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Lay Abstract

This study introduces a new and cost-effective method for launching attacks
on graph neural networks (GNNs), which are widely used in applications like
social media and recommendation systems. Traditional attacks on GNNs focus
on altering the connections between nodes to disrupt the model, but they often
require control over many nodes, making them expensive and easier to detect.
Our approach improves on this by using multiple small sets of “anchor nodes”
that work together with an assignment network to choose the best set for each
attack. This method achieves high attack success while keeping costs low,
since fewer nodes need to be controlled. Experiments on real-world data show
that our method is highly effective and efficient.
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Abstract

Structural adversarial attack methods, which attack graph neural networks
(GNNs) by perturbing the edges of the input graph, are well-recognized for
their high effectiveness. However, most existing structural attacks prioritize
maximizing attack performance while neglecting the significant budget re-
quired to control (i.e., acquire or hijack) the nodes (e.g., user accounts in
a social network) necessary for executing such attacks in real-world networks.
Classic anchor node attacks are comparatively more budget-efficient, as they
rely on controlling a small set of anchor nodes to conduct all attacks. Never-
theless, their attack efficacy is constrained by the limitation of using a single
set of anchor nodes. In this work, we propose a strong and budget-efficient
multifaceted anchor nodes attack on GNNs, with the core innovation lies in
the simultaneous training of multiple sets of anchor nodes and an assignment
network, enabling the assignment network to select the most optimal set of
anchor nodes for each new attack. This approach significantly enhances attack
effectiveness while maintaining a minimal budget for node control. Extensive
experiments across five real-world datasets demonstrate the superior perfor-
mance of the proposed method.
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Notation, Definitions, and
Abbreviations

Notation

The unweighted graph

Vv The set of vertices in a graph

E The set of edges in a graph

A The adjacency matrix of a graph

X The feature matrix of a graph

N The number of nodes in a graph

d The dimension of the feature of a node

C The number of classes of node labels

v; The i-th node in a graph

1 The identity matrix

A The normalized adjacency matrix

D The diagonal degree matrix

H! The [-th hidden graph convolutional layer of a GCN
wt The model parameters at the [-th layer of a GCN
f The GCN

The output of a GCN f

Zij The probability of the i-th node being classified into the j-th
class



©

G/
A/

The number of sets of anchor nodes

The sets of anchor nodes

The set of anchor nodes

The k-th set of anchor nodes

The assignment network

The model parameters of the assignment network

The budget on the number of controlled nodes for each target
node

The budget on the number of controlled nodes for all target
nodes

The set of perturbation vectors

The perturbation vector

The k-th perturbation vector

The matrix with all entries equal to one

The matrix with all entries equal to one except for the diag-
onal entries being zeros

The matrix with ¢-th row and 7-th column replaced by p, and
the other entries set to zero

The perturbed graph

The perturbed adjacency matrix

The weight hyperparameter of the penalty term
The growth rate of A

The weight vector calcuated from py

The A-th entry in py

The smallest value among all entries in wy,

The “temperature” hyperparameter of the simulated anneal-
ing

x1



L The original loss function

L* The final loss function

Vi The training set of node in V

™ The learning rate for training P

Mo The learning rate for training o

p The perturbation function

o The annealing function

10) The quantization function

max The max function (maxima)

min The min function (minima)

arg max The arg max function (arguments of the maxima)
arg min The arg min function (arguments of the minima)
ReLU The ReLU (rectified linear unit) activation function
softmax The softmax activation function

CE The cross entropy loss function

clip The clipping function

quantize The quantizing (i.e., binarizing) function
Definitions

Flip The operation that either adds non-existing edge or removes

an existing edge.

Anchor node The node in a graph anchored where the attack flips edges
between it and the target nodes.

Perturbation The attacking operation to the victim GNN model that flips
edges between each anchor node and the target nodes.

Assignment network
The model that selects the most suitable set of anchor nodes
to attack a given target node.
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Abbreviations

GNN
GCN
GAT
FR
BPT
BFA
SPT

Graph neural network
Graph convolutional network
Graph attention network
Fooling ratio

Budget per target node
Budget for all target nodes

Sum of penalty terms
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Chapter 1

Introduction

Graph neural networks (GNNs) are extensively utilized across various real-
world application domains, such as social network analysis [4, 25], recommen-
dation systems [6, 14] and drug discovery [9], which have been demonstrated
substantial efficacy in practice. In recommendation systems, a user can be sug-
gested commodities that align with their preferences, which are inferred from
patterns shared by similar users encoded within the graph structure. Simi-
larly, in social networks, recommendations for users are also generated based
on this underlying graph representation. GNNs have also proven to be highly
valuable in drug discovery as well, enabling the prediction of drug effects or
side effects by modeling drug-protein and protein-protein interactions through
graph edges.

Despite their widespread applicability, GNNs are inherently susceptible to
adversarial attacks [11, 19, 29, 31, 34, 41], which can result in significant nega-
tive societal implications. In the financial domain, a money laundering account
may evade detection by engaging in transactions that appear legitimate when
interacting with other verified accounts. In social networks, malicious entities
such as spam bots, phishing accounts, and scam profiles may form ostensibly
legitimate connections to circumvent account verification protocols. Similarly,
falsified articles on platforms like Wikipedia can enhance their credibility by
strategically altering their network of links [21].

To enhance the security and robustness of GNNs, numerous studies have
been conducted to identify potential vulnerabilities in trained GNN models
by developing powerful adversarial attacks. Among the various adversarial
attack strategies [5, 8, 11, 17, 19, 23, 24, 29, 31, 33, 34, 38, 39, 40, 41],
the structural attack methods [5, 7, 12, 17, 23, 24, 33, 35, 38, 39, 40|, which
which compromise GNNs by perturbing (i.e., modifying) the edges of the input
graph, are widely recognized for their strong effectiveness and the relative
ease with which such attacks can be launched due to the simplicity of edge
perturbation. However, most existing structural attack approaches primarily
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focus on maximizing attack effectiveness, often overlooking the substantial
budget required to control the nodes needed to alter edges. For instance, in a
social network, modifying an edge requires the adversary to control at least one
of the connected nodes, which typically involves either purchasing or hijacking
the account, and if numerous edges are to be perturbed, the adversary must
control a large number of nodes, which not only incurs a significant financial
cost but also heightens the risk of detection.

The challenge of executing a potent yet budget-efficient attack on GNNs
represents a novel problem that has not been systematically explored in the
existing literature. As outlined later in Chapter 2, both global structural at-
tacks [1, 17, 24, 33, 40] and targeted structural attacks [5, 7, 12] necessitate
control over a large number of nodes to achieve satisfactory attack perfor-
mance, where the substantial resource requirement significantly undermines
their cost-efficiency. In contrast, anchor nodes attacks [38, 39] offer more
budget-efficient approachs, as they require control of only a small set of an-
chor nodes to target all nodes. However, due to the constrained effectiveness
of relying on a single set of anchor nodes, existing anchor nodes attacks [38, 39
frequently fail to deliver strong attack performance.

