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Lay Abstract

This thesis discusses magnetic monopoles and dyons – hypothetical particles carrying non-zero mag-

netic charge – which have long been thought to exist but have thus far proved elusive in experiments.

These particles are generally predicted by a class of theories that could very well describe physics

at energies beyond the reach of modern-day accelerators. Monopoles and dyons are rare examples

of high-energy predictions that could be tested experimentally, since they catalyze certain reactions

that were naively expected to proceed with rates suppressed by the large monopole or dyon mass. In

this thesis, we explain how the phenomenon of monopole and dyon catalysis can be understood from

the perspective of effective field theory. We further lay the groundwork for classifying the dominant

low-energy interactions of these hypothetical particles with the known elementary particles, which

could be used to inform future experiments.
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Abstract

This thesis uses the framework of point-particle effective field theory (PPEFT) to describe the in-

teractions of magnetic monopoles and dyons with low-energy relativistic fermions. Our main goal in

doing so is to reconcile the apparent inconsistency between the decoupling principle – which states

that short-distance physics decouples from long-distance observables – and the famous observation

that monopole-fermion (or dyon-fermion) scattering need not be suppressed by the heavy monopole

or dyon mass. We further use this effective field theory description to explore the long-distance

complications associated with polarizing the fermionic vacuum exterior to a dyon and show in some

circumstances how our methods can simplify calculations of low-energy fermion-dyon scattering in

their presence. We propose an effective Hamiltonian governing how dyon excitations respond to

fermion scattering in terms of a time-dependent vacuum angle and outline open questions remain-

ing in its microscopic derivation. Although we predominantly focus on the simplest examples of

monopole and dyon solutions, our methods lay the foundation for describing how more realistic

monopoles and dyons – those arising in Grand Unified Theories – couple to Standard Model fields.
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Notation
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Chapter 1

Introduction

Magnetic monopoles boast a rich and extensive history in physics. Remarkably, the idea that these

hypothetical particles exist has proved so appealing that they have been studied for close to a

century, despite a lack of observational evidence.

Interest in this topic was first sparked by Dirac [2] who showed that some monopoles – those

whose magnetic charges qM satisfy the relation 2qe qM ∈ Z, where qe is any allowed electric charge

– can be consistently described in quantum theory. The condition imposed on qM , known as the

Dirac quantization condition, suggests a surprising solution to the problem of why observed electric

charges are quantized: If a single magnetic monopole exists in nature, all electric charges are forced

to be integer multiples of an elementary unit1. This realization, along with its implications for the

duality between electricity and magnetism [3–6], made for a compelling case in favour of monopoles.

The modern perspective is that electric charge quantization likely has a different origin. One

popular potential explanation of this phenomenon is that it is a consequence of the unification of the

electromagnetic, weak and strong forces at high energies. To understand where this idea comes from

and how it relates to monopoles, we first consider the low-energy (or large-distance) limit, in which

fundamental interactions are well understood. At energies below2 ∼ 246 GeV, all known interactions

between subatomic particles with the exception of gravity are mediated by the electromagnetic, weak

1A monopole of magnetic charge qM = (2e)−1 could explain why most observed electric charges are integer
multiples of the electron charge, −e. The only known exceptions to this are quarks, whose charges are nonetheless
consistent with a generalized version of the Dirac quantization condition which we discuss later.

2Or equivalently for distances larger than ∼ 10−16 cm.
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and strong forces and can be described within the Standard Model of particle physics (see e.g. [7]

for a review). The Standard Model (SM) builds on the already established theories of quantum

electrodynamics and Fermi’s theory of weak interactions and has correctly predicted the existence

and properties of several new particles (such as the W, Z and Higgs bosons and the top and charm

quarks), as well as the form of weak neutral current interactions. Practically all particle physics

experimental data agrees with this theory3, which makes it tremendously successful [9].

Nevertheless, the Standard Model is likely not a comprehensive theory of non-gravitational

fundamental interactions as several of its features appear to be fairly arbitrary. For instance,

it describes the electroweak and strong interactions as a gauge theory governed by the group

SUc(3)×SUL(2)×UY (1) but offers no explanation for the complicated form of this group. Some of

the Model’s other drawbacks are that it depends on nineteen free parameters, which is considered

excessively large for a fundamental theory, and that it does not explain the observed baryon asym-

metry in nature [10] or the quantization of electric charge4. These (and other) reasons have led to

the belief that the Standard Model is an effective field theory (EFT) [11–13] (see [14] for a review

of EFTs) that is the low-energy limit of some other, more fundamental theory.

This ‘new’ theory is generally expected to have a larger symmetry group than the Standard Model

at high energies since the presence of additional symmetries could constrain some of the Model’s

arbitrary features [15]. Although there is no consensus on what the appropriate high-energy theory

should be, a promising set of candidates can be constructed by taking an idea already used in

the Standard Model to its natural limit. The idea in question is the mechanism of spontaneous

symmetry breaking [16–18], which explains how electromagnetism arises in the Standard Model,

but could equally be used to explain how the gauge group SUc(3) × SUL(2) × UY (1) is obtained

from a larger group G, which unifies all three of the SM interactions. Theories in which this type

of unification occurs are called Grand Unified Theories (GUTs) [19, 20], and their supersymmetric

variants are currently believed to be the most likely candidates for describing beyond-SM physics

[9]. In addition to explaining the origin of the SM gauge group, GUTs often propose solutions to

some other unexplained aspects of the Standard Model. In particular, if the GUT gauge group G

3The observed phenomenon of neutrino oscillations [8] is not consistent with the usual formulation of the Standard
Model. This does not pose a significant problem, however, since neutrino masses and so also neutrino oscillations can
be accounted for by minimal extensions to the theory.

4Under certain assumptions, charge quantization can be explained by the cancellation of anomalies in the SM.

2
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is simple, electric charge is guaranteed to be quantized since the generators of G, and so also the

electric charge operator, will have discrete eigenvalues [21].

The arguments of the above paragraph pose a problem since they appear to undermine our

initial motivation for studying magnetic monopoles. Fortunately, it turns out that the very same

conditions that lead to the quantization of electric charge also imply the existence of magnetic

monopoles [22, 23]. Monopoles as well as dyons – particles which carry both electric and magnetic

charge – arise in GUTs as stable, static, finite-energy solutions to the GUT field equations [24, 25]

(see [26–28] for reviews). These particles are generally expected to be very small and superheavy,

with a core size of order R ∼ m−1
g where mg ∼ 1014 GeV is the unification scale5 [29], and masses

of order M ∼ 4πmg/g
2, where g is the GUT gauge coupling. Since modern-day accelerators can

only reach energies of up to 104 GeV, producing GUT monopoles and dyons in collider experiments

appears to be next to impossible.

The huge difference in magnitude between the minimum energy of a monopole and accessible

energies in modern-day experiments presents a significant problem for monopole searches. In a

scenario with such a large hierarchy of scales, the decoupling principle – the statement that very

little needs to be known about short-distance physics in order to calculate long-distance observables

– implies that the interactions between the heavy and light degrees of freedom are highly suppressed

by the heavy scale [30]. This suggests that the usual difficulties encountered when testing new

predictions of high-energy theories apply in the case of monopoles as well, leaving us with little hope

of being able to detect them. Remarkably, there is good reason to believe that this expectation fails

for monopoles and dyons. As shown by Rubakov and Callan [31, 32], monopole-fermion scattering is

not necessarily suppressed by the GUT scale and can instead proceed with strong-interaction cross

sections. This observation suggests that monopoles and dyons could catalyze proton or nucleon decay

at strong-interaction rates, since their interactions with fermions generally violate the conservation

of baryon number6.

For this reason, monopole-fermion (and dyon-fermion) scattering is often said to violate the

5The GUT scale estimate in [29] relies on the desert hypothesis i.e. the assumption that no new physics appears
between the electroweak and GUT scales, with the potential exception of GUT multiplets containing only superheavy
m ∼ ΛGUT particles or containing only particles with masses of order m ∼ 10 GeV. An even higher value of
∼ 1016 GeV is expected for supersymmetric GUTs [9].

6Baryon number is conserved in the Standard Model and this guarantees that the proton, being the lightest baryon,
is stable.

3
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decoupling principle. This would be extremely surprising if true since decoupling is thought to hold

generally in nature, as evidenced by examples across fields ranging from atomic to gravitational

physics. For instance, the energy levels of an electron in an atom depend on the nuclear mass and

charge but not on the details of how the nucleus is held together by the strong force; the structure

of atoms is largely irrelevant for describing the gravitational motion of planets and stars etc.

One of the objectives of this thesis is to show that the decoupling principle still holds in the case

of monopoles and dyons. We do this by constructing an effective field theory (the derivation of which

hinges on the validity of the decoupling principle) describing low-energy dyon-fermion interactions,

which successfully reproduces the relevant results from the literature.

The specific ‘flavour’ of effective field theory we use is called point-particle effective field theory

(PPEFT), which is adapted to situations in which a massive, small object interacts with particles

whose wavelengths are much larger than the point-like particle’s radius. PPEFT techniques [33–35]

have been tested extensively in applications for which answers are known by other methods, by

using it to describe the influence of finite nuclear size (and various nuclear moments) for atomic

energy levels [36–38], absorption by hot wires in atom traps [39] and to describe the gravitational

back-reaction of codimension-two branes in various dimensions [40, 41].

The goals of this thesis are as follows: (i) to resolve the apparent contradiction between the large

cross sections for fermion-monopole (and fermion-dyon) scattering and the decoupling principle,

(ii) to understand what sets monopoles and dyons apart from e.g. nuclei, which are described by

similar EFTs but which predict analogous cross sections that are suppressed by the relevant heavy

scale, (iii) to develop a formalism that can be used to classify the dominant interactions of a GUT

magnetic monopole with low-energy Standard Model fermions, so that contact can be made with

present and future experiments.

We wrap up the introduction with a short overview of the current status of monopole searches.

The supermassive GUT monopoles and dyons we discuss in this thesis could only have been pro-

duced in the early universe, as no present-day process is energetic enough to create them [26]. A

potential monopole detected on Earth would then necessarily have originated from cosmic rays and

can be measured either directly in the ray or indirectly if it binds to any matter. Several tech-

niques for detecting monopoles have been developed and these often make use of the monopoles’

4
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electromagnetic properties e.g. by attempting to measure the current a moving monopole induces

in a superconducting ring [42]. Alternatively - scintillators, gas chamber detectors and others can

be used to exploit the fact that monopoles lose electromagnetic energy at a much faster rate than

known particles. Other approaches also exist, such as those that look for evidence of the catalysis

of nucleon decay, as predicted by the Callan-Rubakov effect. While no detection of a monopole or

dyon has been confirmed to date7, searches are still ongoing at several experiments at the LHC, the

IceCube experiment and others (see for example [44, 45] and [9] for a recent review).

We now briefly introduce some relevant background related to magnetic monopoles, dyons as

well as effective field theory techniques before moving on to the main results.

1.1 Magnetic monopoles and dyons

Magnetic monopoles are particles that source a radial, Coulomb-like magnetic field of the form

BM =
qM
r2
r̂, (1.1.1)

where qM is the particle’s magnetic charge. At first glance, this magnetic field appears to be in-

consistent with the potential formulation of electrodynamics – and so also with quantum electro-

dynamics – since the definition of the magnetic field in terms of the vector potential, A, implies

∇ ·B = ∇ · (∇×A) = 0.

As pointed out by Dirac [2], the above argument does not rule out the existence of monopoles.

To see why, consider a vector potential of the form

AD =
qM(1− cos θ)

r sin θ
φ̂, (1.1.2)

also known as the Dirac potential, which corresponds to precisely the desired magnetic field BM

everywhere except the θ = π half-line, along which the vector potential diverges. A careful treatment

of the half-line singularity shows that it produces a magnetic field of its own, corresponding to the

field of an infinitesimally thin, never-ending solenoid for all z < 0. The total magnetic field is then

7A single candidate event of a monopole detection has been reported [43], but has not been reproduced since.

5
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given by

BD = BM + Bs =
qM
r2

r̂− 4πqM Θ(−z)δ(x)δ(y) (−ẑ), (1.1.3)

where Bs is the field of the string (or half-line). The Dirac potential avoids any inconsistency with

Maxwell’s equations since the flux of the half-line precisely cancels the flux of the monopole field

1

4π

∫
B · d2S = qM − qM = 0, (1.1.4)

but this was achieved by introducing a seemingly unphysical term in the magnetic field.

Thus far, the potential (1.1.2) does not appear to be very useful since it is both singular and

describes a semi-infinitely long and infinitesimally thin solenoid as opposed to a monopole. Both of

these problems would be resolved if the singular string were somehow unobservable and this would

be the case if its contribution to the Aharonov-Bohm phase [46] acquired by a particle of electric

charge qe traversing a closed path enclosing the string is a multiple of 2π. The Aharonov-Bohm

phase due to the string, ϑsA−B, must then be given by

ϑsA−B := qe

∫
R

Bs · d2S = −4π qe qM = 2πn, (1.1.5)

where R is the region enclosed by the path in question and n ∈ Z. This leads us to the famous

Dirac quantization condition:

2qe qM ∈ Z. (1.1.6)

An alternative prescription, due to Wu and Yang, avoids the singularity altogether at the expense of

introducing non-trivial topology into the problem [47]. This is done by defining the vector potential

separately in two overlapping coordinate patches:

A±D =
qM(±1− cos θ)

r sin θ
φ̂, (1.1.7)

where the labels ± refer to the two regions of space R±, defined as

R+ :
{

0 ≤ θ < π

2
+ δ, r > 0, 0 ≤ φ < 2π

}
, (1.1.8)

6
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PhD Thesis – S. Bogojević; McMaster University – Physics and Astronomy

as well as

R− :
{π

2
− δ < θ ≤ π, r > 0, 0 ≤ φ < 2π

}
, (1.1.9)

and the parameter δ satisfies 0 < δ ≤ π
2 and is otherwise arbitrary. In the overlapping region, the

vector potentials A±D must be equal, up to a gauge transformation. The gauge function corresponding

to the desired transformation is given by eiω(φ) = e2iqeqMφ, where qe is the minimal allowed electric

charge in the theory, as can be seen from

(A+
D)φ − (A−D )φ = − i

qer sin θ
e−iω(φ)∂φe

iω(φ) =
2qM
r sin θ

. (1.1.10)

The Dirac quantization condition again emerges in this alternative formulation by requiring the

gauge function eiω(φ) to be single-valued.

When working in the Wu-Yang formalism, the wave function of a particle in the monopole

background8 becomes a section as opposed to an ordinary function. This implies that the wave

function must be defined such that its explicit forms in the regions R+ and R−, which we denote

ψ+ and ψ− respectively, are related in the overlap region by a gauge transformation, given in this

instance by

ψ+(x) = e2iqψqMφψ−(x), for x ∈ R+ ∩R− (1.1.11)

where qψ is the particle electric charge.

Nonabelian gauge theory monopoles: An SU(2) toy model

The simplest example of a nonabelian gauge theory that admits magnetic monopole and dyon

solutions is the SU(2) Georgi-Glashow model [48]. Although the low-energy limit of this theory

disagrees with the Standard Model, it is nonetheless a useful starting point since GUT monopole

solutions can often be constructed by embedding the monopole solutions of this model into the GUT

gauge group.

The SU(2) Georgi-Glashow model is an SU(2) gauge theory coupled to a Higgs field in the

8Or more generally, any solution to the equation of motion of a particle in the background of a monopole or dyon.

7
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adjoint representation. This theory is described by the action

S = −
∫

d4x

[
1

4
F aµν F

µν
a +

1

2
DµΦaDµΦa −

µ2

2
Φa Φa +

λ

4
(Φa Φa)

2

]
, (1.1.12)

where the nonabelian field strength is F aµν = ∂µA
a
ν−∂νAaµ+e εabcAbµAcν and the covariant derivative

is given by (DµΦ)a = ∂µΦa + εabc eA
b
µ Φc. The gauge generators are defined in terms of the Pauli

matrices by Ta = 1
2τa and so satisfy the SU(2) commutation relation [Ta, Tb] = iεabcTc. The model’s

parameters λ, e and µ2 are all real and positive and the choice µ2 > 0 ensures the vacuum expectation

value wa := 〈Φa〉 satisfies w2 := wawa = µ2/λ 6= 0 so that the gauge symmetry is spontaneously

broken down to U(1).

With respect to the gauge field gauging rotations in e.g. the T3 direction, we see that the two

gauge bosons spanned by A1
µ and A2

µ have charge ±e, while the components of the adjoint Higgs

multiplet Φa similarly carry charges zero and ±e for this symmetry. The two charged gauge bosons

‘eat’ the two charged fields in Φa and by doing so acquire nonzero mass mg ' ew = βµ, where

β2 := e2/λ. The remaining spin-one particle is massless and so can be regarded as the ‘photon’

that gauges the unbroken U(1) symmetry. The uneaten physical scalar is also neutral under the

unbroken gauge symmetry and has mass ms '
√

2λw =
√

2µ.

The Julia-Zee dyon

The SU(2) Georgi-Glashow model predicts the existence of magnetic monopoles and dyons at the

classical level, as solutions to the model’s field equations. One such solution is the so-called Julia-Zee

dyon [24, 49, 47] which has the form

eAi = (r̂ × ~T )i

[
1−K(r)

r

]
, eA0 = r̂ · ~T J (r)

r
and eϕ = r̂ · ~T H(r)

r
, (1.1.13)

where the dimensionless functions K(r), H(r) and J (r) depend on r only through the combination

µr. These functions satisfy second-order coupled ordinary differential equations given explicitly

in [49] that depend on the other two parameters of the model, e and λ, only through the ratio

e2/λ = β2.

The integration constants are chosen to ensure boundedness at the origin — and so K → 1 and

8
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J ,H → 0 as r → 0. They also have a finite-energy falloff to the vacuum solution as r →∞, implying

the asymptotic behaviour

K(r)→ 0 , J (r)→ e(Q− vr) and H(r)→ hr as r →∞ , (1.1.14)

where h = ew = βµ and only one of Q or v is an independent parameter because one combination of

Q and v is a calculable function of β and µ. The approach to these asymptotic forms is exponential in

µr. For instance, the function K(r) behaves for large r as K(r) ∼ e−ar with a =
√
h2 − (ev)2, which

shows the solutions damp exponentially provided h > ev. The Julia-Zee solution then describes a

localized field configuration, in the sense that it differs appreciably from the vacuum solution only

inside a region of size R ∼ µ−1.

The stability of this field configuration is guaranteed by topological arguments [24, 50]. Specif-

ically, the large r form of the Higgs field defines a map from the sphere at spatial infinity, S2
∞, to

the sphere S2 := {ϕ : ϕaϕa = w2} in gauge space. Any such map is characterized by its winding

number, defined as

nw =
1

8πw3

∫
S2
∞

d2Si ε
ijkεabc ϕ

a ∂jϕ
b ∂kϕ

c, (1.1.15)

which counts the number of times the sphere S2 is covered after a single turn around S2
∞ and is

necessarily an integer. The winding number of a field configuration is a topological invariant – i.e.

it does not change under smooth deformations of the field – and this explains why the Julia-Zee

solution (for which nw = 1) does not decay to the vacuum of the theory (for which nw = 0).

As shown in [50], nw is related to the dyon’s magnetic charge through qM = nw/e. This is yet

another manifestation of the Dirac quantization condition, which we explicitly confirm is satisfied

by calculating qM later in this section.

The functions K(r),J (r) and H(r) must generally be determined numerically, but in the special

case where λ, e → 0 with β2 = e2/λ and µ fixed, these functions can be solved in closed form

[51]. In this Prasad-Sommerfield limit the solution that is regular at the origin and for which ϕaϕa
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approaches a constant9 at infinity is given explicitly by

K(r) =
cr

sinh(cr)
and J (r) = sinh$

[
1− cr coth(cr)

]
, (1.1.16)

as well as

H(r) = cosh$
[
cr coth(cr)− 1

]
, (1.1.17)

with $ an arbitrary real constant and c = βµ. Comparing with the large-r limit of J (r) shows that

v and Q are given in terms of these constants by ev = c sinh$ and eQ = sinh$ and so Q = v/c.

At any particular spacetime point the nonzero fields break the SU(2) gauge invariance down to a

U(1) subgroup, so just like for the vacuum the dyon preserves a U(1) symmetry and as a result one

of the gauge modes – the photon – remains precisely masses. For the dyon, the particular embedding

of the unbroken U(1) within SU(2) varies from place to place, as can be seen by the mixing of gauge

and spatial indices in (1.1.13). This makes it convenient to change gauge to a form for which the

massless gauge mode corresponds to the same gauge direction everywhere in spacetime.

If the asymptotic gauge field is chosen to point along the third direction in SU(2) space, the

required gauge transformation is

U(r) =
1√
2

[√
1− ẑ · r̂ +

i~τ · (r̂ × ẑ)√
1− ẑ · r̂

]
. (1.1.18)

This is a singular gauge transformation inasmuch as it introduces a previously non-existent singu-

larity into the asymptotic vector potential if it is performed everywhere. Because the singularity

is a gauge artefact we can remove it by following the Wu-Yang prescription [47], described below

equation (1.1.6).

That is, if the two overlapping regions R+ and R− are given by (1.1.8) and (1.1.9), we define the

gauge field in region R− using the gauge function U(r) while the gauge field in R+ is additionally

transformed using V (r) = eiφ τ3 . With this choice of gauge, the Julia-Zee dyon field configuration is

given by

eAa±i (r) =
1

r

[
±1− cos θ

sin θ
φ̂i δ

a
3 −K(r) ζai±

]
and eAa0(r) = −J (r)

r
δa3 , (1.1.19)

9When λ→ 0 it is no longer necessary to require H/r to approach the specific constant h as r →∞.
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as well as

eΦa(r) = −H(r)

r
δa3 . (1.1.20)

In the above, ζai± is defined through

ζi± :=
1

2
ζai±τa =

1

2

(
iθ̂i − φ̂i

)
e±iφτ+ −

1

2

(
iθ̂i + φ̂i

)
e∓iφτ−, (1.1.21)

and arises as the gauge transform of 1
2 r̂ × ~τ . Here the subscripts ± refer to the regions R± and τ±

are defined as usual by τ± := 1
2 (τ1 ± iτ2).

The asymptotic large-r form of the solution in this gauge makes its electromagnetic properties

explicit,

eAa±i → ±1− cos θ

r sin θ
φ̂i δ

a
3 and eAa0 →

(
ev − eQ

r

)
δa3 as r →∞ , (1.1.22)

since using this in Gauss’ law

qE =
1

4π

∫ 4π

0

E · r̂ d2S = Q and qM =
1

4π

∫ 4π

0

B · r̂ d2S =
1

e
, (1.1.23)

reveals it to be a dyon that carries magnetic charge qM = 1/e and electric charge qE = Q. Once

fermions in the fundamental representation are added to the theory (as in later chapters), the

Julia-Zee dyon manifestly satisfies the Dirac quantization condition 2qMqe ∈ Z, since the doublet

components have electric charge qe = ±e/2.

The parameter v is the electrostatic potential difference between the origin and infinity, which

in the general case is not independent of Q, with

ev = µ Z (β, eQ) , (1.1.24)

for a calculable order-unity function Z. (For instance in the Prasad-Sommerfield limit (1.1.16),

(1.1.17) we have Z = eQβ.) The monopole limit Q→ 0 corresponds to taking v → 0 so Z(β, 0) = 0.

Notice that the asymptotic form of the vector potential in this gauge, given by (1.1.22), exactly

matches the Wu-Yang potential (1.1.7), which shows that the monopole limit of the Julia-Zee solution
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is equivalent to the Dirac monopole at large distances from the origin.

The classical dyon mass is given by evaluating the energy of the classical solution:

M ' 4πβµ

e2
F (β, v/µ) (1.1.25)

where mg ' βµ = ew is the gauge boson mass, α = e2/4π is the fine-structure constant and F is an

explicitly calculable function that is order unity when e2 ∼ λ and v ∼ µ.

Solitons in quantum field theory

The Julia-Zee dyon is an example of a soliton: a solution to the classical field equations of a given

theory which is stable, static, localized and has finite energy (see e.g. [52] for a review). Soliton

field configurations share many of the properties we typically ascribe to particles, yet do not arise

in the same way as the elementary particles of a field theory. The implications of soliton solutions

for a quantum theory are well-understood in the semiclassical limit, which for the Georgi-Glashow

model corresponds to the case where the dimensionless couplings e, λ are both taken to be small10,

with β2 = e2/λ ∼ O(1). In this limit, the mass of the dyon satisfies

M ∼ O
(mg

α

)
, (1.1.26)

and is related to the dyon size R ∼ m−1
g by MR ∼ 4π/e2 � 1. The dyon becomes a nearly classical

object, since its Compton wavelength is much smaller than its radius.

The semiclassical limit of a field theory corresponds to the case where the fields are reasonably

well described by the soliton configuration, similarly to how a particle can have an approximately

classical position when it is in a state in which its position and momentum uncertainties can be

treated as small [52]. Because of this, it is convenient to expand the fields around the soliton

solution

Aaµ(x) = Aaµ(x) + δAaµ(x) and Φa(x) = ϕa(x) + δϕa(x), (1.1.27)

10The semiclassical expansion is formally an expansion in ~. Rescaling the fields in (1.1.12) by e−1 shows that every
appearance of ~ in e.g. a perturbatively calculated amplitude will be accompanied by a factor of e2. This means
that – in units where ~ = 1 – quantum corrections are suppressed in the small e2 limit. The rescaling also trades the
coupling constant λ for λ/e2 which implies the semiclassical approximation is only reliable for small λ, with β taken
to be fixed in the classical limit.
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PhD Thesis – S. Bogojević; McMaster University – Physics and Astronomy

where δAaµ(x) and δϕa(x) are fluctuations around the classical configuration. Before performing

this semiclassical expansion, one typically first separates out a subset of the field fluctuations cor-

responding to symmetry transformations that act non-trivially on the background solution. This

is done (for reasons we address later) by parametrizing the soliton solution with a set of collective

coordinates, so that this ‘special’ subset of field fluctuations is captured by variations in the collective

coordinates instead of δAaµ(x), δϕa(x). For the Julia-Zee dyon, the relevant symmetry transforma-

tions are translations and global gauge rotations in the unbroken U(1) direction and so the dyon

collective coordinates are just its center-of-mass position, y(t), and a charge degree of freedom, a(t).

These can be regarded as the special cases where Aaµ and Φa are obtained by transforming the dyon

by a time-dependent spatial translation or a time-dependent gauge rotation in the unbroken U(1)

gauge symmetry direction (generated by τ3 in the gauge (1.1.19)),

δAaµ(x) = yi∂iAaµ + ∂µy
iAai +

1

e
δa3 ∂µa− a εa3bAbµ and δϕa(x) = yi∂iϕ

a − a εa3bϕb, (1.1.28)

The parameters y(t) and a(t) become operators describing the dyon degrees of freedom upon quan-

tization.

The above arguments illustrate the fact that soliton solutions have particle counterparts in the

quantum theory when the semiclassical limit is applicable. In the remainder of this thesis we work

in this limit and so take e2, λ to be small, with β2 fixed.

Angular momentum in a monopole background

The spherical gauge used in equation (1.1.13) shows that the Julia-Zee dyon is not invariant under

general global gauge or spatial rotations, unless these are performed in unison. As a result, the

background dyon breaks the freedom to independently perform gauge and spatial rotations and the

angular momentum operator, which characterizes the transformation properties of a spin-~S particle

with respect to rotations, is given by

~J = ~L+ ~S + ~T , (1.1.29)
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where11 ~L = r × p is the usual orbital angular momentum and ~T is the gauge isospin. Defined

this way, the angular momentum operator is conserved and satisfies the expected algebra, [Ji, Jj ] =

iεijk Jk. In the abelian gauge of (1.1.19), the total angular momentum is instead given by

~J = r × (p− eA) + ~S − r̂ T3, (1.1.30)

where A is the spatial part of the gauge potential in (1.1.19), and the ‘extra’ term −r̂ T3 can be

interpreted as the angular momentum of the dyon-particle (or monopole-particle) electromagnetic

field.

Our primary interest lies in describing how dyons or monopoles interact with isodoublet fermions.

As we now show, the additional term in the definition of ~J in (1.1.29) or (1.1.30) implies that

isodoublet fermions have integer instead of half-integer angular momentum. Remarkably, a fermion

in a monopole/dyon background can then have zero total angular momentum and it is precisely

this partial wave that leads to many of the unexpected monopole properties we mention earlier. In

the case of an isodoublet fermion, ~T 2 and ~S2 both have eigenvalue 3
4 as appropriate for a spin-half

contribution to the total angular momentum. The usual rules for combining angular momenta show

that the combination ~S + ~T can either carry spin zero or spin one, and writing the eigenvalues of

~L2 and ~J2 as `(`+ 1) and j(j + 1) respectively, we see that j = 0 can be obtained by combining the

spin and ‘magnetic’ angular momentum with either of the two orbital angular momenta ` = 0, 1.

S-wave states i.e. states with vanishing total angular momentum are ‘special’ because they

experience no angular momentum barrier and so can reach the dyon core even at low energies. This

can be seen by rewriting the Dirac equation in the r →∞ limit as follows

γµ(∂µ − ieAµ)ψ

=

{
γ0

[
∂t − i

(
eQ

r
− ev

)
Tr

]
+ γr∂r −

i

r
γ ·
(
r̂ × (~L+ ~T )

)}
ψ (1.1.31)

=
1

r

{
γ0

[
∂t − i

(
eQ

r
− ev

)
Tr

]
+ γr∂r −

1

r

[
γr + iγ ·

(
r̂ × (~L+ ~T )

)]}
(rψ) = 0,

where γ := γiei and we work in the spherical gauge of (1.1.13) for convenience. The last term in the

11We denote the vectors ~L, ~S with arrows even though they act in physical space so that the notation is consistent
with that used for the gauge isospin, ~T .
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third line of this equation gives rise to the centrifugal barrier once the Dirac equation is written in a

Klein-Gordon like form. This term can be rewritten as12 [γr + iγ · (r̂× (~L+ ~T ))]/r = i(γ × r̂) · ~J/r,

which implies that the angular momentum barrier vanishes for S-wave states.

The absence of a centrifugal barrier allows for the possibility of dyon (or monopole)-mediated

catalysis wherein S-wave fermions scatter off the dyon at rates that are unsuppressed by the dyon’s

small size. This realization was made by Rubakov and Callan [31, 32] who independently showed that

the interactions of a monopole with massless S-wave fermions induce various fermionic condensates

– i.e. non-zero expectation values of fermion bilinear operators – which fall off as a power law

as one moves away from the dyon. Surprisingly, these condensates do not exhibit an exponential

suppression by the heavy scale, e−r/R, that is typical of correlation functions and this led to the

conclusion that the GUT scale need not always suppress low-energy observables. Although the lack

of a centrifugal barrier plays a key role, it is clearly not a sufficient condition for catalysis since e.g.

the scattering of a spinless particle off a nucleus is suppressed by the small nuclear size. We discuss

why these two cases are so different in chapter §2.

Grand Unified Theory monopoles and dyons

While realistic Grand Unified Theories generally involve additional complications compared to the

SU(2) Georgi-Glashow model, the monopole and dyon sectors of GUTs and the toy model share

many similarities. This is due to the fact that Grand Unified Theory dyons can be constructed by

embedding and slightly generalizing the Julia-Zee dyon into the GUT gauge group G.

One of the simplest examples of such GUT solutions is the Dokos-Tomaras dyon [53] which arises

12This can be shown by using the cyclic property of the triple product (when γ matrices aren’t interchanged) and

writing the spin operator as Si = − i
4
εijkγjγk = 1

2
γ5γ0γi, since γr can then be written as iγ ·(r̂× ~S) = −ir̂ ·(~S×γ) =

− i
2
γ5γ0r̂iεijkγ

jγk = γ5γ0γ5γ0r̂iγi = γr.
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in the SU(5) Georgi-Glashow model and is given by13

gAi(r) = (r̂ × ~t)i
[

1−K(r)

r

]
, (1.1.33)

gA0(r) = r̂ · ~t J (r)

r
+

1

r

J1(r) I2×2

J2(r) I2×2

−2 [J1(r) + J2(r)]

 ,

where g is the gauge coupling, In×n is an n by n unit matrix acting in a subset of SU(5) gauge

space, as well as

g%a(r) = G(r) δa5 , (1.1.34)

gϕ(r) = r̂ · ~t H(r)

r
+

1

r

H1(r) I2×2

H2(r) I2×2

−2 [H1(r) +H2(r)]

 ,

where % is the background field configuration of an additional Higgs field in the fundamental

representation, which is introduced to further break the Standard Model gauge group down to

SUc(3)× UEM(1) at low energies. In the above, ~t corresponds to the following embedding of SU(2)

generators into SU(5)

tk =
1

2


0

0
τk

0

 , (1.1.35)

where τk are again the Pauli matrices.

The Dokos-Tomaras solution must be bounded at the origin and this implies that K(r)→ 1 and

J ,Jα → 0, H,Hα → 0 as r → 0, where α = 1, 2. As we are interested in dyons with finite energy,

these functions must also approach the vacuum at large distances and so

K(r)→ 0 , J (r)→ e(Q− vr) and Jα(r)→ 0 as r →∞ , (1.1.36)

13In our conventions, the generators of SUc(3), SUL(2) and UY (1) are embedded into SU(5) as follows:

Λi =
1

2

(
λi

02×2

)
, Σj =

1

2

(
03×3

σj

)
and Y =

1
√

60

(
2 I3×3

−3 I2×2,

)
(1.1.32)

where In×n, 0n×n are n by n unit and zero matrices, respectively; i = 1, · · · 8, j = 1, · · · 3 and λi are the Gell-Mann
matrices, while σj are the Pauli matrices.

16

http://www.mcmaster.ca/
https://physics.mcmaster.ca/
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while the Higgs field configurations asymptotically satisfy

H1(r)→ hr , H2(r)→
(
ε− 1

2

)
hr

2
and H(r)→

(
ε− 5

2

)
hr as r →∞ , (1.1.37)

as well as G(r) → ν as r → ∞, where h/g and ν/g are related to the adjoint representation and

fundamental representation Higgs vevs14 and ε = O(ν/h) ∼ 10−14.

