B). These visualizations showed

organized, gradual shifts across the desSNE. For example, the Area of the cells shifted from

right to left going from small (dark blue) to progressively larger (yellow) cells. Similar gradient

patterns were found for the other morphological features; however, the orientation of the gradient

was different for the shape features.

The cell shape gradients in the denSNE varied from top to bottom. They were roughly

orthogonal to gradients for the size features (Fig.7B). Importantly, the intersection of the size and

shape gradients helped to identify morphological differences among the clusters. For example,
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Figure 6 - Unsupervised clustering on PV+ Interneuron morphologies. (A) Plot of the
within-cluster sum of squares against the number of clusters, k. The optimal k-value ( k = 13)
was determined by the elbow method and shown by the red line. (B) Weights for all 97
morphology features as determined by the robust, sparse K-means clustering (RSKC)
algorithm. Feature weights are plotted in decreasing order from left to right. Top-weighted
features (>50% of maximum weight attributed to a single morphology feature), are identified
by the black bar.
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clusters 1, 2 and 3 were small cells on the right side of the denSNE but were identified as

different shapes and spread out across the vertical dimension of the denSNE plot.

We mapped the gradients of shape information and found measures of circularity increase

from top to bottom, but measures of elongation increase from bottom to top in the denSNE plot

(Fig.7B bottom row). Taken together, morphology clusters reflected the combination of size and

shape features, which progressed orthogonally across the cell morphology space. Furthermore,

the intersection of these gradients would determine how the morphology space is partitioned into

clusters.
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Figure 7 - Visualizing RSKC morphology clusters for PV+ Cells : (A) Morphology space for
PV+ cells from S1 and V1 visualized with density-preserving t-SNE (denSNE) (perplexity =
10, seed = 13579). The denSNE algorithm was applied to a transformed dataset where feature
weights from RSKC were multiplied to the z-scored morphology feature measurements. Single
points are single cells and the denSNE plot is coloured by cluster labels, with cluster centroids
marked with a cross. Cluster numbers reflect the progression of median cell sizes (cluster 1 =
lowest median size, and Cluster 13 = highest median cell size ). 4 cells were sampled randomly
from each morphology cluster and are shown in the inset boxes surrounding the denSNE plot.
(B) Gradients of selected top-weighted morphology features mapped onto morphology space,
visualized using the denSNE algorithm.The colour progression from navy to yellow indicates
increasing feature values for each morphology feature. Size features are shown in the top row
and shape features are shown in the bottom row.

Characterizing PV+ Cluster Morphologies

The denSNE plots (Fig. 7) indicate that the size and shape features grouped the cells into

morphological clusters. However, a quantitative description of each cluster’s morphology

features is needed to describe the characteristic PV+ soma phenotype for each cluster. We used

the median z-scored of the top-weighted features for each of the 13 clusters to create a

cluster-by-feature heatmap (Fig.8). The order of the morphology clusters (columns) and features

(rows) was determined by hierarchical clustering. The size features ordered the 13 morphology

clusters from left to right, with the clusters containing the smallest cells on the left and the largest

on the right. The shape features further ordered the morphology clusters into interdigitated

columns where clusters of similar-sized cells were separated based on the shape features. For

example, morphology clusters 3 and 4 had a similar pattern of blue and green color-coded cells

for the size features but a different pattern for the shape features.
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Figure 8 - Characterizing RSKC morphology clusters (A) cluster morphology phenotypes
describing each cluster's median size and shape characteristics. Phenotypes were constructed
using the top-weighted morphology features, as shown in Figure 5B. Clusters are ordered and
named according to the progression of median sizes ( Cluster 1 = lowest median size, Cluster
13 = highest median size). The heatmap rows were organized using a row-wise dendrogram,
using the Ward.D2 algorithm for hierarchical clustering. The first branch point on the row-wise
dendrogram indicates the separation of top-weighted morphology features into size (towards
the top of the heatmap) or shape features (towards the bottom of the heatmap). (B) Proportions
of cells from each cortical area ( S1 = purple, V1 = green) for each morphology cluster.
P-values beneath each pie chart are used for the chi-square test, which compares the areal
proportions within each cluster to the global areal proportion in the dataset. The overall
proportion of cells from each cortical area in this dataset is S1 = 62% and V1 = 38%

We applied hierarchical clustering to the size and shape features separately within the

phenotypes to determine how many different size divisions and shape motifs are represented in

the 13 morphology clusters. The dendrograms for the size and shape clusters are shown in Figure

9. The clusters are separated coarsely into four major size divisions that we annotate as small,

medium, large, and extra large. The clusters also separate into three prominent shape motifs that

reflect fusiform, pyriform, and round cell shapes. We present here the characteristics of each

shape motif.

Shape Motif 1 - fusiform cell bodies: clusters 1, 2, 4, 7, 12 → These cells are elongated,

as evidenced by their higher median eccentricity and second-order Zernike Moments. With

increasing cell size, cells move from being more obliquely elongated to being vertically

elongated- indicated by the progressive increase in median Zernike_2_0 (vertical astigmatism)

and decrease in median Zernike_2_2 (oblique astigmatism). Cluster 2 was defined by a more

extreme version of this shape motif - with more prominent elongation, resulting in sharply lower

median measures of circularity (Fig.7A). These clusters occupy adjacent regions of the denSNE
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visualization of the cell morphology space (Fig.7). These clusters occupy a region of the

morphology space defined by extreme shape characteristics, but still are organized along the size

gradient. These clusters had higher median measures of elongation relative to clusters in other

shape motifs (Figs. 11-13)

Shape Motif 2 - pyriform cell bodies: clusters 3, 6, 9, 10, 13 → These cells are defined by

intermediate median measures of cell circularity and elongation (Fig.8A, Figs. 11-17 ). These

cells have intermediate shape characteristics - they are not as elongated as cells in shape motif 1

and not as circular as cells in shape motif 3. Cells in shape motif 2 were round on one side and

taper to a point. Their median z-scored shape measurement values were closer to 0 than those in

the other shape motifs. These clusters were found in the middle of the morphology space, in

between regions occupied by clusters with the other two shape motifs (Fig. 6). Relative to the

other shape motifs, pyriform cells had lower measures of elongation than fusiform cells

(Figs.11-13 ), and lower measures of circularity than round cells (Figs.14-17).

Shape Motif 3 - round cell bodies: clusters 5, 8, 11 → Cells in these clusters are more

circular with high median measures of circularity (Zernike_0_0, Hu Moments 1 and 3,

Zernike_4_0) and lower measures of elongation. The largest cells, cluster 11, had radially

symmetrical bumps around the perimeter of the soma that probably reflect processes emerging

from the soma. The median Zernike_4_0 was high in cluster 11 and measured both circularity

and fourfold radial symmetry. As processes around the perimeter of the soma will tend to display

greater symmetry in more circular somata. These clusters were visualized across the bottom of

the morphology (Fig.7). Estimation statistics performed on measures of circularity identify

clusters 5, 8, and 11 as having the highest median circularities of all clusters (Figs. 14-17).
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Cortical Area Distribution of PV+ Morphologies

We analyzed if any of the morphologies were more commonly found in S1 versus V1 by

quantifying the proportion of cells from each area in a cluster (Fig. 7B), and assessed these

differences with the chi-square test for goodness of fit. Among clusters 11-13, which have the

largest median cell sizes across all clusters, more cells come from S1 than expected ( global

proportion S1:V1 = 62%:38%. Cluster 11: p = 5.546e-06, Cluster 12: p = 1.789e-09, Cluster 13 :

p = 4.074e-14). Among clusters 3-6, which represent small and medium median cell sizes, more

cells come from V1 than expected ( global proportion S1:V1 = 62%:38%, Cluster 3 : p =

1.082e-06, Cluster 4 : p = 5.160e-06, Cluster 5 : p = 3.967e-04, Cluster 6 : p = 3.107e-04).

