

GEI

Cincinnati Children's

Mobile Brain/Body Imaging of three-ball juggling:

Dynamics of neurobehavioral interactions between motor execution and perception

John R Iversen^{1,6*}, Hyeonseok Kim¹, Makoto Miyakoshi^{1,7}, Hiroyuki Kambara³, Hirokazu Tanaka⁴, Takahiro Kagawa⁵, Makoto Sato², Scott Makeig¹, and Natsue Yoshimura²

1: Swartz Center for Computational Neuroscience, UC San Diego; 2: Tokyo Institute of Technology; 3: Tokyo Polytechnic University; 4: Tokyo City University; 5: Aichi Insitute of Technology; 6: Department of Psychology, Neuroscience & Behaviour, McMaster University; 7: Cincinnati Children's Hospital Medical Center. *jiversen@mcmaster.ca

BCS2011716

Background

CITY UNIV.

АІТ

Brain: Motor, Parietal and Occiptal ICs encode juggling events

Towards complex skill learning: Juggling

Juggling is a tractable model of a complex motor skill, with a history of behavioral study from the 1970s^{a,b} and more recent demonstrations of neurostructural changes during its learning^c. It extends traditional computational neuroscience approaches to motor skill learning.

Aims

Aim 1: Develop a neurobiological model of juggling skill

Quantify and discover brain correlates of juggling skill.

Somatomotor, Parietal and Occiptal ICs timed to key events of juggling cycle: Catch, Throw, Ball Apex. Prominent 70Hz narrow-band activity previously observed in rhythmic dystonia^h.

Aim 2: Determine the effect of slow-tempo training on performance, offline gain and the brain

Novel visuo-haptic VR to simulate juggling under reduced gravity.

Behavior

Task

3-ball Cascade Juggling 5 x 10 minute blocks **Subjects**

N=14 amateur jugglers

toward toward Lateral [n

Brain + Behavior: Ball Apex Perturbations

Ball apex is a critical perceptual event in the control of juggling^{i,j}. We examine how the apex position is encoded in parietal components, revealing the natural coordinates of ball position are measured symmetrically about the midline.

Aim 2: VR Training

Visuo-haptic VR training at simulated reduced gravity speeds learning

MoBI Recording

A

[⊲] Apex

• Throw

Catch

Loading

EEG (205 ch 512 Hz) Mocap (9ch, 480 Hz) Video (60 Hz) Lab Streaming Layer sync New ASR algorithm*

Reconstructed ball and hand trajectories with throw, catch and apex events

Cross-trial consistency marks highest performers

Timing Stability

Discussion **Brain + Behavior Dynamics**

Interesting aspects of skill may lie not on mean, which is highly constrained by juggling, but on within-trial and between-trial variation. Trial-trial and cycle-cycle analysis has examined in finer grain how brain supports behavioral response.

Motor control Targets

Timing of ball throws becomes increasingly precise with skill. Suggests ball throw is a proactive spatiotempora goal, while catch events are more reactive to ball trajectory.

Performance correlates with temporal precision of throw timing. Catch timing absorbs cycle variance.

Hand position and phase temporal structure

PC1 PC3

Interpretation: PC1 (60% variance): Positive, Catch > Throw PC2 (30% variance): Contrst Left catch vs. Right catch PC3 (7% variance): Contrasts Throw vs Catch

Three distinct modes of motor control? Note: A similar pattern is seen *across* all skill levels

Behavioral correlation modes

PCA decomposition of fluctuations in hand position at throw and catch suggest three orthogonal processes--next step: search in brain to see if these dissociate.

Encoding of Ball Apex Perturbations

Spatial perturbations of ball apex position were reliably encoded as variations in ERSP power in the 10 – 25 Hz range. The sign of the perturbation indicates that the coordinates for lateral perturbations is represented in the brain with body mid-line symmetry.

Slow-tempo Training

Training in slow-motion improves learning.

^a Shannon CE. (1993). Scientific aspects of juggling, Claude Elwood Shannon: Collected Papers, pp. 850-864, IEEE Press. ^b Beek PJ (1989) Timing and Phase Locking in Cascade Juggling. Ecological Psychology 1:55–96.

^cBerchicci M, Quinzi F, Dainese A, Di Russo F (2017) Time-source of neural plasticity in complex bimanual coordinative tasks: Juggling. Behav Brain Res 328:87–94 ^d Rissling AJ, Miyakoshi M, Sugar CA, Braff DL, Makeig SD, Light GA (2014) Cortical substrates and functional correlates of auditory deviance processing deficits in schizophrenia. Neuroim-

age Clin 6:424–37.

^e Mullen TR, Kothe CAE, Chi YM, Ojeda A, Kerth T, Makeig S, Jung TP (2015) Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Transactions on Biomedical Engineering 62: 2553-2567.

^fPion-Tonachini L, Kreutz-Delgado K, Makeig S (2019) ICLabel: An automated electroencephalographic independent component classifier, dataset, and website. Neuroimage 198, 181–197. ⁹ Makeig SD, Gramann K, Jung T-P, Sejnowski TJ, Poizner H (2009) Linking brain, mind and behavior. Int J Psychophysiol 73:95–100.

^h Miocinovic S, Swann NC, de Hemptinne C, Miller A, Ostrem JL, Starr PA (2018) Parkinsonism and Related Disorders. Parkinsonism & Related Disorders 49:104–5. ⁱvan Santvoord A (Tony)A. M, Beek PJ. Spatiotemporal variability in cascade juggling (1996). Acta Psychol (Amst). 91(2):131–51.

^jHashizume K, Matsuo T. (2004) Temporal and spatial factors reflecting performance improvement during learning three-ball cascade juggling. Hum Mov Sci. 23(2):207–33. * Kim, Iversen, Chang, Kothe & Miyakoshi. (in prep) Juggler's ASR: Artifact subspace reconstruction using order statistics to correct periodical artifacts with short intervals.

Video

Presentation