Notice that, apart from differences in their respective Higgs sectors, the Dokos-Tomaras dyon

is asymptotically equivalent to the Julia-Zee solution embedded into SU(5) using (1.1.35). This

particular embedding is chosen since the corresponding solution has the smallest possible magnetic

charge and so also the smallest mass. As in (1.1.19), the SU(5) dyon can be gauge rotated so that it

is asymptotically abelian and points along e.g. the t3 direction in gauge space. Since the embedding

we use acts in both the colour and electroweak sectors, the dyon gives rise to both ordinary and

colour electromagnetic charges. To see this explicitly, note that the generators of SUc(3)× UEM(1)

are given by

Λi =
1

2

(
λi

02×2

)
and TEM = −

√
1

24


I3×3

−3

0

 , (1.1.38)

where λi are the Gell-Mann matrices and 0n×n is an n by n zero matrix. The matrix t3 can be

expanded in terms of these generators as

t3 = −1

2

(√
8

3
TEM +

2√
3

Λ8

)
= −1

2

(
g

e
TEM +

2√
3

Λ8

)
, (1.1.39)

where the second equality uses the fact that the SU(5) gauge coupling g is related to the electro-

magnetic coupling through (g/e)2 = 8/3. Gauge transforming the solution with a generalization15

of (1.1.18) and using Gauss’ law as well as (1.1.39) then implies the dyon’s ‘ordinary’ electric and

14We determine the asymptotic behaviour of H,Hα by imposing that the Dokos-Tomaras solution asymptotically
tends to the vacuum, once gauge transformed to the ‘abelian’ gauge. The Higgs field vacuum expectation values are
g 〈ρ〉 = ν (0 0 0 0 1)T and g 〈Φ〉 = h diag

(
1, 1, 1,− 3

2
+ ε,− 3

2
− ε
)
.

15The relevant gauge function in the R− region is given by U(r) =

I2×2 √
1−ẑ·r̂

2
I2×2

1

+
√

2
1−ẑ·r̂ i

~t · (r̂× ẑ).
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PhD Thesis – S. Bogojević; McMaster University – Physics and Astronomy

magnetic charges are given by

qEME =
1

4π

∫ 4π

0

EEM · r̂ d2S = −Q
2

and qEMM =
1

4π

∫ 4π

0

BEM · r̂ d2S = − 1

2e
, (1.1.40)

while its colour electric and magnetic charges are

qcE =
1

4π

∫ 4π

0

Ec · r̂ d2S = − Q

2
√

2
and qcM =

1

4π

∫ 4π

0

Bc · r̂ d2S = − 1√
3g
. (1.1.41)

A Grand Unified Theory dyon might be expected to have many more collective coordinates than

its SU(2) counterpart as the GUT symmetry group is larger. This is not always the case, however,

since the non-trivial topology of magnetic monopoles and dyons leads to ambiguities in defining

global nonabelian gauge transformations. As shown in [71], gauge transformations can be defined

globally only if they act trivially on the long-range monopole field because precisely this subset of

transformations preserves the GUT generalization of the condition (1.1.11). For the Dokos-Tomaras

dyon coupled to fermions in the fundamental representation, the condition (1.1.11) becomes

ψ+(x) = e2iφ t3ψ−(x) for x ∈ R+ ∩R−, (1.1.42)

and the compatibility of gauge transformations with the above decreases the number of potential

SU(5) dyon degrees of freedom down to precisely those of the Julia-Zee dyon, where the charge

collective coordinate a is now related to the unbroken U(1) gauge group, generated by t3.

Grand Unified Theory dyons and monopoles satisfy a generalized version of Dirac’s quantization

condition. This can most easily be seen by switching to a gauge in which the singular string is

reintroduced, such as by choosing a gauge in which the dyon is asymptotically abelian. As in the

case of the abelian monopole, the singular string introduces an extra magnetic field, which now has

both a colour and ordinary magnetic field contribution

Bc
s =

4π√
3g

Θ(−z)δ(x)δ(y) (−ẑ) and BEM

s =
2π

e
Θ(−z)δ(x)δ(y) (−ẑ). (1.1.43)
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Imposing that the string magnetic fields are unobservable gives

ϑsA−B = qcψ

∫
Bc
s · d2S + qEMψ

∫
BEM

s · d2S = −4π(qcM q
c
ψ + qEMM qEMψ ) = 2πn, (1.1.44)

for a particle with colour electric charge qcψ and ordinary electric charge qEMψ . This generalized

quantization condition is satisfied by all the fundamental particles of the Standard Model, if the

GUT dyon has magnetic charges given by (1.1.40) and (1.1.41).

1.2 Effective field theories

Having summarized the relevant properties of magnetic monopoles and dyons, we now discuss in

what ways heavy degrees of freedom such as these can influence physics at significantly lower energies.

In principle, this can be seen by expanding the observables of our chosen theory in powers of a small

ratio of energies E/M , where E is the energy of a light degree of freedom and M � E is the heavy

particle mass. This section describes an alternative and much more efficient framework, known as

effective field theory [11–13] (see [14] for a review), that was designed to tackle problems such as

these which exhibit a large hierarchy of scales.

The starting point when working in the EFT formalism is usually the construction of an effective

or Wilsonian action, SW . The Wilson action can be used to compute the low-energy expansion of

any observable using the standard techniques of quantum field theory. When the high-energy theory

is known, SW can be explicitly derived by integrating out the degrees of freedom with energies above

a certain threshold. The result of this procedure is an effective action with the following properties:

(i) It can be written as an expansion in powers of M−1 i.e. of the inverse of the heavy scale. To any

fixed order in this expansion, it is a local functional – meaning SW is given by SW =
∫

d4xLW (x) –

of the light degrees of freedom and their derivatives; (ii) SW generally respects the symmetries of the

original high-energy theory, although these symmetries need not be realized in the same way in the

Wilson and original actions. Note, however, that if a gauge symmetry of the high-energy theory is

spontaneously broken at low energies, a convenient choice of gauge will make the symmetry explicitly

broken in the low-energy regime. This is equivalent to working in a more general gauge in which

the symmetry is present at low energies, but acts nonlinearly on the fields. (iii) The Wilson action
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contains an infinite number of operators, including non-renormalizable ones, but can nonetheless be

used to extract physical predictions once the desired accuracy of a calculation is specified. This can

be done because choosing the accuracy required of a result is equivalent to determining the order in

the small ratio of scales, E/M , to which one works and because only a finite number of operators

in SW can contribute to observables at any fixed order in E/M .

While SW can often be derived as we schematically describe above, it is usually simpler and

sometimes even necessary to obtain it using an alternative approach. Specifically, since any Wilson

action satisfies the properties (i)−(iii), SW can be constructed as the most general action consistent

with these properties. Although the coupling constants of such an action are formally arbitrary,

they can be determined by comparing the observables of the effective theory with their measured

(or computed) values in what is called a matching procedure.

We now turn to a simple toy model to illustrate why the above EFT prescription works. Consider

the following action

S[ψ,ψ, h] := −
∫

d4x

[
ψ γµ∂µ ψ +

1

2
h(−∂µ∂µ +M2)h+ λhψ ψ

]
, (1.2.1)

describing a massive scalar field, h, coupled to a massless fermion ψ via a Yukawa potential with

dimensionless coupling λ. The partition function of this theory is given by

Z =

∫
DψDψDh eiS[ψ,ψ,h]

=

∫
DψDψ eiS0[ψ,ψ]

∫
Dh exp

{
−i
∫

d4x

(
1

2
h∆h+ λhψψ

)}
, (1.2.2)

where we separate the free fermion action, S0[ψ,ψ] := −
∫

d4xψ γµ∂µ ψ, from the remainder of

S[ψ,ψ, h] and introduce ∆ := −∂µ∂µ + M2 = −� + M2. A Wilson action for this theory can be

obtained from Z after integrating out the massive scalar h

eiSW [ψ,ψ] := eiS0[ψ,ψ]

∫
Dh e−i

∫
d4x ( 1

2h∆h+λhψψ) (1.2.3)

∝ (det ∆)
−1/2

eiS0[ψ,ψ] exp

{
−λ

2

2

∫
d4xd4y ψ(x)ψ(x)G(x− y)ψ(y)ψ(y)

}
,

where we drop ψ-independent numerical factors. In the above, G(x−y) is the scalar field propagator,
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given by

G(x− y) := 〈0|Th(x)h(y)|0〉 = −i
∫

d4p

(2π)4

eip(x−y)

p2 +M2
, (1.2.4)

which can be expanded as follows

G(x− y) = − i

M2

∞∑
j=0

∫
d4p

(2π)4

(
−p2

M2

)j
eip(x−y) = − i

M2

∞∑
j=0

(
�y
M2

)j
δ4(x− y). (1.2.5)

Using the Taylor-expanded form of the propagator in (1.2.3) and integrating by parts to ‘move’

derivatives onto the fermion fields shows that the Wilson action can be written as

SW [ψ,ψ] = −
∫

d4x

ψ γµ∂µ ψ − λ2

2M2

∞∑
j=0

ψψ

(
�
M2

)j
ψψ

 , (1.2.6)

where we drop the ψ-independent factor of (det ∆)
−1/2

.

The above Wilson action is manifestly seen to be a local functional of the light field and its

derivatives. Locality is achieved by expanding the scalar field propagator in powers of the heavy mass

scale, but comes at the expense of introducing an infinite number of operators in SW , some of which

are non-renormalizable. As can be seen from (1.2.6), the higher the mass dimension of an operator

in the Wilson action, the more it will be suppressed by inverse powers of the heavy mass scale, M2,

so that only a finite number of terms need to be taken into account in realistic applications. While

the suppression of operators in the action suffices to justify the small size of tree-level amplitudes at

low energies, more care needs to be taken when evaluating the contributions of loops to observables.

The appearance of the heavy scale in any amplitude (including loop contributions) can be tracked

by the use of power-counting arguments, which should be used to single out the operators that

contribute to observables at any fixed order in the inverse heavy scale.

Since the toy model (1.2.1) does not exhibit spontaneous symmetry breaking, the EFT prescrip-

tion dictates that its low-energy theory be invariant under the symmetries of the original action. In

our case, the relevant symmetries are Poincaré invariance and invariance under global U(1) trans-

formations, both of which clearly ‘survive’ in the low-energy limit.

The effective action of equation (1.2.6) does not quite describe the low-energy limit of the original

theory, since it was obtained by integrating out only a subset of the heavy fields. To capture the
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effects of all virtual heavy degrees of freedom on physics at energies E �M , we must also integrate

out the high-energy fermion modes. This is typically done by imposing a UV cutoff Λ, which

satisfies E � Λ � M but is otherwise arbitrary16, and integrating out fermionic modes with

energies ω � Λ. The dependence of any observable on the unphysical parameter Λ is ultimately

removed after renormalization.

Alternatively, the low-energy Wilson action can be constructed as the most general Poincaré

and U(1)-invariant action that is a local functional of ψ and its derivatives, to the desired order in

powers of M−2. Up to and including (mass) dimension-5 operators, the resulting Wilson action is

given by

SW [ψ,ψ] = −
∫

d4x

(
ψ γµ∂µ ψ + cs0ψψ + cps0 ψγ

5ψ +
cs2
M2

ψ�ψ + i
cps2
M2

ψγ5�ψ

)
, (1.2.7)

where cs0, c
ps
0 can be determined by matching. The value of the remaining coupling constants, cs2

and cps2 , can be set to zero since the corresponding operators turn out to be redundant17. In this

approach, we need not integrate out the high-energy modes of the fermion field ψ, since (1.2.7)

captures the dominant contribution of any high-energy physics to low-energy amplitudes. Different

UV completions of the low-energy theory then imply different values for the coefficients cs0, c
ps
0 .

The low-energy action given in (1.2.7) illustrates why the decoupling principle works: If the

maximum energy reached in experiments is negligible compared to M , i.e. if E/M ∼ 0, the heavy

scalar field can influence low-energy physics only through the two operators cs0, c
ps
0 . Any observable

of the low-energy theory can be expressed in terms of scattering amplitudes, which can be computed

from the Wilson action in the usual way i.e. by differentiating the generating functional

Z[j, j] =

∫
DψDψ eiSW [ψ,ψ]+i

∫
d4x (jψ+ψj), (1.2.8)

where j, j are Grassman variable sources.

16When imposing an explicit momentum cutoff, amplitudes are suppressed by positive powers of E/Λ as well as
Λ/M which is why the cutoff is chosen such that E � Λ�M .

17Redundant operators can be removed at a fixed order in M−2 by an appropriately chosen field redefinition. In
this case a field redefinition of the form δψ = − 1

2

(
cs2/M

2 − iγ5cps2 /M2
)
γµ∂µψ shifts the ∼M−2 terms in (1.2.7) to

order ∼M−4. We also drop total derivative terms from the Wilson action, since there are no boundaries.
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PhD Thesis – S. Bogojević; McMaster University – Physics and Astronomy

Point-particle EFTs

A subset of EFTs that is particularly well-suited to our purposes goes by the name of point-particle

effective field theories (PPEFTs). The hierarchy of scales exploited in these theories is that between

the small diameter, R, of a point-like object and the large wavelengths, λ, of the low-energy particles

it interacts with. We now discuss how the PPEFT framework can be adapted to describe the

interactions of point-like monopoles and dyons with low-energy fermions.

To start, we go back to the SU(2) Georgi-Glashow model, now additionally coupled to a complex

doublet of massless fermions

S = −
∫

d4x

[
1

4
F aµν F

µν
a +

1

2
DµΦaDµΦa + ψ γµDµψ −

µ2

2
Φa Φa +

λ

4
(Φa Φa)

2

]
, (1.2.9)

where Dµψ =
(
∂µ − i

2 eA
a
µτa
)
ψ. As before, this theory admits soliton solutions like the Julia-Zee

dyon (with vanishing ψ) which correspond to particles when the semiclassical limit is taken. To

lowest order in the semiclassical expansion, the fermionic sector of the theory describes free fermions

propagating in the background of a Julia-Zee dyon, since expanding the action (1.2.9) gives

Sψ = −
∫

d4xψ(x)γµ
[
∂µ − ieAaµ(x− y; a)Ta

]
ψ(x), (1.2.10)

where Aaµ(x− y; a) is the Julia-Zee solution parametrized by its collective coordinates y, a.

Our goal is to describe how the dyon affects the fermion fields at distances much larger than its

radius r � R. Although fermionic observables can be calculated in the full theory –e.g. from the

fermion field, once it is expanded in terms of solutions to the Dirac equation in the dyon background

– EFT techniques once again offer an alternative and simpler approach in which the r � R hierarchy

is exploited early on. Specifically, a Wilson action for the system can be obtained by integrating out

the short-distance physics and this will replace the fermion-dyon interactions in the core with a set

of effective interactions defined on the dyon worldline.

The next step in the PPEFT formalism is to match the Wilson action on the worldline to a

boundary action, Sb, which can be used to derive the boundary conditions satisfied by the fermion

fields. This introduces a new unphysical boundary into the problem, which we define at a radius

r = ε that satisfies R � ε � λ but is otherwise arbitrary. The position of the boundary plays a
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similar role as the UV cutoff of the EFT toy model and, just as the UV cutoff, does not enter into

physical observables once the couplings of the Wilsonian action are appropriately renormalized.

The PPEFT formalism described above is particularly useful in cases where the exact form of

the interactions in the core is not known, such as when the general form of the Julia-Zee solution

(and not its Prasad-Sommerfield limit) is of interest. When this is satisfied, the Wilson action must

be built from the ‘bottom-up’ i.e. as the most general action consistent with the EFT principles

discussed above. Before this can be done we must first identify all the low-energy degrees of freedom,

which in our case consist of the fermion and photon fields as well as the dyon collective coordinates.

The collective coordinates y, a belong in the low-energy theory because they are Goldstone bosons

for the broken translation and global U(1) symmetries. Integrating them out along with the high-

energy degrees of freedom would lead to a divergent result18 and this, along with the simplicity

they bring in implementing symmetry transformations, is why they are treated differently to other

fluctuations when performing the semiclassical expansion. Notice that, even though the Julia-Zee

solution breaks the rotational and boost invariance of the Georgi-Glashow model (in addition to

breaking the translation and U(1) symmetries), no collective coordinates are introduced to restore

these symmetries. This is because rotating or boosting the dyon solution does not lead to new

degrees of freedom, since a rotation of the dyon can be ‘undone’ by a gauge rotation and a Lorentz

boost merely changes the value of ẏ.

A PPEFT example

We now illustrate how the PPEFT procedure works on a simpler example of a spinless source

with vanishing electric and magnetic charge, interacting with bulk fermion fields. This scenario

is discussed in [35] and will prove useful in later chapters when comparing dyons to less exotic

point-particles, such as nuclei.

We wish to couple a Dirac fermion to a point-like source located at the origin

S = −
∫

d4x
[
ψ( /D +m)ψ + ψNψ δ3(x)

]
, (1.2.11)

18The divergence comes about because the fluctuations δAµ, δϕ which relate the dyon solution to its translated and
gauge rotated equivalent are zero modes of the high-energy theory, see for example [14].
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where N is a Dirac matrix. For definiteness, we consider the rotational and parity invariant case

N = ĉs + îcvγ
0 where ĉs and ĉv are coupling constants. The ψ equation of motion including the

coupling to the source is

( /D +m)ψ +Nψ δ3(x) = 0 . (1.2.12)

Formally we’d like to trade the delta function for a near-source boundary condition, and following

usual practice this would be obtained by integrating (1.2.12) over a small Gaussian pillbox, P , of

radius ε centred on the source. This gives, in the limit ε→ 0 of vanishingly small pillbox, the result

∫
∂P

d2x nµγ
µψ =

∫
d2Ω ε2 γr ψ ' −Nψ(0) , (1.2.13)

where the solid-angle measure is d2Ω = sin θ dθdφ and nµ is an outward-pointing unit normal to the

pillbox so in polar coordinates nµdxµ = dr and ψ(0) denotes the value of the field at the position of

the source. The final approximate equality drops the mψ term, as is appropriate for a sufficiently

small pillbox since this vanishes as ε→ 0 provided ψ is sufficiently smooth near the origin.

The problem with the formal argument is that bulk fields like ψ are typically not smooth as r → 0,

which both complicates the neglect of the mψ term when integrating (1.2.12) over the pillbox and

makes ψ(0) undefined. The PPEFT way for dealing with both of these issues is essentially to regulate

the source action by replacing it by a boundary action on the boundary of the pillbox ∂P at r = ε.

For configurations that are spherically symmetric19 very near the source this is particularly simple

to do by replacing the world-line action by its value integrated over ∂P :

∫
r=0

dt ψNψ → 1

4πε2

∫
∂P

d2Ω dt ε2 ψNψ . (1.2.14)

This procedure makes the replacement Nψ(0)→ (4πε2)−1
∫

d2Ω ε2N(ε)ψ(ε) on the right-hand side

of (1.2.13), leading (in the limit where ε is much smaller than all other scales of interest) to the

regulated boundary condition

∫
r=ε

d2Ω

[
γr +

N

4πε2

]
ψ =

∫
r=ε

d2Ω

[
γr +

1

4πε2

(
ĉs + îcvγ

0
)]
ψ = 0 . (1.2.15)

19Non-spherically symmetric configurations can also be handled by decomposing into spherical harmonics and
treating each harmonic separately on ∂P .
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PhD Thesis – S. Bogojević; McMaster University – Physics and Astronomy

Notice this boundary condition is trivially satisfied if we’d tried to make the same derivation using

a pillbox that does not contain the source position. This is because in this case the Nψ term is no

longer present and so the boundary condition states
∫

d2Ω γrψ = 0. Since ψ varies very slowly in a

small enough region not containing the source, it can be taken to be approximately constant across

the pillbox and so the integral over all directions of γr gives zero trivially without restricting ψ.

Returning to the case where the pillbox does enclose the source, the boundary condition (1.2.15)

can be written as
∫

d2Ω Bε ψ(ε) = 0 where

Bε := γr +
N

4πε2
= γr + Ĉs + iĈvγ0 =

(
Ĉs Ĉv − iσr

Ĉv + iσr Ĉs

)
, (1.2.16)

where Ĉs = ĉs/(4πε
2) and Ĉv = ĉv/(4πε

2) are now dimensionless effective couplings. The subscript

ε on Bε is meant to emphasize that the constants Ĉa (and in general also the original couplings ĉi

themselves) must carry an implicit ε-dependence if physical quantities are to remain unchanged as ε

is varied (more about which below). In terms of the left- and right-handed parts of ψ the boundary

condition becomes

−Ĉs
∫
ε

d2Ωψ±L =

∫
ε

d2Ω
(
Ĉv − iσr

)
ψ±R and −

∫
ε

d2Ω
(
Ĉv + iσr

)
ψ±L = Ĉs

∫
ε

d2Ωψ±R . (1.2.17)

To see what these boundary conditions imply, imagine solving the bulk equation ( /D +m)ψ = 0

for r > ε and decomposing the result into rotation and parity eigenstates. The parity-even solutions

are

ψ+ =

(
ψ+
L

ψ+
R

)
=

(
f+(r)U+(θ, φ) + ig+(r)U−(θ, φ)

f+(r)U+(θ, φ)− ig+(r)U−(θ, φ)

)
, (1.2.18)

while the parity-odd ones are

ψ− =

(
ψ−L

ψ−R

)
=

(
f−(r)U−(θ, φ) + ig−(r)U+(θ, φ)

f−(r)U−(θ, φ)− ig−(r)U+(θ, φ)

)
, (1.2.19)

where U± are the spinor harmonics that combine the particle’s spin-half with orbital angular mo-

menta ` = j ∓ 1
2 to give total angular momentum j = 1

2 ,
3
2 , · · · . The radial functions f±(r) and
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g±(r) with mode frequency ω solve the radial equations

f ′+ = (m+ ω) g+ and g′+ +
2g+

r
= (m− ω) f+ , (1.2.20)

together with

g′− = (m− ω) f− and f ′− +
2f−
r

= (m+ ω) g− , (1.2.21)

where primes denote differentiation with respect to r. The boundary conditions (1.2.17) fix the ratio

of the functions f and g at r = ε once the angular integrations are performed, giving

Ĉs + Ĉv =

(
g+

f+

)
r=ε

and Ĉs − Ĉv =

(
f−
g−

)
r=ε

. (1.2.22)

Eq. (1.2.22) provides the solution to how the properties of the source influence the bulk solutions

for ψ in the source’s vicinity. Given the general solution,

f±(r) = C±1 f1±(r) + C±2 f2±(r) and g±(r) = C±1 g1±(r) + C±2 g2±(r) , (1.2.23)

to the radial part of the Dirac field equation we see that (1.2.22) show that the couplings Ĉs and Ĉv

determine the ratios of integration constants C+
2 /C

+
1 and C−2 /C

−
1 that specify (g±/f±)r=ε. Energy

levels for states of either parity and scattering amplitudes are then determined by the values of

C±2 /C
±
1 .

But it is still a potential puzzle why physical predictions can depend on the radius, r = ε, of

the Gaussian pillbox which is not a physical scale (arising just as a way to regularize the boundary

conditions). The precise value of ε must therefore drop out of predictions for observables (unlike

the physical size, R, of the underlying source, say). In detail, this happens because any explicit ε-

dependence arising in a calculation of an observable cancels an implicit ε-dependence buried within

the ‘bare’ quantities ĉs and ĉv. Physical predictions remain ε-independent if ĉs(ε) and ĉv(ε) are

chosen to ensure the ratios C±2 /C
±
1 are held fixed as ε is varied.

This gives us another way to interpret eq. (1.2.22). Rather than reading (1.2.22) as fixing f±/g±
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at a specific radius given known values of ε, ĉs and ĉv we can instead read the equations

ĉs(ε) =

[
g+(ε)

f+(ε)
+
f−(ε)

g−(ε)

]
2πε2 and ĉv(ε) =

[
g+(ε)

f+(ε)
− f−(ε)

g−(ε)

]
2πε2 , (1.2.24)

as telling us how ĉs(ε) and ĉv(ε) must depend on ε in order to ensure that C±2 /C
±
1 remains ε-

independent. Since we choose ε much smaller than the typical scale of the external problem (such as

the Bohr radius, for applications to atoms), it suffices to use the leading small-r form of the solutions

f± and g± when using (1.2.24). In this regime solutions are usually well described by power laws,

with (1.2.23) reducing to

f±(r) = C±1

( r
a

)z−1

+ C±2

( r
a

)−z−1

and g±(r) = C̃±1

( r
a

)z−1

+ C̃±2

( r
a

)−z−1

, (1.2.25)

for some power20 z with C̃±i ∝ C
±
i in a way that depends on the relative small-r asymptotic behaviour

of fi(r) and gi(r). For such solutions the choice of C±2 /C
±
1 controls the precise radius at which one

of these solutions dominates the other one, and as a result the RG evolution of the couplings implied

by (1.2.24) in this regime describes the cross-over between these two types of evolution.

1.3 Outline

The rest of this thesis is organized as follows. In chapter §2, we derive the fermion-dyon PPEFT

and the induced near-dyon boundary conditions on S-wave fermion fields; §2.4 shows why many of

the PPEFT operators that dominate at low energies are redundant, which explains why observables

depend on fewer parameters than the initial number of lowest-dimension effective operators. §2.5

explores how the boundary couplings change as the position of the boundary is varied and shows

in more detail why the kinematics of S-wave dyon-fermion scattering leads to scale-invariant cross

sections even though the same does not happen for small objects without magnetic charge (such

as nuclei). This section also discusses how the fermion condensation effects described in [68] can

be incorporated within the PPEFT framework. Finally, §4 uses the PPEFT effective couplings to

20Within atoms, for instance, the relevant power is z = [
(
j + 1

2

)2 − (Zα)2]
1
2 where the nuclear charge is Ze and α

is the fine-structure constant.
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compute fermion polarization and fermion-dyon scattering within the Born-Oppenheimer approx-

imation, after first warming up by computing similar results perturbatively in the fermion-dyon

interactions in §3. Our conclusions are briefly summarized in §5.
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Chapter 2

Dyon Effective Theory

In this chapter, we construct the point-particle effective theory that describes the dominant low-

energy interactions of relativistic S-wave fermions with a Julia-Zee dyon. Section §2.1 starts by

reviewing some details of the semiclassical expansion and of fermionic S-wave states not covered in

the introduction. In §2.2, we derive the effective fermion-dyon interactions on the dyon worldline and

match them to a boundary action in the j = 0 fermionic sector, defined at radius r = ε. This section

also derives the boundary condition satisfied by S-wave fermions at the r = ε boundary. Although

we disregard dyon recoil effects so that the dyon is approximately static, the boundary condition on

fermion fields still explicitly depends on the charge collective coordinate, a, which complicates its

use. Section §2.3 discusses two possible solutions to this problem – the first of these treats a subset

of the dyon-fermion interactions (including all interactions with a) perturbatively, while the second

makes use of the Born-Oppenheimer approximation and replaces a(t) with a classical variable when

calculating fermionic observables. Finally, §2.5 compares the dyon EFT of this chapter to other

cases where the PPEFT formalism can be applied (such as when the point-particle is a nucleus) and

explains why observables of the fermion-dyon theory need not be suppressed by the small point-

particle radius R, unlike observables in the nuclear case.
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2.1 Julia-Zee dyon in the semiclassical approximation

Once again, we consider the SU(2) Georgi-Glashow model coupled to a massless Dirac isodoublet

fermion1

S = −
∫

d4x

[
1

4
F aµν F

µν
a +

1

2
DµΦaDµΦa +

1

2
ψ γµ

↔
Dµψ −

µ2

2
Φa Φa +

λ

4
(Φa Φa)

2

]
, (2.1.1)

where we use the symmetric covariant derivative
↔
Dµ =

→
Dµ −

←
Dµ to ensure that the action is real2.

As explained in §1.1, the interactions of a dyon with other degrees of freedom are found by

performing a semiclassical expansion of the quantum fields around the classical dyonic background,

with

Aaµ(x) = Aaµ(x) + Âaµ(x) and Φa(x) = ϕa(x) + Φ̂a(x), (2.1.2)

where the fields Âaµ(x) and Φ̂a(x) join the fermion field ψ(x) as quantum operators. The semiclassical

expansion proceeds by using (2.1.2) in the action (2.1.1) and Taylor expanding in the fluctuation

fields. The classical contribution to the action (with Âaµ = Φ̂a = ψ = 0) is order 4π/e2 in the same

way that eq. (1.1.25) implies that M/mg is order 4π/e2. The leading dependence on fluctuations

is quadratic and describes free quantum fields evolving within the dyonic background. Because the

quadratic term is independent of e the masses of the quanta destroyed by the fluctuation fields are

suppressed compared to the dyon mass by e2/4π. It is because successive terms in this expansion

are suppressed by still more powers of e2/4π that semiclassical methods are under control in the

weakly coupled regime.

In particular, the kinetic term for the collective coordinate a is found by evaluating the Maxwell

kinetic term using the ansatz

eA±i =
±1− cos θ

2r sin θ
φ̂iτ3 −

K(r)

2r

[
(iθ̂i − φ̂i)eia(t)e±iφτ+ − (iθ̂i + φ̂i)e

−ia(t)e∓iφτ−

]
(2.1.3)

1Because this corresponds to two pseudoreal doublets, it is the minimal anomaly-free fermion content [70].
2The distinction between the symmetric and the usual one-sided derivatives in the Dirac action is a total derivative,

but much of the later discussion hinges on being careful with total derivatives and boundary terms.
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for which the field strength contains

F0i 3 ∂0A±i = − iȧK(r)

2er

[
(iθ̂i − φ̂i)eiae±iφτ+ + (iθ̂i + φ̂i)e

−iae∓iφτ−

]
, (2.1.4)

and so

−Tr(F0iF0i) = ȧ2(−i)2

[
K(r)

er

]2

(iθ̂i − φ̂i) · (iθ̂i + φ̂i)
Tr(τ+τ−)

2
=

[
K(r)

er

]2

ȧ2 . (2.1.5)

This is localized near the position of the dyon because K(r) falls to zero for large r. This can be

written as 1
2 Iȧ

2 δ3(x) if the constant I is given by

I =
8π

e2

∫ ∞
0

dr K2(r) ∼ 1

αmg
, (2.1.6)

and so is parametrically large compared to the dyon size R ∼ m−1
g .

In the absence of fermion interactions the kinetic lagrangian for a is 1
2 I ȧ

2 and because a is

a periodic variable it behaves like a quantum rigid rotor, whose canonical momentum p is both

conserved and quantized. Because a shifts under electromagnetic gauge transforms, with δa = ω

when δA3
µ = 1

e∂µω, the conserved rotor momentum is proportional to the rotor’s contribution to the

dyon-localized electric charge3

QD = −e p , (2.1.7)

and for a identified with a+2π the canonical rotor momentum takes integer values p|n〉 = n|n〉 (and

so QD = −en). Unit steps in the rotor levels differ in charge by δQD = ±e and differ in energy by

δEn = En+1 − En =
2n+ 1

I
∼ e2mg

4π
� mg . (2.1.8)

These estimates show that dyonic excitations belong in the effective theory for energies below

mg precisely because the characteristic loop-counting factor e2/4π suppresses δE relative to mg.

But because the steps in rotor energy are proportional to e2/4π changes to rotor energies due to

transitions can be negligible at a given order in the semiclassical expansion, so care must be taken

3We return to a more precise statement of rotor quantization including the effects of a vacuum angle in §4.2 below.
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about the ordering of the limits E/mg → 0 and e2/4π → 0 when working at low energies within the

semiclassical limit.

Fermion S-wave modes

Our main focus in this thesis is on how the bulk fermion interacts with the dyon, so we now consider

the leading dependence of the action on the fermions, which is given by

Sψ = −1

2

∫
d4xψ γµ

[
↔
∂ µ − i eAaµτa

]
ψ. (2.1.9)

At low energies, the partial waves that dominate in fermion-dyon scattering are those that minimize

the centrifugal barrier that must be penetrated in order to reach the dyon core. As argued in §1.1,

this is achieved by S-wave fermions which do not experience the barrier at all since their total

angular momentum vanishes. The explicit form for this type of S-wave fermion mode for the Julia-

Zee dyon was found for the solution (1.1.13) by Jackiw and Rebbi [72], and writing the spin index

i and isospin index a as a matrix Mia for each chirality of field the S-wave configuration has the

structure M(x) = s(r, t) + ip(r, t) r̂ · ~τ and so ψL and ψR each involve two independent functions.

Once transformed to the gauge where the solution has the form (1.1.19) the result becomes

ψ(x) =
1

r

[
ψ+(x)

ψ−(x)

]
where ψ±(x) =

f±(r, t) η±(θ, φ)

g±(r, t) η±(θ, φ)

 , (2.1.10)

where square brackets denote gauge isodoublets and round brackets denote 4-component Dirac

spinors in a basis for which γ5 = diag(I,−I). The 2-component Weyl spinors η± are defined to

satisfy σrη± = ±η± (see Appendix A for our Dirac matrix conventions) and so are given explicitly

by

η+(θ, φ) =
1√
4π

(
cos θ2 e

−iφ

sin θ
2

)
and η−(θ, φ) =

1√
4π

(
− sin θ

2

cos θ2 e
iφ

)
(2.1.11)

in the region R− and by η′±(θ, φ) = η±(θ, φ) e±iφ in the region R+.

At large distances from the dyon core only the far-field electromagnetic parts of the monopole
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PhD Thesis – S. Bogojević; McMaster University – Physics and Astronomy

fields matter and so the S-wave sector Dirac equation simplifies to

(
−∂t + γ0γr∂r +

i

2
eA3

0 τ3

)
(rψ) =


(
−∂t + ∂r + i

2 eA
3
0

)
f+η+(

−∂t − ∂r + i
2 eA

3
0

)
g+η+(

−∂t − ∂r − i
2 eA

3
0

)
f−η−(

−∂t + ∂r − i
2 eA

3
0

)
g−η−

 = 0 (2.1.12)

which uses γ0γr = diag(σr,−σr) (see Appendix A) and σrη± = ±η±. In principle we can simultane-

ously diagonalize γ5, γ0γr and τ3, each of which has eigenvalues ±1, leading to eight possible unique

sets of quantum numbers, {c, h, s}, where we denote the eigenvalues of γ5, γ0γr and τ3 respectively

by c (chirality), h (helicity) and s (for τ3). Of these, the S-wave condition (2.1.10) says that the

eigenvalues of τ3 and γ5γ
0γr = diag(σr, σr) are the same and so s = ch. Also, eq. (2.1.12) shows

that the direction of motion (radially ingoing or radially outgoing) is correlated with the eigenvalue

of γ0γr with h = +1 corresponding to infalling modes and h = −1 pairing with outgoing modes.

For an S-wave fermion passage through the origin inevitably brings a change of radial fermion

direction and this must change the sign of h. Because h = cs we see why S-wave scattering famously

must involve a change in chirality (c) or in electric charge (s). If it should be true that the microscopic

properties of the dyon preserve chirality – as is indeed the case e.g. when these interactions are

modeled by solving the Dirac equation in the presence of a fixed dyon background [61, 73, 74, 62]

– then c cannot change and so only charge changing processes s′ 6= s are possible. Famously, the

rotor-fermion interactions can significantly modify the fermionic vacuum which can in turn allow

more complicated behaviour [31, 32, 63–66, 68, 56–59] (more about which later). For this reason we

do not assume below that it is s that must change during S-wave fermion-dyon scattering.