In contrast to measuring only the area of the cell body, the analysis of PV+ cells applied an

unsupervised, data-driven approach to a high-dimensional representation of PV+ cell

morphologies. The results of using our analysis pipeline indicate that measurements of both size

and shape parameters are necessary to characterize the morphology of PV+ neurons fully. For

example, we showed multiple shapes within each size division. Furthermore, the approach

highlights the importance of using a large number of cells and morphology features to quantify

the complexity of PV+ cell morphologies and gain insight into the distribution of PV+ cell

morphology.
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Figure 9 - Characterizing size divisions and shape motifs among clusters. The median
z-scores for top-weighted morphology features for each cluster were analyzed by unsupervised
hierarchical clustering (Ward.D2) method, to identify the groups of clusters that share
common size and shape characteristics.(A) Dendrogram for hierarchical clustering grouping
individual morphology clusters into size divisions, based on the median values of top-weighted
size features. (B) Dendrogram for hierarchical clustering grouping morphology clusters into
shape motifs using the median z-scored values of top-weighted shape features. Cells fall into
one of three motifs : fusiform, pyriform or round. The number of size divisions and shape
motifs were determined using the elbow method.
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Figure 10 - Soma Area for Each Morphology Cluster. Estimation statistics plots showing the
distributions of z-scored cell body area for PV+ interneurons grouped by morphology cluster.
The collection of plots shows comparisons among the clusters using each morphology cluster
as a reference. Beeswarm plots of the z-scored cell body area are plotted on the upper axes of
each plot. Beside each beeswarm the median z-scored cell size for each cluster is indicated as a
white dot, and the 95% confidence interval about the median is shown by the black bar. The
lower axes of each plot show the unpaired median difference plotted as a bootstrapped
sampling distribution. The 95% confidence interval is shown as a black bar and the median is
shown with a black dot.
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Figure 11 - Cell eccentricity among morphology clusters of PV+ interneurons . Estimation
statistics plots showing the distributions of z-scored cell body eccentricity for PV+
interneurons grouped by morphology cluster. The collection of plots shows comparisons
among the clusters using each morphology cluster as a reference. Beeswarm plots of the
z-scored cell eccentricity are plotted on the upper axes of each plot. Beside each beeswarm the
median z-scored eccentricity for each cluster is indicated as a white dot, and the 95%
confidence interval about the median is shown by the black bar. The lower axes of each plot
show the unpaired median difference plotted as a bootstrapped sampling distribution. The 95%
confidence interval is shown as a black bar and the median is shown with a black dot.
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Figure 12 - Zernike Moment 2_2 values among morphology clusters of PV+ interneurons .
Estimation statistics plots showing the distributions of z-scored Zernike 2_2 moment values
for single PV+ interneurons grouped by morphology cluster. The collection of plots shows
comparisons among the clusters using each morphology cluster as a reference. Beeswarm plots
of the z-scored cell Zernike 2_2 are plotted on the upper axes of each plot. Beside each
beeswarm the median z-scored Zernike 2_2 moments for each cluster is indicated as a white
dot, and the 95% confidence interval about the median is shown by the black bar. The lower
axes of each plot show the unpaired median difference plotted as a bootstrapped sampling
distribution. The 95% confidence interval is shown as a black bar and the median is shown
with a black dot.
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Figure 13 - Zernike Moment 2_0 values among morphology clusters of PV+ interneurons .
Estimation statistics plots showing the distributions of z-scored Zernike 2_0 moment values
for single PV+ interneurons grouped by morphology cluster. The collection of plots shows
comparisons among the clusters using each morphology cluster as a reference. Beeswarm plots
of the z-scored cell Zernike 2_0 are plotted on the upper axes of each plot. Beside each
beeswarm the median z-scored Zernike 2_0 values for each cluster is indicated as a white dot,
and the 95% confidence interval about the median is shown by the black bar. The lower axes
of each plot show the unpaired median difference plotted as a bootstrapped sampling
distribution. The 95% confidence interval is shown as a black bar and the median is shown
with a black dot.
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Figure 14 - Hu Moment 1 values among morphology clusters of PV+ interneurons .
Estimation statistics plots showing the distributions of z-scored Hu moment 1 values for single
PV+ interneurons grouped by morphology cluster. The collection of plots shows comparisons
among the clusters using each morphology cluster as a reference. Beeswarm plots of the
z-scored cell Hu Moment 1 values are plotted on the upper axes of each plot. Beside each
beeswarm the median z-scored Hu Moment 1 values for each cluster is indicated as a white
dot, and the 95% confidence interval about the median is shown by the black bar. The lower
axes of each plot show the unpaired median difference plotted as a bootstrapped sampling
distribution. The 95% confidence interval is shown as a black bar and the median is shown
with a black dot.
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Figure 15 - Hu Moment 3 values among morphology clusters of PV+ interneurons .
Estimation statistics plots showing the distributions of z-scored Hu moment 3 values for single
PV+ interneurons grouped by morphology cluster. The collection of plots shows comparisons
among the clusters using each morphology cluster as a reference. Beeswarm plots of the
z-scored cell Hu Moment 3 values are plotted on the upper axes of each plot. Beside each
beeswarm the median z-scored Hu Moment 3 values for each cluster is indicated as a white
dot, and the 95% confidence interval about the median is shown by the black bar. The lower
axes of each plot show the unpaired median difference plotted as a bootstrapped sampling
distribution. The 95% confidence interval is shown as a black bar and the median is shown
with a black dot.
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Figure 16 - Zernike Moment 0_0 values among morphology clusters of PV+ interneurons .
Estimation statistics plots showing the distributions of z-scored Zernike Moment 0_0 values
for single PV+ interneurons grouped by morphology cluster. The collection of plots shows
comparisons among the clusters using each morphology cluster as a reference. Beeswarm plots
of the z-scored cell Zernike Moment 0_0 values are plotted on the upper axes of each plot.
Beside each beeswarm the median z-scored Zernike moment 0_0 values for each cluster is
indicated as a white dot, and the 95% confidence interval about the median is shown by the
black bar. The lower axes of each plot show the unpaired median difference plotted as a
bootstrapped sampling distribution. The 95% confidence interval is shown as a black bar and
the median is shown with a black dot.
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Figure 17 - Zernike Moment 4_0 values among morphology clusters of PV+ interneurons .
Estimation statistics plots showing the distributions of z-scored Zernike Moment 4_0 values
for single PV+ interneurons grouped by morphology cluster. The collection of plots shows
comparisons among the clusters using each morphology cluster as a reference. Beeswarm plots
of the z-scored cell Zernike Moment 4_0 values are plotted on the upper axes of each plot.
Beside each beeswarm the median z-scored Zernike moment 4_0 values for each cluster is
indicated as a white dot, and the 95% confidence interval about the median is shown by the
black bar. The lower axes of each plot show the unpaired median difference plotted as a
bootstrapped sampling distribution. The 95% confidence interval is shown as a black bar and
the median is shown with a black dot.

Laminar Distribution of Morphology Clusters in S1 and V1

The spatial location of the cells in each cluster was mapped onto the standardized cortical

space for S1 and V1. The laminar density profile was calculated for each cluster in each cortical

area (Fig. 18). Visual inspection of these maps showed that none of the PV+ morphology clusters

was laminarly restricted. Still, all of the clusters had a laminar location with peak PV+ cell

density. Comparing the cortical areas, the same morphology cluster appeared to have different

laminar patterns. For example, clusters 2 and 12 have both a supragranular and infragranular

peak in S1, cluster 2 has a more broad, diffuse distribution across the layers in V1, whereas

cluster 12 is mostly found in supragranular layers.

The laminar distributions of each morphology cluster in S1 and V1 are shown in Figure 19.

We used chi-square analysis to test whether any clusters had more PV+ cells in a layer than

expected. With the exception of clusters 4 and 10 in S1, and clusters 4, 7, and 10 in V1, all

clusters had different proportions of cells by layer than expected. Notably, we found that in S1

and V1, cluster 2 had more cells from layers 1 and 6B, and cluster 12 had more cells from layers
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4 and 5 than expected (S1 cluster 2: p= 3.112e-37, 12: p = 1.683e-16; V1 clusters 2: p =

3.396e-50, 12: p =3.238e-11).