In this work, we propose a budget-efficient Multi-Faceted Anchor Nodes
(MFAN) attack against GNNs in the context of node classification tasks. The
key concept is to train multiple sets of anchor nodes in conjunction with an
assignment network, where each set of anchor nodes is specialized in effec-
tively attacking a distinct subset of target nodes, and the assignment network
then selects the optimal set of anchor nodes to attack each new target node.
Through this “divide and conquer” strategy, MFAN achieves exceptional at-
tack performance by targeting the collective union of nodes successfully com-
promised by each set of anchor nodes. Furthermore, MFAN demonstrates
budget efficiency by requiring control over only a minimal number of anchor
nodes. In summary, we make the following contributions.

e We introduce a novel adversarial attack task, which seeks to maximize
attack effectiveness while minimizing the budget of controlled nodes.

e We successfully address the task by devising the Multifaceted Anchor
Nodes (MFAN) attack, which exhibits both high strength and budget
efficiency.

e We perform extensive experiments on five real-world datasets, empir-
ically validating the exceptional performance of the proposed MFAN
approach.



Chapter 2
Related Work

The multifaceted anchor nodes attack on graph neural networks presents a
novel problem that has not been systematically addressed in prior research.
Our approach, as it alters the edge structure of the input graph, aligns closely
with structural attacks [1, 5, 7, 12, 17, 23, 35, 36, 38, 39, 40|, which aim to
degrade the classification performance of a victim graph neural network by
perturbing (i.e., adding or removing) the edges within the input graph. The
relationship between our work and existing literature is discussed in detail
below.

2.1 Global Structural Attacks

Global structural attacks [1, 17, 23, 24, 33, 35, 40] seek to to diminish the
overall classification accuracy of a victim model across all nodes in the graph
by perturbing a substantial set of edges once and for all.

Meta-Self [43] leverages meta-learning to execute attacks by treating the
graph’s adjacency matrix as a hyper-parameter. [36] introduces two perturba-
tion strategies utilizing first-order attack generation techniques. [17] conducts
attacks on large-scale graphs by employing projected and greedy randomized
block coordinate descent methods to sample the edges for perturbation. Sev-
eral studies have also demonstrated effective global structural attacks by mit-
igating gradient bias [24], using Eigen decomposition [1], and employing a
certified robustness-inspired framework [33].

These global structural attacks typically necessitate perturbing a consid-
erable number of edges to attain strong attack performance. However, these
approaches are not budget-efficient, as altering a large set of edges requires
controlling a significant number of nodes, thereby imposing substantial bud-
getary demands.
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2.2 Targeted Structural Attacks

Targeted structural attacks [5, 7, 12] aim to degrade the classification accuracy
of the victim model on a single node by perturbing a subset of edges within the
graph. FGA [7] exploits iterative gradient information between pairwise nodes
obtained from a pre-trained graph convolutional neural network to generate
edge perturbations.

GF-Attack [5] employs graph embedding techniques in conjunction with a
corresponding graph filter to produce edge perturbations. RIL-S2V [12] uti-
lizes hierarchical reinforcement learning to induce edge perturbations, thereby
significantly reducing the prediction accuracy of the victim model.

These targeted structural attacks generate distinct edge perturbations for
each specific target node. As perturbing edges necessitates control over the
nodes connected to those edges, initiating a new attack by altering a different
set of edges requires gaining control over a new set of nodes, and given that
controlling each additional node incurs a proportional budgetary cost, these
targeted structural attacks are not budget-efficient. Consequently, when the
budget is constrained, these methods are unable to control a sufficient number
of new nodes to effectively attack a large number of target nodes.

2.3 Anchor Nodes Attacks

Anchor nodes attacks [38, 39] represent a distinct category of structural at-
tacks. These methods first identify a fixed set of nodes, referred to as anchor
nodes, and subsequently degrade the classification performance of the victim
model on each target node by flipping edges between the anchor nodes and
the target node, where flipping an edge refers to either adding a non-existent
edge or removing an existing one.

As the pioneering work in this domain, GUA [39] iteratively identifies a
set of anchor nodes through a minimum perturbation strategy. The follow-up
work, GUAP [38], introduces a set of new nodes, utilizing them as anchor
nodes to launch the attack.

Both GUA and GUAP are budget-efficient, as they require control over
only a small, fixed set of anchor nodes to attack all target nodes. However,
their attack efficacy is significantly constrained by the limitation of relying
on a single set of anchor nodes for all attacks. Since victim graph neural
network models make predictions for a target node based on its multi-hop
neighbors, numerous target nodes may fall outside the effective attack range
of the anchor nodes if they do not reside within close proximity in the network.
Our proposed multifaceted anchor node attack distinguishes itself from GUA
and GUAP by smoothly integrating multiple sets of anchor nodes, alongside a
well-trained assignment network, to substantially enhance attack effectiveness
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while maintaining a minimal budget of controlled nodes.

2.4 Graph Attacks with Other Strategies

Other than solely changing the graph structure, there are works that our ap-
proach is fundamentally distinct from, including works that focus on modifying
node features [2, 8, 30, 42| or injecting malicious nodes [11, 19, 29, 31, 34, 41].

Nettack[42], the pioneering work on adversarial attacks on graphs, gener-
ates perturbations on both node features and graph structure. GAALV[2], in
contrast, keeps the graph structure intact and focuses exclusively on perturb-
ing node features. PoisonProbe[30] targets the victim node by selecting nodes
within a 2-hop radius and perturbing their features. TUA[13], which aims to
misclassify victim nodes into a specific target class, randomly selects nodes
with the target class label, referred to as attack nodes, followed by generating
a set of fake nodes with the same target class label and connects the victim
node to the attack nodes during the attack. G-NIA[31] performs its attacks
by injecting a single node into the graph and linking it to other nodes within
the graph. Greedy-GANI[34] introduces fake nodes into the original graph and
connects them to existing nodes without altering any existing edges or features.



Chapter 3

Preliminary

3.1 Graph

Let G = (V, E, A, X) represent an unweighted graph, where V' denotes the set
of nodes, F the set of edges, and N = |V| represents the total number of nodes
in G. The adjacency matrix A € {0, 1}*" encodes the edge structure of G.
Each node in G is associated with a d-dimensional feature vector, and the
feature vectors of all nodes are collectively represented by the feature matrix
X € RY*4 where the i-th row of X corresponds to the feature vector of the
i-th node, v;, in G. Furthermore, each node in G is assigned a class label from
one of C' possible classes.

3.2 Graph Convolutional Network

A graph neural network, denoted by f(X, A), takes as input the feature matrix
X and the adjacency matrix A of graph G and outputs predictions for the class
labels of the nodes in G.

In accordance with literature [7, 36, 38, 39, 42, 43], we target a well-known
graph neural network, the graph convolutional network (GCN) [20], as the
victim model for our attack. A typical GCN comprises one or more hidden
graph convolutional layers, followed by a softmax layer to generate the final
predictions. In the well-established node classification GCN model that we
seek to attack, the hidden graph convolutional layer is denoted as

) — U(AH(Z)W(Z)), (3.2.1)

where [ is the number of convolution layers, o(-) is the activation function
ReLU [16], and A = D Y2AD~'/2 is a normalized adjacency matrix with
A = A+ and diagonal degree matrix D;; = > ; flij. With the addition of the
final softmax layer, a typical GCN with a single hidden graph convolutional
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layer is represented by
f(X,A) = softmax(A ReLU(AX W) W), (3.2.2)

where W(© and WM are the model parameters of the GCN.
For simplicity, we denote f(X,A) as f when the context is clear. The
output of the GCN f, denoted by

Z = f(X, A), (3.2.3)

is a matrix with dimensions of N rows and C' columns, where the entry in the
i-th row and j-th column, denoted by Z;;, represents the probability of the
i-th node being classified into the j-th class. Additionally, the i-th row of Z
can be denoted as f(X, A); for simplicity.