We label the four independent modes by their quantum numbers s and c (from which the S-wave

condition implies h = cs), and then integrate to find the mode functions with frequency ω once A3
0 is

evaluated using (1.1.19) specialized to the asymptotic form (1.1.22). This gives the following explicit

basis of far-field positive-frequency solutions uscω(x),

[
u+cω(x)

0

]
,

[
0

u−cω(x)

]
where uscω(x) :=

1

r
ξc ⊗ ηs(θ, φ) e−iωte−i(sω+ 1

2 ev)cr

(
r

r0

)iceQ/2
,

(2.1.13)

with σ3ξc = c ξc and we write γ5 = σ3 ⊗ I. The length scale r0 is arbitrary and is introduced on
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dimensional grounds due to the singular Coulomb phase. Here ω is bounded from below, but the

asymptotic voltage v implies the floor is ω ≥ − 1
2sev. The oscillatory factors in this expression can

be equivalently written e−i(k−
1
2 sev)te−isckr for k ≥ 0. The negative frequency counterparts similarly

are

[
v+cω(x)

0

]
,

[
0

v−cω(x)

]
where vscω(x) :=

1

r
ξc ⊗ ηs(θ, φ) eiωtei(sω−

1
2 ev) c r

(
r

r0

)ic eQ/2
. (2.1.14)

Frequency ω is again bounded from below, but in this case the floor is ω ≥ + 1
2sev and the oscillatory

factors can be written ei(k+ 1
2 sev)teisckr for k ≥ 0.

Keeping in mind that particle probability flux points in the opposite direction to the momentum

for negative-frequency states (see for example [75]), the sign of the radial direction of motion for these

modes is given by −sc for particles and by +sc for antiparticles. These modes are normalized so that

iuscωγ
0uscω = ivscωγ

0vscω = (4πr2)−1 and as a result iuscωγ
ruscω = ivscωγ

rvscω = −sc/(4πr2) =

−h/(4πr2).

2D formulation

As has been often noted elsewhere purely S-wave dynamics can be usefully rewritten as a Dirac

equation in 1+1 dimensions [31, 32], and we pause here to establish our conventions. In this 1+1

dimensional formulation the only spatial direction corresponds to the radial direction in the 3+1

dimensional formulation, and so runs only along the half-line corresponding to positive r, with the

dyon interior providing a more complicated background solution only within a distance of order µ−1

about r = 0.

Within the full theory fields are required to be nonsingular at the origin (deep within the dyon)

and this can be converted in the 2D formulation into a boundary condition for fields at r = 0

designed so that reflection at r = 0 describes the effect in the 4D theory of passing through the

origin. Alternatively we can instead describe S-wave scattering within the 2D picture by extending

the spatial direction to cover the entire real line and think of, say, x < 0 as describing incoming

waves and x > 0 describing outgoing waves.

In either formulation 4D fermions are described by independent 2D spinors, χ, for each fermion

35

http://www.mcmaster.ca/
https://physics.mcmaster.ca/
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flavour and chirality in the following way4

χ+(r, t) =

(
f+(r, t)

g+(r, t)

)
and χ−(r, t) =

(
g−(r, t)

f−(r, t)

)
= iΓ0

(
f−(r, t)

g−(r, t)

)
, (2.1.15)

with the subscript ± indicating both the isospin and the U(1) charge of each spinor (see Appendix A

for our 2D Dirac-matrix conventions). Comparing to (2.1.12) shows that their equations of motion

can then be compactly written as a 2D Dirac equation in the background potential A3
0(r) of the

form: (
−∂t + Γ0Γ1∂1 +

is

2
eA3

0

)
χs = 0 , (2.1.16)

such as would follow from the bulk action

S2 = −1

2

∑
s=±

∫
d2x χs Γα

↔
Dαχs , (2.1.17)

where χ := iχ†Γ0 and Dαχs = (∂α − 1
2 iesA

3
α)χs.

Notice that (2.1.10) shows that the eigenvalue of the 2D chirality Γc := Γ0Γ1 = σ3 in this

representation is cs where c is the eigenvalue of 4D chirality and so is the same as h and therefore

should correlate with the direction of motion. This correlation in the 2D language is a direct

consequence of the Dirac equation because Γ0(Γα∂α) = −∂t + Γc∂1.

Dimensional reduction of the S-wave modes strips away their angular content, but otherwise

leaves them much as described in (2.1.13) and (2.1.14) above. For instance, writing the doublet

built from χ+ and χ− by χ (and continuing to denote the isodoublets by square brackets and spinor

doublets with round brackets), the positive-frequency basis of solutions uscω(x) corresponding to

(2.1.13) are

[
u+cω(x)

0

]
,

[
0

u−cω(x)

]
where uscω(x) := ξsc e

−iωte−i(sω+ 1
2 ev) c r

(
r

r0

)ic eQ/2
, (2.1.18)

4This is to be compared with the 4D expression (2.1.10). These definitions ensure that ψs and χs transform in the
same way under the remaining Lorentz transformation in 2D i.e. radial boosts. These are generated by γ0γr in 4D
and Γ0Γ1 = Γc in 2D, and since h = −c for negatively charged fermions, the order of f−(r, t) and g−(r, t) is switched
when going to 2D.
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with Γc ξsc = σ3 ξsc = sc ξsc. The negative frequency counterparts similarly are

[
v+cω(x)

0

]
,

[
0

v−cω(x)

]
where vscω(x) := ξsc e

iωtei(sω−
1
2 ev) c r

(
r

r0

)ic eQ/2
. (2.1.19)

The frequency ω is (as above) bounded from below, with floors ω ≥ − 1
2sev and ω ≥ + 1

2sev

for particle and antiparticle respectively. These modes are normalized so that iuscωΓ0uscω =

ivscωΓ0vscω = 1 and so the 2D and 4D fluxes are related by iuscωΓruscω = 4πr2(iuscωγ
ruscω)

and similarly for v and v.

2.2 S-wave PPEFT

The far-field modes given in (2.1.13) and (2.1.14) suffice to fully describe the state of both an incident

and departing fermion (or antifermion) when it is far from the dyon, but scattering calculations relate

the size of the departing wave to the initially incident one and in principle this requires solving the

full Dirac equation obtained from (2.1.9) including the dyon’s interior structure. It is only once

this structure is included that the fermionic modes can be required to be nonsingular at the origin,

providing the information that ultimately links the incoming and outgoing modes.

But solving the full Dirac equation including the dyon interior is difficult (see however [61, 73, 74,

62]) and also likely overkill, at least for incident fermion energy E small compared with the inverse

dyon size µ. In this regime the dyon is so small that its physical implications should be capturable

by a choice of boundary condition near the origin. But this is where EFT techniques can usefully

be applied and to this end we apply here the PPEFT formalism [33–35] — a framework explicitly

designed for the purpose of constructively deriving such boundary conditions starting from the low-

energy effective action for the compact object (for a review see e.g. [14]). This section applies this

formalism to determine the form of the boundary conditions required for the Julia-Zee dyon (and

its more complicated counterparts), at leading order in the small ratio E/µ.

The strategy, as always for EFTs, starts by replacing the full dyon with an effective description

that captures its low-energy interactions. The required EFT is defined along the dyonic world-line

and describes the interactions between low-energy bulk fields and the low-energy dyonic collective

coordinates. This begins with an enumeration of all possible lowest-dimension interactions allowed
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by the assumed symmetries and particle content.

The dyon-localized fields to be included in the dyonic effective action include the dyonic collective

coordinates like the centre-of-mass position, xµ = yµ(s), of the dyon’s world-line W and the charge-

excitation field a(s), where s is an arbitrary parameter along the world-line. The ‘bulk’ fields5 to

be included are those with masses much smaller than µ: the fermion doublet ψ(x) and the massless

bulk electromagnetic field Âµ(x) = Â 3
µ(x), and (in principle) the spacetime metric gµν(x).

The symmetries to be imposed are (i) world-line reparameterizations of s; (ii) Poincaré invari-

ance in spacetime (or general coordinate invariance if a general metric gµν is included); (iii) invari-

ance under electromagnetic gauge transformations; and (iv) any low-energy flavour and/or discrete

symmetries. Spacetime symmetries are built in by constructing the action using the pull-backs of

spacetime tensors to the world-line,6

ψ(s) = ψ[y(s)] , Â(s) = ẏµ(s)Âµ[y(s)] and γ(s) = ẏµ(s)ẏν(s)gµν [y(s)] , (2.2.1)

where over-dots denote differentiation with respect to s. One builds from these a reparameterization

invariant action in the standard way.

For these fields the electromagnetic gauge transformations are

δψ(s) =
i

2
ω(s) τ3ψ(s) , δÂ(s) =

1

e
ω̇(s) and δa(s) = ω(s) , (2.2.2)

where ω(s) is related to the spacetime dependent SU(2) gauge transformation parameters ωa(x) by

ω(s) = ω3[y(s)]. This symmetry requires derivatives of a to appear within a covariant derivative

Da := ȧ− eÂ . (2.2.3)

5Here ‘bulk’ fields mean fields that are defined everywhere in spacetime and not only along the dyon’s world-line.
6Interactions involving the normals to the world-line can also be constructed but do not play any role in what

follows.
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2.2.1 Dyon world-line effective action

For these variables the lowest-dimension interactions involving the rotor field a and the dyon dis-

placement yµ located at the dyonic position become

Sdyon =

∫
W

ds

{√
−γ
[
−M − I

2γ
(Da)2 − 1

2
ψ C(a)ψ + · · ·

]
+

ϑ

2π
Da

}
(2.2.4)

where M is the classical dyon mass while I is the ‘rotor’ coefficient (2.1.6) and the ellipses include

a variety of other higher-dimension terms whose contributions to physics should be suppressed at

low energies and so whose detailed form is not required in what follows.7 The most general fermion

bilinear consistent with the field content, gauge and spacetime symmetries is

C(a) := ĉs1 + i ĉps1 γ5 + i ĉv1γµẏ
µ + i ĉpv1 γ5γµẏ

µ +
(
ĉs3 + i ĉps3 γ5 + i ĉv3γµẏ

µ + i ĉpv3 γ5γµẏ
µ
)
τ3

+
(
ĉs+ + i ĉps+ γ5 + i ĉv+γµẏ

µ + i ĉpv+ γ5γµẏ
µ
)
eiaτ+ (2.2.5)

+
(
ĉs− + i ĉps− γ5 + i ĉv−γµẏ

µ + i ĉpv− γ5γµẏ
µ
)
e−iaτ− ,

where (as before) τ± = 1
2 (τ1 ± iτ2).

This action is meant to capture the low-energy interactions of the underlying dyon and the

quantities M , C and so on are found by matching to the properties of the dyon’s microscopic

description. In particular, this relates the parameter ϑ to the vacuum angle appearing in the bulk

electromagnetic theta-term

Lϑ =
ϑe2

4π2
E ·B , (2.2.6)

since both ultimately descended from the underlying theta-term for the microscopic nonabelian

SU(2) gauge interactions. (Equivalently, this connection can also be established using invariance of

the system under large gauge transformations.)

To interpret (2.2.4) it is convenient to specialize to a dyon that is perturbatively close to being

at rest so ẏµ(s) = δµ0 + δẏµ(s), choose the Minkowski metric and choose the parameter s = t to be

time in the background dyon’s rest frame. In this case −γ = −ηµν ẏµẏν = 1− ẏ · ẏ + · · · (where y

7Notice we only include here the couplings of the fluctuation fields and not also the dyon interactions giving rise
to the background fields themselves. This is why no term like QÂ appears describing the dyon’s classical charge, and
why no term is required expressing the dyon’s magnetic charge [76]. The same could also have been done for the
metric if we’d expanded about the dyon’s gravitational back-reaction, but we do not do so.
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is the spatial part of δyµ) and (2.2.4) becomes

Sdyon '
∫
W

dt

[
M

2
ẏ · ẏ +

I
2

(
ȧ− eÂ0

)2

− 1

2
ψ C(a)ψ +

ϑ

2π

(
ȧ− eÂ0

)
+ · · ·

]
(2.2.7)

where to leading order – i.e. neglecting dyon recoil effects – the integral is evaluated along the dyon’s

world-line, which we choose to be located at r = 0. In the same approximation the matrix C(a)

controlling the fermion-dyon couplings becomes

C(a) := ĉs1 + i ĉps1 γ5 − i ĉv1γ0 − i ĉpv1 γ5γ
0 +

(
ĉs3 + i ĉps3 γ5 − i ĉv3γ0 − i ĉpv3 γ5γ

0
)
τ3 (2.2.8)

+
(
ĉs+ + i ĉps+ γ5 − i ĉv+γ0 − i ĉpv+ γ5γ

0
)
eiaτ+ +

(
ĉs− + i ĉps− γ5 − i ĉv−γ0 − i ĉpv− γ5γ

0
)
e−iaτ− ,

which drops γ · ẏ dyon-recoil terms.

On dimensional grounds all sixteen of the effective couplings8 ĉ have dimensions (length)2. All

of these effective fermion interactions conserve electric charge, and this dictates the a-dependence

of C(a). If treated perturbatively these interactions describe fermion scattering from the dyon,

possibly associated with a excitation. The perturbative dyon response to fermion scattering can be

seen because the canonical momentum for a is also its conserved charge,

p :=
δSdyon

δȧ
= IDa +

ϑ

2π
= −QD

e
, (2.2.9)

where – see e.g. eq. (2.2.11) – QD is the contribution of dyonic excitations to the fluctuations’ electric

charge: Q = QD + QF (where QF is the electric charge carried by the fermions). The canonical

commutation relation [p(t) , a(t)] = −i therefore implies the quantities e±ia act as raising/lowering

operators for QD, since [
QD/e , e±ia

]
= ∓e±ia .

Interactions proportional to e±ia therefore describe transitions that raise or lower the dyon charge

by e, as required by charge conservation for the reactions involving τ± in (2.2.7) (which change the

8Since the size of c might naturally be expected to be set by the dyon size R ∼ µ−1 this is usually where the
suppression by the monopole scale would naively enter into observable scattering. Part of the purpose of this exercise is
to understand why this suppression does not actually arise in fermion-dyon scattering, and how general a phenomenon
this is.
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fermion charge from − 1
2e to + 1

2e or vice versa).

Because these fermion-a couplings are not suppressed by powers of small couplings like e they

are not intrinsically negligible even at leading loop order, which does not justify expanding the

exponentials in powers of a. Furthermore the energy exchanged by exciting or de-exciting a is order

I−1 which (2.1.8) reveals is suppressed by α = e2/(4π) compared to the characteristic scale µ and

so has little intrinsic cost in the semiclassical limit. Such transitions can be important to fermion

scattering, though there is an order-of-limits issue when working both at low fermion energies,

E � µ, and at leading nontrivial order in the loop expansion, α = e2/(4π)� 1, because it matters

in practice whether or not the fermion energy E is larger or smaller than the dyon excitation scale

αµ. As argued below, a natural way to handle this fermion-dyon dynamics in the effective theory

– at least in the regime αµ � E � µ – is through the Born-Oppenheimer approximation [78] (in

which the fermions play the role of the ‘fast’ degrees of freedom while the large size of I makes the

dyonic excitations ‘slow’).

The interactions in (2.2.5) can also be classified by how they transform under global ‘flavour’

transformations acting on the fermion field. In the present instance the limited field content restricts

this to two types of such symmetries: an axial symmetry for which δAψ = iωA γ5ψ and a fermion-

number ‘baryon’ symmetry for which δBψ = iωB ψ (notice the difference between this and the

gauge transformation (2.2.2)). We denote the corresponding conserved charges by QA and QB to

distinguish them from the fermionic contribution to the gauge charge QF . The Noether currents for

these two symmetries are JµB = iψγµψ and JµA = iψγµγ5ψ and satisfy

∂µJ
µ
B = 0 and ∂µJ

µ
A =

e2

32π2
εµνλρF aµνF

a
λρ = − e2

4π2
Ea ·Ba , (2.2.10)

which shows that the axial symmetry is anomalous. Table 2.1 identifies which of the various effective

interactions of (2.2.5) preserves each of these two flavour symmetries.

Induced boundary conditions

In practice we wish to excise the dyon from the external world and replace it with a gaussian ‘pillbox’,

Pε, whose radius is chosen much larger than the dyon’s, ε� R ∼ m−1
g , but also much smaller than

the distances of interest for the bulk fields used for low-energy probes of the dyon. The idea is to
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∆QF = ∆QA = 0 ∆QF = 0, ∆QA 6= 0 ∆QA = 0 and ∆QF 6= 0 ∆QA 6= 0 and ∆QF 6= 0

ĉ ĉv1, ĉ
v
3, ĉ

pv
1 , ĉpv3 ĉs1, ĉ

s
3, ĉ

ps
1 , ĉ

ps
3 ĉv±, ĉ

pv
± ĉs±, ĉ

ps
±

Table 2.1: Classification of interaction terms in the worldline action according to whether they conserve
the fermionic charges QF (electric charge) and QA (axial charge) as defined in the main text. All
interactions conserve QB (fermion number). Total electric charge (including the contribution from a) is
also conserved by all interactions.

replace the dyon with a set of near-dyon boundary conditions on the surface r = ε of this pillbox,

whose detailed form is chosen to reproduce the interactions implied by (2.2.4). It is these boundary

conditions that communicate dyonic physics to the external world from which the dyon is excised.

The boundary conditions can be obtained by a variety of means [33–35], such as by integrating the

field equations with the dyon-localized interaction written proportional to δ3(x) and then regularizing

the appearance of divergent bulk fields, like Â(0), with its value on the surface of the pillbox, Â(ε).

Applied to (2.2.7) this leads to a familiar expression: Gauss’ law itself, in the form

∮
d2Ω

(
r2∂rÂ0

)
r=ε

= 4π
(
r2∂rÂ0

)
r=ε

=

(
δSdyon

δÂ0

)
r=ε

= −ep = −e
(
IDa +

ϑ

2π

)
. (2.2.11)

Comparing this to the bulk far-field Coulomb solution Â0 ' −QD/(4πr) with integration constant

QD given by the dyonic fluctuation’s charge, this boundary condition fixes QD = −ep as used above

(and in passing shows how the dyon acquires a ϑ-dependent charge through the Witten effect [79]).

We wish to make the same argument for the bulk fermion field. The same steps [35] lead to the

boundary condition

1

2

∮
d2Ω

(
r2γrψ

)
r=ε

=

(
δSdyon

δψ

)
r=ε

= −1

2

[
C(a)ψ

]
r=ε

, (2.2.12)

once projected onto the S wave state. This can formally be recast as the non-differential condition

0 =
{[
γr +

(
Ĉs1 + i Ĉps1 γ5 − i Ĉv1γ0 − i Ĉpv1 γ5γ

0
)

+
(
Ĉs3 + i Ĉps3 γ5 − i Ĉv3γ0 − i Ĉpv3 γ5γ

0
)
τ3 (2.2.13)

+
(
Ĉs+ + i Ĉps+ γ5 − i Ĉv+γ0 − i Ĉpv+ γ5γ

0
)
eiaτ+ +

(
Ĉs− + i Ĉps− γ5 − i Ĉv−γ0 − i Ĉpv− γ5γ

0
)
e−iaτ−

]
ψ
}
r=ε
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where the dimensionless coefficients ĈAI are related to the coefficients ĉAI by

ĈAI =
ĉAI

4πε2
, (2.2.14)

for all A = s, ps, v, pv and I = 1, 3,+,−.

This expression is only ‘formal’ because the projection onto the S-wave while regulating by

displacing the field to r = ε is more subtle because of the different angular dependence imposed

on ψ+ relative to ψ− by the presence of the magnetic monopole background configuration. These

issues are summarized in Appendix B and the result is most conveniently expressed in terms of the

two-dimensional fields χ whose bulk dynamics is described by (2.1.17). In this 2D formulation the

fermionic terms in the dyon’s point-particle world line action given by (2.2.7) and (2.2.5) can be

written

Sdyon2 = −1

2

∑
s,s′=±

∫
dt χs

(
Csss′ + iCpsss′Γc + iCvss′Γαẏα + iCpvss′Γ

αεαβ ẏ
β
)
χs′ e

i
2 (s−s′) a , (2.2.15)

where the fields are evaluated at r = ε. Here (as above) Γc := Γ0Γ1 has eigenvalues h = ±1 (and

is diagonal in the basis used here) while the 2D Dirac matrices satisfy ΓcΓ
α = εαβΓβ where our

Levi-Civita convention chooses ε01 = +1. The coefficients CAij are dimensionless in the same way

that the ĈAI are, and must satisfy CA∗ss′ = CAs′s if the action Sdyon2 is real (in which case they contain

16 independent real parameters).

Combining this ‘boundary’ action with the ‘bulk’ action (2.1.17) leads to the following near-dyon

boundary condition for the 2D fermions near a static dyon (for which ẏα ' δα0 )

∑
s′

(
δss′Γ

1 + Csss′ + iCpsss′Γc − iC
v
ss′Γ

0 + iCpvss′Γ
1
)
e
i
2 (s−s′)a(t)χs′(ε, t) = 0, (2.2.16)

for all t. Equivalently [
Γ1 +OB(a)

] [χ+

χ−

]
r=ε

= 0, (2.2.17)
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where

OB(a) =

(
Cs++ Cs+−eia

Cs−+e
−ia Cs−−

)
+ i

(
Cps++ Cps+−e

ia

Cps−+e
−ia Cps−−

)
Γc

−i

(
Cv++ Cv+−eia

Cv−+e
−ia Cv−−

)
Γ0 + i

(
Cpv++ Cpv+−e

ia

Cpv−+e
−ia Cpv−−

)
Γ1 . (2.2.18)

Some intuition about the physical meaning of this boundary condition can be obtained by con-

sidering what it implies for the flux of fermionic currents through the surface at r = ε. Consider,

for example, a fermion current of the form jα = iχΓαMχ where M is some matrix in spin and

isospin space. When the action (2.1.17) is real the boundary condition allows Γ1χ(ε, t) to be re-

placed by terms involving the effective couplings CAij and this can be used to learn something about

the flux j1(ε, t). As applied to the currents for fermion number, jαB = iχΓαχ, electric charge,

jαF = 1
2 ieχΓα τ3χ and axial symmetry9 jαA = iχΓαΓcτ3χ (for real boundary action) the boundary

conditions imply10 jrB(ε, t) = 0,

jrF (ε, t) = − 1
4 ieχ(ε, t)

[
τ3, OB(a)

]
χ(ε, t) and jrA(ε, t) = 1

2 iχ(ε, t)
{

Γcτ3, OB(a)
}
χ(ε, t) , (2.2.19)

where OB is defined by (2.2.18). These show that none of the dyon-fermion interactions transfer

fermion number to or from the dyon while the terms in the boundary action involving τ± contribute

nonzero flux of electrical current at r = ε, as required by charge conservation when exciting or

de-exciting the dyonic field a.

Several things about the boundary condition (2.2.17) are noteworthy (for more details and a

discussion of how things look for a non-dyonic source see §1.2 and [35]).

• Linearity: This boundary condition is linear in ψ (or χ) because the action (2.2.7) is quadratic

in ψ (or (2.2.15) is quadratic in χ). Furthermore, the action is quadratic because this is the

lowest-dimension interaction consistent with the field content and symmetries and it is the

lowest-dimension interactions that dominate at low energies within an effective theory. It is

through arguments like this that PPEFTs explain the ubiquity of linear boundary conditions

9jαA is chosen in the 2D theory to match the 4D axial current JµA = iψγµγ5ψ for S-wave states, up to factors of
4πr2.

10Divergences associated with evaluating these fermion bilinears can be regulated in a way that preserves this
relation, as we show in appendix F.
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for many systems as being a generic consequence of the low-energy limit.

• Algebraic: This boundary condition does not involve derivatives – unlike (2.2.11), for instance

– because the fermion bulk action is linear in derivatives of the fields. The first term in (2.2.13)

comes from integrating by parts in the bulk action, and when the same exercise is performed

for bosonic fields one instead finds first-derivative Robin-style boundary conditions because

the bulk field equations are second order in derivatives. We discuss some novel implications of

non-derivative boundary conditions at some length below.

Implications for mode functions

We next work out how these boundary conditions influence the bulk fermion mode functions. This

is complicated by the fact that the boundary condition (2.2.13) explicitly involves the collective

coordinate a, and this is important because it shows how the dynamics of a feeds back onto the

fermionic field as it interacts with the dyon. As emphasized in [68] it is the nonperturbative nature of

this fermion-dyon interaction that drives much of the unusual dynamics of the dyonic effective theory,

generating effects that are correlated between the ψ and a sectors. In practice this complicates things

by making the fermion boundary condition (2.2.13) field-dependent. For the remainder of this section

we regard the field a to be a specified classical function while we explore the implications of (2.2.17)

for the fermion field. §2.3 returns to justify how to interpret the resulting a-dependence of our results

using the Born-Oppenheimer approximation.

Eqs. (2.1.13) and (2.1.14) provide the general solution for the ψ mode functions and so form a

complete basis of solutions to the bulk field equations. Energy eigenstates in the presence of the

dyon are found by asking these also to satisfy the near-dyon boundary condition (2.2.17), since

this captures the implications of the dyon for its surroundings. Subtleties to do with the angle-

dependence of the S-wave mode functions can be avoided if the boundary conditions are phrased in

terms of the two-dimensional fields χ. For instance, if a general positive-frequency solution is given

as a linear combination of the solutions (2.1.18), with coefficients κsc, then a near-source boundary
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PhD Thesis – S. Bogojević; McMaster University – Physics and Astronomy

condition of the form (2.2.17) can be written

B(a)

κ++ u++ω(ε, t) + κ+− u+−ω(ε, t)

κ−+ u−+ω(ε, t) + κ−− u−−ω(ε, t)

 = 0 (2.2.20)

where B(a) := Γ0[Γ1 +OB(a)] and so

B(a) =



1 + i(Cpv++ + Cv++) −(Cps++ + iCs++) i(Cpv+− + Cv+−)eia −(Cps+− + iCs+−)eia

Cps++ − iCs++ −1− i(Cpv++ − Cv++) (Cps+− − iCs+−)eia −i(Cpv+− − Cv+−)eia

i(Cpv−+ + Cv−+)e−ia −(Cps−+ + iCs−+)e−ia 1 + i(Cpv−− + Cv−−) −(Cps−− + iCs−−)

(Cps−+ − iCs−+)e−ia −i(Cpv−+ − Cv−+)e−ia Cps−− − iCs−− −1− i(Cpv−− − Cv−−)


. (2.2.21)

Notice that when the CAij couplings are hermitian – i.e. when the dyon-fermion action (2.2.15) is

real – the matrix B(a) satisfies the useful identity

B† = 2

(
Γc 0

0 Γc

)
− B (2.2.22)

for all a, where Γc = σ3 is the diagonal Pauli matrix. The most general matrix satisfying this

condition has 16 real parameters, corresponding to the 16 real effective couplings contained in the

CAij .

The physical implications of this boundary condition depend sensitively on the rank of the matrix

B. For instance, if all couplings CAij were independent of one another B would generically have rank 4,

in which case the only solution to (2.2.20) is χ(ε, t) = 0. If B instead has rank 4−n for n = 0, 1, 2, 3

then there would be n linearly independent nonzero values for χ(ε, t) allowed by (2.2.20).

Now comes a key observation: when the boundary action Sdyon2 is real – and so the constants

CAij are hermitian – then the rank of B cannot be smaller than two. This is because both of the

following quantities are a-independent and always nonzero:

∣∣∣∣∣ B22 B24

B42 B44

∣∣∣∣∣ = 1 + i(Cpv−− − Cv−− + Cpv++ − Cv++)− (Cpv++ − Cv++)(Cpv−− − Cv−−) +
∣∣Cpv+− − Cv+−

∣∣2 ,∣∣∣∣∣ B11 B13

B31 B33

∣∣∣∣∣ = 1 + i(Cpv−− + Cv−− + Cpv++ + Cv++)− (Cpv++ + Cv++)(Cpv−− + Cv−−) +
∣∣Cpv+− + Cv+−

∣∣2 .
(2.2.23)
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To see why these cannot vanish, consider the first case. Notice that its imaginary part can only

vanish if Cpv−− − Cv−− = −(Cpv++ − Cv++), but if this is true then the real part becomes 1 + (Cpv++ −

Cv++)2 +
∣∣Cpv+− − Cv+−

∣∣2 ≥ 1. A similar argument goes through also for the second case.

As a consequence it is always possible to solve for two of the κ’s in terms of the other two. For

instance, solving for κ++ and κ−− gives

κ++ = −κ+−e
2i(ω+ 1

2 ev)ε

(
ε

r0

)−ieQ
∣∣∣∣∣ B̂12 B̂13

B̂32 B̂33

∣∣∣∣∣∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
− κ−+e

2iωεeia

∣∣∣∣∣ B̂14 B̂13

B̂34 B̂33

∣∣∣∣∣∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
, (2.2.24)

and

κ−− = −κ+−e
2iωεe−ia

∣∣∣∣∣ B̂11 B̂12

B̂31 B̂32

∣∣∣∣∣∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
− κ−+e

2i(ω− 1
2 ev)ε

(
ε

r0

)ieQ
∣∣∣∣∣ B̂11 B̂14

B̂31 B̂34

∣∣∣∣∣∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
, (2.2.25)

which defines B̂ij := Bij(a = 0) so that all a-dependence is explicit. In later sections it is sometimes

useful instead to solve for κ+− and κ−+, which instead gives

κ+− = −κ++e
−2i(ω+ 1

2 ev)ε

(
ε

r0

)ieQ
∣∣∣∣∣ B̂21 B̂24

B̂41 B̂44

∣∣∣∣∣∣∣∣∣∣ B̂22 B̂24

B̂42 B̂44

∣∣∣∣∣
− κ−−e−2iωεeia

∣∣∣∣∣ B̂23 B̂24

B̂43 B̂44

∣∣∣∣∣∣∣∣∣∣ B̂22 B̂24

B̂42 B̂44

∣∣∣∣∣
, (2.2.26)

and

κ−+ = −κ++e
−2iωεe−ia

∣∣∣∣∣ B̂22 B̂21

B̂42 B̂41

∣∣∣∣∣∣∣∣∣∣ B̂22 B̂24

B̂42 B̂44

∣∣∣∣∣
− κ−−e−2i(ω− 1

2 ev)ε

(
ε

r0

)−ieQ
∣∣∣∣∣ B̂22 B̂23

B̂42 B̂43

∣∣∣∣∣∣∣∣∣∣ B̂22 B̂24

B̂42 B̂44

∣∣∣∣∣
. (2.2.27)

If B is rank two then this is all that can be learned because the other two equations in (2.2.20) are

not independent. When B has rank two the boundary condition has precisely enough information
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to determine ‘out’ states from the ‘in’ states (with no extra constraints) as is required for scattering

problems, so we henceforth assume the effective couplings CAij satisfy the conditions required to

ensure rank(B) = 2. This should automatically be the case when the microscopic physics of the

source allows out states to be inferred from arbitrary in states – such as for fermion scattering in

the classical dyon background of the full nonabelian theory – since the effective couplings obtained

by matching must give a consistent description.11 As is shown in Appendix C the requirement that

B be rank two imposes a total of 8 conditions on its coefficients (four of which amount to unitarity

conditions) and so removes half of the 16 real parameters that could have been encoded in B for

general choices of hermitian CAij ’s.

2.2.2 Scattering states

We next construct the explicit single-particle scattering states appropriate for fermion dyon scatter-

ing, assuming the rank of the matrix B is two. This allows us to identify which combinations of the

effective couplings actually appear in scattering processes.

To this end we construct a basis of energy eigenmodes that either correspond to a single type of

particle moving towards the dyon (in state) or a single type of particle moving away from the dyon

(out state). These correspond to choosing specific couplings κsc to vanish, as described in detail

below. Because the direction of motion of an S-wave state correlates with the value of the quantum

number h = sc, it suffices to label in and out states using just s and momentum k (or frequency ω),

leading to positive (negative) frequency modes uin
s,k and vin

s,k or uout
s,k and vout

s,k .

In modes

We define the positive-frequency in-states to be those modes for which there is only one component

with incoming momentum (heading towards the dyon). Labelling these by the sign of the incoming

11We have examples of effective couplings for which rank(B) = 3, but defer an exploration of their microscopic
physical significance to future work.
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PhD Thesis – S. Bogojević; McMaster University – Physics and Astronomy

particle’s electric charge s, they are given explicitly by

uin
+,k =



(
e−ikr

eik(r−2ε)
(
ε
r

)ieQ T ++
in

)
(

0

ei(k−ev)re−i(2k−ev)ε e−iaT −+
in

)
 e−i(k−

ev
2 )t

(
r

r0

)ieQ/2
(2.2.28)

and

uin
−,k =



(
0

ei(k+ev)re−i(2k+ev)ε eiaT +−
in

)
(

e−ikr

eik(r−2ε)
(
r
ε

)ieQ T −−in

)
 e−i(k+ ev

2 )t

(
r

r0

)−ieQ/2
. (2.2.29)

where k = ω + 1
2sev ≥ 0. (These can be obtained from (2.2.26) and (2.2.27) by choosing κ++ =

1,κ−− = 0 for uin
+,k and κ−− = 1,κ++ = 0 for uin

−,k.) The negative-frequency in-modes are similarly

defined by

vin
+,k =



(
eikr

e−ik(r−2ε)
(
ε
r

)ieQ T ++
in

)
(

0

e−i(k+ev)rei(2k+ev)ε e−iaT −+
in

)
 ei(k+ ev

2 )t

(
r

r0

)ieQ/2
(2.2.30)

and

vin
−,k =



(
0

e−i(k−ev)rei(2k−ev)ε eiaT +−
in

)
(

eikr

e−ik(r−2ε)
(
r
ε

)ieQ T −−in

)
 ei(k−

ev
2 )t

(
r

r0

)−ieQ/2
, (2.2.31)

where k = ω− 1
2sev ≥ 0. In both of these expressions r0 is an arbitrary length that contributes only

to the overall Coulomb phase.