Figure 18 - Laminar distributions of PV+ Morphology Clusters in S1 and V1 - For each
cluster, cells (single points) are shown in standard coordinates in each cortical area. In a single
plot, data from all 5 animals are shown. The layer boundaries are calculated from the analysis
in Figure 3. Each cluster cell plot shows data pooled from all animals within a single cortical
area. Beside each plot is the laminar profile for each morphology cluster, showing their
distribution across the cortical layers for S1 and V1.
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Figure 19 - Proportions of PV+ cells by cortical layer for each morphology cluster . For S1
(A), and V1(B) the global proportions of cells were determined (i) . For each cluster, in each
cortical area, the proportions of cells by cortical layer were determined (ii) . P-values are from
the chi-square test for goodness of fit, comparing the laminar proportions in each morphology
cluster to the overall laminar proportions in each cortical area.

73



M.Sc. Thesis - M. Panday; McMaster University - Neuroscience

Unsupervised Analysis of PV+ Cell Laminar Patterns

To quantify the laminar patterns of each PV+ cell morphology cluster, we applied

unsupervised hierarchical clustering to a dataset of 130 laminar density profiles (13 morphology

clusters x 2 cortical areas x 5 animals). The clustering identified 6 different laminar patterns (Fig.

20A). We interrogated each laminar cluster to determine the proportion of profiles from S1 vs

V1 and the 3 cell shape motifs. Finally, we used a river plot to connect the cells in each of the 13

PV+ morphology clusters with their laminar profile cluster (Fig. 20B).

Laminar Pattern A - This laminar pattern describes a sharp increase in cell density across

layers 2/3 , before decreasing across layer 4 and increasing again in layer 5. This pattern is found

slightly more in S1 compared to V1 ( S1:V1 = 77.78%:22.22%, p = 9.588e-02). This pattern

consists primarily of extra large fusiform cells (Cluster 12). This pattern is both morphologically

restricted, and biased towards a single morphology ( p = 4.62e-02) , as it has a Shannon entropy

score of 1.149.

Laminar Pattern B - This laminar pattern increases more gradually across layer ⅔ and

continues to increase across layer 4 to peak cell density in layer 5. This pattern is found slightly

more in V1( S1:V1 = 34.38%:65.62%, p = 7.710e-02). Compared to S1, where large, fusiform

PV+ cells populate supragranular layers (Fig. 8A), in V1, medium-sized pyriform cells populate

these layers(Fig. 8B). Unlike pattern A, this laminar pattern is morphologically broad, with less

morphological bias within the pattern (Shannon entropy = 2.326).

Laminar Pattern C - This laminar pattern describes low cell density across the

supragranular layers - layers 1 and 2/3. Cell density increases across layers 4 and upper layer 5

before decreasing across the deeper sublaminae of layer 5. This pattern is found slightly more in
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S1 than V1, but does not differ strongly from expected ( S1: V1 = 56.52%, 43.48%), p =

5.316e-01. This pattern is the only one to consist mostly of round cells ( 43.5% round cells, p =

5.236e-02). Morphology clusters with medium-sized cells (Clusters 5, 6, and 7) are in this

pattern. This pattern is also morphologically diverse with less morphology bias (Shannon

Entropy = 2.178).

Laminar Pattern D - Compared to pattern C, which also has a peak in L5, pattern D has

increased cell density across the supragranular layers, including layer 1. Cell density increases

progressively along the depth of layer 4, with a peak towards the middle of layer 5. This pattern,

in addition to the latter two, shows increased cell densities into L6A, which characterize the deep

infragranular biases seen across some of the morphology clusters shown previously. This pattern

consists primarily of pyriform cells, with slightly more than expected (52.2% pyriform cells, p =

4.000e-01). This pattern also consists of morphology clusters with mainly medium to large sizes.

Laminar Pattern E - This pattern, like pattern A, increases cell density across layers ⅔ ,

and 5. However, the increase in cell density is more gradual across the supragranular layers than

in pattern A. In pattern E, cell density is sustained from layer ⅔ across layer 4 before increasing

again across layer 5. This pattern does not show a sharp decrease in cell density across layer 4 as

seen in pattern A. This pattern is found slightly more in S1( S1:V1 = 55.56%, 44.44%, p =

6.374e-01) and consists mainly of small, fusiform cells ( 66.7% fusiform, p = 4.356e-02). With

the second-lowest Shannon entropy of all the laminar patterns, this pattern is also

morphologically biased and seen across fewer morphology clusters. As this pattern is dominated

by small fusiform cells, cells from clusters 1 and 2 are more represented in this pattern than in

others.
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Laminar Pattern F - Like patterns D and E, pattern F gradually increases cell density across

layers 2/3, 4 and 5 before decreasing in L6A. This pattern has the deepest peak cell density in

Layer 5 of all the laminar patterns. Found slightly more in V1, this pattern has a similar

proportion of fusiform, round and pyriform cells as the distribution of shape motifs in pattern C,

with the greatest share of cells being round (40% round cells, p = 1.054e-01). This pattern has a

similar composition of sizes compared to pattern C, which also consists mainly of medium cell

sizes with a combination of all three shape motifs. However, this pattern consists of larger cells

than pattern C's composition. This laminar pattern is also morphologically broad with

comparably low morphological bias (Shannon entropy = 2.279).

We found weak laminar differences when we applied the typical method that uses only cell

size to assess laminar differences (Fig. 4). In contrast, we identified robust differences in the

laminar patterns of PV+ cell morphologies using density profiles and unsupervised clustering.

Layers with the greatest PV+ cell density were found to have comparable, overlapping size

distributions, indicating high similarity. The approach, however, identifies variations in shape

among cells of similar sizes and leverages the variations in shape in addition to size differences

to characterize morphologies of single PV+ cells. Although strong areal biases were only seen

for extra-large cells with these more comprehensive morphology clusters, the laminar analysis of

PV+ morphologies identified laminar patterns biased towards either V1 or S1. Our data-driven

approach considers both the size and shape information of single PV+ cells. The spatial

distributions of these morphology clusters follow characteristic patterns more representative of

S1 and V1.
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Figure 20 - Characterizing the laminar distributions of PV+ cell morphologies. (A) 130
laminar profiles ( 5 animals x 2 cortical areas x 13 morphology clusters) were clustered into 6
patterns using unsupervised hierarchical clustering (ward.D2 algorithm). Cells from V1 were
interpolated into S1 cortical space using a cubic piecewise spline fit so a single-layer definition
could be used. Single-coloured profiles represent the laminar profile for a single morphology
cluster in one cortical area from one animal. The average curve for each laminar pattern is
plotted as a thick black line. Top row: pie charts summarizing the distribution of laminar
profiles from each cortical area in each laminar pattern ( S1: purple, V1: green). The
proportions are compared to the overall distribution of profiles in the dataset ( S1: 50%,
V1:50%). Lower row: pie charts summarizing the distribution of shape motifs in each laminar
pattern ( F = Fusiform, P = Pyriform, R = Round). (B) River plot showing the correspondence
between the laminar patterns (left column) and the morphology clusters ( right column). Size
divisions for the morphology clusters are shown to the left of the river plot. Shannon entropy
values were calculated for each laminar pattern and are shown to the right of the river plot.