3.3 Victim Model Types

In the field of adversarial attacks, there are two distinct types of victim mod-
els characterized by different levels of access an attacker has to the model’s
internal parameters.

o White-Box Model. The attacker has full access to the model’s architec-
ture, parameters, and internal mechanisms, including gradients, weights,
and biases, which allows the attacker to exploit the model’s vulnerabil-
ities by directly manipulating its parameters or using gradient-based
methods to generate adversarial examples.

e Black-Box Model. The attacker has no direct access to the model’s in-
ternal structure or parameters, and it can only interact with the model
by observing its input-output behavior, such as querying the model with
inputs and observing the corresponding outputs.

We adopt the same white-box setting in [38, 39] wherein an adversary has
complete access to the architecture and parameters of the victim model. How-
ever, as demonstrated later in Section 6.3, under the black-box setting, the
attack model trained by MFAN on a white-box victim model can be easily
transferred to effectively attack other black-box models.

3.4 Attacking Types

To launch an adversarial attack, modifications can be made to the graph to
mislead the victim GNN model’s prediction. Depending on the stage at which
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the graph attacks occur, these attacks can be categorized into two distinct
types.

e Fwasion Attack. Graphs are modified after the victim model has been
trained. At this stage, the parameters of the victim model are fixed and
cannot be altered by the attacker. The attacker’s objective is to degrade
the classification performance of the victim model or induce it to predict
labels that differ from its original predictions.

e Poisoning Attack. Graphs are modified (poisoned) before the victim
model is trained. Thus, the parameters of the victim model is trained
and tuned on the modified graph. The attacker’s objective is to degrade
the classification performance of the victim model.

We employ the evasion attack scenario in our setting, with the objective of
inducing the victim model to produce outputs that deviate from its original
predictions.




Chapter 4

Problem Definition

4.1 MFAN Task

In the task of multifaceted anchor nodes (MFAN) attack, our objective is
to target a victim model, graph convolutional network (GCN) f, which is
trained on an unweighted graph G. We conduct the attack by perturbing (i.e.,
modifying) the edges in G to create a modified graph G’, such that the label
of a target node v;, predicted by the victim GCN f on @', differs from the
label predicted by f on the original graph G.

In line with the approaches of [38, 39], the perturbation on G is a set of
edge modifications, (i.e., additions or deletions of edges), induced by a set of
nodes in GG, named anchor nodes. Denote by () C V a set of anchor nodes, a
perturbation induced by @ to attack f’s prediction on a target node v; is to
flip the edges between each node in () and v;. Here, flip refers to either adding
a non-existent edge or removing an existing edge. Furthermore, for brevity,
we refer to “change f’s prediction on a target node v;” as “attack the target
node v;”.

In the framework of MFAN, our objective is to train K distinct sets of
anchor nodes, represented by the collection Q@ = {Q1, ..., Qk}, where each set
of anchor nodes ), € Q optimized to effectively attack a substantial subset
of target nodes in V. In conjunction with the training of Q, we also train an
assignment network, denoted by gy, which is responsible for selecting the

most appropriate set of anchor nodes from O to attack a given target node v;.
The MFAN task is formally defined as follows.

Definition 1. Given an integer budget & > 0 on the number of controlled
nodes for each perturbation and a victim GCN f trained on an unweighted
graph G, the task of multifaceted anchor nodes (MFAN) attack is to
train an attack model, composed by K sets of anchor nodes Q = {Q1,...,Qk}
and an assignment network gy, such that
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1. the size of each set of anchor nodes is not larger than &;

2. each target node v; € V is attacked by the perturbation induced by the
set of anchor nodes Qi € Q that is selected by the assignment network
go; and

3. our attack model can successfully attack most of the nodes in G.

In contrast to classic anchor node attacks [38, 39], the MFAN attack is
multifaceted, as it utilizes multiple sets of anchor nodes. The assignment net-
work, gy, takes the graph G and the target node v; as input to select the best-
suited set of anchor nodes, maximizing the likelihood of successfully attacking
v;. Since each set of anchor nodes is specialized in targeting different sub-
sets of nodes, the MFAN attack effectively implements a “divide and conquer”
strategy, allowing it to attack the union of target nodes that are individually
targeted by each set, which substantially enhances the attack’s overall effec-
tiveness. The budget £ constrains the number of controlled nodes for each set
of anchor nodes, and since the same sets of anchor nodes are used to attack
all target nodes in GG, the number of nodes that need to be controlled remains
minimal, rendering MFAN highly budget-efficient.

4.2 Modelling the MFAN Attack

We present in this section the modelling of the perturbation and the assign-
ment network gg. A example of the attack procedure of MFAN is shown in
Figure 4.1.

Target node vy

Q4 ={v4, Ve, Vg} @ Class 1 Class 2 Class 3
P
V910 @10
p Sf' | >12 { | >12
= g PPN
oy ’7@
5 > 53
s 4 7
(a) Original Graph G (b) Assign v4 to Q4 by (c) Attack v4 by flipping (d) Perturbed Graph G'
assignment network g edges between v4 and Q4

Figure 4.1: An example of MFAN attack. To attack the target node v, in
the original graph G, the assignment network selects the anchor nodes set
@1 = {v1,v6,v9}. Then it flips the edges between v, and @), generating the
perturbed graph G'.

10
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4.2.1 Modelling of the Perturbation

Given a set of anchor nodes @, € Q, MFAN attacks the target node v; by
introducing a perturbation to G, which involves flipping the edges between v;
and each anchor node in ). To mathematically formalize this perturbation,
we represent the set of anchor nodes in (), by a perturbation vector py €
{0, 1}, where the i-th element of p; being equal to 1 indicates the i-th node
v; in G is an anchor node in ()x. Thus, the sets of anchor nodes in Q are
modeled by the set of perturbation vectors P = {p1,...,px}. Following the
approaches [38; 39], we model the perturbation induced by a perturbation
vector pr € P to attack v; as

p(vi,pr) = (1 —P)o A+ Po(1g— A), (4.2.1)

where p is the perturbation function, o is element-wise multiplication, 1 is an
N-by-N matrix with all entries equal to one, 1 is an N-by-N matrix of all
entries equal to one except for the diagonal entries being zeros, and P is an
N-by-N matrix with ¢-th row and i-th column replaced by pi and the other
entries set to zero.

The output of p(v;, px), denoted by A" = p(v;, px), represents the per-
turbed adjacency matrix of the perturbed graph G’, in which the edges
between v; and each anchor node in @)y in the original graph G have been
flipped.

4.2.2 Modelling of the Assignment Network

The assignment network is modeled as a GCN, denoted by gy(X, A), which
predicts the probabilities of selecting each of the K sets of anchor nodes in
Q to attack a given target node v; in G. The output of go(X, A) is an N-by-
K matrix, where the entry in the ¢-th row and the k-th column, denoted by
99(X, A);i, represents the probability of selecting the anchor nodes set Q) € Q
to attack the target node v; in G.

4.3 Formulating the Problem

The loss of the MFAN attack is mathematically formulated as

N K

L(P,h) = — Z > " 90(X, A)ig - CE(f(X, A');, f(X, A)y), (4.3.1)

where CE(-, -) is the cross entropy loss, A" = p(v;, px) is the perturbed adjacency
matrix induced by the perturbation vector p, € P, f is the victim model, and

11
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f(X,A"); and f(X, A); are the predicted class distributions of the target node
v; on the perturbed graph G’ and the original graph G, respectively. The cross
entropy loss term quantifies the difference between f(X,A’); and f(X, A);
when py, is used to attack the target node v;. Given that gy(X, A)yx repre-
sents the probability of selecting p, to attack v;, the summation term 215:1
computes the expectation of the difference between f(X,A’); and f(X, A);.
According to the task defined in Definition 1, our objective is to successfully
attack most of the nodes in G, which is accomplished by maximizing the ex-
pected difference between between f(X, A"); and f(X, A); across all the nodes
in G.