The coefficients T ++
in , T +−

in , T −+
in and T −−in appearing in these expressions are a-independent

quantities given as explicit functions of the fermion-dyon couplings by

T ++
in = −

∣∣∣∣∣ B̂21 B̂24

B̂41 B̂44

∣∣∣∣∣∣∣∣∣∣ B̂22 B̂24

B̂42 B̂44

∣∣∣∣∣
, T +−

in = −

∣∣∣∣∣ B̂23 B̂24

B̂43 B̂44

∣∣∣∣∣∣∣∣∣∣ B̂22 B̂24

B̂42 B̂44

∣∣∣∣∣
, T −+

in = −

∣∣∣∣∣ B̂22 B̂21

B̂42 B̂41

∣∣∣∣∣∣∣∣∣∣ B̂22 B̂24

B̂42 B̂44

∣∣∣∣∣
, T −−in = −

∣∣∣∣∣ B̂22 B̂23

B̂42 B̂43

∣∣∣∣∣∣∣∣∣∣ B̂22 B̂24

B̂42 B̂44

∣∣∣∣∣
. (2.2.32)
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Written directly in terms of the boundary couplings, these become

T ++
in =

(Cs++ + iCps++)(i− Cpv−− + Cv−−) + (Cs−+ + iCps−+)(Cpv+− − Cv+−)

−|Cpv+− − Cv+−|2 + (−i+ Cpv++ − Cv++)(Cpv−− − Cv−− − i)
,

T −−in =
(Cs−− + iCps−−)(i− Cpv++ + Cv++) + (Cs+− + iCps+−)(Cpv−+ − Cv−+)

−|Cpv+− − Cv+−|2 + (−i+ Cpv++ − Cv++)(Cpv−− − Cv−− − i)
, (2.2.33)

T −+
in =

(Cs−+ + iCps−+)(i− Cpv++ + Cv++) + (Cs++ + iCps++)(Cpv−+ − Cv−+)

−|Cpv+− − Cv+−|2 + (−i+ Cpv++ − Cv++)(Cpv−− − Cv−− − i)
,

T +−
in =

(Cs+− + iCps+−)(i− Cpv−− + Cv−−) + (Cs−− + iCps−−)(Cpv+− − Cv+−)

−|Cpv+− − Cv+−|2 + (−i+ Cpv++ − Cv++)(Cpv−− − Cv−− − i)
.

When the boundary action Sdyon2 is real (and so the CAij are hermitian) these satisfy the following

unitarity conditions

|T +−
in |2 = |T −+

in |2 = 1− |T ++
in |

2 = 1− |T −−in |2 , (2.2.34)

as well as

T −−in T −+ ∗
in + T +−

in T ++ ∗
in = 0, (2.2.35)

as identities (see Appendix C for a derivation). These relations imply that the in amplitudes only

carry 4 real parameters’ worth of information; they can always be written

T ++
in = ρ eiθ++ and T −−in = ρ eiθ−− , (2.2.36)

and

T +−
in =

√
1− ρ2 eiθ+− and T −+

in = −
√

1− ρ2 ei(θ+++θ−−−θ+−), (2.2.37)

where ρ, θ++, θ+− and θ−− are the four independent real parameters.
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Out modes

A set of outgoing modes can be constructed in precisely the same way, with the positive frequency

modes given by

uout
+,k =



(
e−ik(r−2ε)

(
r
ε

)ieQ T ++
out

eikr

)
(
e−i(k−ev)rei(2k−ev)ε e−iaT −+

out

0

)
 e−i(k−

ev
2 )t

(
r

r0

)−ieQ/2
, (2.2.38)

and

uout
−,k =



(
e−i(k+ev)rei(2k+ev)ε eiaT +−

out

0

)
(
e−ik(r−2ε)

(
ε
r

)ieQ T −−out

eikr

)
 e−i(k+ ev

2 )t

(
r

r0

)ieQ/2
, (2.2.39)

with k = ω + 1
2sev ≥ 0 (these can be obtained from (2.2.24) and (2.2.25) by choosing κ+− = 1,

κ−+ = 0 for uout
+,k and κ−+ = 1,κ+− = 0 for uout

−,k). The negative-frequency out-modes are

vout
+,k =



(
eik(r−2ε)

(
r
ε

)ieQ T ++
out

e−ikr

)
(
ei(k+ev)re−i(2k+ev)ε e−iaT −+

out

0

)
 ei(k+ ev

2 )t

(
r

r0

)−ieQ/2
, (2.2.40)

and

vout
−,k =



(
ei(k−ev)re−i(2k−ev)ε eiaT +−

out

0

)
(
eik(r−2ε)

(
ε
r

)ieQ T −−out

e−ikr

)
 ei(k−

ev
2 )t

(
r

r0

)ieQ/2
, (2.2.41)

for which k = ω − 1
2sev ≥ 0.

The a-independent coefficients T ++
out , T +−

out , T −+
out , T −−out appearing in these expressions are defined

51

http://www.mcmaster.ca/
https://physics.mcmaster.ca/
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in terms of the dyon-fermion couplings by

T ++
out = −

∣∣∣∣∣ B̂12 B̂13

B̂32 B̂33

∣∣∣∣∣∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
, T −+

out = −

∣∣∣∣∣ B̂11 B̂12

B̂31 B̂32

∣∣∣∣∣∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
, T +−

out = −

∣∣∣∣∣ B̂14 B̂13

B̂34 B̂33

∣∣∣∣∣∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
, T −−out = −

∣∣∣∣∣ B̂11 B̂14

B̂31 B̂34

∣∣∣∣∣∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
, (2.2.42)

and so

T ++
out =

i(Cps++ + iCs++)(−i+ Cpv−− + Cv−−) + (−iCps−+ + Cs−+)(Cpv+− + Cv+−)

|Cpv+− + Cv+−|2 − (−i+ Cpv−− + Cv−−)(Cpv++ + Cv++ − i)
,

T −−out =
i(Cps−− + iCs−−)(−i+ Cpv++ + Cv++) + (−iCps+− + Cs+−)(Cpv−+ + Cv−+)

|Cpv+− + Cv+−|2 − (−i+ Cpv−− + Cv−−)(Cpv++ + Cv++ − i)
, (2.2.43)

T −+
out =

i(Cps−+ + iCs−+)(−i+ Cpv++ + Cv++) + (−iCps++ + Cs++)(Cpv−+ + Cv−+)

|Cpv+− + Cv+−|2 − (−i+ Cpv−− + Cv−−)(Cpv++ + Cv++ − i)
,

T +−
out =

i(Cps+− + iCs+−)(−i+ Cpv−− + Cv−−) + (−iCps−− + Cs−−)(Cpv+− + Cv+−)

|Cpv+− + Cv+−|2 − (−i+ Cpv−− + Cv−−)(Cpv++ + Cv++ − i)
.

When the boundary action Sdyon2 is real (so the CAij ’s are hermitian) these satisfy

|T +−
out |2 = |T −+

out |2 = 1− |T ++
out |2 = 1− |T −−out |2 . (2.2.44)

and

T −−out T −+ ∗
out + T +−

out T ++ ∗
out = 0, (2.2.45)

in the same way as found earlier for Tin. There is of course a good reason why Tout and Tin satisfy

similar conditions: they are not independent of one another. Since both the in and out bases are

complete, the Tout amplitudes can be expressed in terms of the Tin amplitudes. This leads to the

relations (see Appendix C)

T ++
out = (T ++

in )∗, T −−out = (T −−in )∗, T +−
out = (T −+

in )∗ and T −+
out = (T +−

in )∗ , (2.2.46)

and so the out amplitudes also depend only on the four parameters given in (2.2.36) and (2.2.37).

The implications of the Tin and Tout amplitudes for fermion-dyon scattering problems are explored

in some detail in §3 and §4 below and suffice it to say that they carry all of the information about the
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dyon that is relevant to describing transitions amongst the S-wave fermion modes described above,

at least at leading order at low energies. See §2.5.1 for a discussion of the values predicted for these

quantities by specific microscopic choices for the underlying dyon solution.

But the above discussion introduces a minor puzzle: why are there only four free real parameters

within, say, the Tin’s when there are 16 possible real parameters in the hermitian effective couplings

CAij appearing in Sdyon2 in e.g. eqs. (2.2.7) and (2.2.8)? We argue in §2.4 that all but four of the

effective couplings CAij are redundant (in the precise EFT sense [14]), but before doing so the next

section first develops a required tool. Along the way it also resolves a dangling technical issue: how

to handle systematically the a-dependence that is embedded in boundary conditions like (2.2.17) or

(2.2.20).

2.3 Dyonic response

Up to this point we have treated the matrix B as if it were specified completely once the effective

couplings CAij are, but the appearance of the field a within B makes this not quite true. Having

B be a function of a complicates its use – as in (2.2.20) – to find fermionic mode functions. This

section provides two complementary ways to handle this field-dependence: perturbation theory and

the Born-Oppenheimer approximation.

Fermion-dyon perturbation theory

The first approach starts with the observation that not every term in the matrix B depends on a.

If the coefficients CAss′ with s 6= s′ were for some reason much smaller than the others then they

could be ignored when formulating the near-dyon fermion boundary conditions with the effects of

a-dependent terms then included perturbatively.

For instance, suppose Sdyon2 of (2.2.15) could be written S
(0)
dyon2 + Sint

dyon2 with12

S
(0)
dyon2 := −1

2

∑
s=±

∫
dt iχsΓc χs , (2.3.1)

12We choose the unperturbed boundary terms here fairly arbitrarily and all that is important for our arguments is
that the dominant piece be a-independent.
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and

Sint
dyon2 = −1

2

∑
s,s′=±

∫
dt χs

(
δCsss′ + iδCpsss′Γc − iδC

v
ss′Γ

0 + iδCpvss′Γ
1
)
χs′ e

i
2 (s−s′) a , (2.3.2)

where the coefficients δCAij are regarded as being perturbatively small13 and we again specialize to

the case of an approximately static dyon (for which ẏα ' δα0 ). In this case only S
(0)
dyon2 need play

a role in determining the boundary conditions of the free modes appearing in the field expansions

within the interaction picture.

With this choice the boundary condition matrix of (2.2.18) becomes O
(0)
B = iI ⊗ Γc and so the

matrix appearing in (2.2.21) becomes

B(0) = Γ0
[
Γ1 +O

(0)
B

]
=



1 −1 0 0

1 −1 0 0

0 0 1 −1

0 0 1 −1


. (2.3.3)

which clearly has rank two. The boundary condition satisfied by the free mode functions at r = ε

therefore is (
Γ1 + iΓc

)
χ(ε, t) = 0 . (2.3.4)

The continuum normalized free in and out mode functions that satisfy (2.3.4) then are

u
in0
+,k =



(
e−ikr

eik(r−2ε)
(
ε
r

)ieQ
)

(
0

0

)
 e−i(k−

ev
2

)t

(
r

r0

)ieQ/2
, u

in0
−,k =



(
0

0

)
(

e−ikr

eik(r−2ε)
(
r
ε

)ieQ
)
 e−i(k+ ev

2
)t

(
r

r0

)−ieQ/2
,

(2.3.5)

v
in0
+,k =



(
eikr

e−ik(r−2ε)
(
ε
r

)ieQ
)

(
0

0

)
 ei(k+ ev

2
)t

(
r

r0

)ieQ/2
, v

in0
−,k =



(
0

0

)
(

eikr

e−ik(r−2ε)
(
r
ε

)ieQ
)
 ei(k−

ev
2

)t

(
r

r0

)−ieQ/2
,

(2.3.6)

13Although, as noted above, the CAij ’s are not generically suppressed by the loop-counting parameter α = e2/(4π)
it is possible that in some circumstances some of them are suppressed by another small quantity.
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(where k ≥ 0) and

u
out0
+,k =



(
e−ik(r−2ε)

(
r
ε

)ieQ
eikr

)
(

0

0

)
 e−i(k−

ev
2

)t

(
r

r0

)−ieQ/2
, u

out0
−,k =



(
0

0

)
(
e−ik(r−2ε)

(
ε
r

)ieQ
eikr

)
 e−i(k+ ev

2
)t

(
r

r0

)ieQ/2
,

(2.3.7)

v
out0
+,k =



(
eik(r−2ε)

(
r
ε

)ieQ
e−ikr

)
(

0

0

)
 ei(k+ ev

2
)t

(
r

r0

)−ieQ/2
, v

out0
−,k =



(
0

0

)
(
eik(r−2ε)

(
ε
r

)ieQ
e−ikr

)
 ei(k−

ev
2

)t

(
r

r0

)ieQ/2
, (2.3.8)

and so the unperturbed modes satisfy T ++
in = T −−in = 1 and T +−

in = T −+
in = 0. These modes are

normalized so that

∫ ∞
ε

dr (uin0
s,k)† uin0

s′,k′ =

∫ ∞
ε

dr (vin0
s,k)† vin0

s′,k′ = 2πδ(k − k′) δss′ , (2.3.9)

and ∫ ∞
ε

dr (uin0
s,k)† vin0

s′,k′ = 2πδ(k + k′) δss′ , (2.3.10)

and similarly for the out modes.

From here on perturbation theory proceeds in the standard way by moving to the interaction

picture and expanding the fermion field operator using these mode functions,

χ(x) =
∑
s=±

∫ ∞
0

dk√
2π

[
uin0
s,k(x) ain

s,k + vin0
s,k(x) (ain

s,k)?
]

=
∑
s=±

∫ ∞
0

dk√
2π

[
uout0
s,k (x) aout

s,k + vout0
s,k (x) (aout

s,k )?
]
, (2.3.11)

where the creation/annihilation operators satisfy the usual algebra {ain
s,k, (ain

s′,k′)
?} = δ(k − k′) δss′

and {ain
s,k, (ain

s′,k′)
?} = δ(k − k′) δss′ appropriate for fermions (and similarly for the out operators).

Because both the in and out modes are complete, each can be expanded in terms of the other,
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allowing the in and out operators to be related by

aout
s,k = e−2ikε

(
ε

r0

)iseQ
ain
s,k and (aout

s,k )? = e2ikε

(
ε

r0

)iseQ
(ain

s,k)?, (2.3.12)

and their adjoints. The above Bogoliubov relations depend on the arbitrary scale r0. Physical

predictions should not depend on r0 and in §3 – which uses the perturbative framework set up here

– we rephase the out operators to absorb the r0 dependence.

The perturbative formalism is useful for some kinds of questions – such as the discussion of

redundancy in §2.4 – and is used in §3 to compute some scattering processes (which can be compared

with calculations performed in §4 using the alternative approach we describe next). But it is not

guaranteed that specific microscopic realizations of the dyon must yield effective couplings for which

such a perturbative approach is a good approximation. This is true in particular for massless fermion

scattering in the classical nonabelian dyon background because in this case conservation of chirality

implies the vanishing of all of the a-independent boundary couplings CAss′ with s′ = s.

Born-Oppenheimer evolution of a

A more ambitious approach to computing the fermion-a interactions takes advantage of the fact that

the mass I ∼ (αmg)
−1 appearing in the a kinetic term is much larger than the generic dyon scale

m−1
g in the semiclassical limit (for which α = e2/4π � 1). This means that the energy associated

with a excitation is order I−1 ∼ αmg and so is negligible – even within the low energy theory – for

fermion momenta in the range αmg � k � mg.

Furthermore, the equations of motion say that ȧ ∝ p/I and so the timescale for a to respond to

order-unity changes in p are order τ ∼ I. By contrast the timescale for a relativistic fermionic wave

packet of size L to interact with a much smaller dyon is order L (which cannot be smaller than 1/k

for fermions with momentum k). So the rotor response is slow compared to the fermion interaction

time for fermion momenta in the range αmg � L−1 <∼ k.

In the regime αmg � k the ‘rotor’ field response to fermions is slow and costs little energy in much

the same way that the position of heavy atomic nuclei respond to much lighter and faster electrons in

everyday solids. This electron/nucleus analogy suggests using the Born-Oppenheimer approximation

[78] to describe the interactions of relativistic fermions with the slower dyonic excitation a. In this
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approximation one first solves for the motion of the fast degrees of freedom (the light fermions) with

the slow degrees of freedom (the nuclear positions R or the field a) imagined to be fixed classical

variables. The idea is that the slow variables behave classically because they do not have time to

respond at all when hit by the fast ones. Once the fast evolution is computed one calculates an

effective Hamiltonian describing the dynamics of the slow degrees of freedom obtained by averaging

over the fast degrees of freedom. This Hamiltonian is then used to solve for how the slower variables

evolve in response to its interactions with the much faster system.

As applied to dyon-fermion interactions the first part of the Born-Oppenheimer procedure asks

for a solution to fermion evolution with the field a regarded as a fixed classical background. This is

precisely what is done in §2.2.2 above when finding the fermion scattering states in the presence of

an a-dependent boundary condition like (2.2.20). These are used in §4 to calculate scattering rates

also for fixed dyon configurations. We return to the issue of how to determine the dyon reponse in

§4.2 below, but first close this section by gathering together several loose ends and conceptual issues

to do with using the PPEFT framework in the monopole/dyon setting.

2.4 Redundant interactions

In this section we return to the puzzle alluded to at the end of §2.2.2 above: why are the physical

effects of the 16 real parameters in the couplings CAij in the action Sdyon2 all encoded in amplitudes

Tin (or Tout) that involve only 4 parameters. Why are there not more scattering options available

given the number of possible effective interactions? Part of the reason for this reduction is the rank-2

condition we assume for B(a), since – as shown in Appendix C.2 – this imposes 8 real conditions on

the components of B(a) (and so also on the CAij ’s). But the fact that the remaining 8 independent

effective couplings only produce a 4-parameter number of scattering outcomes strongly suggests that

some of the remaining effective couplings are actually redundant (in the precise EFT sense reviewed

for example in [14]).

One way in which an effective operator can be seen to be redundant is if it can be removed using

a field redefinition. When working in perturbation theory there is a very simple diagnostic for when

such a field redefinition exists: one asks whether the operator vanishes when it is evaluated at the

solution to the leading order field equations. In the present instance the fermion field equation at
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the position r = ε is actually just the boundary condition itself, and this suggests a redundancy test

that can be performed, at least if the dyon-fermion interactions are treated perturbatively (as they

are in §2.3 when perturbing the dyon effective couplings around the action S
(0)
dyon2).

When perturbing in this way we first ask what conditions the δCAij ’s must satisfy to ensure that

the perturbed boundary condition remains rank two. Perturbing the rank-2 conditions like (C.2.4)

of the appendix to linear order in the δCs shows that B remains rank two only if the coefficients

δCpvss′ and δCpsss′ all vanish. For the remaining couplings the redundancy test then asks how many of

the effective couplings in (2.3.2) survive when simplified using the lowest-order fermion boundary

condition (Γ1 + iΓc)χ(ε) = 0 that follows from the unperturbed dyon-fermion action (2.3.1). Notice

that because Γc = Γ0Γ1 this is equivalent to the condition iΓ0χ(ε) = χ(ε) and because Γ0 is

antihermitian this implies χ†(iΓ0) = χ† when evaluated at r = ε, and so also χ = χ† there. These

conditions allow us to rewrite

χs(ε)χs′(ε) = χ†s(ε)iΓ
0χs′(ε) = χ†s(ε)χs′(ε) = χs(ε)iΓ

0χs′(ε), (2.4.1)

where the first equality uses the definition χ := iχ†Γ0. This shows that within perturbative cal-

culations the couplings δCsss′χsχs′ − iδCvss′χsΓ
0χs′ appearing in expression (2.3.2) for Sint

dyon2 should

only contribute to physical predictions through the combination δCsss′ − δCvss′ .

This is consistent with the more general expressions like (2.2.33) for the amplitudes Tin and Tout

within the Born-Oppenheimer framework, since for rank-2 perturbations about the unperturbed

couplings Cps++ = Cps−− = 1 these give

T ++
in ' 1 + i(δCv++ − δCs++), T −−in ' 1 + i(δCv−− − δCs−−),

T +−
in ' i(δCv+− − δCs+−), and T −+

in ' i(δCv−+ − δCs−+), (2.4.2)

showing at linear order that δCsss′ and δCvss′ really do only appear in the combination δCsss′ − δCvss′ .

These arguments suggest that within the perturbative framework one combination of δCsss′ and

δCvss′ is redundant in the sense that it can be removed by performing a field redefinition at the
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position of the dyon worldline. Indeed, writing

χCsχ− iχCvΓ0χ = 1
2χ(Cs + Cv)(1− iΓ0)χ+ 1

2χ(Cs − Cv)(1 + iΓ0)χ , (2.4.3)

we seek a redefinition that removes the first term. But under a small variation χ→ χ+ δχ at r = ε

the variation of the bulk action and the unperturbed boundary action (2.3.1) becomes

δS(r = ε) = − 1
2χ
(
−Γ1 + iΓc

)
δχ− 1

2δχ
(

Γ1 + iΓc

)
χ , (2.4.4)

which for δχ = iAΓcχ (with hermitian A in flavour space) gives

δS(r = ε) = − 1
2 iχA

[
(−Γ1 + iΓc)Γc + Γc(Γ

1 + iΓc)
]
χ = χA

(
1− iΓ0

)
χ , (2.4.5)

showing that A can be chosen to remove the Cs + Cv term in (2.4.3), as claimed.

A very similar reduction in the number of independent couplings also happens for more prosaic

applications of the PPEFT framework to fermions. When used to describe the influence of a non-

pointlike nucleus on electronic energy levels within an atom there turn out to be more effective

interactions describing various types of nuclear effective couplings on the nuclear worldline than

there are independent nuclear contributions to electronic energy levels. In that case the redundancy

of many of the apparent nuclear moments at low energies ensures that nuclear uncertainties enter

into atomic calculations in fewer ways than one would naively expect [36–38].

2.5 RG methods and catalysis

We now turn to the issue of ε-dependence. The mode functions and scattering amplitudes found

above depend in detail on the boundary conditions imposed at the surface ∂P of the gaussian pillbox

that surrounds each source. But how can it be that physical quantities depend on an arbitrary radius

r = ε that defines the boundary of this pillbox?

This question is precisely what PPEFT methods are good for: they show how effective couplings

like the CAij ’s appearing in the dyon’s effective action must depend implicitly on (i.e. run with) ε in

order to ensure that physical predictions are ε-independent. A side benefit of this discussion is that
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it shows how divergences that arise (even at the classical level) in the values of the fields as ε → 0

get renormalized into the effective couplings of the dyon action, along the lines described in [80]. In

this language the physical scales of the UV physics – such as µ in the action (2.1.1) – are described

within the EFT as RG-invariant scales associated with this running.

In this section we set up how this works for S-wave scattering from the dyon and in particular

ask why this running makes scattering for monopoles so different from scattering from other small

massive objects like nuclei in atoms (for which the corresponding issues are described in [35] and

briefly summarized in Appendix 1.2). We discuss in turn two ways the running of effective couplings

of fermions to dyons differ from their couplings to more run-of-the-mill compact objects: (i) dimen-

sional scaling changes associated with the kinematics of the fermion S-wave (which lies at the root

of why dyon-fermion scattering is insensitive to dyon size), and (ii) the large-scale effects to do with

the nontrivial fermionic interacting vacuum (what is sometimes called the fermion ‘condensate’).

2.5.1 Scaling for compact objects

The most important difference between fermion-dyon and fermion-nucleus scattering is the size of

the interaction rates to which one is led. For fermion-nucleus scattering the RG invariant scale that

sets the size of scattering cross sections depends on the nucleus’ small radius.14 But for fermion-dyon

scattering the S-wave cross sections are not suppressed by the small dyonic size R ∼ m−1
g even at

energies E � mg. Although the mechanism for this (the special kinematics of S-wave scattering)

has been well-understood for quite some time [31, 32] our discussion here embeds this understanding

into the wider PPEFT framework and shows how it can be understood using the same standard

EFT reasoning that also applies to nuclei.

As argued in §1.2, physical predictions of the fermion-nucleus PPEFT (e.g. for atomic energy

levels or scattering cross sections) can be expressed in terms of C±2 /C
±
1 i.e. in terms of ratios

of the integration constants in (1.2.23). These ratios are in turn determined in terms of nuclear

properties through the boundary conditions (1.2.22), which relate g+/f+ and f−/g− at r = ε to the

effective couplings Ĉs and Ĉv. Naively, this prescription appears to make observables depend on the

14More precisely, the RG scales expressing the implications of the nuclear strong interactions of pionic atoms, say,
are set by the nuclear radius while the nucleus’ electromagnetic effects relevant for electron-nuclear interactions are
suppressed relative to this by powers of the fine-structure constant [36–38].
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PhD Thesis – S. Bogojević; McMaster University – Physics and Astronomy

arbitrary scale ε, which is introduced to regularize the boundary conditions and need not be directly

related to the underlying physical scales such as the size of the compact object within the pillbox,

R. However, since the radius of the Gaussian pillbox is not a physical scale, it must drop out of

physical predictions and this happens because any explicit ε-dependence arising in calculations of

an observable cancels an implicit ε-dependence buried within the ‘bare’ quantities Ĉs, Ĉv.

Physical predictions remain ε-independent if quantities like Ĉs, Ĉv are chosen to be ε-dependent

in a way that ensures that ratios like C±2 /C
±
1 remain fixed as ε is varied. The boundary condition

(1.2.22) can then be reinterpreted as a prescription for how Ĉs(ε), Ĉv(ε) must depend on ε, as opposed

to a condition that determines the values of g+/f+ and f−/g− at r = ε as a function of the known

effective couplings. Within this rereading physical observables depend only on the trajectory (ε, Ĉi(ε))

rather than depending on ε and Ĉi(ε) separately. Changes of ε with physical observables fixed can

be regarded as defining a renormalization-group (RG) flow of the Ĉi(ε)’s, and physical observables

must be invariant with respect to this flow.

It turns out that this kind of RG flow defines a natural RG-invariant length scale, and it is this

length scale that both appears in observables (such as for scattering cross sections) and is determined

in terms of physical scales like R when matching effective couplings to the full UV theory of the

source. To see how this scale arises in terms of radial mode functions like f±(r) and g±(r) it is

convenient to choose ε such that R � ε � a where a is a characteristic length scale of the bulk

theory far from the source (for instance, for nuclei in atoms we might have R of order the nuclear

size and a of order the Bohr radius). Radial mode functions are often well-approximated by power

laws in this regime, such as in (1.2.25) (repeated here for convenience)

f±(r) = C±1

( r
a

)z−1

+ C±2

( r
a

)−z−1

and g±(r) = C̃±1

( r
a

)z−1

+ C̃±2

( r
a

)−z−1

, (2.5.1)

for some power z with C̃i ∝ Ci in a way that depends on the relative small-r asymptotic behaviour

of fi(r) and gi(r). One of these solutions dominates for sufficiently small r while the other wins

when r is sufficiently big. The precise crossover radius R? between these two regimes depends only

on the value of the constants C±2 /C
±
1 , and so provides a convenient RG-invariant characterization

of the coupling evolution, and one typically finds e.g. scattering cross sections with bulk fields of

size σ ∼ πR2
? for scattering of long-wavelength modes (kR? � 1) despite couplings like Ĉi being
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dimensionless – see [35].

With the above story in mind we can now use the same EFT language to see why S-wave

scattering from dyons is so different from scattering from other compact objects. The key issue is

not whether couplings like Ĉi are dimensionless or not (they are dimensionless for both nuclei and

dyons). The key issue is the size to be expected for RG-invariant scales like R?.

The main issue is the difference between eqs. (1.2.20) for nuclei and (2.1.12) for dyons. For

nuclei (1.2.20) have two linearly independent solutions and so admit two different power-law type

asymptotic forms like (1.2.25) the transition between which defines the RG-invariant scale R?. But

for dyons the S-wave condition removes one of these solutions leaving just a single first-order equation

(1.2.25) for each choice of external quantum numbers. This means there is never a transition between

two asymptotic power-law regimes; there is only one power-law for each type of mode. As a result

there is no RG-invariant scale R? on which measurable things like scattering cross sections can

depend.

For S-wave scattering from dyons the situation is similar to what would have happened for

nucleons if for some reason we were required to choose C±2 = 0. In this case using the asymptotic

form (1.2.25) in (1.2.22) would imply that Ĉ is ε-independent. The ε-independence of physical

quantities for S-wave dyons similarly requires quantities like Tin or Tout to be ε-independent (as

we see below explicitly), and this asks all of the dimensionless rank-two couplings Ci to themselves

directly be ε-independent. This makes S-wave dyon scattering from massless fermions scale invariant

and so its size is mainly set by the projection of any incoming wave onto the S-wave state, leading

to cross sections that vary as σ ∝ π/k2 when kR � 1 rather than σ ∝ πR2 (as we verify explicitly

below). This is true for any S-wave process regardless of whether or not the reaction in question

violates a flavour symmetry (like baryon number).

Arguments like these relying on the uniqueness of the S-wave kinematics are standard ones

[31, 32] for explaining the large size of catalysis cross sections. What the above arguments do is

provide them with an EFT veneer that shows why they do not undermine the usual notions of

decoupling (once these are carefully formulated).
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Matching

To this point the effective couplings Ci and amplitudes Tin have been treated as arbitrary parameters.

But they really should be regarded as being functions of microscopic parameters in any specific theory

and so take definite values once a given microscopic dyon construction is chosen. Physical predictions

for things like fermion-dyon scattering cross sections within specific microscopic theories are then

obtained by substituting the appropriate values for the Ci’s (or Tin) into the general expressions for

e.g. scattering cross sections given in §3 and §4 below.

For simple calculations of semiclassical scattering of massless fermions moving in a classical dyon

field chirality is conserved by the Dirac equation. As discussed below eq. (2.1.12) the change of

direction of radial motion required by S-wave scattering implies h = cs must change sign during

scattering and so conservation of c implies s must change. This means that fermion charge is always

exchanged with the dyon and so T ++
in = T −−in = 0 for this type of semiclassical scattering. This then

implies – c.f. the unitarity conditions (2.2.34) – T −+
in = e−iδ, T +−

in = eiδ
′

for some phases δ, δ′. This

is the situation that applies to the majority of microscopic fermion scattering calculations (where

typically δ′ = δ) performed in the presence of a classical dyon [61, 73, 74, 62].

Alternatively Kazama et.al. [77] compute scattering processes where the fermion moving within

the dyonic background has an anomalous magnetic moment. In this case chirality is not conserved

and chirality-changing processes dominate, corresponding to the case T ++
in = T −−in = i sign(κ)

(where κ is a parameter of their model) and T +−
in = T −+

in = 0. In both chirality-preserving and

chirality-breaking cases our expressions for cross sections and currents found in later sections agree

with theirs once restricted to these choices.

2.5.2 Interaction effects

In practice the motion of a free fermion within a fixed dyonic background does not provide a good

approximation to fermion-dyon scattering. The free-fermion-moving-in-a-fixed-background approx-

imation breaks down because charge-changing fermion interactions with the rotor field a described

by the amplitudes T +−
in and T −+

in significantly distort the ground state within the fermionic sector

(more about this in §4.1 below) and this distortion cannot be neglected [31, 32, 63–66, 68]. The

radial extent of the fermionic vacuum polarization can extend outside the dyon to distances of order
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the fermion Compton wavelength and so can be much larger than the underlying classical dyon

solution itself.

The back-reaction of this kind of dynamics can appreciably alter the RG flow of couplings like

the Ci’s once ε is large enough to include a significant component of fermionic polarization within

the gaussian pillbox. In this case it is the new values for Ci(ε) that are relevant when computing

quantities like Tin and the above conclusion that Tin’s are ε-independent changes. The results of this

type of evolution are studied in [31, 32, 63, 68], and for general models the full interpretation of the

resulting physics remains incomplete (see for example [58, 59] for recent discussions). In the specific

model considered here, however, the upshot is fairly simple: the Coulomb energies associated with the

fermionic vacuum distortions turn out to convert the UV semiclassical prediction T ++
in = T −−in = 0

for ε of order the monopole scale into the new prediction T +−
in = T −+

in = 0 for ε large enough to

include the fermionic vacuum distortions [68]. This conversion is intuitive inasmuch as the underlying

distortion of the fermionic vacuum is driven by nonzero T +−
in and T −+

in (as we see in §4 below)

More generally the coefficients appropriate to any other particular microscopic dyon construction

can in principle be obtained in a similar way by matching the EFT to the microscopic theory of

interest, once this is known. When doing this matching we typically choose ε such that R� ε� a.

For the simplest applications R ∼ m−1
g is of order the dyon size, but for applications including

fermion condensation in the dyon field R is instead of order the fermion’s Compton wavelength

R ∼ m−1
ψ . In either case taking R � ε � a remains justified provided the low-energy focus is on

sufficiently large a.
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Chapter 3

Perturbative calculations

This chapter uses the PPEFT constructed in §2 to calculate some simple dyon-fermion reaction

rates and cross sections, within the perturbative framework described in §2.3 above. While the

specific approximation used in §2.3 may not be useful for particular microscopic descriptions of

the underlying dyon, it nonetheless allows us to explore some perturbative consequences of the

fermion-dyon interactions. We return to the more broadly applicable general case, which relies on

the Born-Oppenheimer approximation, in chapter §4.

3.1 The perturbative framework

The dyon-localized part of the hamiltonian governing dyon-fermion interactions obtained from the

lagrangian (2.2.7) (and including the electrostatic background and fluctuation field) is

Hdyon = ep Â0(r = ε) +
1

2I

(
p− ϑ

2π

)2

+
1

2

[
ψ C(a)ψ

]
r=ε

(3.1.1)

where p is the canonical momentum for a given in (2.2.9). In this section we drop the Coulomb

fluctuation Â0 and perturb the fermion boundary action about a simple a-independent boundary

action along the lines described in §2.3. Specializing to the S-wave and switching to 2D fields, we

split the bulk and boundary-localized hamiltonian into unperturbed and perturbed parts, H0 +Hint.

65
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The unperturbed hamiltonian is1

H0 =
1

2I

(
p− ϑ

2π

)2

+
i

2
(χΓcχ)r=ε +

1

2

∑
s=±

∫ ∞
ε

dr χs

[
Γ1
↔
∂ 1 − isΓ0

(
ev − eQ

r

)]
χs, (3.1.2)

in which the first term describes the free rotor dynamics and the second term gives the boundary

conditions at r = ε satisfied by the fermions, whose bulk dynamics in the presence of the background

dyon charge is given by the last term.

The unperturbed boundary term i
2 (χΓcχ)r=ε is chosen such that (i) it does not involve the

rotor field a; (ii) the corresponding boundary matrix B(0) has rank 2 and (iii) the resulting modes

describe fermion reflection from the dyon with no phase change at r = ε: that is, T ++ = T −− = 1 to

zeroeth order in perturbation theory. This choice implies the interaction picture field χ satisfies the

boundary condition (2.3.4) and can be expanded in terms of either the modes uin0
s,k, v

in0
s,k or uout0

s,k , vout0
s,k ,

given in equations (2.3.5)-(2.3.8).

The interaction hamiltonian in the interaction picture is then given by

Hint =
1

2

∑
s,s′=±

χs

(
δCsss′ + iδCpsss′Γc − iδC

v
ss′Γ

0 + iδCpvss′Γ
1
)
χs′ e

i
2 (s−s′) aI , (3.1.3)

where the fermion fields are evaluated at r = ε and aI is the interaction picture rotor field

aI(t) := e
i

2IΠ2ta e−
i

2IΠ2t , (3.1.4)

with Π := p − (ϑ/2π). As discussed in §2.4 this perturbed problem also has rank two only when

δCpvss′ = δCpsss′ = 0, which we henceforth assume (though this is not crucial for this perturbative

discussion). In terms of creation and annihilation operators eq. (3.1.3) can be written in the normal-

ordered form

Hint = E0 +
∑

s,s′=±

∫ ∞
0

dk dk′

2π
(δCsss′ − δCvss′)

[
(ain

s,k)?ain
s′,k′e

i(k−k′)t + (ain
s,k)?(ain

s′,k′)
?ei(k+k′)t

+ain
s,ka

in
s′,k′e

−i(k+k′)t − (ain
s′,k′)

?ain
s,ke
−i(k−k′)t

]
e
i

2IΠ2te
i
2 (s−s′)(a−evt)e−

i
2IΠ2t (3.1.5)

1We follow standard practice here and keep the rotor kinetic term despite it being order (e2/4π)µ in magnitude
and so nominally being a higher-loop size.
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where we absorb an r0-dependent phase using an appropriate constant shift of a. We also drop factors

of ei(k±k
′)ε because our EFT framework requires we choose ε to be smaller than the characteristic

bulk length scales of interest, as described in §2.5. In particular this requires us to restrict our

attention to the regime where kε, k′ε and evε are all much smaller than unity.