Comparing Cell Body Morphology and Dendritic Morphology

We analyzed the soma and dendritic morphology of whole-cell filled PV+ cells using data

from mouse V1 from the Allen Brain Institute (Hodge et al., 2019). The first step in integrating

these data with the PV+ ISH dataset was to use estimation statistics to compare 3 size (Cell Body

Area, Bounding Box Area, and Perimeter) and shape (Circularity, Aspect Ratio and Eccentricity)

parameters from the whole-cell filled cells and ensure that they were not different from the V1

PV+ dataset (Fig. 21). None of those measured differed between the PV+ whole-cell filled and

ISH-labelled cells so we integrate the morphometric data from those cells. Combining data from

two modalities, we used this dataset to assess the relationship between dendritic and soma

morphologies in V1. This dataset comprises 5451 cells labelled by ISH and 36 filled cells from

mouse V1. For the 36 filled cells, 20 measurements quantifying the dendritic morphologies were

obtained from the Allen database. We used RSKC to cluster the cells separately based on their

dendritic and soma morphologies.
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Figure 21 - Filled cells have comparable size and shape parameters to ISH-labelled cells. Gardner-Altman
estimation plots showing the unpaired median difference between ISH labelled cells and filled cells.
ISH-labelled cells are being used as a reference. Both groups are plotted on the left axes, and the unpaired
median difference is plotted on the right axes as a bootstrapped sampling distribution. The median difference
is plotted as a black dot, and the 95% confidence interval is indicated by the vertical black line (A) Area, (B)
Circularity, (C) Bounding Box Area, (D) Aspect Ratio, (E) Perimeter, (F) Eccentricity
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Cluster Analysis of Dendritic Morphologies

The 20 dendrite morphology measures were used to cluster the 36 filled cells. The elbow

method determined that the optimal k=3 and RSKC was used to cluster the cells based on the

dendritic morphology features (Fig. 22A). The top-weighted dendritic morphology features

included the number of nodes, the total length of the dendritic arbour, the average contraction,

average diameter, total size of the dendritic field, and the number of tips (Fig. 22B). These

features describe the size of the dendritic field, together with large-scale shape properties related

to the arrangements of dendrites within the field. The lowest-weighted features include the soma

size, average bifurcation angle, and branch order. Although information about the cell body was

present in this cluster analysis, the only parameter provided was the size. The clusters obtained

here using dendritic morphology features (Figs. 23 and 24) are consistent with previously

published data (Jiang et al., 2015).
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Figure 22 - Clustering dendritic morphology features for PV+ filled cells. (A) Elbow plot
showing the within-cluster sum of squares plotted as a function of the number of clusters (k).
The optimal number of clusters ( k= 3) is shown in red. (B) Feature weights as determined by
RSKC for the 20 dendritic morphology features. Features quantify dendritic arbour
morphologies, and top weighted (>50% maximum weight assigned to a single feature) features
are indicated with the black bar.
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Figure 23 - Cell Reconstructions of Filled cells (Dendritic Morphologies A and B) . Whole
cell reconstructions for each filled cell for the first two of three dendritic morphology clusters.
Pale segments are the dendritic arbour, and dark segments are the axonal arbour. Truncated
portions of arbors are indicated with a coloured dot. The black dot indicates the soma. Cells
are numbered from 1-36 and are ordered by their cortical layer. Scale bars in all
reconstructions = 100 microns. The different colors indicate the different dendritic morphology
clusters ( A = pink, B = gold).
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Figure 24 - Cell Reconstructions of Filled cells (Dendritic Morphology C) . Whole cell
reconstructions for each filled cell for the last of three dendritic morphology clusters. Pale
segments are the dendritic arbour, and dark segments are the axonal arbour. Truncated portions
of arbors are indicated with a coloured dot. The black dot indicates the soma. Cell numbers
indicate their position in the cortical layers, lower numbers indicating upper layers and higher
numbers indicating deeper layers. Scale bar for all images = 100 microns.

Next, cell body morphology measurements of the PV+ whole-cell filled and ISH cells from

V1 and RSKC were applied to cluster those data. Eleven cell body morphology clusters were

identified, and the PV+ whole-cell filled cells were found in 7 of those clusters (Figs. 25 & 26).

The top-weighted features were similar to those found when clustering only the PV+ ISH-labeled

cells and included a combination of size and shape parameters (Fig. 25B). Among the

top-weighted shape features were measures of elongation (Eccentricity, Zernike Moments 2_0

and 2_2, and the aspect ratio) and circularity (Zernike Moments 0_0 and 4_0, together with Hu

Moments 1 and 3).
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Figure 25 - Clustering cell body morphologies of PV+ filled and ISH-labelled cells . (A) -
Elbow plot showing the optimal number of clusters (k =11), (B) Feature weights as determined
by RSKC performed on 97 morphology features for each cell soma. Top-weighted features
(>50% of the maximum weight assigned to a single feature) are indicated with the black bar.

The 36 filled cells were found in 7 clusters along PV+ ISH-labelled cells (Fig. 26). Similar

to the analysis of PV+ ISH cells, the denSNE plot represented roughly orthogonal gradients of

size and shape. The filled cells were small to medium size and distributed across the range of

shape patterns (Fig. 26B). For example, filled cells found in clusters 3, 4, and 6 represent a band

of medium-sized cells in the denSNE plot but cut across a range of cell shapes from round in

cluster 4 (dark blue region in the denSNE for eccentricity) to more and more oval-shaped cells in

clusters 3 and 6 (Fig. 26A).

The heatmap of the top-weighted features for the filled and ISH PV+ cells from mouse V1

provides a clear visualization that can be used to phenotype the clusters based on the

morphological features that separate cells into clusters. For example, the greenish color-coding

of the values for the size features was similar between clusters 3 and 4, but the shape features

had opposite patterns. Eccentricity was higher and color-coded reddish for cluster 3 to indicate

that these cells are round, while the color-code was bluish for cluster 4, indicating not round cell

shapes (Fig. 27).
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Figure 26 - Morphological properties of filled cells integrate along the morphology gradients
established by ISH-labelled cells. (A) - denSNE plot of the PV+ cell body morphology space
annotated by cluster assignment. Cluster numbers indicated the progression of median cell size
(Cluster 1 = lowest median cell size Cluster 11 = highest median cell size). Single points are
single cells. Fully opaque points are whole-filled cells, and translucent points are ISH-labelled
cells. For morphology clusters with filled cells, the cell bodies of those filled cells are shown
(B) denSNE plot from panel A, but annotated for six top-weighted size features (top row) and
six top-weighted shape features (bottom row). The colour progression from dark blue to yellow
indicates increasing feature values for each morphology feature.

Figure 27 - Morphological phenotypes for clusters of PV+ ISH-labelled cells and
Whole-Filled cells. Heatmap of median z-scored feature values for top-weighted features for
each morphology cluster. Cluster numbers 1-11 reflect size progression, and are related to the
median cell size in each cluster (Cluster 1 = smallest cells, Cluster 11 = largest cells). The rows
in the phenotype heatmap were organized by hierarchical clustering (Ward.D2 algorithm) to
make the separation of size and shape parameters evident. The separation is shown by the
row-wise dendrogram. The first branch point of the dendrogram indicates the separation of
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size parameters towards the top of the heatmap, and shape parameters towards the bottom of
the heatmap. Furthermore across the size gradient, repeated shape motifs can be seen.

We used a river plot to map the correspondence between the clustering of PV+ filled cells

based on dendritic versus soma morphologies (Fig. 28). Dendritic morphology clusters did not

restrict themselves to exclusive combinations of cell body morphology clusters. Dendritic

morphology A is primarily seen across the smaller, round PV+ cells from deep layers, but

smaller fusiform PV+ cells in the supragranular and granular layers. This dendritic morphology

pattern was not identified in the cells from layer 5. Dendritic morphology B is morphologically

broad across cell body morphology clusters 3, 4, 5, and 6. These cells encompass a range of sizes

and shapes (small to medium sizes and all three main shapes - fusiform, pyriform and round).

Despite various cell body morphologies, this dendritic morphology is concentrated across layer 5

cells. Dendritic morphology C is also very morphologically and laminarly broad, found across

cell body morphology clusters 4, 5, 6, 7, and 10, with the greatest proportions of cells falling into

cell body morphology clusters 5 and 6 (pyriform and fusiform cells respectively). This dendritic

morphology pattern is more representative of cells with less rounded cell bodies and is found

across the layers in larger proportions than other morphology clusters.
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Figure 28 - Correspondence among cell dendritic and cell body morphologies. River plot
showing the correspondence among dendritic morphology clusters ( left), cell body
morphology cluster (centre) and cortical layer ( right) for the 36 filled PV+ cells. Cell body
morphology cluster labels reflect their position along the size gradient defined across all
morphology clusters.