Therefore, the MFAN attack is further formulated as the following opti-
mization problem.

%lglﬁ(P, 0) s.t. vpkz € P> HpkHl < ga Pr € {07 1}N7 (432)

where the constraint ||px||1 < & ensures that the number of anchor nodes in
each set Qr € Q does not exceed the specified budget &.

12



Chapter 5

Solution

5.1 Solving the Problem

The original optimization problem in Equation (4.3.2) is a constrained integer
programming problem, which is NP-hard and cannot be directly solved using
gradient-based methods. We present the solution in steps.

5.1.1 Relaxation

Each integer-valued constraint pp € {0,1}¥,pr € P is relaxed to a real-
valued constraint py € [0, 1], thereby transforming the original optimization
problem in Equation (4.3.2) to

5.1.2 Penalty

Following the standard penalty method [3, 15, 28], we incorporate each con-
straint ||px||1 < & as a penalty term, max(||pg||1 — &, 0), within the loss func-
tion, thereby transforming the optimization problem in Equation (5.1.1) to

min £(P, 0) + A > max(||pilli —£,0) st Vpr € P,pp € [0,1]. (5.1.2)

PLEP

5.1.3 Simulated Annealing

Under the relaxed constraint py € [0, 1]V, the entries in each solution p;, € P
may be real values that deviate significantly from 0 or 1, solving the optimiza-
tion problem in Equation (5.1.2) often fails to find optimal K sets of anchor
nodes. However, directly quantizing (i.e., binarizing) these entries in py to 0

13
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or 1 introduces substantial quantization error, hence diminishing the quality
of the final solution.

To address this challenge, we propose a simulated annealing technique
that forces the real-valued entries in each solution py € [0, 1] to converge to-
ward either 0 or 1, which effectively minimizes quantization error when quan-
tizing a solution py, to a binary vector in {0, 1}?V, thereby enhancing the quality
of the final solution. Specifically, we construct a weighted penalty term to
reformulate Equation (5.1.2) as

rglenﬁ(P, 0) + A Z maX(HWk’ © PkHl - W;cmngv 0) s.t. vpk’ € P7 Pr € [07 1]Na
’ pxEP

(5.1.3)
where o is element-wise multiplication, w is an weight vector of size N cal-
culated from py, and w}"" is the smallest value among all the entries in wy,.
The h-th entry of wy, is computed by the annealing function

1
1+ 0T

wy =o(p}) =

(5.1.4)
where p} is the h-th entry in pg, ¢ is the mean of the £-th and (£+1)-th largest
entry in pg, and T is a hyperparameter that controlls the “temperature” of
the annealing process. A smaller value of T" causes the annealing function o to
approximate a step function, assigning weights close to 1 to the top-¢ largest
entries in py and weights close to 0 to the remaining entries. Consequently, by
progressively reducing the value of T', we can drive the top-§ largest entries in
pr to 1 while pushing the other entries toward 0.

Equation (5.1.3) is the formal form of our optimization problem, which can
be solved using standard proximal gradient descent [26]. A feasible solution to
Equation (5.1.3) is also a feasible solution to Equation (5.1.1), as demonstrated
by the following rationale. During the minimization of the objective function
in Equation (5.1.3) following [3, 15, 28], A is gradually increased to push the
penalty terms toward zero, which ensures that each feasible solution p; € P
to Equation (5.1.3) satisfies the constraint ||w; o pg||; < wi™¢. We then have
llpell1 < &, as demonstrated in Theorem 1, indicating that py is a feasible
solution to Equation (5.1.1).

Theorem 1. Vp;, € P,pi € [0, 1]V, if ||wg 0 pr|l1 < W€, then ||pg|l1 < €.

Proof. Since ||wy o pi|l1 < W™, we have £ > ||

Wi
min
Wi

o pillr > |[Pkll1- O

As Equation (5.1.1) represents a relaxed version of the original optimization
problem in Equation (4.3.2), a final solution to Equation (4.3.2) can be
obtained by quantizing each feasible solution p; € P into a binary vector in
{0,1}¥. Since the simulated annealing trick forces the top-£ largest entries
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in pr approach 1 and the other entries approach 0, the solution for py is
ensured to approximate a binary vector, which minimizes the quantization
error, therefore the final solution quantized from pj satisfies the budget of
controlled nodes.

5.2 Algorithms

5.2.1 Training Algorithm

Algorithm 1: Training P and 6
Input : ¢, f, G, and a training set of nodes Vi C V
Output: P and 0

1T+ 1, A< 0.1 and max_epoch < 120

2 Randomly initialize P < P© and 6§ < §(©

3 while epoch < max_epoch do

4 for each mini-batch in Vr do

5 for each pr € P do
6 Pr < Pr — mVp, LY(P,0)
7 pr < clip(ps,0,1)
8 end
9 0+ 0 —nVoL*(P,0)
10 end

11 Update A <— X\ x 5 for every 20 epochs when epoch < maz_epoch /2.
12 Update T « T'/2 for every 5 epochs when epoch > max_epoch/2.
13 end

14 P < quantize(P,¢)

15 return P and 0

We describe the process for training P and 6 by solving the optimization
problem presented in Equation (5.1.3). Algorithm 1 summarizes the details
to train P and 0, where L£*(P,6) denotes the objective function in Equa-
tion (5.1.3).

In Line 6 and line 9, standard gradient steps are conducted to update
pr and 6, respectively, where 7, and 7y denote learning rates. In line 7, the
function clip(py,0,1) is applied, which performs a proximal projection of
standard proximal gradient descent [26], ensuring that any entry in py falling
outside the range [0,1] is clipped back to its nearest boundary value within
[0,1]. In Line 11, the weight A of the penalty term is gradually increased. In
Line 12, the simulated annealing makes the annealing function ¢ approximate
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a step function by decreasing the temperature parameter T'. In line 14, the
perturbation vector py is quantized to obtain the final solution.

5.2.2 Attacking Algorithm

Algorithm 2: Attacking a target node v; in G
Input : G, v;, P, and gy
Output: A perturbed adjacency matrix A’

1 k* < argmax;, go(X, A)

2 A" < p(v;, pr~)

3 return A’

Once P and 6 are trained, they can be used to launch the MFAN attacks.
Algorithm 2 summarizes the details to attack a target node v; in G.

In line 1, the assignment network gy is employed to select the most suitable
set of anchor nodes to attack v;, denoted as pg+. In line 2, the selected pj- is
used to attack v; by flipping the edges between v; and each of the anchor nodes
represented by pg«. Since gy is trained in conjunction with P, it effectively
generalizes to select the most suitable set of anchor nodes, thereby significantly
enhancing the success rate of the attacks.
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Chapter 6

Experiments

We conduct extensive experiments in this chapter to compare our method
against six baseline methods for adversarial graph structural attacks, including
GUA [39]', GUAP [38]%, PGD [36], DICE [35], Meta-Self [43] and FGA [7]3.
We utilize the publicly available source code of these baselines, with their
default parameter configurations employed in all experiments. Our code is
accessible at the following link®.