In (3.1.5) E0 denotes the vacuum expectation value of the interacting hamiltonian Hint, given

by

E0 := 〈0|Hint |0〉 =
eQ

4πε
(δCs−− − δCv−− − δCs++ + δCv++), (3.1.6)

as shown in Appendix F. Although this diverges as ε → 0 it can be absorbed into the counterterm

describing the mass of the dyon. Notice these expressions depend on the boundary couplings only

through the combination δCs − δCv, as argued must be the case in §2.4.

The remainder of this section uses the above setup to calculate some scattering observables within

this perturbative framework.

3.2 Processes involving dyon charge eigenstates

We start by recording the amplitudes for single-fermion scattering processes assuming the dyon

is chosen to be in a charge – i.e. momentum – eigenstate at both the initial and final times and

working to first order in perturbation theory. By focusing here on single-particle scattering we avoid

the complications of multiparticle state-definitions in a monopole background described in [56, 57]

and the twist operators described in [58, 59].

Pair production

Among the charge-changing processes mediated at leading order by (3.1.5) is the production or

absorption of particle-antiparticle pairs carrying net charge. The amplitude obtained at leading order

from (3.1.5) for the production of a pair of positive charge – i.e. for |0〉 |Π〉 → (aout
+,k)?(aout

−,k′)
? |0〉 |Π′〉

– is

A
[
Π→ Π′ + f+(k) + f̄−(k′)

]
= −δΠ′,Π+1δ

(
ω+,k + ω−,k′ +

Π′2 −Π2

2I

)
i
(
δCs+− − δCv+−

)
,(3.2.1)
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where ωs,k = k − 1
2sev is the energy of a particle with charge se/2 and momentum k and ωs,k =

k + 1
2sev is the energy of an antiparticle with charge −se/2 and momentum k.

The amplitude for producing a negatively charged pair – i.e. for |0〉 |Π〉 → (aout
−,k)?(aout

+,k′)
? |0〉 |Π′〉

– similarly is

A
[
Π→ Π′ + f−(k) + f̄+(k′)

]
= −δΠ′,Π−1δ

(
ω−,k + ω+,k′ +

Π′2 −Π2

2I

)
i
(
δCs−+ − δCv−+

)
.(3.2.2)

These show that the rotor level can only change by one unit, as required for it to absorb or

emit the charge lost or gained by the fermions. The fermion similarly gains or loses the energy

required by this transition. These processes cause rotor states with nonzero Π to decay towards

Π = 0 by emitting fermion pairs. It is energetically possible to emit positively charged pairs when

k + k′ = ev − 1+2Π
2I ≥ 0 and so is only possible when Π ≤ Iev − 1

2 . It is similarly possible to emit

negatively charged pairs if k+k′ = −ev− 1−2Π
2I ≥ 0 and this is only possible when Π ≥ Iev+ 1

2 . No

pair production occurs for electrically neutral particle-antiparticle pairs since energy conservation

implies this can only happen if k = k′ = 0.

Writing A =M δ(Ef −Ei) and using these amplitudes in Fermi’s golden rule gives the following

differential decay rate

dΓ = 2π|M|2 δ(Ef − Ei)
dk

2π

dk′

2π
. (3.2.3)

Using this and performing the final-state momentum integrals, the integrated rate for emitting pos-

itively charged fermions is nonzero for initial dyon momenta satisfying Π < Iev− 1
2 ∼ (4π/e)(v/µ),

and is given by

Γ
[
Π→ (Π + 1) + f+(k) + f̄−(k′)

]
=

1

2π

(
ev − 2Π + 1

2I

)
|δCs+− − δCv+−|2 . (3.2.4)

The integrated rate for emitting negatively charged pairs is similarly nonzero when Π > Iev + 1
2

with

Γ
[
Π→ (Π− 1) + f−(k) + f̄+(k′)

]
=

1

2π

(
−ev +

2Π− 1

2I

)
|δCs−+ − δCv−+|2 . (3.2.5)

68

http://www.mcmaster.ca/
https://physics.mcmaster.ca/
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Scattering cross sections

The Hamiltonian (3.1.5) also describes scattering processes. The amplitude for the charge-changing

process (ain
+,k)? |0〉 |Π〉 → (aout

−,k′)
? |0〉 |Π′〉 is given by

A
[
f+(k) + Π→ Π′ + f−(k′)

]
= −δΠ′,Π−1δ

(
ω−,k′ − ω+,k +

Π′
2 −Π2

2I

)
i
(
δCs−+ − δCv−+

)
, (3.2.6)

where (as before) ωs,k = k − s ev2 . Similarly the amplitude for (ain
−,k)? |0〉 |Π〉 → (aout

+,k′)
? |0〉 |Π′〉 is

A
[
f−(k) + Π→ Π′ + f+(k′)

]
= −δΠ′,Π+1δ

(
ω+,k′ − ω−,k +

Π′
2 −Π2

2I

)
i
(
δCs+− − δCv+−

)
. (3.2.7)

The analogous amplitudes for charge-changing antiparticle transitions can be inferred from those

above by crossing symmetry. These reactions can proceed so long as the initial fermion energy

satisfies ωi ≥ 1
2I (s′2Π + 1) − s′ ev2 , where s′ is the charge of the final particle, since ωf ≥ −s′ ev2 for

single particle scattering.

The effective interactions in (3.1.5) also describe scattering processes that do not exchange charge

or energy with the dyon (and so necessarily flip the 4D chirality). The amplitude for an incoming

positively charged particle to scatter to an outgoing particle of the same charge is

A
[
f+(k)+Π→ Π′+f+(k′)

]
= −δΠ′,Π δ (ω+,k′ − ω+,k) i

[ ∫ ∞
−∞

dt 〈0|Hint |0〉+δCs++−δCv++

]
, (3.2.8)

where we omit the zeroth order term in the perturbative expansion of the S-matrix. The above

expression includes a contribution from the vacuum survival amplitude, given in terms of the vacuum

expectation value of Hint. Although we formally include this in amplitudes such as (3.2.8) and

(3.2.9) below, we are primarily interested in inclusive scattering processes in which the number of

pairs produced by the dyon is unmeasured, as explained in more detail in §4. In that case, the

vacuum survival amplitude, which describes a process in which no pairs are produced, drops out

of physical predictions such as cross section results. The corresponding amplitude for a negatively

69

http://www.mcmaster.ca/
https://physics.mcmaster.ca/
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charged incoming particle is

A
[
f−(k)+Π→ Π′+f−(k′)

]
= −δΠ′,Πδ (ω−,k′ − ω−,k) i

[ ∫ ∞
−∞

dt 〈0|Hint |0〉+δCs−−−δCv−−
]
. (3.2.9)

The amplitudes for transitions between antiparticles of the same charge can be calculated similarly.

Fermion-dyon scattering reactions are most usefully described in terms of 4D cross sections rather

than 2D scattering rates, so we pause to make the connection to these explicit. Because incoming

initial states in 4D are plane waves far from the dyon, they are not prepared in the S-wave. Their

scattering rates are therefore the product of the 2D S-wave scattering rate times the probability, ps,

of finding the incoming plane-wave in the S-wave. The 4D cross section then is obtained by dividing

by the incoming 4D particle flux Fi.

Combining these factors leads to the following factorized expression for the 4D single-particle

S-wave differential cross section dσs computed using the above amplitudes with A =M δ(Ef −Ei):

dσs

[
fsc(k) + Π→ Π′ + fs′c′(k

′)
]

=
ps
Fi

dΓ2 =
π

k2
δs,cδs′,−c′ |M|2 δ(Ef − Ei) dk′ , (3.2.10)

where the factors ps and Fi are computed explicitly in Appendix D, where we also show how the 2D

rates are calculated. The factor δs,c ensures the result is nonzero only when s = c corresponding to

the observation made below eq. (2.1.14) that sc = +1 for any incoming S-wave fermion. Similarly

s′c′ = −1 for any outgoing fermion.2 Notice the proportionality to 1/k2 ensures the cross section

scales with energy as does the unitarity bound (so long as the fermion mass is negligible).

For instance, using the amplitudes for fermion scattering given above we find the charge-changing

cross section to be

dσs
[
f++(k) + Π→ Π′ + f−+(k′)

]
=

π

k2
δΠ′,Π−1δ

(
k′ − k + ev +

1− 2Π

2I

)
|δCs−+ − δCv−+|2 dk′ . (3.2.11)

Integrating over the final fermion momentum and marginalizing over the unmeasured final dyon

momentum then gives the total charge-changing cross section

σs

[
f++(k) + Π→ (Π− 1) + f−+(k′)

]
= Θ

(
k − ev +

2Π− 1

2I

)
π

k2
| δCs−+ − δCv−+|2 . (3.2.12)

2We restore the chirality label c′ on the final S-wave state to make all the quantum numbers explicit in dσs
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In the same way for the charge-changing f−−(k) + Π→ (Π + 1) + f+−(k′) transition, we get

σs

[
f−−(k) + Π→ (Π + 1) + f+−(k′)

]
= Θ

(
k + ev − 2Π + 1

2I

)
π

k2
|δCs+− − δCv+−|2. (3.2.13)

Similar expressions can be found for the cross section for processes where the 4D chirality of

the fermions changes but not their charge (such as the amplitudes (3.2.8) and (3.2.9)) but we

do not provide them explicitly here because they depend more sensitively on our initial choice of

unperturbed boundary conditions. Expressions for these processes are instead derived in §4 below

using the Born-Oppenheimer approximation.

3.3 Transitions between dyon field eigenstates

For the purposes of comparing with Born-Oppenheimer results in §4 it is worth computing the same

processes as above but this time choosing the initial and final rotor states to be eigenstates of a

rather than p or Π. Strictly speaking, the interaction picture operator

aI(t) = a +
Π t

I
, (3.3.1)

is not conserved and so its eigenstates need not agree at different times. However because I−1 ∼

αµ� µ in the semiclassical limit, it is a good approximation to neglect the time-dependence of a and

so amplitudes for transitions between a eigenstates simplify considerably, because a is approximately

conserved.

Pair production

For instance, for static a the amplitude to produce a particle-antiparticle pair of positive charge is

found by taking the matrix element of (3.1.3), leading to

A
[
a→ a′ + f+(k) + f̄−(k′)

]
' −δa′aδ (ω+,k + ω−,k′) e

ia i
(
δCs+− − δCv+−

)
. (3.3.2)
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The corresponding amplitude for producing a negatively charged pair vanishes in this approximation

because the energy conservation condition now implies k + k′ + ev = 0, which is never satisfied for

k, k′ ≥ 0, ev > 0. As we shall see, the above amplitudes exactly match the ones listed in §4 below,

once these are evaluated in the perturbative regime.

The resulting total rate for producing fermion pairs (marginalized over their unmeasured quan-

tum numbers and the dyon final state) then is

Γ
[
a→ a′ + f+(k) + f̄−(k′)

]
' ev

2π

∣∣∣δCs+− − δCv+−∣∣∣2. (3.3.3)

Scattering

The S-wave amplitudes for charge-changing fermion scattering in the same static-a limit are

A
[
f+(k) + a→ a′ + f−(k′)

]
= −δa′aδ (ω−,k′ − ω+,k) e−ia i

(
δCs−+ − δCv−+

)
, (3.3.4)

and

A
[
f−(k) + a→ a′ + f+(k′)

]
= −δa′aδ (ω+,k′ − ω−,k) eia i

(
δCs+− − δCv+−

)
. (3.3.5)

The corresponding total cross section for charge-exchange processes in which the dyon remains in

an a eigenstate then is

σs

[
fss(k) + a→ a + f−ss(k

′)
]

= Θ (k − sev)
π

k2

∣∣∣δCs−ss − δCv−ss∣∣∣2 . (3.3.6)

Notice that both pair production and scattering involve only a fairly simple condition on k (if

any) as opposed to the fairly complicated restrictions on Π that arose when the dyon was prepared

in a charge eigenstate. This relative simplicity arises because the a eigenstate always has an overlap

with Π eigenstates for which the processes are energetically allowed. The a-eigenstate expressions are

easier to compare with the Born-Oppenheimer, and agree within their common domain of validity

with the cross sections found in §4.
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Chapter 4

Born-Oppenheimer approximation

In this chapter, we compute the pair-production and scattering implied by the full mode functions

described within the Born-Oppenheimer approximation of §2.2.2, for which the fermions are quan-

tized with the bosonic field a initially treated as a classical field. We start in §4.1 by examining how

the fast degrees of freedom (the fermions) evolve in the presence of a static classical rotor field a,

then continue in §4.2 with some observations about the rotor’s response.

For these purposes recall that dyon interactions with S-wave fermions are described by the

hamiltonian H = Hdyon + Hbulk that is the sum of the dyon-localized terms of (3.1.1), reproduced

for convenience here,1

Hdyon =
1

2I

[
p(t)− ϑ

2π

]2

+ ep Â0(r = ε, t) +
1

2

[
χOB(a)χ

]
r=ε,t

(4.0.1)

where OB(a) is given in terms of the couplings CAss′ by (2.2.18) and the bulk 2D hamiltonian is

Hbulk = HC +
1

2

∑
s=±

∫ ∞
ε

dr χs

[
Γ1
↔
∂ 1 − isΓ0

(
ev − eQ

r
+ eÂ0

)]
χs , (4.0.2)

with HC denoting the part of the Maxwell action depending on the Coulomb field Â0. We follow

previous work and perturb in the Coulomb interactions involving Â0, whose contributions to the

1We follow standard practice here and keep the rotor kinetic term despite it being order (e2/4π)mg in magnitude
and so nominally being higher-loop in size. It can make sense to do so to the extent that all of the rotor’s responses
arise at this same order (and are included).
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energy are suppressed by powers of e2. We differ from the warm-up calculations of §3 by not splitting

OB(a) into an unperturbed and perturbed piece; instead treating the interaction with a using Born-

Oppenheimer methods (as motivated in §2.3). In practice this means that we treat a as a fixed

classical field when determining the fermionic response and then return to ask how this slower rotor

field evolves in response to interactions with the faster fermions.

4.1 Fermion evolution

We start by calculating the Bogoliubov coefficients that relate in and out modes, neglecting the

Coulomb back-reaction of the distortions of the fermion ground state. Subsequent subsections then

consider some of the implications of this fermionic distortion such as to pair-production rates and

scattering cross sections.

Bogoliubov relations

The starting point expands the S-wave fermion field in terms of the in and out bases for the fermion

modes in the presence of a dyon background described in §2.2.2:

χ(x) =
∑
s=±

∫ ∞
0

dk√
2π

[
uin
s,k(x) ain

s,k + vin
s,k(x) (ain

s,k)?
]

=
∑
s=±

∫ ∞
0

dk√
2π

[
uout
s,k (x) aout

s,k + vout
s,k (x) (aout

s,k )?
]

(4.1.1)

with mode functions defined in eqs. (2.2.28) through (2.2.31) and (2.2.38) through (2.2.41) and

particle and antiparticle creation and annihilation operators satisfying

{
ain
s,k, (a

in
s′,k′)

?
}

=
{
ain
s,k, (a

in
s′,k′)

?
}

= δ(k − k′) δss′ ,

and
{
aout
s,k , (a

out
s′,k′)

?
}

=
{
aout
s,k , (a

out
s′,k′)

?
}

= δ(k − k′) δss′ , (4.1.2)

with all other anticommutators vanishing.

Since both the in and out basis are complete, each can be expanded in terms of the other. For
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each k ≥ 0 we have

uin
−,k(x) = T −−in e−2ikε

(
ε

r0

)−ieQ
uout
−,k(x) + T +−

in e−i(2k+ev)ε eia uout
+,k+ev(x)

vin
+,k(x) = T ++

in e2ikε

(
ε

r0

)ieQ
vout

+,k(x) + T −+
in ei(2k+ev)ε e−ia vout

−,k+ev(x)

uin
+,k(x) = T ++

in e−2ikε

(
ε

r0

)ieQ
uout

+,k(x) (4.1.3)

+T −+
in e−i(2k−ev)ε e−ia

[
Θ (k − ev) uout

−,k−ev(x) + Θ (−k + ev) vout
−,−k+ev(x)

]
vin
−,k(x) = T −−in e2ikε

(
ε

r0

)−ieQ
vout
−,k(x)

+T +−
in ei(2k−ev)ε eia

[
Θ (k − ev) vout

+,k−ev(x) + Θ (−k + ev) uout
+,−k+ev(x)

]
,

and similarly

uout
−,k(x) = T −−out e

2ikε

(
ε

r0

)ieQ
uin
−,k(x) + T +−

out e
i(2k+ev)ε eia uin

+,k+ev(x)

vout
+,k(x) = T ++

out e
−2ikε

(
ε

r0

)−ieQ
vin

+,k(x) + T −+
out e

−i(2k+ev)ε e−ia vin
−,k+ev(x)

uout
+,k(x) = T ++

out e
2ikε

(
ε

r0

)−ieQ
uin

+,k(x) (4.1.4)

+T −+
out e

i(2k−ev)ε e−ia
[
Θ (k − ev) uin

−,k−ev(x) + Θ (−k + ev) vin
−,−k+ev(x)

]
vout
−,k(x) = T −−out e

−2ikε

(
ε

r0

)ieQ
vin
−,k(x)

+T +−
out e

−i(2k−ev)ε eia
[
Θ (k − ev) vin

+,k−ev(x) + Θ (−k + ev) uin
+,−k+ev(x)

]
.

These lead to the following Bogoliubov relations between the in and out operators for each k ≥ 0

(see appendix D for derivation)

aout
−,k = T −−in ain

−,k + T −+
in e−ia ain

+,k+ev , (aout
+,k)? = T ++

in (ain
+,k)? + T +−

in eia (ain
−,k+ev)

?

aout
+,k = T ++

in ain
+,k + T +−

in eia
[
Θ (k − ev) ain

−,k−ev + Θ (−k + ev) (ain
−,−k+ev)

?
]

(4.1.5)

(aout
−,k)? = T −−in (ain

−,k)? + T −+
in e−ia

[
Θ (k − ev) (ain

+,k−ev)
? + Θ (−k + ev) ain

+,−k+ev

]
,
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as well as their inverses

ain
−,k = T −−out aout

−,k + T −+
out e

−ia aout
+,k+ev , (ain

+,k)? = T ++
out (aout

+,k)? + T +−
out e

ia (aout
−,k+ev)

?

ain
+,k = T ++

out a
out
+,k + T +−

out e
ia
[
Θ (k − ev) aout

−,k−ev + Θ (−k + ev) (aout
−,−k+ev)

?
]

(4.1.6)

(ain
−,k)? = T −−out (aout

−,k)? + T −+
out e

−ia
[
Θ (k − ev) (aout

+,k−ev)
? + Θ (−k + ev) aout

+,−k+ev

]
.

These are consistent with the anticommutation relations (4.1.2) by virtue of the unitarity identities

(2.2.34) and (2.2.35) – and their counterparts (2.2.44) and (2.2.45) – satsified by the T ’s. As in §3,

we drop powers of kε, k′ε and evε and shift a and rephase the out-state creation and-annihilation

operators to remove an r0-dependent phase.

Pair production

The mixing of creation and annihilation operators in the Bogoliubov transformations (4.1.5) and

(4.1.6) shows that the system is unstable to pair production if T +−
in/out is nonzero.

To compute the pair-production rate define the in and out vacua |0in〉 and |0out〉 as usual:

ain
s,k |0in〉 = ain

s,k |0in〉 = 0 and aout
s,k |0out〉 = aout

s,k |0out〉 = 0 . (4.1.7)

We switch here for convenience to discretely normalized momentum states, for which we denote the

creation and annihilation operators using bold-faced fonts, as in (a,a). (See appendix D for relation

between discrete and continuum normalized states.)

Writing the total vacuum as a tensor product over momenta, |0〉 =
∏
k>0

|0 k〉, and using the above

Bogoliubov transformations implies for each k ≥ 0 we have

|0 kin〉 =
{

Θ (k − ev) + Θ (−k + ev)
[
T −−in + T +−

in eia(aout
+,k)?(aout

−,−k+ev)
?
]}
|0 kout〉 (4.1.8)

and

|0 kout〉 =
{

Θ (k − ev) + Θ (−k + ev)
[
T −−∗in + T −+ ∗

in eia(ain
+,k)?(ain

−,−k+ev)
?
]}
|0 kin〉 , (4.1.9)
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PhD Thesis – S. Bogojević; McMaster University – Physics and Astronomy

where as usual Θ(x) denotes the Heaviside step function. See appendix E for derivation of the above

expressions.

If T +− = 0 then (2.2.34) shows that T −+ also vanishes and |T −−| = |T ++| = 1. In this case

(4.1.8) and (4.1.9) imply the in and out vacua are the same state. But when T +− 6= 0 for some

momenta the in vacuum contains occupied out particles. This shows that when charge-changing

effective dyon-fermion interactions are present the dyon spontaneously emits a fermion with charge

+ 1
2e and the antiparticle of the charge − 1

2e state, ensuring the net charge emission of 1
2e+ 1

2e = e.

Total electric charge is conserved because this emission is accompanied by a transition between

rotor levels for a that removes one unit +e of charge from the dyon, as can be seen2 from the a-

dependence of (4.1.10). The sign of the charge removed is dictated by the overall sign of the dyon

charge Q which we’ve chosen to be positive: Q > 0. These pairs are produced through the Schwinger

effect [81, 73] by the external voltage v of the dyon between r →∞ and r = 0, and act to discharge

the dyon’s net charge.

The energetics of the process is somewhat obscured within the Born-Oppenheimer approximation

because the rotor is treated as a classical field, which if regarded as an eigenstate of a is not an energy

eigenstate. When calculated perturbatively in §3 we do find that fermion emission extracts an energy

given by the spacing between rotor steps, which is of order I−1 ∼ αmg. But in a semiclassical

approximation this energy transfer is the same size (relative to mg) as loop corrections, which to

this order we neglect, and this is why (4.1.10) allows pair-production for the entire momentum range

k ∈ (0, ev). Implicit in this treatment is the assumption that the fermion energies of interest are

much higher than the rotor gap; one manifestation of the noncommuting order of limits discussed

below eq. (2.1.8).

The amplitude for this emission (for fixed a) in a specific momentum mode is

〈0 kout| aout
−,−k+ev a

out
+,k |0 kin〉 = Θ(−k + ev) T +−

in eia , (4.1.10)

which has squared modulus Pk = |T +−
in |2 = |T +−

out |2 when 0 < k < ev. The vacuum-survival

2This is made very explicit in §3 for those who need convincing.
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amplitude for this specific mode is similarly

〈0 kout|0 kin〉 = Θ (k − ev) + Θ (−k + ev) T −−in , (4.1.11)

which squares to unity when k > ev but has squared modulus |T −−in |2 = 1− |T +−
in |2 = 1−Pk when

0 < k < ev. The likelihood of producing zero or one pairs sums to unity because for fermions these

are the only possible options.

The exclusive probability for the full vacuum to produce exactly one pair in a specific mode

k ∈ (0, ev) is given by combining the above result for all k, giving

Ppair(k) = | 〈0out|aout
−,−k+ev a

out
+,k |0in〉 |2 = Pk

q<ev∏
q 6=k

(1− Pq) = |T +−
in (k)|2

q<ev∏
q 6=k

|T −−in (q)|2. (4.1.12)

The total probability factorizes because the likelihood of pair-production in each mode is independent

of what happens for the other modes. More useful is the inclusive probability for pair production of a

specific mode with the other modes unmeasured (and so marginalized over). The above expressions

show this is given by

ppair(k) = Pk = |T +−
in |2 and so pno pair(k) = 1− Pk = |T −−in |2 . (4.1.13)

We can calculate the average number of particles produced by making use of the Bogoliubov

relations in the form

〈0in|Nout |0in〉 =

∞∑
k=0

〈0in| (aout
+k )? aout

+k |0in〉

=

ev∑
k=0

|T +−
in |2 〈0in|ain

−,−k+ev(a
in
−,−k+ev)

? |0in〉 =
ev

∆k
|T +−

in |2, (4.1.14)

where ∆k = π/L is the spacing between momentum states (when these are discretely normalized).3

The number of particles per unit length is obtained by dividing by 2L, and this has a sensible

continuum limit as L → ∞, with d〈N〉/dx = ev|T +−
in |2/(2π). Since each produced particle moves

3We discretize momenta by putting the system in a box −L < r < L with near-dyon boundary conditions imposed
at r = ε ≈ 0. In these conventions the relevant length of the system is 2L, and the density of states is 2π/(2L) = π/L
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to larger r at the speed of light this means that these particles emerge at infinity with a rate

Γ∞ = ev|T +−
in |2/(2π). A similar counting also applies to the number of produced antiparticles.

Because each pair contains one positively charged particle and one positively charged antiparticle

the number of produced pairs is also

Γpair =
ev

2π
|T +−

in |2 . (4.1.15)

This result is independently computed below using the expectation values for the fermionic currents.

Eq. (4.1.15) can also be compared with (3.3.3) (when restricted to the perturbative domain). To

this end we must expand the coefficients Tin perturbatively to the same order in the δCs used in §3.

To linear order the Tin amplitudes are given by

T ss
in = 1 + i(δCvss − δCsss) and T +−

in = −T −+ ∗
in = i(δCv+− − δCs+−), (4.1.16)

once the rank-2 conditions δCpsss′ = δCpvss′ = 0 are used. Using these in (4.1.15) then agrees with

(3.3.3).

Vacuum currents

An alternative characterization of dyonic pair production that lends itself to the continuum limit is

the integrated contribution of the produced pairs to current flow in the fermion sector. To display

these currents we evaluate the expectation value of the various conserved currents in the in vacuum.

Since these expectation values in general diverge we regulate them by point-splitting the two fermion

fields involved by a distance ε, writing

χ(r, t)Mχ(r, t)→ χ(r + ε/2, t)Mχ(r − ε/2, t) , (4.1.17)

with ε → 0 taken at the end, after renormalizing. We quote here expressions for the regularized

currents – see appendix F for details of the matrix-element calculations.
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The regularized components of the fermion number current4 jαB = iχΓαχ are given by

〈0in| j0
B(x) |0in〉 = 〈0out| j0

B(x) |0out〉 = 0 and 〈0in| j1
B(x) |0in〉 = 〈0out| j1

B(x) |0out〉 =
2i

πε
, (4.1.18)

while those of the fermionic electromagnetic current jαF = 1
2 ieχΓατ3χ are

〈0in| j0
F (r, t) |0in〉 = 〈0out| j0

F (r, t) |0out〉 =
e2v

2π
|T +−

in |2 − e2Q

2πr

and 〈0in| j1
F (r, t) |0in〉 = −〈0out| j1

F (r, t) |0out〉 =
e2v

2π
|T +−

in |2 . (4.1.19)

We define the axial current by jαA = iχΓαΓAχ with ΓA := Γc τ3 rather than Γc because this agrees

with the 4D axial current iψγµγ5ψ for S-wave states (up to the usual 2D normalization factor of

4πr2). Its vacuum matrix elements are

〈0in| j0
A(r, t) |0in〉 = −〈0out| j0

A(r, t) |0out〉 = −ev
π
|T +−

in |2

and 〈0in| j1
A(r, t) |0in〉 = 〈0out| j1

A(r, t) |0out〉 = −ev
π
|T +−

in |2 +
eQ

πr
. (4.1.20)

Recalling that the 2D modes are normalized so that the 2D flux j1 gives the integrated radial flux

4πr2Jr for the corresponding 4D S-wave current, we see that at spatial infinity there is a nonzero

flux of both electric and axial charge:

〈0in| j1
F (∞, t) |0in〉 = eF and 〈0in| j1

A(∞, t) |0in〉 = −2F where F =
ev

2π
|T +−

in |2 . (4.1.21)

This has a simple interpretation as a flux of pair-produced particles, since each such pair carries

electric charge e and axial charge5 −2 (and no net fermion number), with integrated particle flux

(or rate with which particle pairs appear at infinity) given by Γpair = F, in agreement with (4.1.15).

Our result for the flux of the axial current is consistent with [73], when the T amplitudes are chosen

to match theirs6 i.e. when |T +−| = 1.

4We do not go through the exercise of renormalizing the fermion number current here, since we only use
〈0in| j1B(x) |0in〉 to evaluate the conservation equations for jαF , j

α
A.

5See appendix D for discussion of asymptotic charges of in, out states.
6Note that the axial current in [73] has a relative minus sign compared to our definition.
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These expressions are also consistent with (anomalous) current conservation. As shown in ap-

pendix F, the above currents satisfy

∂αj
α
B(x) =

eQ

2r2
lim
ε→0

[
εχ(r + ε/2, t)Γ0 τ3χ(r − ε/2, t)

]
= − iQ

r2
lim
ε→0

[
εj0
F (x)

]
= 0,

∂αj
α
F (x) =

e2Q

4r2
lim
ε→0

[
εχ(r + ε/2, t)Γ0χ(r − ε/2, t)

]
= − ie

2Q

4r2
lim
ε→0

[
εj0
B(x)

]
= 0,

∂αj
α
A(x) = − eQ

2r2
lim
ε→0

[
εχ(r + ε/2, t)Γ1χ(r − ε/2, t)

]
=
ieQ

2r2
lim
ε→0

[
εj1
B(x)

]
= − eQ

πr2
. (4.1.22)

These agree with the standard 2D anomaly expressions, which in the present instance tell us that

jαB and jαF are anomaly free and give

∂αj
α
A =

[e
2
−
(
−e

2

)] 1

2π
εαβFαβ =

e

π

[
∂0Ar − ∂rA0

]
=

1

π
∂r

(
eQ

r
− ev

)
= − eQ

πr2
, (4.1.23)

when evaluated with the background dyonic Coulomb field.

It is also noteworthy that (4.1.19) implies that particle production significantly polarizes the

fermionic ground state, inducing a charge density with the opposite sign to the dyon charge that

(for massless fermions) falls off only as a power law as one moves away from the dyon. As has been

remarked elsewhere [26, 62–66], such charging of the fermion ground state puffs up the dyon into a

much bigger object than was the underlying classical dyon configuration.

Dyon-fermion scattering

The Bogoliubov relations in the 2D EFT also allow us to calculate the cross section for any S-wave

fermion-dyon scattering process, by evaluating amplitudes of the form 〈Aout|Bin〉. The Bogoliubov

transformation provides a succinct listing of the options for 〈Aout| that give nonzero amplitudes

given a single-particle |Bin〉 that can be seen by expanding the incoming state (ain
s,k)? in terms of

out operators – see (4.1.6). The presence of pair-production means that any such process can be

accompanied by some number of spontaneously produced pairs.

81

http://www.mcmaster.ca/
https://physics.mcmaster.ca/
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For instance the 4D chirality-changing amplitude for f−(k)→ f−(k′) accompanied by the emis-

sion of n pairs is given by

〈0out| aout
−,−qn+eva

out
+,qn ...a

out
−,−q1+eva

out
+,q1 a

out
−,k′(a

in
−,k)? |0in〉 (4.1.24)

= δ(k − k′)T −−in 〈0out| aout
−,−qn+eva

out
+,qn ...a

out
−,−q1+eva

out
+,q1 |0in〉 ,

where n = 0, 1, 2, · · · . The amplitude for charge-changing processes like f±(k)→ f∓(k′) (accompa-

nied by n spontaneously produced pairs) is similarly

〈0out| aout
−,−qn+eva

out
+,qn ...a

out
−,−q1+eva

out
+,q1 a

out
−,k′(a

in
+,k)? |0in〉 (4.1.25)

= δ(k′ + ev − k)e−iaT −+
in 〈0out| aout

−,−qn+eva
out
+,qn ...a

out
−,−q1+eva

out
+,q1 |0in〉 ,

and

〈0out| aout
−,−qn+eva

out
+,qn ...a

out
−,−q1+eva

out
+,q1 a

out
+,k′(a

in
−,k)? |0in〉 (4.1.26)

= δ(k′ − ev − k)eiaT +−
in 〈0out| aout

−,−qn+eva
out
+,qn ...a

out
−,−q1+eva

out
+,q1 |0in〉 .

In particular the different voltages seen by the two charge states imply the reaction f+(k)→ f−(k′)

(plus pair production) vanishes unless k > ev for want of fermion final states with the required

energy.

The remaining reaction obtained with an initial incoming positively charged fermion is slightly

more complicated. On one hand the 4D chirality-flipping process f+(k) → f+(k′) (plus the pro-

duction of n pairs) proceeds much as above. However when k < ev the part of the Bogoliubov

transformation relating (ain
+,k)? to aout

−,−k+ev also contributes to give an amplitude for spontaneously

emitting n+1 pairs from the vacuum (with one of the pairs corresponding to a particle and antipar-

ticle of momentum k′ and −k + ev, respectively), leading to:

〈0out| aout
−,−qn+eva

out
+,qn ...a

out
−,−q1+eva

out
+,q1 a

out
+,k′(a

in
+,k)? |0in〉

= δ(k − k′)T ++
in 〈0out| aout

−,−qn+eva
out
+,qn ...a

out
−,−q1+eva

out
+,q1 |0in〉 (4.1.27)

+Θ (−k + ev) e−iaT −+
in 〈0out| aout

−,−qn+eva
out
+,qn ...a

out
−,−q1+eva

out
+,q1a

out
+,k′a

out
−,−k+ev |0in〉 .
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In equations (4.1.24)-(4.1.27), the momenta k′, q1, · · · qn are all distinct and satisfy ev > q1, · · · qn > 0

as well as k, k′ > 0. Similar formulae can be derived for the amplitudes with a single antiparticle in

the initial state.