Comparing the Morphology of PV+ and PV+ Associated Gene Cells

We compared the morphologies of PV+ cells with cells labelled for PV-associated genes

from different T-types to determine if cell morphology could help identify PV+ T-types. The 13

PV-associated genes were selected from the list of marker genes for PV+ T-types defined in Tasic

et al. 2016 and represent the transcriptomic types defined in Gouwens et al., 2020. The ISH for

these selected genes had good-quality labelling in both S1 and V1. Although we could not

perform the spatial transcriptomics needed to validate PV+ cells across the T-types, it is likely

that these cells are from different PV+ T-types. The PV-associated cells overlap with the PV+

ISH cells in their laminar locations, however, some genes ( Calb1, Etv1) display characteristic

laminar restrictions, whereas PV+ cells were found across all cortical layers. (Fig. 29).
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Figure 29 - ISH samples for PV+ and Associated Genes . Samples of ISH extracted from (A) S1
and (B) V1 labelling a panel of 14 genes associated with PV+ transcriptomic types. Each
gene’s ISH was extracted from a different animal, with S1 and V1 samples coming from a
single section for each gene. The samples were cropped to the pial surface and leave a portion
of the subcortical white matter visible beneath the deep limit of L6B. In all samples, only
cortical cells were used in subsequent analyses. Pixel size : 1 pixel = 1 microns. Scale bar =
100 microns.

The morphology measurements from cells in S1 and V1 were clustered separately. In S1, 13

clusters were identified, and in V1, there were 10 clusters (Figs. 30A & 31A). The top-weighted

features included size (area, perimeter, diameters, radii, axis lengths) and shape parameters

(circularity – Zernike 0_0, Zernike 4_0, Hu Moments 1 and 3; elongation – eccentricity, Zernike

2_0, Zernike 2_2). Features with low weights in both cortical areas described the topology of the

cells and higher-order shape moments indicated the presence of processes extending from the

cell body (S1: Figure 30B, V1: Figure 31B). The larger number of clusters in S1 represented a

greater range of cell sizes than V1.
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Figure 30 - Clustering PV+ gene morphologies in primary somatosensory cortex S1. Weights
plot showing the distribution of weight across the 97 morphology features as determined by
the RSKC algorithm. Features are arranged so weights appear in decreasing order in the
weights plot. Top weighted features ( >50% max weight) are indicated by the black bar.
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Figure 31 - Clustering PV+ gene morphologies in primary visual cortex V1. (A) Elbow plot
for the within cluster sum of squares as a function of the number of clusters (k). The optimal k
= 10 is shown with the red line. (B) Weights plot showing the distribution of weight across the
97 morphology features as determined by the RSKC algorithm. Features are arranged so
weights appear in decreasing order in the weights plot. Top weighted features ( >50% max
weight) are indicated by the black bar.

The denSNE plots of morphology clusters for the PV-associated genes in S1 (Fig. 32) and V1

(Fig. 33) had similar organizations to the plot of just PV+ cells labelled by ISH(Fig. 7). Both

denSNE plots had roughly orthogonal gradients for size and shape features (Figs. 32B & 33B).

Examples of the PV-associated cells in the clusters illustrate the range of cell sizes and shapes

(Figs. 32A & 33A).
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Figure 32 - Visualising PV+ gene morphologies for S1- (A) Morphology space for S1 cells
labelled for PV and associated genes visualized using density preserving t-SNE (denSNE).
The denSNE algorithm was applied to a transformed dataset where the weights obtained from
RSKC were multiplied to their corresponding feature z-scores. Single points are single cells
and points are coloured by their cluster assignments. Cluster numbers reflect the progression of
median cell sizes (Cluster 1 - lowest median cell size , Cluster 13 - highest median cell size ). 4
cells were randomly sampled from each cluster and are shown in the inset squares surrounding
the denSNE plot. (B) The denSNE plot in panel A was annotated for a series of six
top-weighted size parameters (top row), and six top-weighted shape parameters (bottom row).
The colour progression from dark blue to yellow indicates increasing feature values for each
morphology feature.
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Figure 33 - Visualising PV+ gene morphologies for V1- (A) Morphology space for V1 cells
labelled for PV and associated genes visualized using density preserving t-SNE (denSNE).
The denSNE algorithm was applied to a transformed dataset where the weights obtained from
RSKC were multiplied to their corresponding feature z-scores. Single points are single cells
and points are coloured by their cluster assignments. Cluster numbers reflect the progression of
median cell sizes (Cluster 1 - lowest median cell size , Cluster 10 - highest median cell size ). 4
cells were randomly sampled from each cluster and are shown in the inset squares surrounding
the denSNE plot. (B) denSNE plot from panel A, but annotated for a series of six top-weighted
size parameters (top row), and six top-weighted shape parameters (bottom row). The colour
progression from dark blue to yellow indicates increasing feature values for each morphology
feature.

Heatmaps of the morphology clusters and top-weighted features were plotted for each

cortical area to identify the morphological features that differentiated among the clusters. The

heatmaps had similar organizations in S1 and V1 and were consistent with the previous analyses.

For example, clusters were ordered by cell size features and clusters of similar size were

separated by the shape features (Figs. 34A & 35A). In both cortical areas, there were three shape

motifs: fusiform, pyriform and round, similar to the PV+ cell dataset (Figs. 37B & 38B). In V1,

3 size divisions were identified: small, medium and large (Fig. 38A), whereas S1 had 4 sizes:

small, medium, large and extra large (Fig. 37A).

We calculated the proportions of cells labelled for each of the PV-associated genes in S1 and

to assess whether specific morphologies are specific to different groups of genes. To compare

these to the expected distribution of cells labelled for PV-associated genes, we used the

chi-square test for goodness of fit. Across all clusters, the proportions of genes are different

from the expected proportions shown in figure 36. In both S1 and V1, the associated genes more

readily identify morphologies of PV+ interneurons with smaller median cell sizes (Figs. 34B,

35B). PV-associated genes are more distributed across these clusters, whereas among clusters

with larger median cell size, specific genes account for large proportions of the cells labelled for
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PV-associated genes. Among the large and extra-large size divisions, cluster 9 was the only

cluster without a largely different distribution of genes than expected. In V1, similar to S1, most

of the PV-associated genes concentrate across the smaller size divisions. The medium and large

size divisions display greater restriction to a smaller subset of genes, with the largest proportion

of non-PV+ cells in V1 being labelled for Calb1 (p = 5.207e-09). Despite the greater

representation of our 13-gene panel across the smaller size divisions, our panel of 13 genes does

identify some larger cells among fewer of the genes, with the greatest proportions of cells being