6.1 Experimental Setting

In accordance with existing literature [7, 36, 38, 39, 42, 43|, we employ the
classic GCN|20], introduced in Chapter 3, as the default victim model for the
attacks. Additionally, we use GAT [32] and Node2Vec [18] as the black-box
victim models for the transfer attacks.

Each experiment is independently repeated 5 times to report the average
performance. All experiments are conducted on a server equipped with an
NVIDIA RTX 3090 GPU, 64 GB of RAM, and an Intel(R) Core(TM) i9-
10900K CPU @ 3.70GHZ.

6.1.1 Implementation Details

For MFAN, the assignment network gy is implemented using the GCN, as de-
fined in Equation (3.2.2). The model configuration of gy is detailed in Table 6.1,
where the graph convolution layer performs mean aggregation, and the “Input
Dim.”, “Weight Dim.” and “Output Dim.” correspond to the dimensions of
HO WO and HY for each layer I, as defined in Equation (3.2.1).

!Code: https://github.com/chisam0217/Graph-Universal-Attack

2Code: https://anonymous.4open.science/r/ffd4fad9-367f-4a2a-bc65-1a7fe23d9d7£/
3Code for PGD, DICE, Meta-Self and FGA: https://github.com/DSE-MSU/DeepRobust
4Code for MFAN: https://github.com/zhz0108/mfan
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Table 6.1: Model configuration of the assignment network.

Layer ‘ Type ‘ Input Dim. Weight Dim. Output Dim. Activation
1 Graph Convolution N xd d x 16 N x 16 ReLU
2 Graph Convolution N x 16 16 x K N x K Softmax

In the implementation of Algorithm 1 of MFAN, we use a batch size of 32,
with 7y set to 0.01 and 7 set to 0.2 for the Facebook dataset (to be discussed
later) and 0.005 for the other datasets. We set £ = 5 and K = 2 by default,
unless otherwise specified. The impact of K on the attack effectiveness of
MFAN will be thoroughly examined in Section 6.4.1.

6.1.2 Datasets

Table 6.2: Dataset statistics.

Dataset Statistics ‘ Cora  Citeseer Facebook  Wiki  Pubmed

#Nodes 2,708 3,327 4,039 2,405 19,717
#Edges 5,278 4,676 88,234 17,981 44,324
#Features 1,433 3,703 1,283 4,973 500
#Classes 7 6 193 17 3

The experiments are conducted on five widely utilized benchmark datasets
for node classification tasks, as detailed in Table 6.2. Cora [27], Citeseer [27]
and Pubmed [27] are scientific publication networks, Facebook [22] is a social
network, and Wiki [10] is a network of web pages with their hyperlinks as
edges.

For the largest dataset, Pubmed, a sampled subgraph comprising 2,000
nodes rather than full graph is extracted where the training is conducted ex-
clusively, while the remaining nodes are designated as target nodes for testing.
For the other datasets, we adhere to the setting of [5, 7, 29, 30, 42], where the
training is performed on the entire graph, with 20% of the nodes allocated for
training and the remaining 80% of the nodes designated as target nodes for
testing.

FGA was unable to complete the attack on all testing target nodes on
Pubmed within 72 hours. Consequently, we cannot provide the corresponding
results for this method.
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6.1.3 Evaluation Metrics

The attack performance on misclassification is evaluated by fooling ratio (FR),
as defined by

# of misclassified nodes in test set

FR = (6.1.1)

# of nodes in test set

Given the diverse attack paradigms employed by the baseline methods, we
propose two distinct measures of the budget of controlled nodes to provide a
comprehensive evaluation of their performance.

e The first type of budget, namely budget per target node (BPT), denoted
by &, represents the number of controlled nodes used in attacking a single
target node. For GUA and GUAP, since they use the same set of anchor
nodes to attack each target node, £ corresponds to the number of anchor
nodes. For MFAN, since we use only one set of anchor nodes to attack
each target node, £ precisely aligns with the budget in Definition 1. For
the remaining baselines, ¢ is the average number of nodes connected to a
target node by a perturbed edge, either prior to or following the attack.

e The second type of budget, namely budget for all target nodes (BFA),
denoted by d, represents the total number of all controlled nodes used to
attack all the target nodes in the testing dataset. For GUA and GUAP,
0 = & For MFAN, 6 = K x & For FGA, § denotes the size of the
union of nodes connected to perturbed edges during each attack. For the
remaining baselines, J represents the total number of nodes connected
to a target node by a perturbed edge, either prior to or following the
attack.

6.2 Fooling Ratio under Different Budgets of
Controlled Nodes

In this section, we perform an analysis of the FR of all compared methods
under different budgets of controlled nodes.

6.2.1 Fooling Ratio under Budget Per Target Node

Figure 6.1 illustrates how the FR of each method changes when using different
BPT (i.e., £). The FR of all methods increases as £ grows, since a larger BPT
allows more edges to be perturbed in each attack, thus enhancing the likelihood
of success. FGA achieves the highest FR on Cora, Citeseer, and Facebook
when using the same BPT as the other methods due to FGA tailored approach,
where it meticulously trains a unique set of controlled nodes for each new
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Figure 6.1: Fooling ratio (FR) v.s. budget per target node (BPT, &).

target node, significantly bolstering the success rate of its attacks. However,
as we will explore later, this strategy comes at the cost of a substantially
higher BFA, as each new target requires the orchestration of a distinct set of
controlled nodes. The other baseline methods, by contrast, cannot rival the FR
of FGA because they rely on a single set of controlled nodes for all attacks,
a static configuration not fine-tuned for each specific target. Interestingly,
while MFAN does not custom-train anchor nodes for every new target, its FR
still comes closest to that of FGA across all datasets. This strongly attests
to MFAN’s remarkable efficacy and the sophistication of its attack strategy,
nearly matching the precision of FGA despite its more generalized approach.

6.2.2 Fooling Ratio under Budget For All Target Nodes

—-— GUA —— GUAP FGA —— PGD —s— DICE —o— Meta-Self MFAN
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Figure 6.2: Fooling ratio (FR) v.s. budget for all target nodes (BFA, ¢).

Figure 6.2 illustrates how the FR of each method changes when using
different BFA (i.e., ). While FGA leads in performance when using BPT as
the budget for controlled nodes, its FR is significantly lower compared to the
anchor node attacks (i.e., GUA, GUAP, and MFAN) when BFA is used as the
budget. The minimum BFA for FGA by setting £ = 1 is still much higher than
the BFA of anchor node attacks because FGA trains a unique set of controlled
nodes for each new target node, requiring control over a large number of nodes
to attack the thousands of target nodes in the test dataset. Similarly, global
structural attacks (i.e., DICE, PGD, and Meta-Self) also incur a significantly
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high BFA because they perturb a large number of edges in one go for all
attacks. In contrast, the anchor nodes attacks are extremely efficient in BFA
since they only use a small constant set(s) of anchor nodes to attack all the
target nodes. Notably, MFAN performs best across all datasets, thanks to
its effective multifaceted attack approach with successful application of the
“divide and conquer” principle.

In conclusion, when the total number of controlled nodes is constrained by
available resources (e.g., financial costs, personnel, etc.), MFAN demonstrates
superior FR performance by effectively employing the ”divide and conquer”
strategy. Additionally, MFAN attacks are considerably more covert compared
to non-anchor node methods, owing to its minimal BFA, further enhancing its
stealthiness.