The next step is to evaluate the pair production amplitudes appearing in (4.1.24)-(4.1.27) by

using the out particle content of the in vacuum, as in appendix E. When counting pairs it is more

convenient to switch to a discrete normalization for momentum eigenstates, as we now do, in which

case the maximum number of out pairs in the in vacuum, N , is a finite but large number7. The

discrete normalization analogue of the amplitude for emitting n pairs appearing in (4.1.24) to (4.1.26)

and the first line of the right-hand side of (4.1.27) evaluates to

An
pair = 〈0out|aout

−,−qn+eva
out
+,qn ...a

out
−,−q1+eva

out
+,q1 |0in〉 =

(
T −−in

)N−n (T +−
in

)n
eina, (4.1.28)

for n ≤ N , and vanishes otherwise.8 For k < ev the amplitude for emitting n+ 1 pairs encountered

in the second line of (4.1.27) similarly corresponds to

An+1
pair (k, k′) = 〈0out|aout

−,−qn+eva
out
+,qn ...a

out
−,−q1+eva

out
+,q1a

out
+,k′a

out
−,−k+ev |0in〉

= −δkk′
(
T −−in

)N−(n+1) (T +−
in

)n+1
ei(n+1)a, (4.1.29)

when n < N and vanishes otherwise. The two lines on the right-hand side of (4.1.27) then combine

to become

〈0out|aout
−,−qn+eva

out
+,qn ...a

out
−,−q1+eva

out
+,q1 a

out
+,k′(a

in
+,k)? |0in〉

= δkk′
[
T ++

in T
−−

in − T −+
in T +−

in

] (
T −−in

)N−(n+1) (T +−
in

)n
eina, (4.1.30)

for k < ev and n < N , when evaluated using discretely normalized states. The corresponding

continuum normalization amplitudes have a very similar form.

Notice that the amplitudes (4.1.24)-(4.1.26) factorize into a product of a single-particle transition

amplitude, Asc, from a particle with quantum numbers s, k to one with quantum numbers s′, k′,

7N is defined as the maximum value of 〈0in|Nout |0in〉 = ev/∆k |T +−
in |2 and so is given by N = ev/∆k. In the

continuum limit, N goes to infinity as the spacing ∆k between states vanishes (see Appendix D for details).
8We denote transition amplitudes between discretely normalized states by A and their continuum normalization

counterparts by A.
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times a product of pair-production (or vacuum survival) amplitudes for all the modes. The amplitude

(4.1.27) factorizes in the same way for initial momenta k > ev, while for k < ev the product over

pair production (or vacuum survival) amplitudes runs over all but the k-th mode9. The amplitudes

factorize in this way because scattering and pair production for different modes are statistically

independent. Inspection of the above formulae shows that the single-particle transition amplitudes

Asc[fs(k)→ fs′(k
′)] are given by

Asc[f−(k)→ f−(k′)] = T −−in δ(k − k′), (4.1.31)

Asc[f+(k)→ f−(k′)] = e−iaT −+
in δ(k′ + ev − k), (4.1.32)

Asc[f−(k)→ f+(k′)] = eiaT +−
in δ(k′ − ev − k) , (4.1.33)

and

Asc[f+(k)→ f+(k′)] =
[
Θ(k − ev)T ++

in + Θ (−k + ev)
[
T ++

in T
−−

in − T +−
in T −+

in

]]
δ(k − k′) . (4.1.34)

Notice that the unitarity constraints on the Tin amplitudes given in (2.2.34) and (2.2.35) imply that

the expression T ++
in T

−−
in − T +−

in T −+
in simplifies to a phase.

Low-energy scattering rates can now be computed much as in §3 by projecting any incoming

plane wave onto the S-wave. 4D cross sections can then be computed by dividing by the appro-

priate incident particle flux. For instance, factoring out the energy-conserving delta function from

amplitudes (4.1.31)-(4.1.33) as Asc =M δ(Ef −Ei), the 4D cross section for scattering with no pair

production is

dσsexclusive

[
fsc(k)→ fs′c′(k

′)
]

=
ps
Fi

dΓexclusive =
π

k2
δs,cδs′,−c′ |M|2 | 〈0out|0in〉 |2 δ(Ef − Ei) dk′ ,

(4.1.35)

9For k < ev, the amplitude (4.1.27) factorizes differently than (4.1.24)-(4.1.26) because it describes two processes
in which the number of produced pairs is not the same. We define Asc for this process as in (4.1.34) so that the
single-particle amplitude captures the relevant contribution of (4.1.27) to inclusive observables.
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where the probability for the plane wave to be found in an S-wave, ps and the initial particle flux Fi

are defined as in §3 and are calculated in Appendix D along with the 2D exclusive differential inter-

action rate dΓexclusive. Similarly, the cross section for scattering with no additional pair production

for the final amplitude (4.1.34) is

dσsexclusive

[
f++(k)→ f+−(k′)

]
=

π

k2
|M|2 | 〈0out|0in〉 |2 δ(Ef − Ei) dk′

×
[
Θ(k − ev) + Θ(−k + ev)

∣∣T −−in

∣∣−2
]
,(4.1.36)

where M is defined through Asc =M δ(Ef −Ei) and the factor of
∣∣T −−in

∣∣−2
is cancelled by similar

factors in the overlap | 〈0out|0in〉 |2, making the cross section finite even in the T −−in → 0 limit.

Of more practical interest are inclusive cross sections for which the number of associated pair pro-

ductions is unmeasured and so marginalized over. Appendix E – see the discussion below eq. (E.2.1)

– explicitly performs the marginalization over the number of produced pairs and shows that the

resulting cross section can be expressed purely in terms of the single-particle scattering amplitudes

Asc, given in (4.1.31)-(4.1.34). The ability to do so is a consequence of unitarity, and is also the

reason the parameters n and N drop out of our final results. The inclusive 4D cross section becomes

dσs

[
fsc(k)→ fs′c′(k

′)
]

=
ps
Fi

dΓinclusive =
π

k2
δs,cδs′,−c′ |M|2 δ(Ef − Ei) dk′ , (4.1.37)

where the 2D inclusive differential interaction rate dΓinclusive is defined in Appendix D.

Combining results and integrating over the final momentum k′ leads to the total inclusive S-wave

cross sections. For charge-exchange processes with s = c we have

σs[f± → f∓] =
π

k2

∣∣∣T +−
in

∣∣∣2Θ(k − sev). (4.1.38)

Similarly for processes in which the 4D chirality changes, but the charge doesn’t the cross section

when s = c = − is

σs[f− → f−] =
π

k2

∣∣∣T −−in

∣∣∣2, (4.1.39)

and

σs[f+ → f+] =
π

k2

[
Θ(k − ev)

∣∣∣T ++
in

∣∣∣2 + Θ (−k + ev)
]
, (4.1.40)
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when s = c = +. These agree with the corresponding perturbative expressions when their domains

of validity overlap, and are consistent with the cross section results given in [77], when we restrict

to their choices: |T ++
in | = |T

−−
in | = 1, T +−

in = T −+
in = 0.

These cross sections display catalysis inasmuch as they are independent of the scale R ∼ m−1
g

of the underlying classical dyon [26–28]. They also do not depend directly on the dyon magnetic or

electric charge (though there is a large Coulomb phase that drops out of the cross section that does

see the dyon’s electric charge). Their size scales like the unitarity bound σ ∝ 1/k2 whose origin

comes purely from the projection of the incoming plane wave onto the S-wave that dominates at

low energies. Finally the rates are directly controlled by the size of the effective couplings hidden

within the Tin amplitudes, rather than through the more microscopic scales associated with the RG-

invariants that would normally be needed once couplings are renormalized to remove the spurious

ε-dependence. In the present instance – and just for the special kinematics of the monopole S-

wave – the existence of only a single solution to the radial equation implies that the dimensionless

magnitudes |Tin| themselves are already RG-invariant.

4.2 Effective dyon dynamics

Having described fermion behaviour in the approximation where the ‘slow’ degree of freedom a is a

fixed background we here return to the question of how a responds to fermion scattering on longer

time-scales. The leading dynamics of a is governed by the hamiltonian (4.0.1)

Hdyon =
1

2I

[
p(t)− ϑ

2π

]2

+
1

2

[
χOB(a)χ

]
r=ε,t

(4.2.1)

where p is the conjugate momentum for a given in (2.2.9), repeated here for convenience:

p :=
ϑ

2π
+ Iȧ . (4.2.2)
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Charge conservation and rotor evolution

In the Heisenberg picture the momentum p satisfies the equation of motion

e ṗ(t) =
i

2

(
χ
[
OB(a(t)),

e

2
τ3

]
χ
)
r=ε

= j1
F (ε, t) , (4.2.3)

where OB(a) is given in (2.2.18) and the last equality equating the result to the fermionic electro-

magnetic current flux is obtained by using the boundary condition (2.2.17) c.f. eq. (2.2.19):

[
Γ1 +OB(a(t))

]
χ(ε, t) = 0. (4.2.4)

Eq. (4.2.3) expresses conservation of total electric charge in the sense that it equates the change in

the dyon charge −ep(t) to the radial flux of fermion electric charge j1
F (ε, t) evaluated near the dyon.

Equation (4.2.3) integrates to give

p(t) = p(t0) +
1

e

∫ t

t0

dt′j1
F (ε, t′), (4.2.5)

and this result can be used in (4.2.2) to evolve a, leading to

a(t) = a(t0) +
1

I

∫ t

t0

dt′

[
p(t0)− ϑ

2π
+

1

e

∫ t′

t0

dt
′′
j1
F (ε, t′′)

]

= a(t0) +
t− t0
I

[
p(t0)− ϑ

2π

]
+

1

eI

∫ t

t0

dt′
∫ t′

t0

dt
′′
j1
F (ε, t′′). (4.2.6)

These expressions show how the rotor operator acquires a component that acts within the fermionic

part of the Hilbert space for times t > t0.

Now comes the main point. We wish to use the above expressions to determine how the slow

variable a evolves in response to its interactions with the relativistic fermion field. If we use how

nuclei are handled within the Born-Oppenheimer approximation applied to atoms, the answer seems

simple. For atoms one first computes the electronic state |Ψ(R)〉 as a function of fixed classical

nuclear positions, R, and then determines the nuclear positions by minimizing the nuclear energy

V (R) = 〈Ψ(R)|H|Ψ(R)〉 given these atomic states. In the present instance the first step corresponds

to computing the fermion state |ψi; a〉 as a function of a classical initial value for a. Then we compute
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an interaction Hamiltonian that captures the correct dynamics within the fermionic state |ψi; a〉 and

use it to find how the field a evolves.

Suppose we assume that the rotor and fermion sectors are initially unrelated to one another at

t = t0, at which point a(t0) = a0. The above reasoning suggests these slow-moving rotor degrees of

freedom see only an average over the fast variables and so (4.2.3) is approximately given by

ṗeff(t) ' 1

e
〈a0;ψi| j1

F (ε, t) |ψi; a0〉 , (4.2.7)

which integrates to

peff(t) = p(t0) +
1

e

∫ t

t0

dt′ 〈a0;ψi| j1
F (ε, t′) |ψi; a0〉 , (4.2.8)

as well as

aeff(t) = a0 +
t− t0
I

[
p(t0)− ϑ

2π

]
+

1

eI

∫ t

t0

dt′
∫ t′

t0

dt
′′
〈a0;ψi| j1

F (ε, t′′) |ψi; a0〉 . (4.2.9)

For instance, for fermions initially prepared in the vacuum state |ψi; a0〉 = |0in〉 eq. (4.1.19) gives

a time-independent current expectation value

ṗeff(t) ' 1

e
〈0in| j1

F (ε, t) |0in〉 =
ev

2π
|T +−

in |2 , (4.2.10)

and so the time-evolution of a and its conjugate momentum p are approximately given by

peff(t) = p(t0) +
ev(t− t0)

2π
|T +−

in |2, (4.2.11)

and

aeff(t) = a(t0) +
t− t0
I

[
p(t0)− ϑ

2π

]
+
ev(t− t0)2

4πI
|T +−

in |2 ' a0 , (4.2.12)

where the final approximate equality drops α-supressed terms involving I−1 ∼ αmg (which also

assumes t− t0 is not too large).
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Effective rotor hamiltonian

One can ask: is there an effective rotor hamiltonian whose equations of motion have the same form

as eqs. (4.2.2) and (4.2.3)? Strictly speaking, such a hamiltonian need not exist because the rotor

is an open quantum system once the fermion degrees of freedom are ignored. For such systems

an effective hamiltonian only exists to the extent that there is a mean-field description for which

fluctuations in the ignored degrees of freedom – the ‘environment’ – can be neglected relative to the

mean evolution (for a review of these issues, including a more precise statement of the mean-field

criterion – see [14]).

But even if an effective rotor hamiltonian exists, its description is likely not as simple as generating

a potential V (a) for a, which would be the analogy expected based on the Born-Oppenheimer

description of the energetics of nuclear positions within an atom. In particular any such hamiltonian

must produce nonzero ṗ that is independent of a. But while it is true that Hamilton’s equation

ṗ = −∂H/∂a seems to imply that nonzero ṗ requires H to depend on a – such as by adding a

potential V (a) to H – there is also no choice for a potential satisfying V (a + 2π) = V (a) that can

produce a nonzero ṗ that is independent of a.

To explore what a successful choice for a rotor Hamiltonian would look like consider as a starting

point the rotor dynamics implied by the Lagrangian of (2.2.7), repeated here (including the coupling

to Â0)

Ldyon 3
ϑeff(t)

2π

(
ȧ− eÂ0

)
+
I
2

(
ȧ− eÂ0

)2

+ · · · , (4.2.13)

which writes the terms in order of dominance at low energies. For later purposes we temporarily

entertain the possibility that ϑeff = ϑeff(t) is a specified function of time.

Consider first keeping just the leading term,

Srotor =

∫
W

dt
ϑeff(t)

2π

(
ȧ− eÂ0

)
, (4.2.14)

in which case the canonical momentum and Hamiltonian are

p :=
δSrotor

δȧ
=
ϑeff(t)

2π
and H = p ȧ− Lrotor =

eϑeff(t)

2π
Â0 , (4.2.15)
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where the momentum equation can be regarded as a constraint. The Hamiltonian reveals the

sole energy associated with this interaction to be the Coulomb energy due to the dyon acquiring

an additional induced charge −eϑeff/2π (as expected from the Witten effect [79]). The evolution

equation for p is then

ṗ =
ϑ̇eff

2π
. (4.2.16)

Interestingly, this equation does agree with (4.2.7) provided we identify

ϑeff(t) ' ϑ0 +
2π

e

∫ t

t0

dt′ 〈a0;ψi| j1
F (ε, t′) |ψi; a0〉 . (4.2.17)

In the special case where |ψi; a0〉 = |0in〉 this becomes

ϑeff(t) ' ϑ0 + ev|T +−
in |2(t− t0) . (4.2.18)

The idea that fermion scattering might cause vacuum angle evolution was earlier discussed in [69].

Extending the above to include the subdominant kinetic term for a appearing in (4.2.13) – and

again entertaining the possibility that ϑeff = ϑeff(t) is a function of time – instead leads to the

canonical momentum and Hamiltonian

p :=
δS

δȧ
=
ϑeff(t)

2π
+ I(ȧ− eÂ0) and H = p ȧ− L = ep Â0 +

1

2I

(
p− ϑeff

2π

)2

, (4.2.19)

which shows how the previous momentum constraint p = ϑeff/(2π) emerges as the momentum choice

that minimizes the energy, for fixed eÂ0. To the extent that the rotor evolution minimizes its energy

one expects

ṗ ' ϑ̇eff

2π
and ȧ =

1

I

(
p− ϑeff

2π

)
' 0 , (4.2.20)

which agree with eqs. (4.2.2) and (4.2.10) in the limit that I−1 can be neglected (so ȧ ' 0), when

ϑeff(t) is given by (4.2.18). Although the rotor charge p evolves as it follows ϑeff the minimized value

of the energy remains unchanged.

The above picture apparently relies on a and p approximately behaving as slow classical variables

so that p can evolve continuously with time as ϑeff does. This is indeed a good approximation for
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the fermion energies αmg � E � mg for which the Born-Oppenheimer approximation applies.

In a fuller quantum treatment the initial value a0 appearing in (4.2.9) should be regarded as an

operator satisfying [a0 , p0] = i, and commutes with the fermion degrees of freedom evaluated at t0.

The requirement that a0 also be a periodic variable with a0 ∼ a0 + 2π implies that its canonical

momentum p0 is quantized with eigenvalues λn = n where n is an arbitrary integer. Evaluating the

hamiltonian of (4.2.19) as a function of peff(t) given in (4.2.11) with ϑeff(t) given by (4.2.18) then

shows – in the absence of Â0 – that

H =
1

2I

[
peff(t)− ev

2π
|T +−

in |2(t− t0)− ϑ0

2π

]2

=
1

2I

(
p0 −

ϑ0

2π

)2

(4.2.21)

and so has energy eigenvalues

En =
1

2I

(
n− ϑ0

2π

)2

, (4.2.22)

that are independent of time and quantized with step size of order I−1 ∼ αmg even as peff(t) varies

continuously.

Vacuum-angle evolution

The upshot of the previous section is that – somewhat surprisingly – an effective Hamiltonian can

exist that captures the rotor’s evolution equations (4.2.2) and (4.2.3) if tracing out the fermion were

to produce an effective contribution to the effective lagrangian of the form ∆L = 1
2πϑeff(t)Da with

ϑeff(t) satisfying the matching condition (4.2.17). How might such an effective interaction actually

be generated when explicitly integrating out the bulk fermion?10

An effective lagrangian of the form (4.2.13) with a time-dependent ϑeff might arise if the fermion-

dyon interaction involves operators that contain one extra derivative relative to those in (2.2.7), such

as

∆L = O(χ,χ)Da , (4.2.23)

where O is an operator built from the bulk fermion field and Da = ȧ − eÂ0 as before. Taking the

expectation value of this in the in vacuum shows that 〈O〉 plays the role of ϑeff/(2π) and this can

10This issue is also discussed in [69], though in a way that invokes a bulk coupling of a to fermions.
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be time-dependent (and calculable) if 〈O〉 is. In principle the operator we seek should satisfy

∂tO '
1

e
j1
F (ε, t′) = −1

2
j0
A(ε, t′) . (4.2.24)

in order to ensure that (4.2.17) is true.

This last condition suggests a guess for what the operator O should be. In 1+1 dimensions our

two Dirac fermions χs can be bosonized into two real scalars φs, where the map between bosons and

fermions implies – see also (2.2.19)

jαA(ε, t) ∝ ∂αφ+ − ∂αφ− . (4.2.25)

Comparing this to (4.2.24) suggests that the operator O we seek has a simple expression in terms

of the bosonized field: O ∝ φ+ − φ−. If so then (4.2.23) represents a dyon-localized kinetic mixing

between φs and a.

We have not yet found a convincing derivation of why ∆L of the form (4.2.23) is generated once

the fermions are integrated out, or why it arises with the right coefficients. But the above discussion

reinforces earlier work [32, 63, 26, 69] that suggests that the bosonized formulation of the scattered

fermions might be more useful for understanding how the dyonic excitation a evolves.
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Chapter 5

Conclusion

In this thesis, we construct an effective field theory that describes the dominant interactions of a

dyon (or magnetic monopole) with relativistic fermions in the low-energy regime. We focus on the

dyon’s interactions with fermions because they sometimes lead to catalysis i.e. the phenomenon

that dyon-fermion scattering cross sections can be much larger than the dyon’s geometrical size.

This sets fermions apart from other light fields, since the dyon’s influence on observables that don’t

exhibit catalysis is generally expected to be negligible due to the huge hierarchy of scales between

present-day energies and the superheavy dyon mass.

Our approach relies on the framework of point-particle effective field theory (PPEFT), which

describes how massive compact sources (such as nuclei, dyons etc.) influence low-energy ‘bulk’ fields

whose wavelengths are too large to resolve the source’s interior structure. In this regime, the relevant

degrees of freedom of the point particle are its collective coordinates such as the position of its centre

of mass and (in the case of a dyon) a charge degree of freedom localized on the dyon’s world-line.

The effective action that dictates how fermions interact with the dyon’s collective coordinates

(and other light fields) is given by (2.2.4) and is dominated at low energies by operators that are

similar to those found in PPEFTs describing interactions between electrons and nuclei in atoms

[35]. The PPEFT formalism relates the effective action on the dyon world-line to a set of near-dyon

boundary conditions, imposed on the bulk fields at radius r = ε – such as (2.2.12) or (2.2.13) – and

this is often a more useful way to encode interactions.
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The main difference between dyons or monopoles and sources without magnetic charge such as

nuclei lies in the peculiar kinematics of the lowest fermion partial wave, not the type of interactions

allowed on the source’s world-line. Specifically, the dyon’s magnetic field contributes to a charged

particle’s angular momentum and this makes it possible for fermions to have zero total angular mo-

mentum. Such S-wave states are special because they exhibit only one type of power-law behaviour

which forbids the emergence of an RG-invariant length scale, R∗, in the way it typically arises in less

exotic PPEFT applications i.e. as the crossover radius between two types of power-law behaviour

in angular momentum mode functions. The observables of a PPEFT must be expressed in terms of

RG-invariant quantities such as R∗ and (since these depend on the underlying physical scales) this

is how the suppression by the small source size enters into observables. Since no analog of R∗ exists

for S-wave fermions, the size of fermion-dyon cross sections in the S-wave sector is instead mainly

set by the incoming fermion’s momentum.

We show how the resulting dynamics of the bulk fermion coupled to the dyon’s ‘rotor’ mode

captures the well-known fermion-dyon physics, but in a way that is very generally characterized

by only a few parameters – e.g. the T ss′

in of (2.2.33) – whose values can be obtained by matching

with microscopic physics for specific dyon configurations. Our general expressions for e.g. scattering

as a function of the T ss′

in reduce to those of the literature once these matched values are used.

These expressions also capture how scattering includes the nonperturbative effects of fermion-rotor

interactions as studied in [68], which can be regarded as providing a more complicated matching

prescription to the microscopic physics that changes the values found for the T ss′

in but not the

expressions for how observables depend on these parameters.

We also explore how the fermion scattering causes the dyonic excitions to evolve and identify

an effective hamiltonian that captures the dynamics required by the model’s conservation laws at

low energy. Although we do not yet have a microscopic derivation of this Hamiltonian we explore

several preliminary options.

A natural next step is to apply our methods to monopoles and dyons arising in realistic Grand

Unified Theories. Within this context, the EFT tools we develop can be used to classify the dominant

low-energy interactions of GUT monopoles and dyons with Standard Model fermions, with the goal

of guiding future experiments. Another avenue for future research is to explore the significance of
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EFTs for which the boundary matrix has rank three. These EFTs are not prohibited by unitarity

but naively appear to be unphysical, although we are not aware of any fundamental reason why they

should be ruled out. Yet another future direction is to explicitly show how the renormalization of

effective couplings described in [68] can take place within our PPEFT framework.
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Appendix A

Gamma-matrix conventions

This appendix summarizes our Dirac matrix conventions in both four and two dimensions.

A.1 4D Dirac matrices

We follow Weinberg’s spinor and metric conventions, so our metric has signature (−,+,+,+) and a

Weyl representation for the gamma matrices in four dimensions is given by

γ0 = −i

(
0 I

I 0

)
, γj =

(
0 −iσj
iσj 0

)
, (A.1.1)

where I is the 2 by 2 unit matrix and σj are Pauli matrices (acting in spin space, as opposed to the

Pauli matrices τa acting on gauge doublet indices). These satisfy the Clifford algebra {γµ, γν} = 2ηµν

where ηµν is the inverse Minkowski metric, and the representation is chosen to diagonalize

γ5 = −iγ0γ1γ2γ3 =

(
I 0

0 −I

)
. (A.1.2)

Dirac conjugation in these conventions is given by ψ = iψ†γ0. In these conventions the left- and

right-handed chirality projectors are γL := 1
2 (1 + γ5) and γR := 1

2 (1− γ5).
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Spherical coordinates

The gamma matrices adapted to spherical coordinates are given in terms of the unit coordinate

vectors

r̂ := r̂i ei = sin θ cosφ ex + sin θ sinφ ey + cos θ ez,

θ̂ := θ̂i ei = cos θ cosφ ex + cos θ sinφ ey − sin θ ez,

φ̂ := φ̂i ei = − sinφ ex + cosφ ey. (A.1.3)

by γr := γi r̂i, γ
θ := γi θ̂i and γφ := γi φ̂i/ sin θ, and so

γr =

(
0 −iσr

iσr 0

)
, γθ =

(
0 −iσθ

iσθ 0

)
and γφ =

1

sin θ

(
0 −iσφ

iσφ 0

)
. (A.1.4)

where the Pauli matrices in spherical coordinates are defined by

σr =

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
, σθ =

(
− sin θ e−iφ cos θ

eiφ cos θ sin θ

)
and σφ =

(
0 −ie−iφ

ieiφ 0

)
. (A.1.5)

A.2 2D Dirac matrices

In D = 1 + 1 spacetime dimensions we label coordinates with xα = {t, r} for α = 0, 1 and use the

following representation of gamma matrices

Γ0 = −iσ1, Γ1 = σ2 . (A.2.1)

These satisfy the algebra {Γα,Γβ} = 2ηαβ , where ηαβ = diag(−1, 1) is the inverse Minkowski metric

in 1 + 1 dimensions. The chiral matrix in 1+1 dimensions we then define to be

Γc := Γ0Γ1 = σ3 , (A.2.2)

which has eigenvalues ±1 (and is diagonal in the basis used here). Notice that these definitions

imply ΓcΓ
α = εαβΓβ where our Levi-Civita convention chooses ε01 = +1. Dirac conjugation is
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again given by χ = iχ†Γ0 and in these conventions the left- and right-handed helicity projectors are

Γ+ := 1
2 (1 + Γc) and Γ− := 1

2 (1− Γc).
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Appendix B

Regularized codimension-1

boundary action

This Appendix addresses the question of how to regularize the fermion-dyon interactions defined on

the dyon world-line, which appear in equations such as (2.2.7).

As argued in the main text, the lowest-dimension interactions between the fermion doublet ψ(x)

and the dyon collective coordinates yµ(t), a(t) are given by

Sint
dyon = −1

2

∫
dtψ C(a)ψ

= −1

2

∫
dtψ

[
ĉs1 + i ĉps1 γ5 − i ĉv1γ0 − i ĉpv1 γ5γ

0 +
(
ĉs3 + i ĉps3 γ5 − i ĉv3γ0 − i ĉpv3 γ5γ

0
)
τ3 (B.0.1)

+
(
ĉs+ + i ĉps+ γ5 − i ĉv+γ0 − i ĉpv+ γ5γ

0
)
eiaτ+ +

(
ĉs− + i ĉps− γ5 − i ĉv−γ0 − i ĉpv− γ5γ

0
)
e−iaτ−

]
ψ

where ψ is evaluated at r = 0 and we specialize to the dyon rest frame and neglect dyon recoil

effects so that ẏµ ≈ δµ0 . We can regulate the operators appearing in Sint
dyon by replacing them with

appropriate interaction terms, defined on the boundary of a Gaussian pillbox at r = ε. Appendix

1.2 shows that for fermion field configurations which are spherically symmetric near the source, the

regularization procedure amounts to replacing fermion bilinears such as ψMψ, where M is a matrix

in spin and isospin space, with their average over the pillbox boundary (4πε2)−1
∫

d2Ω ε2ψ(ε)Mψ(ε).

This is a valid prescription for operators in (B.0.1) describing ψ+, ψ− self-interactions (mediated by
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ĉ1, ĉ3). For operators that couple ψ+ and ψ− we must use another prescription however, since the

angular dependence of the two components of the doublet is different, even when restricting to the

same partial wave. As a result, regularized fermion bilinears such as ψ(ε) ĉs+τ+ψ(ε) are generally

not rotation-invariant and so can vanish after integration over the boundary of the pillbox. This can

be seen explicitly by specializing to S-wave states for which we get e.g.:

1

4πε2

∫
d2Ω ε2ψ(ε) ĉs+τ+ψ(ε) =

f∗+(ε, t) g−(ε, t) + g∗+(ε, t) f−(ε, t)

4πε2
ĉs+

∫
d2Ω η†+ η− = 0, (B.0.2)

in the gauge where the Julia-Zee solution has the form (1.1.19) and S-wave fermions are given by

(2.1.10). That the form of angular momentum eigenstates depends on their electric charge can be

traced back to the expression for the angular momentum operator ~J , which includes a contribution

from the gauge isospin ~T , as in (1.1.29).

To couple the two components of the doublet at the r = ε boundary, it suffices to introduce

additional matrices P±, which turn the angular dependence of ψ+ into that of ψ− and vice versa.

For S-wave states and in the ‘abelian’ gauge of (1.1.19), these matrices act in spin space and are

defined through:

P+
1

r

(
f+(r, t) η+

g+(r, t) η+

)
=

1

r

(
f+(r, t) η−

g+(r, t) η−

)
, and P−

1

r

(
f−(r, t) η−

g−(r, t) η−

)
=

1

r

(
f−(r, t) η+

g−(r, t) η+

)
. (B.0.3)

Since these equations do not uniqely determine P±, we further choose:

P−
1

r

(
f+(r, t) η+

g+(r, t) η+

)
=

(
0

0

)
, and P+

1

r

(
f−(r, t) η−

g−(r, t) η−

)
=

(
0

0

)
, (B.0.4)

which leads us to the following expressions for P± in the R− patch

P+ = − ie
iφ

2

(
iσθ + σφ 0

0 iσθ + σφ

)
, and P− = − ie

−iφ

2

(
iσθ − σφ 0

0 iσθ − σφ

)
, (B.0.5)
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as well as P ′± := e∓2iφP± in the R+ patch. It follows that for S-wave states, the world-line interac-

tions in (B.0.1) can be regulated using the following boundary action:

I int
dyon = −1

2

∫
r=ε

dt d2Ω ε2ψ
[
Ĉs1 + i Ĉps1 γ5 − i Ĉv1γ0 − i Ĉpv1 γ5γ

0 +
(
Ĉs3 + i Ĉps3 γ5 − i Ĉv3γ0 − i Ĉpv3 γ5γ

0
)
τ3 (B.0.6)

+
(
Ĉs+ + i Ĉps+ γ5 − i Ĉv+γ0 − i Ĉpv+ γ5γ

0
)
eiaP− τ+ +

(
Ĉs− + i Ĉps− γ5 − i Ĉv−γ0 − i Ĉpv− γ5γ

0
)
e−iaP+ τ−

]
ψ

where we introduce the boundary couplings ĈAI = 1
4πε2 ĉAI . The boundary condition satisfied by

S-wave fermions is then given by

0 =
{[
γr +

(
Ĉs1 + i Ĉps1 γ5 − i Ĉv1γ0 − i Ĉpv1 γ5γ

0
)

+
(
Ĉs3 + i Ĉps3 γ5 − i Ĉv3γ0 − i Ĉpv3 γ5γ

0
)
τ3 (B.0.7)

+
(
Ĉs+ + i Ĉps+ γ5 − i Ĉv+γ0 − i Ĉpv+ γ5γ

0
)
eiaP− τ+ +

(
Ĉs− + i Ĉps− γ5 − i Ĉv−γ0 − i Ĉpv− γ5γ

0
)
e−iaP+ τ−

]
ψ
}
r=ε

,

instead of (2.2.13) and is equivalent to the 2D boundary condition (2.2.16) when the 4D and 2D

boundary couplings are related as follows:

Csss = Ĉs1 + sĈs3 , Cpsss = sĈps1 + Ĉps3 , Cvss = Ĉv1 + sĈv3 , Cpvss = −(sĈpv1 + Ĉpv3 ) (B.0.8)

as well as

Cs+− = −Ĉv+, Cps+− = iĈpv+ , Cv+− = −Ĉs+, Cpv+− = iĈps+ (B.0.9)

and

Cs−+ = −Ĉv−, Cps−+ = −iĈpv− , Cv−+ = −Ĉs−, Cpv−+ = −iĈps− . (B.0.10)

Notice that there is a mismatch between 2D and 4D chirality, which explains why some (pseudo)scalar

and (pseudo)vector 4D couplings correspond to (pseudo)vector and (pseudo)scalar 2D couplings

respectively, as well as the presence of additional minus signs in the matching of pseudoscalar and

pseudovector couplings.

The S-wave boundary action could have equivalently been formulated in the original spherical

gauge of (1.1.13), in which we get:
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I int
dyon = −1

2

∫
r=ε

dt d2Ω ε2ψ
[
Ĉs1 + i Ĉps1 γ5 − i Ĉv1γ0 − i Ĉpv1 γ5γ

0 −
(
Ĉs3 + i Ĉps3 γ5 − i Ĉv3γ0 − i Ĉpv3 γ5γ

0
)
τr (B.0.11)

−
(
Ĉs+ + i Ĉps+ γ5 − i Ĉv+γ0 − i Ĉpv+ γ5γ

0
)
eiaP− τ

−r
+ −

(
Ĉs− + i Ĉps− γ5 − i Ĉv−γ0 − i Ĉpv− γ5γ

0
)
e−iaP+ τ

−r
−

]
ψ,

where P± are given by (B.0.5) and τ−r± := 1
2e
±iφ (τθ ∓ iτφ) act as raising and lowering operators on

eigenstates of −τr, that is

τ−r+ η+(θ, φ) = η−(θ, φ), τ−r− η−(θ, φ) = η+(θ, φ) (B.0.12)

and

τ−r− η+(θ, φ) = τ−r+ η−(θ, φ) = 0, (B.0.13)

where η±(θ, φ) are vectors in isospin space given by (2.1.11), which satisfy (−τr)η±(θ, φ) = ∓η±(θ, φ).
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Appendix C

Properties of the amplitudes

Tin, Tout

This appendix derives and summarizes several useful properties of the amplitudes Tin and Tout that

appear in the construction of the in and out states. We assume when doing so that the dyon-fermion

action is real (and so the couplings CAij are hermitian).