labelled for Cacna2d3 in S1 or Calb1 in V1.
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Figure 34 - Characterizing morphology clusters for PV genes in S1 - (A) Morphology
phenotype heatmap for the morphology clusters determined for S1. Phenotypes are constructed
using the median z-score values for the top-weighted morphology features for each cluster, and
organized with a row-wise dendrogram. Cluster numbers reflect the progression of median cell
sizes (Cluster 1 : lowest median cell size , Cluster 13 : highest median cell size ). (B)
Proportions of cells labelled for the 13 genes in each morphology cluster. The proportions
were compared to the global proportion of cells labelled for each gene in the dataset. P-values
were determined using the chi-square test to assess goodness of fit.
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Figure 35 - Characterizing morphology clusters for PV+ genes in V1 . (A) Using the
top-weighted features, a morphology phenotype was constructed for each cluster and
organized by row-wise dendrograms. The clusters are ordered and numbered according to the
progressions of median sizes (Cluster 1 : lowest median cell size, Cluster 10: highest median
cell size ). The first branch point on the row-wise dendrogram separates features into size and
shape parameters. (B)The proportions of PV-associated genes are shown in pie charts for each
morphology cluster. Proportions are compared against the global proportion of cells for each
gene, p-values were determined using the chi-square test for goodness of fit .
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Figure 36 - Expected proportions of PV-associated genes for S1 and V1. Pie charts showing
the proportion of cells labelled for each PV-associated gene in (A) S1 and (B) V1. These are
the proportions of cells taken across the entire dataset of PV-associated genes for S1, and V1
respectively. These are the comparators used in the chi-square tests presented in figure 35.
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Figure 37 - Size divisions and shape motifs for PV+ gene morphology clusters in S1 .The
median z-scored values for the top-weighted size and shape parameters were clustered
separately using unsupervised hierarchical clustering (Ward.D2 method) to identify the groups
of clusters in S1 with similar sizes, and similar shape characteristics. Dendrograms showing
the grouping of morphology clusters into (A) four size divisions, and (B) three shape motifs.
The number of size divisions and shape motifs were determined using the elbow method.
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Figure 38 - Size divisions and shape motifs for PV+ gene morphology clusters in V1. The
median z-scored values for the top-weighted size and shape parameters were clustered
separately using unsupervised hierarchical clustering (Ward.D2 method) to identify the groups
of clusters in V1 with similar sizes, and similar shape characteristics. Dendrograms showing
the grouping of morphology clusters into (A) three size divisions, and (B) three shape motifs.
The number of size divisions and shape motifs were determined using the elbow method.
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To compare the laminar location of the different PV-associated gene in each morphology

cluster, we mapped the profiles for each gene in the morphology clusters (Figs. 39 & 40). We

only plotted data for genes where there were at least 10 cells in the morphology cluster labelled

for that gene. Among the small size divisions, in S1, PV+ cells display a unimodal, infragranular

peak across layers 5 and 6A. The medium and larger size divisions display a different

distribution with two peaks. A smaller peak across the supragranular and granular layers

(L2/3-4), and a larger peak across infragranular data. In V1, PV+ cells follow a similar

distribution across layers among small and medium size divisions, the large size division

displays a sustained, more uniform density of cells across the layers. These findings indicate that

different PV+ morphologies are found across different layers, which alludes to transcriptomic

differences among PV+ cells (Gouwens et al., 2019).

In both cortical areas, there is a greater representation of our panel of 13 genes across the

small size divisions along with the smaller end of the medium size division ( clusters 1-6 in S1

and V1). These distributions indicate a broad laminar distribution for these morphologies,

however within each of these clusters, the laminar distributions of individual genes are

separating across different groups of layers. For cluster 12 in S1, the laminar distribution of

Cacna2d3 overlaps with the infragranular peak of PV+ cells (Fig. 39). Whereas in cluster 8, the

distribution of PV+ cells and Cacna2d3+ cells appear out of phase with one another. In cluster

12, a subset of PV+ cells and Cacna2d3+ cells share a common morphology with comparable

laminar distributions. This would allude to Cacna2d3+ cells in cluster 12 being of a specific PV+

T-type that is not shared with the Cacna2d3+ cells in cluster 8.

In V1, among the large size divisions, there are fewer genes represented across individual

morphology clusters compared to small size divisions. This is consistent with what is seen in S1.

110

https://app.readcube.com/library/4ef805b0-9e97-4f96-8dc5-c5145fe009e0/all?uuid=13764494643125114&item_ids=4ef805b0-9e97-4f96-8dc5-c5145fe009e0:165f69fe-c5ae-461f-974c-9207fd46393b


M.Sc. Thesis - M. Panday; McMaster University - Neuroscience

However, among the large size division, we can see the lack of alignment between PV and

several of the associated genes. For example,in cluster 10, there is a low PV+ cell density across

the supragranular layers, where Calb1+ cell density is high (Fig. 40). This combination of

common morphology but lack of alignment with th PV+ laminar profile could suggest that the

Calb1+ cells identified in cluster 10 do not share the transcriptomic correlates of the PV+ cells

identified in the same cluster.

Notably, Etv1 was found across several morphology clusters, despite its characteristic

restriction to layer 5 (Figs. 39 & 40). This finding establishes that several cell morphologies can

exist among cells labelled for a single gene, and that for a single cortical layer, there is still a

distribution of cell morphologies that are present.

Together, these analyses of PV-associated cells highlight that cell morphology can add

another dimension to studying the diversity of PV+ cells. Our approach uncovers robust

morphological complexity, and establishes that subtle morphological differences for a

sufficiently large number of morphology parameters, for a sufficiently large number of cells, can

yield pronounced differences in size and shape that distinguish among classically homogeneous

cell classes.
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Figure 39 - Laminar profiles for PV-associated genes : genes by morphology cluster for S1.
In each morphology cluster, the Z-scored linear density profile was plotted along the standard
cortical depth for each gene. In each morphology cluster, curves were plotted for a gene if at
least 10 cells were labelled within a morphology cluster.
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Figure 40 - Laminar profiles for PV-associated genes : genes by morphology cluster for V1.
In each morphology cluster, the Z-scored linear density was plotted along the standard cortical
depth for each gene. In each morphology cluster, singe curves were plotted for a gene if at
least 10 cells were present within the morphology cluster.
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2.4 Discussion

Our approach is a novel data-driven framework to analyze cell morphologies. By

obtaining high-dimensional cell morphology data, our approach aligns analyses of

neuroanatomical data with approaches applied in single-cell transcriptomics studies. Our image

analysis procedure constructs a high-dimensional dataset that quantifies 97 morphometric

parameters per cell. We leverage unsupervised clustering and dimensionality reduction to cluster

cells based on patterns in their morphologies, and visualize these clusters in their

high-dimensional morphology space. Our morphology data extend beyond classic morphological

data in neuroanatomical studies, as we also quantify the shapes of single cells, and incorporate

shape information together with size in defining our morphology clusters. Our inclusion of

Zernike moments serve as an important shape parameter, as these moments capture complex

shape features, including aspects of cell geometry and symmetry (Pincus and Theriot, 2007).

Because of their invariance to scale and rotation, Zernike moments provide a basis to

consistently quantify the morphologies of PV+ interneuron cell bodies, capturing salient shape

features that differentiate among different groups of cells. Our use of the RSKC and denSNE

algorithms served as powerful ways to both define morphology clusters, but also interrogate the

relative importance and contribution of single morphometric features. RSKC is particularly

powerful for our study as feature weights identify which morphometric features most strongly

separate PV+ cells(Kondo et al., 2016). The weights were also important in characterizing the

aspects of cell shape that further distinguish among cells of similar size. We incorporated the

weights from RSKC into the denSNE algorithm, to visualize the clustering result but also how

these morphometric parameters organize cells in their high-dimensional space (Balsor et al.,

2021). By combining both high-dimensional data and an unsupervised cluster analysis approach,
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we provide a more nuanced, reproducible characterization of PV+ interneuron morphologies, by

quantifying aspects of cell morphology that have remained beyond the reach of classic,

morphological analyses(Lingley et al., 2018; Bjerke et al., 2021). Our approach bridges classical

neuroanatomical techniques, with modern data-driven analyses. This novel, and accessible

approach allows us to construct comparable data structures and apply a highly sensitive approach

to characterize single PV+ interneuron morphologies in mouse S1 and V1.

However, despite these strengths, there are important limitations that must be considered.

All of the mice in the Allen Mouse ISH Database are male, so we cannot comment on potential

sex differences in PV+ cell morphology. Moreover, our study compares between S1 and V1, and

does not account for the presence for additional PV+ cell morphologies that could be present in

other cortical or subcortical areas. These additional morphologies, which were not profiled in

this analysis, may differ from the morphologies we identified here. As a result, our analysis does

not necessarily represent a complete repertoire of brain-wide PV+ interneuron morphologies. In

our integrated data analysis, we combined data from ISH and whole-cell fill. Despite the overlap

of size distributions for cells obtained from either labelling technique, the filled cells we

analysed did not represent the full range of sizes identified in the ISH data, as they mostly fell

into clusters with larger median cell sizes. This is due in part to the low number of filled cells

(n=36), and that small cells are more difficult to fill and record from (Ritzau-Jost et al., 2021) .