6.3 Effectiveness of Transfer Attack

In this section, we evaluate the effectiveness of the transfer attacks across all
the baseline methods and MFAN.

For each method, we first train its attack model on the white-box victim
model GCN f. Afterward, we apply the trained attack model to attack two
additional black-box victim models, namely GAT [32] and Node2Vec [18],
which are trained on the same dataset as the white-box victim model GCN f.

Table 6.3 presents the FR of transfer attacks on the five datasets, respec-
tively, with the best FR highlighted in bold and the second-best underlined.
The performance of Meta-Self is not reported with the given BPT values (i.e.,
€) since it could not be executed due to the requirement of high memory usage.
FGA failed to generate meaningful results with small BFA (i.e., 0), hence its
corresponding results are also not provided.

It can be observed that MFAN delivers the best performance in most cases,
demonstrating its exceptional capability in transfer attacks against black-box
victim models. We attribute this strong performance to the following reasons.

e Each set of anchor nodes performs effectively in transfer attacks. Because
each set of anchor nodes is trained to successfully attack a large group of
target nodes, it tends to exploit common defect patterns shared by many
of these nodes. These defect patterns are prevalent across various target
nodes, meaning that they can be learned by a new GNN model trained
on the same dataset. As a result, the anchor nodes remain effective in
carrying out transfer attacks against the new model.

e The assignment network also performs effectively in transfer attacks.
As the input graph remains unchanged, the output of the assignment
network stays consistent. Consequently, the same set of anchor nodes is
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Table 6.3: FR of non-transfer and transfer attacks.

Dataset ‘ Model ‘ GCN (white-box, non-transfer) ‘ GAT (black-box, transfer) ‘ Node2Vec (black-box, transfer)
| Budget | €=5 £=10 §=20 §=40| £€=5 £=10 6=20 §=40 | £=5 £=10 6=20 §=40

GUA | 77.37% 85.75% 88.83%  89.96% | 81.39%  86.19%  88.74%  90.03% | 76.92%  84.85%  89.33%  88.60%
- GUAP | 75.32% 86.20%  89.25%  90.25% | 65.56%  85.78%  86.54%  91.89% | 71.64%  85.86% 87.04% 87.11%
5 PGD 71.88%  85.33%  0.74%  2.07% | T472% 83.86%  0.93%  1.80% | 72.04% 70.89% 15.53%  15.77%
o DICE | 44.30% 54.99%  0.05%  0.10% | 51.03% 51.77%  0.11%  0.35% | 79.88% 80.24%  15.83% 16.21%
Meta-Self - - 0.02%  0.06% - - 0.59%  1.17% - - 15.84%  16.04%

FGA | 95.00% 98.63% - - 85.44%  92.95% - - 62.81%  82.14% - -
MFAN | 93.79% 94.30% 94.30% 96.11% | 84.67% 93.04% 93.04% 94.59% | 85.14% 92.17% 92.17% 96.01%
| Budget | £€=5 £=10 =20 §=40| £€=5 £=10 6=20 4§=40 | £=5 £=10 6=20 4§=40
GUA | 76.63% 80.35% 83.83% 84.49% | 74.63% 81.51% 84.10% 85.12% | 86.41% 86.56% 86.70%  86.94%
) GUAP | 75.17% 82.20%  86.45% 87.65% | 66.87%  79.69%  83.19%  89.24% | 76.89%  81.40%  83.18%  84.13%
2 PGD 75.67%  83.80%  0.16%  0.34% | 77.92% 80.42%  0.64%  1.33% | 79.58%  79.45%  37.14%  37.45%
5 DICE | 45.30% 48.96%  0.03%  0.05% | 46.73%  48.90%  0.16%  0.33% | 79.06% 79.79%  37.80%  37.89%
Meta-Self - - 0.04%  0.06% - - 0.44%  0.72% - - 37.22%  38.05%

FGA | 96.27% 98.70% - - 84.45%  92.72% - - 73.93%  86.29% - -
MFAN | 92.37% 97.31% 97.31% 98.45% | 90.21% 95.78% 95.78% 97.86% | 91.79% 93.09% 93.09% 94.65%
| Budget | €=10 £=20 6=200 §=400] =10 £=20 6=200 6=400| {=10 £=20 4§=200 & =400
GUA 13.12%  26.60%  60.44%  66.02% | 13.45%  16.63%  50.78%  58.23% | 10.24%  15.47% 54.19%  61.77%
3 GUAP | 15.12% 29.10% 68.69% 73.67% | 16.59%  26.68%  64.35%  70.23% | 14.96%  20.44%  59.40%  65.23%
é PGD | 24.12% 24.96%  3.24%  547% | 31.16% 33.67%  2.74%  545% | 16.85% 19.43% 10.25%  10.68%
8 DICE | 12.99% 16.90%  0.26%  0.66% | 15.24% 19.05%  0.74%  1.21% | 19.05% 25.93% 10.07%  10.11%
Meta-Self - - 1.33%  2.16% - - 1.98%  4.16% - - 10.10%  10.33%

FGA | 37.68% 49.40% - - 30.33%  49.14% - - 21.23%  34.87% - -
MFAN | 27.36% 39.53% 88.37% 94.94% | 33.49% 38.50% 76.54% 85.53% | 38.50% 58.53% 83.39% 87.52%
| Budget | £€=5 £=10 =20 §=40| £&=5 £=10 6=20 4§=40 | £=5 £=10 6=20 4§=40
GUA | 85.58% 90.85%  93.68%  94.35% | 42.70%  45.90%  50.06%  56.72% | 30.81%  44.99% 54.47%  74.18%
B GUAP | 85.40%  90.65%  92.73%  93.11% | 39.85%  48.76% 50.81%  66.59% | 21.87% 43.08% 51.52%  67.44%
2 PCD | 52.01% 60.01%  0.81%  2.06% | 56.37% 67.92% 0.68%  1.11% | 42.55% 46.15% 14.74%  15.20%
= DICE | 30.78% 44.94%  0.13%  0.35% | 39.58%  63.42%  0.26%  0.31% | 46.63% 62.37% 14.64%  15.45%
Meta-Self - - 4.66%  6.69% - - 0.70%  1.27% - - 15.10%  15.71%

FGA | 86.74% 96.84% - - 52.81%  63.24% - - 44.23%  72.45% - -
MFAN | 92.55% 95.52% 95.52% 97.82% | 62.93% 67.07% 67.07% 73.31% | 47.78% 54.97% 54.97% 82.70%
| Budget | £€=5 £=10 §=20 6=40| £€=5 £=10 6=20 4§=40 | £=5 £=10 6=20 §=40
GUA | 50.04%  53.50%  55.11%  59.42% | 47.33%  48.54% 51.03%  55.45% | 41.00%  43.27% 44.36%  48.31%
z GUAP | 54.97% 56.13%  59.88%  63.14% | 49.98%  56.97%  60.08%  65.30% | 45.19% 47.33% 50.87% 54.33%
g PGD | 58.02% 59.47%  0.20%  0.33% | 58.06% 63.44%  1.02%  1.99% | 47.59% 52.98% 20.14%  24.77%
i DICE | 30.46% 3255%  0.03%  0.05% | 36.68% 38.40%  0.73%  0.92% | 32.32% 37.65% 18.00%  18.78%
Meta-Self - - 0.26%  0.38% - - 0.80%  1.14% - - 19.56%  22.17%
MFAN | 59.48% 64.04% 64.04% 66.88% | 60.09% 62.95% 62.95% 65.63% | 49.64% 51.34% 51.34% 53.34%

chosen to attack the target node during transfer attacks. If the new GNN
model learns the same defect pattern of the target node, the selected set
of anchor nodes can then effectively execute the transfer attack on the
target node.