C.1 Definition of the amplitudes

The main text shows that the Tin, Tout amplitudes are given in terms of the boundary matrix B̂ by

T ++
in = −

∣∣∣∣∣ B̂21 B̂24

B̂41 B̂44

∣∣∣∣∣∣∣∣∣∣ B̂22 B̂24

B̂42 B̂44

∣∣∣∣∣
, T +−

in = −

∣∣∣∣∣ B̂23 B̂24

B̂43 B̂44

∣∣∣∣∣∣∣∣∣∣ B̂22 B̂24

B̂42 B̂44

∣∣∣∣∣
, T −+

in = −

∣∣∣∣∣ B̂22 B̂21

B̂42 B̂41

∣∣∣∣∣∣∣∣∣∣ B̂22 B̂24

B̂42 B̂44

∣∣∣∣∣
, T −−in = −

∣∣∣∣∣ B̂22 B̂23

B̂42 B̂43

∣∣∣∣∣∣∣∣∣∣ B̂22 B̂24

B̂42 B̂44

∣∣∣∣∣
, (C.1.1)
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and

T ++
out = −

∣∣∣∣∣ B̂12 B̂13

B̂32 B̂33

∣∣∣∣∣∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
, T −+

out = −

∣∣∣∣∣ B̂11 B̂12

B̂31 B̂32

∣∣∣∣∣∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
, T +−

out = −

∣∣∣∣∣ B̂14 B̂13

B̂34 B̂33

∣∣∣∣∣∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
, T −−out = −

∣∣∣∣∣ B̂11 B̂14

B̂31 B̂34

∣∣∣∣∣∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
. (C.1.2)

Written directly in terms of the boundary couplings, these become

T ++
in =

(Cs++ + iCps++)(i− Cpv−− + Cv−−) + (Cs−+ + iCps−+)(Cpv+− − Cv+−)

−|Cpv+− − Cv+−|2 + (−i+ Cpv++ − Cv++)(Cpv−− − Cv−− − i)
,

T −−in =
(Cs−− + iCps−−)(i− Cpv++ + Cv++) + (Cs+− + iCps+−)(Cpv−+ − Cv−+)

−|Cpv+− − Cv+−|2 + (−i+ Cpv++ − Cv++)(Cpv−− − Cv−− − i)
, (C.1.3)

T −+
in =

(Cs−+ + iCps−+)(i− Cpv++ + Cv++) + (Cs++ + iCps++)(Cpv−+ − Cv−+)

−|Cpv+− − Cv+−|2 + (−i+ Cpv++ − Cv++)(Cpv−− − Cv−− − i)
,

T +−
in =

(Cs+− + iCps+−)(i− Cpv−− + Cv−−) + (Cs−− + iCps−−)(Cpv+− − Cv+−)

−|Cpv+− − Cv+−|2 + (−i+ Cpv++ − Cv++)(Cpv−− − Cv−− − i)
,

and

T ++
out =

i(Cps++ + iCs++)(−i+ Cpv−− + Cv−−) + (−iCps−+ + Cs−+)(Cpv+− + Cv+−)

|Cpv+− + Cv+−|2 − (−i+ Cpv−− + Cv−−)(Cpv++ + Cv++ − i)
,

T −−out =
i(Cps−− + iCs−−)(−i+ Cpv++ + Cv++) + (−iCps+− + Cs+−)(Cpv−+ + Cv−+)

|Cpv+− + Cv+−|2 − (−i+ Cpv−− + Cv−−)(Cpv++ + Cv++ − i)
, (C.1.4)

T −+
out =

i(Cps−+ + iCs−+)(−i+ Cpv++ + Cv++) + (−iCps++ + Cs++)(Cpv−+ + Cv−+)

|Cpv+− + Cv+−|2 − (−i+ Cpv−− + Cv−−)(Cpv++ + Cv++ − i)
,

T +−
out =

i(Cps+− + iCs+−)(−i+ Cpv−− + Cv−−) + (−iCps−− + Cs−−)(Cpv+− + Cv+−)

|Cpv+− + Cv+−|2 − (−i+ Cpv−− + Cv−−)(Cpv++ + Cv++ − i)
.

C.2 Rank-2 conditions

The above definitions assume the denominators do not vanish. This is satisfied when the CAij are all

hermitian, as shown in equation (2.2.23) and the text directly after it.

We next ask what is required to ensure that rank(B) = 2. When this is true one pair of

linearly independent columns of B can be written as a linear combination of the other two linearly

independent columns. When the CAij are hermitian we’ve seen the linearly independent pairs consist

of the first and third columns of B and the second and fourth columns of B. Consequently there
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exist nonzero coefficients A1, A3, B1 and B3 such that

(
B11 B21 B31 B41

)
= A1

(
B12 B22 B32 B42

)
+B1

(
B14 B24 B34 B44

)
,(

B13 B23 B33 B43

)
= A3

(
B12 B22 B32 B42

)
+B3

(
B14 B24 B34 B44

)
, (C.2.1)

The required coefficients are given by

A1 =

∣∣∣∣∣ B21 B24

B41 B44

∣∣∣∣∣∣∣∣∣∣ B22 B24

B42 B44

∣∣∣∣∣
, B1 =

∣∣∣∣∣ B22 B21

B42 B41

∣∣∣∣∣∣∣∣∣∣ B22 B24

B42 B44

∣∣∣∣∣
, A3 =

∣∣∣∣∣ B23 B24

B43 B44

∣∣∣∣∣∣∣∣∣∣ B22 B24

B42 B44

∣∣∣∣∣
, B3 =

∣∣∣∣∣ B22 B23

B42 B43

∣∣∣∣∣∣∣∣∣∣ B22 B24

B42 B44

∣∣∣∣∣
. (C.2.2)

Comparing these solutions to (C.1.1) implies

A1 = −T ++
in , B1 = −T −+

in e−ia, A3 = −T +−
in eia, B3 = −T −−in , (C.2.3)

and using these to trade A1,3, B1,3 for the Tin’s in equation (C.2.1) gives four tautologies as well as

the following four complex conditions that can be regarded as conditions required if the matrix B is

to have rank 2:

E1 := B̂13 + T +−
in B̂12 + T −−in B̂14 = 0,

E2 := B̂11 + T ++
in B̂12 + T −+

in B̂14 = 0, (C.2.4)

E3 := B̂33 + T +−
in B̂32 + T −−in B̂34 = 0,

E4 := B̂31 + T ++
in B̂32 + T −+

in B̂34 = 0.

These four complex equations amount to eight real conditions. Four of these state

<(E2) = 0, <(E3) = 0, and E1 + E∗4 = 0, (C.2.5)

and, once expressions (C.1.1) are used, can be written purely in terms of the Tin which must therefore
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satisfy

<(E2) = −(|T ++
in |

2 + |T −+
in |2 − 1) = 0,

<(E3) = −(|T −−in |2 + |T +−
in |2 − 1) = 0, (C.2.6)

E1 + E∗4 = −2(T −−in T −+ ∗
in + T +−

in T ++ ∗
in ) = 0,

as used in the main text. In deriving the above expressions we use the identity (2.2.22), which

follows when the boundary coupling constants are hermitian. The relations (C.2.6) simply express

the unitarity of the S matrix since the first two of these equations impose that the fermion number

density of the in modes is conserved during scattering processes, while the third imposes that the

off-diagonal matrix elements of S†S vanish.

The remaining four rank (B) = 2 conditions within (C.2.4) are

E1 = 0, =(E2) = 0, and =(E3) = 0. (C.2.7)

These depend on more than just the Tin amplitudes but can be expressed in terms of both Tin and

Tout. To see why the rank-two conditions (C.2.4) can be written entirely in terms of Tin, Tout take

the following linear combinations

−

∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
−1 (
B̂33 E1 − B̂13 E3

)
= T −−in T +−

out + T +−
in T ++

out = 0,

∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
−1 (
B̂31 E1 − B̂11 E3

)
= T −−in T −−out + T +−

in T −+
out − 1 = 0, (C.2.8)

∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
−1 (
B̂31 E2 − B̂11 E4

)
= T −+

in T −−out + T ++
in T

−+
out = 0,

−

∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣
−1 (
B̂33 E2 − B̂13 E4

)
= T −+

in T +−
out + T ++

in T
++

out − 1 = 0.

where we again use

∣∣∣∣∣ B̂11 B̂13

B̂31 B̂33

∣∣∣∣∣ 6= 0. These can be solved to give the Tout amplitudes in terms of Tin
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amplitudes and vice versa, giving

T +−
out =

T +−
in

T −+
in T +−

in − T −−in T ++
in

, T −−out = − T ++
in

T −+
in T +−

in − T −−in T ++
in

T ++
out = − T −−in

T −+
in T +−

in − T −−in T ++
in

, T −+
out =

T −+
in

T −+
in T +−

in − T −−in T ++
in

(C.2.9)

and

T +−
in =

T +−
out

T −+
out T +−

out − T −−out T ++
out

, T −−in = − T ++
out

T −+
out T +−

out − T −−out T ++
out

T ++
in = − T −−out

T −+
out T +−

out − T −−out T ++
out

, T −+
in =

T −+
out

T −+
out T +−

out − T −−out T ++
out

. (C.2.10)

Modulus and phase of Tin and Tout

The constraint conditions (C.2.6) imply that the four complex Tin amplitudes satisfy four real con-

straints and so actually only contain four independent real parameters. To see why notice that the

first two conditions in (C.2.6) can be used to write the general amplitudes as

T ++
in = ρ+ e

iθ++ , T −+
in =

√
1− ρ2

+ e
iθ−+ , T −−in = ρ− e

iθ−− , and T +−
in =

√
1− ρ2

− e
iθ+− ,

(C.2.11)

for the six real parameters ρ± ≥ 0 and θ++, θ+−, θ−+, θ−−. Plugging these expressions into the

third condition in (C.2.6) then gives

ρ−

√
1− ρ2

+ e
i(θ−−−θ−+) = ρ+

√
1− ρ2

− e
−i(θ++−θ+−+π), (C.2.12)

and so taking the modulus squared of each side of the equation shows ρ+ = ρ−. Additionally, the

four phases are not independent because they satisfy

θ++ + θ−− − (θ−+ + θ+−) + π = 2πn, (C.2.13)

where n is an integer. Consequently one of the phases can be eliminated in favor of the other three.

We see that the most general form of the Tin amplitudes for a hermitian theory with a rank 2
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boundary matrix is then

T ++
in = ρ eiθ++ , T +−

in =
√

1− ρ2 eiθ+− , T −−in = ρ eiθ−− and T −+
in = −

√
1− ρ2 ei(θ+++θ−−−θ+−).

(C.2.14)

Notice that these imply |T ++
in |2 = |T −−in |2 and |T +−

in |2 = |T −+
in |2 and that the denominator appearing

in (C.2.9) is a pure phase:

T −+
in T +−

in − T ++
in T

−−
in = −ei(θ+++θ−−) . (C.2.15)

Implications for Tout

Plugging the most general form (C.2.14) for Tin into (C.2.9) and using (C.2.15) gives

T ++
out = ρ e−iθ++ = (T ++

in )∗, T −−out = ρ e−iθ−− = (T −−in )∗, (C.2.16)

and

T +−
out = −

√
1− ρ2 ei(θ+−−θ++−θ−−) = (T −+

in )∗, T −+
out =

√
1− ρ2 e−iθ+− = (T +−

in )∗. (C.2.17)

It is clear that the unitarity conditions satisfied by Tin are also satisfied by the Tout amplitudes:

|T ++
out |2 = |T −−out |2 = 1− |T +−

out |2 = 1− |T −+
out |2,

T −−out T −+ ∗
out + T +−

out T ++ ∗
out = 0. (C.2.18)
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Appendix D

Scattering states

In this appendix, we list some useful properties of the S-wave in and out states defined in the main

text and derive the Bogoliubov relations given in §4. Additionally, we calculate the probability for

a plane-wave state to be found in an S-wave, ps, and derive the cross-section formulas in §3 and §4.

D.1 Properties of in and out states

Orthogonality and normalization relations

The unitarity constraints on in amplitudes (2.2.34)-(2.2.35) as well as the analogous out amplitude

constraints (2.2.44)-(2.2.45) can be used to show that the in and out modes satisfy the orthogonality

and normalization relations

∫ ∞
ε

dr (ud
s,k)† ud

s′,k′ =

∫ ∞
ε

dr (vd
s,k)† vd

s′,k′ = 2πδ(k − k′) δss′ , (D.1.1)

and ∫ ∞
ε

dr (ud
s,k)† vd

s′,k′ = 2πδ(k + k′) δss′ . (D.1.2)
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where the label d indicates the direction of motion i.e. d = {in, out}. These relations can be used

to show that, when the S-wave fermion field is expanded in terms of in, out modes as

χ(x) =
∑
s=±

∫ ∞
0

dk√
2π

[
ud
s,k(x) ad

s,k + vd
s,k(x) (ad

s,k)?
]
, (D.1.3)

the particle and antiparticle creation and annihilation operator anticommutation relations are given

by {
ad
s,k, (a

d
s′,k′)

?
}

=
{
ad
s,k, (a

d
s′,k′)

?
}

= δ(k − k′) δss′ , (D.1.4)

with all other anticommutators vanishing.

For some applications, it is preferable to consider discretely normalized states. We define the

discretely normalized in, out modes as

ud
s,k(x) :=

1√
2L

ud
s,k(x), vd

s,k(x) :=
1√
2L

vd
s,k(x), (D.1.5)

since the orthogonality and normalization relations for these modes become

∫ L+ε

ε

dr (ud
s,k)† ud

s′,k′ =

∫ L+ε

ε

dr (vd
s,k)† vd

s′,k′ = δkk′ δss′ , (D.1.6)

and ∫ L+ε

ε

dr (ud
s,k)† vd

s′,k′ = δk,−k′ δss′ , (D.1.7)

in the large L limit. The S-wave fermion field can be expanded in terms of the discretely normalized

bases:

χ(x) =
∑
s=±

∞∑
k≥0

[
ud
s,k(x)ad

s,k + vd
s,k(x) (ad

s,k)?
]
, (D.1.8)

where the discrete normalization particle and antiparticle creation and annihilation operators satisfy

{
ad
s,k, (a

d
s′,k′)

?
}

=
{
ad
s,k, (a

d
s′,k′)

?
}

= δkk′ δss′ , (D.1.9)

with all other anticommutators vanishing.
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Bogoliubov relations

The in creation and annihilation operators can be expanded in terms of the corresponding out

operators and vice versa, as in the Bogoliubov relations (4.1.5) and (4.1.6). To see this, note that

the in operators satisfy

ain
s,k =

1√
8π

∫ ∞
−∞

dt (uin
s,k(r, t))†χ(r, t), and (ain

s,k)? =
1√
8π

∫ ∞
−∞

dt (vin
s,k(r, t))†χ(r, t), (D.1.10)

which can be shown by expanding χ(x) in terms of the in basis. Since χ(x) can equivalently be

expanded in terms of out states, the above equations imply that e.g. ain
+,k is given by

ain
+,k =

1√
8π

∑
s′=±

∫ ∞
−∞

dt

∫ ∞
0

dk′√
2π

(uin
+,k(r, t))†

(
uout
s′,k′(x) aout

s′,k′ + vout
s′,k′(x) (aout

s′,k′)
?
)

=

∫ ∞
0

dk′
(
T ++

out e
2ikε

(
ε

r0

)−ieQ
δ(ω+,k − ω+,k′) a

out
+,k′

+ T +−
out e

i(2k−ev)εeia
[
δ(ω+,k − ω−,k′) aout

−,k′ + δ(ω+,k + ω−,k′) (aout
−,k′)

?
] )
, (D.1.11)

where ωs,k = k − sev/2 (ωs,k = k + sev/2) is the energy of a particle (antiparticle) with quantum

numbers s, k. The above equation reduces to one of the Bogoliubov relations, once the integral over

momentum is evaluated:

ain
+,k = T ++

out a
out
+,k + T +−

out e
ia
[
Θ(k − ev) aout

−,k−ev + Θ(−k + ev) (aout
−,−k+ev)

?
]
, (D.1.12)

where we drop powers of kε and evε, shift a and rephase the out operators to absorb the r0-dependent

phase, as in the main text. The remaining Bogoliubov relations can be derived in a similar way.

It is sometimes convenient to write the Bogoliubov relations as in the last line of (D.1.11) since

this shows that they are consistent with energy conservation, which is enforced through the delta

functions that appear after the time integral is performed. Specifically, this form is useful for

evaluating scattering amplitudes such as 〈0out| aout
−,k′ (a

in
+,k)? |0in〉, which can be written as:

〈0out| aout
−,k′ (a

in
+,k)? |0in〉 = T +−∗

out e−ia
∫ ∞

0

dp δ(ω+,k − ω−,p) 〈0out| aout
−,k′ (a

out
−,p)

? |0in〉

= T +−∗
out 〈0out|0in〉 e−iaΘ(k − ev)δ(ω+,k − ω−,k′), (D.1.13)
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where in the last line we use the ‘momentum-conserving’ delta function δ(p − k′) implicit in the

overlap 〈0out| aout
−,k′ (a

out
−,p)

? |0in〉 to perform the integral over p. The surviving delta function is the

original energy-conserving one from (D.1.11) which is regularized by a factor of the duration of the

interaction, T , when probabilities are calculated.

The above argument shows that the Heisenberg picture transition probabilities (which can be

obtained from the amplitudes listed in §4) depend on T in the same way as their interaction picture

counterparts, and so rates and cross sections can be defined in much the same way in both pictures.

This can also be seen in a simpler way, by re-evaluating the amplitude 〈0out| aout
−,k′ (a

in
+,k)? |0in〉 using

the ‘standard’ form of the relevant Bogoliubov relation, (D.1.12), in the following way

〈0out| aout
−,k′ (a

in
+,k)? |0in〉 = T +−∗

out e−ia Θ(k − ev) 〈0out| aout
−,k′ (a

out
−,k−ev)

? |0in〉

= T +−∗
out 〈0out|0in〉 e−ia Θ(k − ev)δ(k − k′ − ev)

= T +−∗
out 〈0out|0in〉 e−ia Θ(k − ev)δ(ω+,k − ω−,k′), (D.1.14)

where the delta function in the second line comes from the overlap 〈0out| aout
−,k′ (a

out
−,k−ev)

? |0in〉 and

is rewritten in the third line by performing a change of variables from momentum to energy. Since

the final expression in (D.1.14) involves an energy-conserving delta function, we can regulate it with

a factor of T per the usual procedure.

Expectation values of energy and electric, axial charge

The in and out states are eigenstates of the S-wave fermionic hamiltonian (with Â0 = 0):

HF =
1

2

[
χOB(a)χ

]
r=ε,t

+
1

2

∑
s=±

∫ ∞
ε

dr χs

[
Γ1
↔
∂ 1 − isΓ0

(
ev − eQ

r

)]
χs, (D.1.15)

when a is treated as a classical variable within the Born-Oppenheimer approximation. This can

be seen from the expansion of HF in terms of in or out states (see appendix F for details of how

calculations involving fermion bilinears are done)

HF = Ed
0,F +

∑
s=±

∫ ∞
0

dk

[(
k − 1

2
sev

)
(ad

s,k)? ad
s,k +

(
k +

1

2
sev

)
(ad

s,k)? ad
s,k

]
, (D.1.16)
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which implies that, relative to the vacuum, the single particle and antiparticle states have energies

ωs,k = k − 1

2
sev and ωs,k = k +

1

2
sev, (D.1.17)

where ωs,k (ωs,k) is the energy of the particle state (ad
s,k)? |0d〉 (antiparticle state (ad

s,k)? |0d〉) relative

to the |0d〉 vacuum. The energies of the in and out vacuum are given by Ed
0,F := 〈0d|HF |0d〉.

Generally, the in and out states are not eigenstates of the fermion electric charge QF or of the

axial charge operator QA. To see this, we expand QF ,QA in terms of the in basis:

QF = Qin
0,F + |T ++

in |
2

∫ ∞
0

dk
∑
s=±

1

2
se
(

(ain
s,k)? ain

s,k − (ain
s,k)? ain

s,k

)
+|T +−

in |
2
∑
s=±

se

∫ ∞
0

dk

2π
PV

[∫ ∞
0

dk′
(

(ain
s,k)? ain

s,k′
iei(k−k

′)(ε+t)

k − k′ + (ain
s,k)? (ain

s,k′)
? ie

i(k+k′)(ε+t)

k + k′

+ain
s,ka

in
s,k′

ie−i(k+k′)(ε+t)

−k − k′ − (ain
s,k′)

? ain
s,k

ie−i(k−k
′)(ε+t)

−k + k′

)]

+e T +−
in T

++ ∗
in eia

∫ ∞
0

dk dk′

2π
lim
β→0+

[
(ain

+,k)? ain
−,k′

iei(k−k
′−ev)tei(k−k

′)ε

k′ − k + ev + iβ

+(ain
+,k)? (ain

−,k′)
? ie

i(k+k′−ev)tei(k+k′)ε

−k′ − k + ev + iβ
+ ain

+,k a
in
−,k′

iei(−k−k
′−ev)te−i(k+k′)ε

k′ + k + ev + iβ

−(ain
−,k′)

? ain
+,k

iei(−k+k′−ev)te−i(k−k
′)ε

−k′ + k + ev + iβ

]

−e T +−∗
in T ++

in e−ia
∫ ∞

0

dk dk′

2π
lim
β→0+

[
(ain
−,k)? ain

+,k′
ie−i(k

′−k−ev)tei(k−k
′)ε

−k′ + k + ev − iβ

+(ain
−,k)? (ain

+,k′)
? ie
−i(−k′−k−ev)tei(k+k′)ε

k′ + k + ev − iβ + ain
−,k a

in
+,k′

ie−i(k
′+k−ev)te−i(k+k′)ε

−k′ − k + ev − iβ

−(ain
+,k′)

? ain
−,k

ie−i(−k
′+k−ev)te−i(k−k

′)ε

k′ − k + ev − iβ

]
, (D.1.18)
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PhD Thesis – S. Bogojević; McMaster University – Physics and Astronomy

and

QA = Qin
0,A + |T +−

in |
2

∫ ∞
0

dk
∑
s=±

s
(

(ain
s,k)? ain

s,k − (ain
s,k)? ain

s,k

)
+ 2|T ++

in |
2
∑
s=±

s

∫ ∞
0

dk

2π
PV

[∫ ∞
0

dk′
(

(ain
s,k)? ain

s,k′
iei(k−k

′)(ε+t)

k − k′ + (ain
s,k)? (ain

s,k′)
? ie

i(k+k′)(ε+t)

k + k′

+ain
s,ka

in
s,k′

ie−i(k+k′)(ε+t)

−k − k′ − (ain
s,k′)

? ain
s,k

ie−i(k−k
′)(ε+t)

−k + k′

)]

−2 T +−
in T

++ ∗
in eia

∫ ∞
0

dk dk′

2π
lim
β→0+

[
(ain

+,k)? ain
−,k′

iei(k−k
′−ev)tei(k−k

′)ε

k′ − k + ev + iβ

+(ain
+,k)? (ain

−,k′)
? ie

i(k+k′−ev)tei(k+k′)ε

−k′ − k + ev + iβ
+ ain

+,k a
in
−,k′

iei(−k−k
′−ev)te−i(k+k′)ε

k′ + k + ev + iβ

−(ain
−,k′)

? ain
+,k

iei(−k+k′−ev)te−i(k−k
′)ε

−k′ + k + ev + iβ

)

+2 T +−∗
in T ++

in e−ia
∫ ∞

0

dk dk′

2π
lim
β→0+

[
(ain
−,k)? ain

+,k′
ie−i(k

′−k−ev)tei(k−k
′)ε

−k′ + k + ev − iβ

+(ain
−,k)? (ain

+,k′)
? ie
−i(−k′−k−ev)tei(k+k′)ε

k′ + k + ev − iβ + ain
−,k a

in
+,k′

ie−i(k
′+k−ev)te−i(k+k′)ε

−k′ − k + ev − iβ

−(ain
+,k′)

? ain
−,k

ie−i(−k
′+k−ev)te−i(k−k

′)ε

k′ − k + ev − iβ

]
, (D.1.19)

where Qin
0,F := 〈0in| QF |0in〉, Qin

0,A := 〈0in| QA |0in〉 , PV refers to the Cauchy principal value of an

integral and we shift a to absorb an r0-dependent phase, as in the main text. The above expansions

show that the in states are eigenstates of QF only if T +−
in = T −+

in = 0, i.e. when only 4D chirality-

changing processes are possible at the boundary, and are eigenstates of QA in the special case

where T ++
in = T −−in = 0 and the boundary action only allows for charge-exchange processes. The

expectation values of QF ,QA in the single particle in states are

〈0in| ain
s,kQF (ain

s,k)? |0in〉 =

(
Qin

0,F +
1

2
se|T ++

in |
2

)
〈0in| ain

s,k (ain
s,k)? |0in〉 ,

〈0in| ain
s,kQA (ain

s,k)? |0in〉 =
(
Qin

0,A + s|T +−
in |2

)
〈0in| ain

s,k (ain
s,k)? |0in〉 , (D.1.20)
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and are given by

〈0in| ain
s,kQF (ain

s,k)? |0in〉 =

(
Qin

0,F −
1

2
se|T ++

in |
2

)
〈0in| ain

s,k (ain
s,k)? |0in〉 ,

〈0in| ain
s,kQA (ain

s,k)? |0in〉 =
(
Qin

0,A − s|T +−
in |2

)
〈0in| ain

s,k (ain
s,k)? |0in〉 , (D.1.21)

for in states with a single antiparticle. Out states similarly have a definite electric charge only if

T +−
out = T −+

out = 0 and a definite axial charge only when T ++
out = T −−out = 0. For more general choices

of the Tout amplitudes, the expectation values of the electric and axial charge in single particle or

antiparticle out states are

〈0out| aout
s,k QF (aout

s,k )? |0out〉 =

(
Qout

0,F +
1

2
se|T ++

out |2
)
〈0out| aout

s,k (aout
s,k )? |0out〉 ,

〈0out| aout
s,k QA (aout

s,k )? |0out〉 =
(
Qout

0,A − s|T +−
out |2

)
〈0out| aout

s,k (aout
s,k )? |0out〉 , (D.1.22)

and

〈0out| aout
s,k QF (aout

s,k )? |0out〉 =

(
Qout

0,F −
1

2
se|T ++

out |2
)
〈0out| aout

s,k (aout
s,k )? |0out〉 ,

〈0out| aout
s,k QA (aout

s,k )? |0out〉 =
(
Qout

0,A + s|T +−
out |2

)
〈0out| aout

s,k (aout
s,k )? |0out〉 . (D.1.23)

Equations (D.1.20)-(D.1.23) show that a measurement of the electric charge in a single-particle

state (ad
s,k)? |0d〉 or (ad

s,k)? |0d〉 (relative to the vacuum) does not generally yield the result one

would naively expect, naimely 1
2se for particles and − 1

2se for antiparticles. This is because the

in and out states agree with the usual notion of particles only in the asymptotic past and future,

respectively. More precisely, the state (ain
s,k)? |0in〉 ((ain

s,k)? |0in〉) describes a particle (antiparticle)

that approaches the dyon with momentum k, charge 1
2se (− 1

2se) and 4D chirality s (-s) in the

asymptotic past and then scatters either to a particle (antiparticle) with different electric charge

and momentum or to one with different 4D chirality. The out states (aout
s,k )? |0out〉 ((aout

s,k )? |0out〉)

similarly describe particles (antiparticles) of momentum k, charge 1
2se (− 1

2se) and 4D chirality −s

(s) in the asymptotic future and have a more complicated description at early times. This can be

shown explicitly by writing single-particle states as the infinitesimally narrow limit of a wave-packet

peaked around a given momentum, and evaluating the fermionic current expectation values in these
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states in the asymptotic past (for in states) or asymptotic future (out states).

D.2 S-wave projection of plane-wave states

For scattering problems, the initial states of interest correspond to 4D plane waves far from the

dyon and so are not prepared in the S-wave. We now show how these plane wave states can be

projected onto the S-wave sector and use this to compute the cross sections for single-particle S-wave

scattering given in the main text.

To start, we note that the Dirac equation simplifies considerably at large distances from the dyon,

since the background Julia-Zee potential becomes constant i.e. eA3
µ(x) ∼

r→∞
ev δ0

µ. The full fermion

field can then be expanded in terms of particle and antiparticle mode functions Us,c,k(x), Vs,c,k(x)

whose asymptotic form is equivalent to that of plane-wave spinors, up to a phase1. The particle

mode functions then satisfy

Us,c,k(x) ∼
r→∞

N e−i(k−s ev/2)teik·xeiΦ
s,c
U (x)ξs ⊗ νUc , (D.2.1)

where τ3 ξs = s ξs, ν
U
+ =

(
0 1 0 0

)T
, νU− =

(
0 0 1 0

)T
and N is a normalization factor. Similarly,

the antiparticle mode functions are asymptotically given by

Vs,c,k(x) ∼
r→∞

N ei(k+s ev/2)te−ik·xeiΦ
s,c
V (x)ξs ⊗ νVc , (D.2.2)

where νV+ =
(

1 0 0 0
)T

, νV− =
(

0 0 0 1
)T

. The functions Φs,c
U,V (x) are phases whose radial depen-

dence is (r/r0)iseQ/2 2, and whose angular dependence we discuss shortly. We choose the normaliza-

tion factor, N , such that the mode functions satisfy the following orthogonality and normalization

relations

∫ ∞
−∞

d3xU†s,c,k Us′,c′,k′ =

∫ ∞
−∞

d3xV †s,c,k Vs′,c′,k′ = (2π)3δ(k − k′)δss′δcc′ , (D.2.3)

1Note that this phase has to be defined such that Us,c,k(x), Vs,c,k(x) are sections i.e. it should be defined differently
in the R+ and R− region.

2This choice ensures the asymptotic radial dependence of the incoming spherical waves in U, V and in partial wave
solutions match.
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as well as ∫ ∞
−∞

d3xU†s,c,k Vs′,c′,k′ = 0, (D.2.4)

The full fermion field can be expanded in terms of the Us,c,k(x), Vs,c,k(x) basis as follows:

ψ(x) =
∑

s,c=±

∫ ∞
−∞

d3k

(2π)3/2
(as,c,k Us,c,k(x) + (as,c,k)? Vs,c,k(x)) , (D.2.5)

where the plane-wave particle and antiparticle creation and annihilation operators satisfy

{as,c,k, (as′,c′,k′)?} = {as,c,k, (as′,c′,k′)?} = δ(k − k′)δss′δc,c′ , (D.2.6)

with all other anticommutators being zero. We can also expand ψ(x) in terms of partial wave states,

ψ(x) =
∑
s=±

∫ ∞
0

dk√
2π

(
ain
s,k u

in
s,k(x) + (ain

s,k)? vin
s,k(x)

)
+
∑
j>0

ψj(x) (D.2.7)

where uin
sk(x), vin

sk(x) are the 4D equivalents of the 2D in modes3 and ψj(x) is the j-th fermion

partial wave. Since both the plane-wave and partial wave bases are complete, we can expand the

plane-wave particle creation operators (as,c,k)? in terms of partial wave creation operators

(as,c,k)? =
∑
s′=±

∫ ∞
0

dk′Ds,c,k
s′,k′ (ain

s′,k′)
? +

∑
j>0,κj

Ds,c,k
j,κj

(aj,κj )
?, (D.2.8)

where (aj,κj )
? is a creation operator for a state in the j-th partial wave with quantum numbers κj .

To project the plane-wave state (as,c,k)? |0〉 onto the S-wave sector we simply need to determine the

coefficients Ds,c,k
s′,k′ , which can be done by expanding the corresponding plane-wave mode function in

terms of S-wave mode functions,

Us,c,k(x) = (2π)3/2 〈0|ψ(x) (as,c,k)? |0〉

= 2π
∑
s′=±

∫ ∞
0

dk′Ds,c,k
s′,k′ u

in
s′,k′(x) +

∑
j>0,κj

(2π)3/2 〈0|ψ(x)Ds,c,k
j,κj

(aj,κj )
? |0〉 ,(D.2.9)

where we use the fact that the S-wave annihilation operators also annihilate the full vacuum, |0〉.
3The 4D in, out modes are given by (2.1.10) where f±(r, t), g±(r, t) are components of the corresponding 2D basis,

as in (2.1.15).
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Antiparticle states can be projected onto the lowest partial wave in much the same way.

The coefficients Ds,c,kẑ
s′,k′

For concreteness, we now focus on particle plane-wave states which approach the dyon along the ẑ

axis. As is usually done in scattering problems, we will determine the coefficients Ds,c,kẑ
s′,k′ by matching

terms containing incoming spherical waves on the left side of (D.2.9) to terms with j = 0 incoming

spherical waves on the right side of this equation, at large distances from the dyon. To do this,

we first isolate the incoming terms in Us,c,kẑ and find their asymptotic form. Using the plane wave

expansion and the asymptotic form of spherical Bessel functions, we get:

(Us,c,kẑ(x))inc. ∼r→∞ −N
e−ikr

2ikr
e−i(k−s ev/2)teiΦ

s,c
U (x)ξs ⊗ νUc

∞∑
`=0

(2`+ 1)(−1)`P`(cos θ), (D.2.10)

where the subscript ‘inc.’ refers to only those terms in Us,c,kẑ(x) which include spherical waves that

are incident on the dyon. This expression can be simplified further by noticing that (−1)` = P`(−1)

and using the Legendre polynomial completeness relation
∞∑̀
=0

(2`+ 1)P`(−1)P`(x) = 2δ(1 + x)

(Us,c,kẑ(x))inc. ∼r→∞ −N
e−ikr

ikr
e−i(k−s ev/2)t (r/r0)

iseQ/2
eiϕ

s,c
U (θ)ξs ⊗ νUc δ(1 + cos θ), (D.2.11)

where we now specialize to the R− region and rewrite eiΦ
s,c
U (x) as (r/r0)

iseQ/2
eiϕ

s,c
U (θ) in this region4

We can expand the top and bottom two components of each Dirac spinor in Us,c,kẑ(x) in terms

of eigensections of the total angular momentum and its third component (J2, Jz)

(Us,c,kẑ(x))inc. ∼r→∞ −N e−ikr

ikr
e−i(k−s ev/2)t (r/r0)

iseQ/2
ξs

⊗

[(
Ac

0,sηs(θ, φ)

Bc
0,sηs(θ, φ)

)
+

∞∑
j>0

j∑
jz=−j

2∑
i=1

Ac,(i)
j,jz,s

η
(i)
j,jz,s

(θ, φ)

B
c,(i)
j,jz,s

η
(i)
j,jz,s

(θ, φ)

], (D.2.12)

where ηs(θ, φ) are defined as in equation (2.1.11) and the sentence below it and the higher par-

tial wave angular momentum eigensections η
(1)
j,jz,s

(θ, φ), η
(2)
j,jz,s

(θ, φ) are given by the eigensections

φ
(1)
j,jz

(θ, φ), φ
(2)
j,jz

(θ, φ) from [77] respectively, with an implied ‘monopole strength’ of q = s
2 . We

4We choose the φ-dependence this way since the plane-wave travels along the +ẑ axis and so is incident on the
dyon in the R− region.
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find the coefficients of interest Ac
0,s, B

c
0,s by multiplying the above equation with ξ†s ⊗

(
η†s(θ, φ) 0

)
,

ξ†s ⊗
(

0 η†s(θ, φ)
)

and performing the angular integrals. This gives

Ac
0,s = δc,+

∫
d2Ω η†s(θ, φ)

(
0

eiϕ
sc
U (θ)

)
δ(1 + cos θ) = δc,+δs,+e

iϕsc
U (π)
√
π, (D.2.13)

and

Bc
0,s = δc,−

∫
d2Ω η†s(θ, φ)

(
eiϕ

sc
U (θ)

0

)
δ(1 + cos θ) = −δc,−δs,−eiϕ

sc
U (π)
√
π, (D.2.14)

with ηs(θ, φ) given by (2.1.11) and where we use the fact that ηs(θ, φ), η
(1)
j,jz,s

(θ, φ), η
(2)
j,jz,s

(θ, φ) are

orthonormal. Using (D.2.13), (D.2.14) in equation (D.2.12) shows that

(Us,c,kẑ(x))inc. ∼r→∞ N
i
√
π

k
eiϕ

s,c
U (π)

(
δc,+δs,+ u

in
+,k(x)− δc,−δs,− uin

−,k(x)
)

inc.
+ (F (x))inc., (D.2.15)

and so also that

Us,c,kẑ(x) ∼
r→∞

N i
√
π

k
eiϕ

s,c
U (π)

(
δc,+δs,+ u

in
+,k(x)− δc,−δs,− uin

−,k(x)
)

+ F (x), (D.2.16)

where F (x) has no projection onto the S-wave. Note that the S-wave projection vanishes unless

cs = +1, as expected since S-wave states satisfy h = cs and we match h = +1 spherical waves on

each side of the above equation. The coefficients Ds,c,kẑ
s′,k′ are then:

Ds,c,kẑ
s′,k′ =

iN√
4πk

eiϕ
s,c
U (π)δ(k − k′)δss′ (δc,+δs,+ − δc,−δs,−) . (D.2.17)

S-wave scattering cross sections

We can now calculate the probability for a particle in a plane-wave state to be found in the S-

wave, which we denote ps in the main text. Since the probability of being in a specific momentum

eigenstate tends to zero in the continuum limit, we compute ps for a state described by a phase-

space distribution function ρ(k) which is normalized so that dn = ρ(k)V d3k/(2π)3 is the number

of momentum states in a volume d3k around momentum k = k ẑ. For such an initial state (with
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electric charge s and 4D chirality c), ps is given by

ps =

[∑
s′=±

∫ ∞
0

∣∣〈0in| ain
s′,k′(as,c,kẑ)

? |0〉
∣∣2 dk′

]
ρ(k) d3k

=

[∑
s′=±

∫ ∞
0

∣∣〈0in| ain
s′,k′(a

in
s,k)? |0in〉

∣∣2 dk′

]
δs,cN 2/(4πk2) ρ(k) d3k, (D.2.18)

which evaluates to

ps = δs,c
N 2

4πk2

L

π
ρ(k) d3k. (D.2.19)

In the above, the factor of L/π is introduced to regulate the momentum-conserving delta function

and is cancelled in the final cross section result by a similar factor in the 2D scattering rate. The

differential S-wave scattering rates dΓ2 and dΓinclusive can be calculated from the perturbative

amplitudes listed in §3 and single-particle scattering amplitudes given in §4 respectively, both of

which can be written as A =M δ(Ef − Ei). Using these amplitudes in Fermi’s golden rule gives

dΓ = 2π|iM/(2L)|2δ(Ef − Ei)
dk′ L

π
= |M|2δ(Ef − Ei) dk′/(2L), (D.2.20)

for both the interaction picture and inclusive Heisenberg picture differential rate dΓ2 and dΓinclusive,

respectively. The factor of 1/(2L) in the above differential rate again comes about because we cannot

choose the initial S-wave state to have a specific momentum when working in the continuum limit.