Consequently, it is unknown for the data obtained from the Allen Cell Types Database, whether

smaller cells are underrepresented due to technical challenges with the whole-cell fills, or

whether tissue processing steps affect the apparent sizes of cells across the full size range.
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Investigating cell morphology has garnered attention, especially in other cell types where

dynamic morphological change is associated with changes in functional state (Nimmerjahn et al.,

2005). For example, in microglia, brain-resident macrophages, morphological changes associated

with Alzheimer’s disease have been shown to follow sexually dimorphic patterns, with different

disease-related changes occurring in females than males (Guillot-Sestier et al., 2021).

Additionally, in animal models of Alzheimer's disease, microglial morphological change has

been shown to occur earlier in females (Colombo et al., 2022). In terms of our cluster analysis,

our results provide intriguing insights into the subtle morphological differences among PV+

cells, however, it remains unknown at this time whether there are direct functional differences

associated with the different morphologies we have uncovered.

We also explored the relationship between gene expression and cell morphology, to

interrogate how single cell morphologies recapitulate the transcriptomic patterns seen among

PV+ interneurons. It is important to recognize that our gene panel is limited as this panel does

not represent the entire panel of marker genes associated with PV+ transcriptomic types (Tasic et

al., 2016), these were the marker genes with good quality available in the Allen Institute mouse

ISH database. As we found our 13-gene panel was more represented among smaller cell

morphologies, an expanded gene panel for more of the marker genes stated across major cell

type taxonomy studies would be needed to canvas the range of morphological types we have

discovered. We found similar gene distributions in S1 and V1, and this suggests alignment with

our first analysis of cell morphologies of PV+ interneurons from S1 and V1 together. This has

identified no specific morphologies that distinguish V1 from S1, but that common morphologies

occur in different proportions. As V1 has been identified as transcriptomically distinct from other

cortical areas (Jorstad et al., 2023), our initial results suggest that there may be morphological
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differences that distinguish V1 from other cortical areas. Although we did not observe distinct

morphologies between S1 and V1, it is possible that either the distribution of PV+ morphological

types in V1 differs from other cortical areas, or that certain morphologies outside of V1 are also

present. This is an important avenue that our approach can assess directly, by analyzing data

from several cortical areas, and comparing the distributions of different cell morphologies that

are identified across other cortical areas. Capturing the distributions of cell morphologies across

several cortical areas would also further align our approach with the brain-wide approaches used

to profile the transcriptomic landscapes of several brain areas (Langlieb et al., 2023; Zhang et al.,

2023).

Quantifying and analyzing cell morphologies has been established as a powerful

quantitative tool for understanding how cell structures change in response to complex biological

processes like aging, disease and dysfunction. cell morphology studies have revealed novel

morphological biomarkers that serve as the structural correlates of age, sex, and disease-specific

morphology patterns for different cell types (Prasad and Alizadeh, 2019; Hagemann et al., 2021;

Colombo et al., 2022; Kamat et al., 2024). Assessments of morphological change of PV+ cells

in disease needs to be further elucidated as current approaches have emphasised the dendritic

arbour together with the spatial networks of axonal fibres (DeFelipe, 1999; Pierri et al., 1999;

Song et al., 2023) , with less attention given to the size and shape of the cell body. Given the cell

body’s role in coordinating cellular energy and the high metabolic demand of fast-spiking PV+

interneurons, altered cell body morphologies could underscore the heightened vulnerabilities of

PV+ interneurons in neuropsychiatric disorders where cell damage due to metabolic stress

impacting PV+ interneurons (Whittaker et al., 2011; Steullet et al., 2017; Ruden et al., 2021).

Our approach responds to the pertinent need for a more comprehensive approach to capturing
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the morphological diversity of PV+ cells. Our ability to resolve and quantify the morphological

patterns among the cell body is a powerful additional insight into PV+ interneuron structure and

provides novel structural dimensions to explore in disease states. Our approach provides novel

insight into the structural changes of PV+ cells across all major neuronal compartments, and has

the potential to enrich our understanding of how morphological changes impact PV+ cell

dysfunction in disease.

Taken together, we have developed and applied a novel approach to quantitative

neuroanatomy that readily obtains high-dimensional, cell morphology data for large numbers of

individual cells. The datasets we can obtain are comparable in structure and dimension to those

generated in single-cell RNA sequencing studies and offer a powerful new platform to explore

cell morphology at a scale that was previously unattainable from classic neuroanatomical image

data. Classic approaches to defining cell morphologies rely heavily on expert annotations, which

are largely descriptive, and often labor-intensive. Consequently, this approach becomes

time-intensive and impractical if applied to larger datasets, in addition to issues with

reproducibility across datasets. Our consistent image processing steps, automated morphology

quantification, and unsupervised clustering techniques overcomes the subjectivity and

time-intensity previously associated with analyses of cell morphology. Our use of open software

platforms also helps make large-scale, high-throughput workflows accessible to a wider range of

researchers. In sum, our analytical framework is a powerful tool to unlock cell morphologies at

an unprecedented scale, with the potential to afford novel insight into the dynamic changes in

cell morphology during development, disease progression, or in response to novel treatments.
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Chapter 3. General Discussion
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Aligning Single-Cell Transcriptomics and Morphology Data

Our approach to characterizing the cell morphologies of PV+ interneurons leverages a data

structure comparable to those obtained in single-cell transcriptomics studies. With sufficiently

many features for a comparably large number of cells, we achieve a suitably extensive

morphological profile that describes single cell body morphologies in a comprehensive manner.

We can recapitulate subtle morphological differences that identify morphological variation

among single cells separating them into distinct morphological cell types. Whereas single-cell

transcriptomic classifications assign T-type classifications by differences in gene expression

(Haque et al., 2017), we define morphological types in terms of differences in single

morphometric features.

Compared to classic approaches where cell morphologies are described entirely by an observer,

and subsequently grouped based on qualitative observations (O’Kusky and Colonnier, 1982a,

1982b; Cajal, 1995) , our approach treats cell morphology in an unbiased manner, defining

empirical morphological types from quantitative morphology data, using an unsupervised

clustering algorithm. Those morphological types can be defined along gradients of individual

morphometric features. These served as organizing principles across the high-dimensional cell

morphology space, where common shape motifs repeat across a range of sizes. This approach is

a fundamental change to the ways in which cell morphologies are quantified and subsequently

analyzed, to better reflect and capture the morphological diversity of individual cells.

The advent of single-cell transcriptomics has identified diverse transcriptomic landscapes across

the brain, revealing area-specific cell type taxonomies (Siletti et al., 2023). In the human brain,
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V1 was found to have a greater number of excitatory and inhibitory neuron types compared to

other cortical areas, suggesting that this increased molecular diversity gives rise to more

specialized cell types that are required for processing visual information (Jorstad et al., 2023).

Conversely, cell morphologies have not been characterized so widely across the brain; with

emergent studies focusing intently on microglia (Colombo et al., 2022; Kim et al., 2024).

Whereas our approach does not define specific morphologies that are unique to either V1 or S1,

our analysis did find morphologies in greater proportion in either V1 or S1, with the largest cells

found more in S1. We would need to validate whether these area-biased morphologies are

defined across other cortical areas first, to determine whether single cell morphologies can

distinguish cortical areas.