6.4 The Effects of K, A\, the Assignment Net-
work, and Simulated Annealing

In this section, we discuss the effects of K, A\, the assignment network gy, and
the simulated annealing technique.

6.4.1 The Effect of K

We investigate the effect of K by comparing the FR of MFAN with different
K values when & = 5.
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Table 6.4: FR of MFAN with different K values.

‘ Cora Citeseer Facebook Wiki
81.36%  79.14% 8.33% 83.43%

94.68%  92.77% 16.38%  93.56%
95.23%  92.77% 16.38%  93.56%
95.23%  92.77% 16.38%  93.87%

N N

As displayed in Table 6.4, FR increases significantly when K rises from 1
to 2 on the four datasets. This is because, with K = 1, MFAN relies on a
single set of anchor nodes, which is insufficient to successfully attack all target
nodes. While K = 2, MFAN employs two sets of anchor nodes, each tailored
to effectively attack different subsets of target nodes. Furthermore, with the
help of the assignment network that selects the optimal set of anchor nodes for
each attack, the success rate of each attack is improved. In this way, MFAN
follows a “divide and conquer” approach, where the final set of successfully
attacked target nodes is nearly the union of the target nodes attacked by each
of the K sets of anchor nodes. When K exceeds 2, FR quickly converges due
to the well-known “diminishing marginal effect”: most target nodes attacked
by the third set of anchor nodes have already been attacked by the first two,
so adding a third set yields little improvement in FR. Thus, using two sets of
anchor nodes is sufficient for MFAN to achieve excellent FR.

Since the BFA of MFAN is § = K x £, we set K = 2 by default in the other
experiments to save our BFA while achieving outstanding FR.

6.4.2 The Effect of )\

We examine the effect of hyperparameter A\ by comparing the performance of
MFAN with different growth rates, denoted by v, which serves as the multiplier
for A when increasing its value in line 10 of Algorithm 1.

— v=25 — v=5 — v=10
0 a 0 100 —
A ]
8 500 = _s00 L 200
- g & < 50
© c [%p]
£-1000 £-1000
[ =
o —
—15005—30 60 90 120 ~1500G 30 60 90 120 %5060 90 120 %530 60 90 120
epoch epoch epoch epoch
(a) L*(P,0) (b) L(P,0) (c) SPT (d) A

Figure 6.3: The curves of the total loss £*(P,#), the original loss L(P,0),
the sum of penalty terms (SPT) Y- _p max(|[wy o px|[s — wj""¢,0) and A on
the dataset Cora. Each subfigure shows three curves using different A growth
rates.
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Figure 6.3 shows that the loss curves, using different values of v while train-
ing, stay comparable. This indicates that the training is resilient to variations
in the A growth rate. When zooming in on Figure 6.3(c), we observe that the
SPT with a larger v decreases slightly faster than with a smaller v, as the
faster increase in A accelerates the push of the SPT toward zero. However,
since the influence of v on MFAN’s training is minimal, it has little impact on

the FR.
Table 6.5: FR of MFAN using A growth rates v € {2.5,5.0,10.0}.

Dataset ‘ §=5 ‘ £=10 ‘ §=20
| v=25 wv=50 v=100| v=25 0v=50 v=100] v=25 v=50 v=100

Cora 93.69%  93.79%  93.97% | 94.27%  94.30%  94.19% | 95.85%  96.11%  95.85%
Citeseer | 91.79%  92.37%  92.34% | 97.24%  97.31%  97.33% | 98.45%  98.45%  98.38%
Facebook | 15.01%  15.55%  15.14% | 25.85%  25.97%  25.66% | 38.29%  38.84%  38.84%
Wiki 91.26%  92.55%  92.62% | 94.61%  95.52%  95.33% | 97.79% = 97.82% = 97.62%
Pubmed | 59.48%  59.48% = 58.98% | 63.97%  64.04%  63.77% | 66.79%  66.88%  66.31%

Consequently, as shown in Table 6.5, the FR of MFAN remains comparable
across different \ growth rates.

6.4.3 The Effect of the Assignment Network

To assess the effect of the assignment network gy, we compare the FR of
the standard MFAN (ST), in which the assignment network is used, with an
ablated MFAN (AB) that selects anchor nodes uniformly at random. Both
methods utilize the same sets of anchor nodes trained by the standard MFAN.

Table 6.6: The effect of the assignment network on FR.

GCN V\hite»box, not transfer) ‘ GAT (black-box, transfer) ‘ Node2Vec (black-box, transfer)
&= £=10 £=20 | &£=5 £€=10 £=20 | £=5 £=10 £=20

Dataset ‘ Model

Cora | MFAN (AB) | 7832%  83.43%  83.46% | 75.15% 8241%  83.60% | 50.96% 69.34%  77.98%
O | MFAN (ST) | 93.79% 94.30% 96.11% | 84.67% 93.04% 94.59% | 85.14% 92.17% 96.01%
Citescer | MFAN (AB) | 77.41%  80.92%  8L70% | 75.86% 8040%  80.61% | 80.16% SL61%  82.81%
HOSCC | MPAN (ST) | 92.37% 97.31% 98.45% | 90.21% 95.78% 97.86% | 91.79% 93.09% 94.65%
Facehook | MEAN (AB) | 13.33%  2151%  2046% | 15.05% 27.81%  32.21% | 12.98%  23.64%  20.76%
ACEDOOX | MFAN (ST) | 16.25% 27.36% 39.53% | 18.22% 33.49% 38.50% | 20.45% 38.50% 58.53%
wiki | MFAN (AB) | 75.77%  85.55%  00.48% | 57.99%  63.72%  70.95% | 44.49%  50.28%  78.05%
MFAN (ST) | 92.55% 95.52% 97.82% | 62.93% 67.07% 73.31% | 47.78% 54.97% 82.70%

Pubmed | MFAN (AB) | 46.67%  48.26%  52.99% | 40.26%  42.97%  45.94% | 4047%  44.70%  47.66%
C | MFAN (ST) | 59.48% 64.04% 66.88% | 60.09% 62.95% 65.63% | 49.64% 51.34% 53.34%

As shown in Table 6.6, the FR of the standard MFAN is significantly
better than that of the ablated MFAN, demonstrating the effectiveness of the
assignment network.
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6.4.4 The Effect of Simulated Annealing

To investigate the effect of the simulated annealing trick, we compare the FR
and quantization error of the perturbation vectors generated by two versions
of MFAN. The first version is the standard MFAN (ST), which solves Equa-
tion (5.1.3), where the simulated annealing technique is incorporated. The
second version is an ablated MFAN (AB), which solves Equation (5.1.2) with-
out applying the simulated annealing technique. The quantization error (QE)
is calculated using

QE = > [Ipe — &(pr )1, (6.4.1)

PLEP

where ¢(pg, &) outputs the quantized py, setting the top-£ largest entries to 1
and the remaining entries to 0.

Table 6.7: The effect of simulated annealing on FR and QE.