In principle we could remove this factor in the same way as above, by redefining our initial state in

terms of a distribution function in momentum space, however we do not do so here as the definition

of the initial S-wave state is purely an intermediate step in the cross section calculation. Exclusive

2D rates, Γexclusive, can be calculated similarly with e.g. differential rates for processes in which no

pairs are produced given by (D.2.20) where A is an exclusive amplitude such as (4.1.24) - (4.1.27).

The 4D differential rates for the scattering processes described here are then independent of the

system length 2L, as advertised, and become

dΓ4D =
N 2

8π2k2
δs,c |M|2δ(Ef − Ei) dk′ ρ(k) d3k. (D.2.21)

The differential cross section is obtained from dΓ4D by factoring out the flux of initial particles,
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given by Fi = dn vrel = dn, where vrel = 1 is the relative velocity between the dyon and incident

fermions and dn = N 2[ρ(k)/(2π)3]d3k is the number density of incident fermions. We define dn as

the product of dn/V, the density of states, and iUs,c,kẑ(x)γ0Us,c,kẑ(x) = N 2, the contribution of a

plane wave state to the fermion number density. Finally, we get that the 4D single-particle S-wave

differential cross sections dσs simplify to

dσs[fs,c(k)→ fs′(k
′)] =

dΓ4D

Fi
=
ps
Fi

dΓ =
π

k2
δs,c|M|2δ(Ef − Ei) dk′, (D.2.22)

as we claim in the main text.
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Appendix E

The in and out vacuum

The Bogoliubov relations imply that the in and out vacua, defined as

ain
s,k |0in〉 = ain

s,k |0in〉 = 0, aout
s,k |0out〉 = aout

s,k |0out〉 = 0, (E.0.1)

do not necessarily coincide due to the possibility of pair production. This appendix shows how to

expand the in vacuum in terms out states and vice versa. We also show how these expansions can

be used to evaluate inclusive scattering observables, such as the cross sections given in §4.

E.1 Expansion of in vacuum in terms of out states

We first note that all out particles and antiparticles with momentum k > ev annihilate the in

vacuum, that is

aout
s,k |0in〉 = aout

s,k |0in〉 = 0, for k > ev. (E.1.1)

For smaller momenta, the above equation remains satisfied only for negatively charged particles and

antiparticles

aout
−,k |0in〉 = aout

+,k |0in〉 = 0, for 0 < k < ev, (E.1.2)

meaning the in vacuum only contains positively charged particles and antiparticles with momenta

in the range 0 < k < ev.
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Since the total vacuum can be written as a tensor product over the vacua for each momentum,

|0in〉 =
∏
k>0

|0kin〉, the expansion of the total vacuum in terms of out states can be done on a mode-

by-mode basis. As explained above, for momenta k > ev the single-momentum vacuum must be

equal to the corresponding out vacuum up to a phase

|0kin〉 = eiδk |0kout〉 , for k > ev (E.1.3)

where δk is an arbitrary phase. For momenta k < ev, it is convenient to define the single-mode

vacuum |0kin〉 in the following way

ain
+,k |0kin〉 = ain

+,k |0kin〉 = 0 and ain
−,−k+ev |0kin〉 = ain

−,−k+ev |0kin〉 = 0, (E.1.4)

as opposed to ain
s,k |0kin〉 = ain

s,k |0kin〉 = 0, since the Bogoliubov relations (which impose energy

conservation) relate s = + particle operators of momentum k to s = − antiparticle operators of

momentum −k + ev. With this definition, the most general form of the single-mode vacuum is:

|0kin〉 =
[
B0;0 +B1;0(aout

+,k)? +B0;1(aout
−,−k+ev)

? +B1;1(aout
+,k)?(aout

−,−k+ev)
?
]
|0kout〉 . (E.1.5)

The action of any out operator on the single-mode vacuum |0kin〉 can be calculated in more than one

way: Directly, by using the above expansion in terms of out states, or by rewriting the operator

using the Bogoliubov relations and then acting on the state. This can be used to determine the Bi;j

coefficients in (E.1.5), as we now show. Consider the state aout
+,k |0kin〉, which is equal to:

aout
+,k |0kin〉 =

[
B1;0 +B1;1(aout

−,−k+ev)
?
]
|0kout〉 , (E.1.6)
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but can also be rewritten as

aout
+,k |0kin〉 = T +−

in eia (ain
−,−k+ev)? |0kin〉

= T +−
in eia

(
T −−out (aout

−,−k+ev)? + T −+
out e

−iaaout
+,k

)
×
[
B0;0 +B1;0(aout

+,k)? +B0;1(aout
−,−k+ev)? +B1;1(aout

+,k)?(aout
−,−k+ev)?

]
|0kout〉

= T +−
in T

−−
out e

ia
[
B0;0(aout

−,−k+ev)? −B1;0(aout
+,k)?(aout

−,−k+ev)?
]
|0kout〉

+T +−
in T

−+
out

[
B1;0 +B1;1(aout

−,−k+ev)?
]
|0kout〉 . (E.1.7)

In the above, we use the Bogoliubov relations first to rewrite aout
+,k and then again to rewrite

(ain
−,−k+ev)

?. Comparing (E.1.6) and (E.1.7) shows that, when T +−
in T −−out 6= 01

B1;0 = 0 and
B0;0

B1;1
=

1− T +−
in T −+

out

T +−
in T −−out

e−ia =
T −−in

T +−
in

e−ia, (E.1.8)

where in the last line we rewrite the Tout amplitudes in terms of Tin amplitudes and use (2.2.34).

Similarly, the state aout
−,−k+ev |0kin〉 is equal to:

aout
−,−k+ev |0kin〉 =

[
B0;1 −B1;1(aout

+,k)?
]
|0kout〉 , (E.1.9)

but can also be rewritten as

aout
−,−k+ev |0kin〉 = T −+ ∗

in eia (ain
+,k)? |0kin〉

= T −+ ∗
in eia

(
T ++ ∗

out (aout
+,k)? + T +−∗

out e−ia aout
−,−k+ev

)
×
[
B0;0 +B0;1(aout

−,−k+ev)? +B1;1(aout
+,k)?(aout

−,−k+ev)?
]
|0kout〉

= T −+ ∗
in T ++ ∗

out eia
[
B0;0(aout

+,k)? +B0;1(aout
+,k)?(aout

−,−k+ev)?
]
|0kout〉

+T −+ ∗
in T +−∗

out

[
B0;1 −B1;1(aout

+,k)?
]
|0kout〉 , (E.1.10)

which implies that

B0;1 = 0, (E.1.11)

when compared to (E.1.9). The remaining coefficients B0;0 and B1;1 can be determined up to a

1This condition also implies that B1;1 6= 0, otherwise B1;0 = 0 would imply aout
+,k |0

k
in〉 = 0 which is not consistent

since aout
+,k |0

k
in〉 = T +−

in eia (ain
−,−k+ev)? |0kin〉 6= 0.
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phase, by imposing the normalization condition 〈0kin|0kin〉 = 1 and using (E.1.8). For T +−
in , T −−in 6= 0,

we then get:

|0kin〉 = eiδk
[
T −−in + T +−

in eia(aout
+,k)?(aout

−,−k+ev)
?
]
|0kout〉 , (E.1.12)

for momenta k < ev, where δk is an arbitrary phase. When T +−
in = 0 or T −−in = 0, we define the

expansion of |0kin〉 in terms of out states as the T +−
in → 0 and T −−in → 0 limit of the above equation

respectively, where the surviving amplitude is necessarily a phase.

For general momentum k and choice of Tin amplitudes, the single-mode vacuum is:

|0kin〉 = eiδk
{

Θ(k − ev) + Θ(−k + ev)
[
T −−in + T +−

in eia(aout
+,k)?(aout

−,−k+ev)
?
]}
|0kout〉 .(E.1.13)

Finally, we can write the full in vacuum in the out basis as

|0in〉 =
∏
k>0

|0kin〉 =

(∏
k>ev

|0kin〉

)(
k<ev∏
k>0

|0kin〉

)

= eiδ

(
k<ev∏
k>0

[
T −−in + T +−

in eia(aout
+,k)?(aout

−,−k+ev)
?
])
|0out〉 , (E.1.14)

where δ :=
∑
k>0

δk is an arbitrary phase which we set to 0 in the main text, as it is not observable2.

The product over all k < ev modes evaluates to

|0in〉 = eiδ

ev
∆k∑
n=0

1

n!
(T −−in )

ev
∆k−n(T +−

in )n eina

×
[ ev∑
k1=0

...

ev∑
kn=0

(aout
+,k1

)?(aout
−,−k1+ev)

?...(aout
+,kn)?(aout

−,−kn+ev)
?
]
|0out〉 .(E.1.15)

The full in vacuum is normalized, since the coefficients Bi;j were chosen such that the expansion of

each single-mode in vacuum corresponds to a normalized state.

2The expansion of in states in terms of the out basis is only relevant when evaluating transition amplitudes. Since
all amplitudes include the eiδ factor, no interference experiment can be constructed to measure δ.
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Expansion of out vacuum in terms of in states

The above procedure can be repeated for the out vacuum. We similarly get:

|0out〉 = e−iδ

ev
∆k∑
n=0

1

n!
(T −−out )

ev
∆k−n(T +−

out )n eina

×
[ ev∑
k1=0

...

ev∑
kn=0

(ain
+,k1

)?(ain
−,−k1+ev)

?...(ain
+,kn)?(ain

−,−kn+ev)
?
]
|0in〉

= e−iδ

ev
∆k∑
n=0

1

n!
(T −−∗in )

ev
∆k−n(T −+ ∗

in )n eina

×
[ ev∑
k1=0

...

ev∑
kn=0

(ain
+,k1

)?(ain
−,−k1+ev)

?...(ain
+,kn)?(ain

−,−kn+ev)
?
]
|0in〉 .(E.1.16)

E.2 Calculating inclusive observables

In the main text, we remark that the scattering observables of physical interest are often inclusive

observables, for which the number of pairs produced by the dyon is unmeasured. We now show how

such observables can be calculated, focusing on the inclusive S-wave scattering cross sections of §4.

For convenience, we work in discrete normalization as in the rest of this appendix.

To start, we note that in most cases of interest in the main text, exclusive amplitudes An can

be written as

An = AscAn
pair, (E.2.1)

that is they factorize into a single-particle scattering amplitude Asc and an amplitude to produce n

pairs, An
pair. As a result, the exclusive probability for the process to happen, Pn, will be the product

of the probability for the single-particle scattering event, psc, and the probability to produce n pairs,

Pnpair,

Pn = psc P
n
pair. (E.2.2)

The inclusive probability for the single-particle scattering process is given by

p = psc pvac = psc

N∑
n=0

Pnpair, (E.2.3)
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where N := ev
∆k is the maximum number of out pairs in the in vacuum, while pvac is defined through

the above equation and is equal to

pvac = | 〈0out|0in〉 |2 +

ev∑
q1=0

| 〈0out|aout
−,−q1+ev a

out
+,q1 |0in〉 |2 + · · ·

+
1

n!

ev∑
q1,···qn=0

| 〈0out|aout
−,−qn+ev a

out
+,qn · · ·a

out
−,−q1+ev a

out
+,q1 |0in〉 |2 + · · ·

+
1

N !

ev∑
q1,···qN=0

| 〈0out|aout
−,−qN+ev a

out
+,qN · · ·a

out
−,−q1+ev a

out
+,q1 |0in〉 |2. (E.2.4)

In the above, the combinatorial prefactors are added to ensure we only sum over distinct final states.

Keeping in mind that out states with doubly-occupied pairs do not contribute to the momentum

sums in (E.2.4), pvac simplifies to

pvac =
(
|T −−in |2

)N
+N

(
|T −−in |2

)N−1 |T +−
in |2 + · · ·

+
N !

n!(N − n)!

(
|T −−in |2

)N−n (|T +−
in |2

)n
+ · · ·+

(
|T +−

in |2
)N

=
(
|T −−in |2 + |T +−

in |2
)N

= 1. (E.2.5)

This shows that the inclusive probability for the scattering process described by Asc is

p = psc, (E.2.6)

and so the corresponding inclusive rates and cross sections can be computed in the usual way, using

only the single-particle amplitude Asc or its continuum-normalization counterpart Asc.

The previous argument can be used to justify the inclusive cross section formulas given in §4, for

all but one of the processes considered in that section. The exception is the process described by

the amplitude (4.1.27), when the momentum of the initial particle, k, belongs in the pair production
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range k < ev. In this case, the exclusive amplitude factorizes as follows

An = 〈0out|aout
−,−qn+eva

out
+,qn ...a

out
−,−q1+eva

out
+,q1 a

out
+,k′(a

in
+,k)? |0in〉

= δkk′
[
T ++

in T
−−

in − T −+
in T +−

in

] (
T −−in

)N−(n+1) (T +−
in

)n
eina

= δkk′
[
T ++

in T
−−

in − T −+
in T +−

in

] [
An

pair/T −−in

]
, (E.2.7)

when n < N and k′, q1, · · · , qn are distinct momenta, and vanishes otherwise. The inclusive proba-

bility for the relevant single-particle process is given by

p =
∑
k′

[
| 〈0out|0in〉 |2 +

ev∑
q1=0

| 〈0out|aout
−,−q1+ev a

out
+,q1 |0in〉 |2 + · · ·

+
1

(N − 1)!

ev∑
q1,···qN−1=0

| 〈0out|aout
−,−qN−1+ev a

out
+,qN−1

· · ·aout
−,−q1+ev a

out
+,q1 |0in〉 |2

]
(E.2.8)

×|T −−in |−2
∣∣∣δkk′[T ++

in T
−−

in − T −+
in T +−

in

]∣∣∣2 .
To evaluate the above sums, note that the Bogoliubov relations impose that the momentum k′ is

equal to the momentum of the initial particle, k, and so lies in the pair production range 0 < k′ < ev.

As one of the particle states in the pair production range is already occupied, there are now at most

N − 1 different momenta that each qi can be equated to. The inclusive probability, p, is then equal

to

p =
∑
k′

[ (
|T −−in |2

)N−1
+ (N − 1)

(
|T −−in |2

)N−2 |T +−
in |2 + · · ·+

(
|T +−

in |2
)N−1

]

×
∣∣∣δkk′[T ++

in T
−−

in − T −+
in T +−

in

]∣∣∣2 , (E.2.9)

which simplifies to

p =
∑
k′

(
|T −−in |2 + |T +−

in |2
)N−1

∣∣∣δkk′[T ++
in T

−−
in − T −+

in T +−
in

]∣∣∣2
=
∑
k′

∣∣∣δkk′[T ++
in T

−−
in − T −+

in T +−
in

]∣∣∣2 . (E.2.10)

The last line of (E.2.10) shows that the inclusive cross section for this process can be calculated in
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the usual way, if the single-particle amplitude

Asc = δkk′
[
T ++

in T
−−

in − T −+
in T +−

in

]
, (E.2.11)

or its continuum-normalization counterpart (4.1.34) (which is valid for all k), is used instead of

exclusive amplitudes.
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Appendix F

Bilinear currents

In this appendix, we show how one can regularize local fermion bilinear operators and compute the

in and out vacuum expectation values of the fermion number, electric charge and axial currents, as

well as the interaction picture interacting hamiltonian. We further derive the conservation (or non-

conservation) equations satisfied by the fermionic currents and show how the boundary condition

can be used to directly evaluate their radial components at r = ε.

F.1 Vacuum expectation values of fermion bilinears

Writing

χ(x) =
∑
s=±

∫ ∞
0

dk√
2π

[
ud
s,k(x) ad

s,k + vd
s,k(x) (ad

s,k)?
]

(F.1.1)

where d = {in, out}, we seek the expectation values of fermion bilinears like

χMχ =
∑

s,s′=±

∫ ∞
0

dk dk′

2π

[
ud
s,kM ud

s′,k′
(
(ad

s,k)? ad
s′,k′

)
+ vd

s,kM vd
s′,k′

(
ad
s,k (ad

s′,k′)
?
)

+ud
s,kM vd

s′,k′
(
(ad

s,k)? (ad
s′,k′)

?
)

+ vd
s,kM ud

s′,k′
(
ad
s,k a

d
s′,k′

)]
(F.1.2)

where we use the operator-ordering notation for fermions: (AB) := 1
2 [A,B] that ensures classically

hermitian expressions remain hermitian.
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The in and out vacuum expectation values of local bilinear operators are formally given by

〈0d|χMχ |0d〉 =
∑

s,s′=±

∫ ∞
0

dk dk′

4π

[
−ud

s,kM ud
s′,k′ 〈0d| ad

s′,k′(a
d
s,k)? |0d〉+ vd

s,kM vd
s′,k′ 〈0d| ad

s,k(ad
s′,k′)

? |0d〉
]

=
∑
s=±

∫ ∞
0

dk

4π

[
−ud

s,kM ud
s,k + vd

s,kM vd
s,k

]
. (F.1.3)

At face value, the above expectation values vanish for any matrix M acting in spin and isospin

space, since ud
s,k(x) = vd

s,−k(x) and so ud
s,k(x)M ud

s,k(x) = vd
s,k(x)M vd

s,k(x) for both in and out

modes1. This turns out not to be the case, since the presence of anomalies means more care must

be taken when evaluating local operators. To this end, we regularize the fermion bilinear operator

χ(x)M χ(x) by evaluating χ,χ at slightly different points, namely χ(r + ε/2, t)M χ(r − ε/2, t)2,

and take the limit ε→ 0 after calculating any matrix elements of interest. Note that the point-split

operator χ(r+ ε/2, t)M χ(r− ε/2, t) is gauge invariant without the addition of a Wilson line, since

we point split only in the radial direction along which the gauge field vanishes, Ar(x) = 0. More

explicitly, we calculate vacuum expectation values through

〈0d|χMχ |0d〉 = lim
ε→0

[
〈0d|χ+(x+)M χ+(x−) |0d〉+ 〈0d|χ−(x+)M χ−(x−) |0d〉

]
, (F.1.4)

where x± := (r±, t) = (r ± 1
2ε, t). Applying this to the radial component of the axial current (for

which M = iΓ1ΓA) gives the following contributions to the in vacuum expectation value:

〈0in|χ+(x+) iΓ1ΓA χ+(x−) |0in〉 =

∫ ∞
0

dk

4π

[
−uin

+,k(x+)iΓ1ΓA u
in
+,k(x−) + vin

+,k(x+)iΓ1ΓA v
in
+,k(x−)

]
=

[(
−1− eievε|T −+

in |2
)(r+

r−

)− ieQ2
+ |T ++

in |
2

(
r+

r−

) ieQ
2

]∫ ∞
0

dk

4π
(e−ikε − eikε), (F.1.5)

as well as

〈0in|χ−(x+) iΓ1ΓA χ−(x−) |0in〉 =

∫ ∞
0

dk

4π

[
−uin
−,k(x+)iΓ1ΓA u

in
−,k(x−) + vin

−,k(x+)iΓ1ΓA v
in
−,k(x−)

]
=

[(
1 + e−ievε|T +−

in |2
)(r+

r−

) ieQ
2

− |T −−in |2
(
r+

r−

)− ieQ2 ]∫ ∞
0

dk

4π
(e−ikε − eikε). (F.1.6)

1This is true for M such that ud
s,kM ud

s,k is independent of k.
2At r = ε, we instead consider the operators χ(ε+ ε, t)M χ(ε, t) since r ≥ ε.
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The momentum integrals in the above equations can be evaluated using the integral representation

of the Heaviside theta function

∫ ∞
0

dk

4π
e±ikε = lim

β→0+

i

2π

∫ ∞
−∞

dk dτ

4π(τ + iβ)
e−ik(τ∓ε) = lim

β→0+

i

4π(±ε+ iβ)
, (F.1.7)

an using (F.1.7) in (F.1.5) and (F.1.6) shows that the in vacuum expectation value of the radial

component of the axial current can be written as

〈0in|χ iΓ1ΓAχ |0in〉 = lim
ε→0

(
− i

2πε

)[(
1 + e−ievε|T +−

in |2 + |T ++
in |

2
)(r+

r−

) ieQ
2

−
(
1 + eievε|T −+

in |2 + |T −−in |2
)(r+

r−

)− ieQ2 ]
. (F.1.8)

Finally, we simplify the above equation by expanding in ε and using (2.2.34) to get:

〈0in| j1
A(x) |0in〉 = 〈0in|χ iΓ1ΓAχ |0in〉 = −ev

π
|T +−

in |2 +
eQ

πr
. (F.1.9)

The in vacuum expectation value of other current operators of interest can similarly be written

as

〈0in|χM χ |0in〉 = lim
ε→0

(
− i

2πε

)[(
qM, in− − qM, in+− e−ievε|T +−

in |2 − qM, in++ |T ++
in |

2
)(r+

r−

) ieQ
2

+
(
qM, in+ − qM, in−+ eievε|T −+

in |2 − qM, in−− |T −−in |2
)(r+

r−

)− ieQ2 ]
, (F.1.10)

where qM, ins , qM, inss′ are listed in table F.1 for several choices of the matrix M . The calculation of

current vacuum expectation values goes through in the same way for the out vacuum. We get:

〈0out|χM χ |0out〉 = lim
ε→0

i

2πε

[(
qM, out
− − qM, out

+− eievε|T +−
out |2 − q

M, out
++ |T ++

out |2
)(r+

r−

)− ieQ2
+
(
qM, out
+ − qM, out

−+ e−ievε|T −+
out |2 − q

M, out
−− |T −−out |2

)(r+

r−

) ieQ
2
]
, (F.1.11)

where qM, out
s , qM, out

ss′ are listed in table F.2.

We see that the regularized vacuum matrix elements of the components of the fermion number
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M qM, in+ qM, in− qM, in++ qM, in−− qM, in−+ qM, in+−

iΓ0 1 1 1 1 1 1

iΓ1 -1 -1 1 1 1 1

ie
2 Γ0τ3

e
2 - e2

e
2 - e2 - e2

e
2

ie
2 Γ1τ3 - e2

e
2

e
2 - e2 - e2

e
2

iΓ0ΓA 1 -1 -1 1 1 -1

iΓ1ΓA - 1 1 -1 1 1 -1

Table F.1: Numerical values of qM, ins , qM, inss′ , defined by eq. (F.1.10), for various choices of the matrix M .

current are given by

〈0in| j0
B(x) |0in〉 = 〈0out| j0

B(x) |0out〉 = 0, (F.1.12)

as well as

〈0in| j1
B(x) |0in〉 = 〈0out| j1

B(x) |0out〉 =
2i

πε
, (F.1.13)

while those of the electromagnetic current are

〈0in| j0
F (r, t) |0in〉 = 〈0out| j0

F (r, t) |0out〉 =
e2v

2π
|T +−

in |2 − e2Q

2πr

and 〈0in| j1
F (r, t) |0in〉 = −〈0out| j1

F (r, t) |0out〉 =
e2v

2π
|T +−

in |2 . (F.1.14)

Finally, the axial current vacuum matrix elements are

〈0in| j0
A(r, t) |0in〉 = −〈0out| j0

A(r, t) |0out〉 = −ev
π
|T +−

in |2

and 〈0in| j1
A(r, t) |0in〉 = 〈0out| j1

A(r, t) |0out〉 = −ev
π
|T +−

in |2 +
eQ

πr
. (F.1.15)

The vacuum expectation value of the interaction hamiltonian in the interaction picture (3.1.3)

(with δCpv = δCps = 0) can be calculated similarly. This expectation value is defined as

〈0|Hint |0〉 = lim
ε→0

∑
s=±

∫ ∞
0

dk

8π

[
−uin0

s,k(ε+ ε, t)
(
δCsss′ − iδCvssΓ0

)
uin0
s,k(ε, t)

+vin0
s,k(ε+ ε, t)

(
δCsss′ − iδCvssΓ0

)
vin0
s,k(ε, t)

]
, (F.1.16)
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M qM, out
+ qM, out

− qM, out
++ qM, out

−− qM, out
−+ qM, out

+−

iΓ0 1 1 1 1 1 1

iΓ1 1 1 -1 -1 -1 -1

ie
2 Γ0τ3

e
2 - e2

e
2 - e2 - e2

e
2

ie
2 Γ1τ3

e
2 - e2 - e2

e
2

e
2 - e2

iΓ0ΓA -1 1 1 -1 -1 1

iΓ1ΓA - 1 1 -1 1 1 -1

Table F.2: Numerical values of qM, out
s , qM, out

ss′ , defined by equation (F.1.11), for various choices of M .

where |0〉 = |0in〉 = |0out〉 in the interaction picture and is equal to

〈0|Hint |0〉 = lim
ε→0

∑
s=±

(δCsss − δCvss)

[(
ε+ ε

ε

)iseQ/2
−
(
ε+ ε

ε

)−iseQ/2]∫ ∞
0

dk

8π
(eikε − e−ikε)

= − eQ
4πε

∑
s=±

s (δCsss − δCvss), (F.1.17)

which matches (3.1.6).

F.2 Current conservation equations

The fermionic currents satisfy conservation (or non-conservation) equations which can be derived

directly from the 2D Dirac equation. That is, the current jαM(x) := iχ(x)ΓαMχ(x) satisfies the

equation

∂t j
t
M(x) = i lim

ε→0

[
(∂tχ(r+, t)) Γ0Mχ(r−, t) + χ(r+, t)Γ

0M (∂tχ(r−, t))
]

= i lim
ε→0

[
− (∂rχ(r+, t)) Γc Γ0Mχ(r−, t) + χ(r+, t)Γ

0M Γc (∂rχ(r−, t))

− ie
2

(
A3

0(r+, t)χ(r+, t)Γ
0τ3Mχ(r−, t)−A3

0(r−, t)χ(r+, t)Γ
0Mτ3χ(r−, t)

)]
= i lim

ε→0

[
∂r
(
χ(r+, t)Γ

0ΓcM χ(r−, t)
)
− ieε

2
(∂rA3

0(r))χ(r+, t)Γ
0Mτ3χ(r−, t)

]
= −∂rjrM(x) + lim

ε→0

εeQ

2r2
χ(r+, t)Γ

0Mτ3χ(r−, t), (F.2.1)
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where M ∈ {1, e2τ3,ΓA} and we use [M,Γc] = [M, τ3] = 0. This can be equivalently rewritten as

∂αj
α
B(x) =

eQ

2r2
lim
ε→0

(
εχ(r+, t)Γ

0 τ3χ(r−, t)
)

= −i eQ
er2

lim
ε→0

(
εj0
F (x)

)
,

∂αj
α
F (x) =

e(eQ)

4r2
lim
ε→0

(
εχ(r+, t)Γ

0χ(r−, t)
)

= −ie(eQ)

4r2
lim
ε→0

(
εj0
B(x)

)
,

∂αj
α
A(x) = − eQ

2r2
lim
ε→0

(
εχ(r+, t)Γ

1χ(r−, t)
)

= i
eQ

2r2
lim
ε→0

(
εj1
B(x)

)
, (F.2.2)

for each choice of M , which shows that the conservation of the fermionic currents hinges on whether

jαB , j
0
F are singular in the small ε limit, or not. The dominant contributions to the source terms in

the above conservation equations come from the vacuum expectation values of jαB , j
0
F . Equations

(F.1.12)-(F.1.14) then imply that the fermion number and electric charge current are conserved,

while the axial current satisfies the anomaly equation

∂αj
α
A(x) = − eQ

πr2
=
[e

2
−
(
−e

2

)] 1

2π
εαβF3

αβ(x), (F.2.3)

which we rewrite in the last line to emphasize the fact that the top and bottom components of the

doublet contribute the usual factor of qs
2π ε

αβF3
αβ(x) to the 4-divergence of the axial current, where

qs = 1
2se. We take the difference, as opposed to the sum, of these two contributions since jαA(x) is

defined with an extra τ3 matrix compared to the standard definition of an axial current in 2D.

F.3 Boundary currents

At r = ε the radial components of fermionic currents can be evaluated by using the boundary

condition Γ1χ(ε, t) = −OB(a)χ(ε, t), which can also be rewritten as χ(ε, t)Γ1 = χ(ε, t)OB(a). We

get:

j1
B(ε, t) =

i

2

(
χ(ε, t)Γ1χ(ε, t) + χ(ε, t)Γ1χ(ε, t)

)
=
i

2
(χ(ε, t)OB(a)χ(ε, t)− χ(ε, t)OB(a)χ(ε, t)) = 0,

j1
F (ε, t) =

ie

4

(
χ(ε, t)Γ1τ3χ(ε, t) + χ(ε, t)τ3Γ1χ(ε, t)

)
=
i

2
χ(ε, t)

[
OB(a),

e

2
τ3
]
χ(ε, t), (F.3.1)

j1
A(ε, t) =

i

2

(
χ(ε, t)Γ1ΓAχ(ε, t)− χ(ε, t)ΓAΓ1χ(ε, t)

)
=
i

2
χ(ε, t) {OB(a),ΓA}χ(ε, t).
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The above currents vanish when the boundary action (2.2.15) is invariant under field transformations

of the form δχ(ε, t) = iθMχ(ε, t), where θ is a constant parameter and M = 1 gives the transfor-

mation corresponding to the fermion number current, M = e
2τ3 to the electric charge current and

M = ΓA to the axial current.

As argued earlier in this appendix, the fermion bilinears appearing in (F.3.1) should be regulated

by e.g. a point-splitting procedure. Such a regularization procedure generally need not preserve the

equality in (F.3.1). However, if we regularize the boundary currents in the following way

(j1
B(ε, t))reg :=

i

2

(
χ(ε, t)Γ1χ(ε+ ε, t) + χ(ε+ ε, t)Γ1χ(ε, t)

)
,

(j1
F (ε, t))reg :=

ie

4

(
χ(ε, t)Γ1τ3χ(ε+ ε, t) + χ(ε+ ε, t)τ3Γ1χ(ε, t)

)
,

(j1
A(ε, t))reg :=

i

2

(
χ(ε, t)Γ1ΓAχ(ε+ ε, t)− χ(ε+ ε, t)ΓAΓ1χ(ε, t)

)
, (F.3.2)

and the remaining fermion bilinears in (F.3.1) as

(
i

2
χ(ε, t) [OB(a), 1]χ(ε, t)

)
reg

:=
i

2
(χ(ε, t)OB(a)χ(ε+ ε, t)− χ(ε+ ε, t)OB(a)χ(ε, t)) ,(

i

2
χ(ε, t)

[
OB(a),

e

2
τ3
]
χ(ε, t)

)
reg

:=
ie

4
(χ(ε, t)OB(a)τ3χ(ε+ ε, t)− χ(ε+ ε, t)τ3OB(a)χ(ε, t)) ,(

i

2
χ(ε, t) {OB(a),ΓA}χ(ε, t)

)
reg

:=
i

2
(χ(ε, t)OB(a)ΓAχ(ε+ ε, t) + χ(ε+ ε, t)ΓAOB(a)χ(ε, t)) ,

(F.3.3)

then the regularization scheme does preserve the equality in (F.3.1), which can be seen by using the

boundary conditions satisfied by χ(ε),χ(ε).
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PhD Thesis – S. Bogojević; McMaster University – Physics and Astronomy

[48] H. Georgi and S. L. Glashow, “Unified weak and electromagnetic interactions without neutral

currents,” Phys. Rev. Lett. 28, 1494 (1972)

[49] B. Julia and A. Zee, “Poles with Both Magnetic and Electric Charges in Nonabelian Gauge

Theory,” Phys. Rev. D 11 (1975), 2227-2232.

[50] J. Arafune, P. G. O. Freund and C. J. Goebel, “Topology of Higgs Fields,” Lect. Notes Phys.

39, 240-241 (1975)

[51] M.K. Prasad and C. M. Sommerfield “Exact Classical Solution for the ’t Hooft Monopole and

the Julia-Zee Dyon,” Phys. Rev. Lett. 35 (1975), 760-762

[52] E. J. Weinberg, “Classical solutions in quantum field theory: Solitons and Instantons in High

Energy Physics,” Cambridge University Press, (2012)

[53] C. P. Dokos and T. N. Tomaras, “Monopoles and Dyons in the SU(5) Model,” Phys. Rev. D

21, 2940 (1980)

[54] W. E. Caswell and G. P. Lepage, “Effective Lagrangians for Bound State Problems in QED,

QCD, and Other Field Theories,” Phys. Lett. B 167 (1986), 437-442

[55] N. Isgur and M. B. Wise, “Weak Decays of Heavy Mesons in the Static Quark Approximation,”

Phys. Lett. B 232 (1989), 113-117
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