Cell morphologies, from recent years, have focused intently on the structures of dendritic and

axonal arbors, which help define the circuits neurons form, in terms of their connection and

projection patterns(Peng et al., 2021). These structures have been described using

high-dimensional data, and are more commonly used when integrating morphology with other

single-cell data modalities (e.g., transcriptomics, or electrophysiology)(Gouwens et al., 2019,

2020; Lee et al., 2021; Chartrand et al., 2023). These multimodal approaches integrate structural

and functional properties of single cells to define cell types that capture more diversity across

several levels of organization. However, these studies often overlook soma morphologies,

describing neuronal morphology in terms of only their arbors. This presents a unique problem for

PV+ interneurons, where known, classically defined morphologies (i.e., basket and chandelier

cells), possess different cell body morphologies. Together with elaborate descriptions of the

synaptic contacts arranged around these cells, differences in cell body appearance played a large
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role in defining these cells without complete visualization of their arbour structures (Lewis and

Lund, 1990; Ribak et al., 1990). With our quantitative approach, a defined, morphological

phenotype for PV+ basket and chandelier cell morphologies could be elucidated to identify

potential basket and chandelier cells empirically, from classic neuroanatomical techniques. This

can serve as a powerful approach to readily characterize potential morphological subtypes and

map their spatial distributions across the cortical layers.

In sum, our approach for cell morphology analysis can capture morphological diversity in a

manner consistent with the way we capture molecular diversity among single cells. We overcome

the “classic” descriptive approaches in analyzing neuroanatomical data, by leveraging subtle, but

meaningful morphometric parameters that capture several aspects of cell body size and shape.

Importantly, this work identifies tremendous morphological complexity among PV+ interneurons

that was previously indiscernible from analyses of classic neuroanatomical data. In turn, this

work also presents PV+ interneurons in terms of their morphological complexity, overturning the

long-held impression of homogeneity among PV+ interneurons when labelled in classic

neuroanatomy (brederode et al., 1991). Consequently, this would suggest we can use cell

morphologies in a comparable manner to single-cell transcriptomics; to understand and

reconcile cellular diversity in complex processes, such as development, aging, disease.

Leveraging a data-driven, morphology-based approach would probe the structural correlates of

these complex processes, and afford a more nuanced understanding of single cell morphologies.
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Host Factors can Influence Cell Morphology Features

Our approach provides a foundation for a more nuanced understanding of morphological

differences at the level of single cells. This is a valuable extension of morphological analyses of

single-cell data, which have readily been applied to understand morphological changes in aging

and disease. As in neuroanatomy, histopathological investigations leverage limited sets of

morphology features to define the morphology of healthy and diseased cells (Gil et al., 2002).

Whereas this serves as a gold standard, the need for sensitive computational approaches to

analyzing cell morphologies was also expressed (Gil et al., 2002; Carpenter et al., 2006). Our

approach helps address this need, by providing a sensitive, data-driven framework to analyzing

high-dimensional morphology data.

We were able to define subtle shape differences in terms of single features, which provides a

precise, measurable series of parameters that quantify major differences in single cell

morphology. We achieved this through the deliberate use of the RSKC algorithm. RSKC

provides feature weights, which afford insight into the relative contributions of the different

morphology features used in unsupervised clustering (Kondo et al., 2016; Balsor et al., 2021).

Our approach was able to identify subtle shape differences that distinguish among cells of similar

size. From the weights obtained by RSKC, we found these subtle shape differences are

principally driven by differences in eccentricity, and low order Zernike Moments. These

differences contribute to the elaboration of shape motifs that repeat across the increasing sizes.

Similarly, work by Kamat and colleagues identified cell morphologies associated with both

senescence and recovery following exposure to pharmacological interventions (Kamat et al.,

2024) . Whereas our work profiled the morphologies of PV+ interneurons from control animals
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at a single age, work by Kamat and colleagues lends strong support to the possibility of

identifying a core set of morphological parameters that define representative morphological

changes among different groups of cells. Our work agrees with their central finding that

high-dimensional cell morphologies capture subtle differences that are not readily discernible by

eye (2024).

Taken together, the influence of host factors on single cell morphologies provides novel, nuanced

insights into understanding aging, and disease states of single cells. Approaches leveraging

high-dimensional cell morphology features uncover robust morphological differences in terms of

age, disease state, or sex. These differences indicate cell morphology can capture biologically

salient and relevant information about the functional states of single cells. Investigating the

influence of host factors on PV+ interneurons is necessary to better understand their roles in

development and disease. As PV+ interneurons have already been implicated in stress

responses (Woodward and Coutellier, 2021), addiction (Fabian et al., 2024), and

neurodegenerative disorders (Terstege and Epp, 2023) in a sexually dimorphic fashion. These sex

differences in how PV+ interneurons are implicated in various diseases strongly motivates the

application of our approach to characterizing sex differences in PV+ interneurons. As this is still

largely unstudied among neuronal populations, with most of the work performed in microglia

(Colombo et al., 2022; Guillot-Sestier et al., 2021).

Importantly, documented sex differences for PV+ interneurons are largely characterized at the

cell-population or physiological level, overlooking how differences in single cell morphologies
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differ from control states, and whether representative morphologies in PV+ interneurons are

indicative of disease across various different disease states (Woodward and Coutellier, 2021;

Terstege and Epp, 2023). In sum, single cell morphologies can capture salient features associated

with aging and disease, which can enrich our understanding of PV+ interneuron involvement in

the pathophysiology of several brain disorders. At a single-cell level, PV+ interneuron

morphologies may recapitulate important characteristics that reflect the influence of specific host

factors, or the progression of specific disease states (Hagemann et al., 2021; Kamat et al., 2024).

These insights will help provide a more unified, holistic understanding of PV+ interneuron

involvements in aging and across a range of brain disorders.

Conclusions and Future Research Directions

Our approach to characterizing cell morphologies of PV+ interneurons raises important open

questions that stem from both insights into single-cell transcriptomics, and emerging studies of

cell morphologies. By aligning the two modalities, it would be of value to pair the two modalities

to assess how high-dimensional morphology features overlap with transcriptomic approaches to

better ground the transcriptomic classifications in visible cell morphometric features. There has

been recent work exploring how automated cell reconstructions for populations of

transcriptomically diverse cell types, can be used to connect morphological properties with

specific patterns of gene expression. However, despite being able to manually segment and

identify the soma, this work focuses intently on arbour morphology. (Gliko et al., 2024). The

approach leveraged in the work by Gliko and colleagues highlights the potential to integrate
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soma morphologies with the morphologies of other cellular compartments. Our pipeline can

serve as a platform to directly quantify and connect the soma and dendritic morphologies of

filled cells from different transcriptomic types, providing a more direct connection between the

soma and arbour morphologies for different transcriptomic types.

Our approach provides robust morphological profiles of the cell body, in a manner consistent

with transcriptomic profiles of single cells (Haque et al., 2017; Chen et al., 2019). Second,

complex processes like sensory cortical development occur along protracted timescales (Stiles

and Jernigan, 2010; Rupert and Shea, 2022), and characterizing morphological changes at the

level of single cells would afford insight into our understanding of typical and disordered

development and the complement of morphologies that develop, together with the spatial

arrangement of cell morphologies in the cortex. Third, because complex processes are shaped by

the influence of host factors, for PV+ interneurons, there is value in characterizing sex

differences in cell morphology. This would help characterize sexually dimorphic patterns of

morphological change among PV+ interneurons or other cell types.

This work establishes cell morphologies as a critical component in reconciling the diversity of

PV+ interneurons in the brain. The elaboration of distinct morphological types underscores

additional complexity that has been previously overlooked in classic neuroanatomical data. By

mirroring the data structure and analysis procedures used in single-cell transcriptomics datasets,

our approach aligns analyses of cell morphology with current approaches to capture the diversity

in single-cell transcriptomics. Our approach modernizes the classic practice of defining

morphological cell types, with robust morphology quantification and a suitable high-dimensional
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analysis framework..By leveraging high-dimensional morphology data, we define morphological

cell types in a quantitative, unsupervised manner, in lieu of using elaborate qualitative

descriptions to characterize cell shape. Our approach provides a novel, and robust approach to

characterizing cell morphologies that elevate the power of classical techniques, together with the

depth of knowledge that can be gained from classic anatomical data.
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