Dataset ‘ Model ‘ FRT ‘ QE |
| | ¢=5 §=10 £=20 | £=5 £=10 £=20
Cora | MFAN (AB) | 91.44%  92.53%  94.99% | 868 1601 2842
MFAN (ST) | 93.79% 94.30% 96.11% | 1.37  2.98  4.07
Citescer | MFAN (AB) | 90.76%  96.02%  96.88% | 16.77  29.10  47.77
MFAN (ST) | 92.37% 97.31% 98.45% | 1.57 3.12  17.72
Facebook | MFAN (AB) | 14.88%  25.47%  38.12% | 5121 10445 17256
ACCPOOK | MFAN (ST) | 16.25% 27.36% 39.53% | 15.30 27.29 34.84
wiki | MEAN (AB) | 00.69%  94.94%  96.75% | 824 1251  22.00
MFAN (ST) | 92.55% 95.52% 97.82% | 2.20 2.61  4.61
Pubmed | MFAN (AB) | 57.66%  60.98%  63.55% | 9.84 2014  27.10
MFAN (ST) | 59.48% 64.04% 66.88% | 2.85 3.43  5.01

As shown in Table 6.7, the standard MFAN achieves a lower QE and a
higher FR than the ablated MFAN. This highlights the effectiveness of the
simulated annealing trick in reducing quantization error and enhancing attack
performance.

6.5 Time Analysis

6.5.1 Attacking Time

We analyze the average attacking time for each method, representing the av-
erage time required to attack each target node in the test dataset.

We measured the actual average attacking time for the methods, as shown
in Table 6.8, with ¢ = 10 for FGA and 6 = 10 for the other approaches.
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Table 6.8: Average attacking time in milliseconds.

Methods ‘ Cora Citeseer  Facebook Wiki

GUA 146 233 - 112
GUAP 176 259 - 139
PGD ~0 ~0 ~0 ~0
DICE ~0 ~0 ~0 ~0
Meta-Self ~0 ~0 ~0 ~0
FGA 468,370 1,008,467 1,539,644 357,708
MFAN 154 240 375 131

FGA incurs the longest attacking time because it requires training a new set
of controlled nodes from scratch for each attack. This training cannot be done
offline and only begins once FGA starts attacking a new target node, meaning
its attack time is equivalent to its training time. In contrast, the anchor node
methods achieve much faster attacking time than FGA, as they only need
to flip a small number of edges when attacking a new target node, with the
anchor nodes being trained offline prior to launching any attack. Our method
has a slightly longer attack time than GUA, as it requires a forward pass of
the assignment network to select the optimal set of anchor nodes. GUAP also
takes a bit more time, as it involves injecting new anchor nodes into the graph.
Global structural attacks, like PGD, DICE, and Meta-Self, perform offline
training to perturb a large number of edges in a single step. This approach
requires no further action when attacking new target nodes, resulting in nearly
zero attacking time. However, the effectiveness of the global structural attacks
is significantly limited by the constrained number of controlled nodes.

6.5.2 Training Time

We begin by analyzing the time complexity of the training process for all the
methods. Next, we assess and compare the actual average training time of our
approach with the baselines.

Table 6.9: Training time complexity.

Methods ‘ Time Complexity
GUA O(maz_epoch - N - max_iter)
GUAP | O(max_epoch - Nt - max __iter)
PGD O(T)
DICE 0(1)
Meta-Self 0(9)
FGA O(N€)
MFAN O(max_epoch - NpK)

26



M.Sc. Thesis—H. Zhu McMaster University—Computer Science

The primary factor influencing training time is the execution of forward and
backward passes through GCN, the victim model. With Ny representing the
number of nodes in the training set, Table 6.9 provides a summary of the train-
ing time complexity for each method, based on the number of GCN passes.
Both GUA and GUAP, as anchor node attacks, make GCN calls for each
target node during every epoch. However, they continuously modify pertur-
bation vectors to check for misclassification, with the number of checks capped
by max _iter, resulting in a time complexity of O(max_epoch - Ny - max_iter).
For global methods like PGD and Meta-Self, the entire graph structure is up-
dated, generating a single perturbed adjacency matrix per epoch. The time
complexity of PGD is bounded solely by the number of iterations, O(T'), while
Meta-Self performs perturbations ¢ times, resulting in a time complexity of
O(9). DICE, which modifies edges purely based on the topological structure,
is not a gradient-based method, thus involving no GCN operation, giving it
a constant time complexity of O(1) regarding GCN passes. FGA, a targeted
attack method, modifies one edge per target node based on the largest gra-
dient over ¢ iterations, making its time complexity O(N¢) for attacking all
target nodes. Our method, which follows the optimization objective outlined
in Equation (5.1.3), requires Ny K GCN calls per epoch, thus leading to a time
complexity of O(max_epoch - Ny K).

Table 6.10: Average training time in milliseconds.

Methods ‘ Cora Citeseer Facebook Wiki
GUA 13,084,775 24,971,433 - 9,508,160
GUAP 9,422,330 18,956,390 - 7,440,657
PGD 14,257 19,360 30,404 9,617
DICE 165 193 412 140
Meta-Self 6,798 7,217 8,145 6,211
FGA 468,370 1,008,467 1,539,644 357,708
MFAN 588,663 1,021,496 1,845,367 450,552

We recorded the actual average training time for attacking all target nodes,
as shown in Table 6.10, with £ = 10 for FGA and § = 10 for the other ap-
proaches. Since max_iter is substantially larger than our K, our method
proves to be more efficient, requiring only minutes of training time, compared
to the hours needed by GUA and GUAP. The global methods — PGD, Meta-
Self, and DICE — do not rely on per-node GCN passes, allowing them to run
faster than our method by a factor of Ny, completing in seconds or millisec-
onds. FGA, which requires a total of O(N¢{) GCN calls to generate attacks
for all target nodes, has a training time comparable to ours.
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Chapter 7
Future Work

Although our method achieves promising performance with the results dis-
cussed above, we admit there is still room for improvement. The challenge on
the effect of the hyperparameter K remains to be further investigated.

As analyzed in Section 6.4.1, we are facing the issue of performance conver-
gence in terms of FR due to the “diminishing marginal effect”. The improve-
ment in FR from K = 2 to K = 3 drops to less than 1% or even 0%, comparing
to the rise of over 10% from K =1 to K = 2 across the datasets. This could
be the reason that the our graph datasets is limited in size, as there are poten-
tial uses of our method on larger datasets, such as graphs of millions or more
nodes and edges, and in such senarios, investigation and experiments are to
be conducted. We also assume that in graphs where nodes are more central-
ized within three or more components — characterized by strong connections
within components and weak connections between them — a further increase
in K may result in greater improvement in FR, making it worth studying.
Thus, when it comes to larger graphs, selection of a larger K is probably a
better choice. Natually, how to dynamically select K is another topic worth
discussing, and the idea of incremental learning that gradually increases the
K value while training until convergence may give us a good hint.

The expressiveness of our assignment network is another direction for future
improvement. With a finer choice of the assignment network, it can poten-
tially not only reduce the diminishing marginal effect with a larger K, but also
helps better identify the sets of anchor nodes. Increasing the depth of convolu-
tional layers, change of aggregation functions, or attaching classification heads
could be means of enhancing expressiveness; utilizing other node classification
models, such as GIN [37] and GAT [32], may also bring improvement similarly.

In summary, we hope the initial success of MFAN can draw some attention
to the community, and the discussion and hypothesis above may give some
directions to the future work.
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Chapter 8

Conclusion

In this paper, we proposed and addressed a novel problem, termed multifaceted
anchor nodes attack. The key idea involves simultaneously optimization of
multiple sets of anchor nodes in conjunction with an assignment network.
Each set of anchor nodes is specially tailored to effectively attack a different
set of target nodes, while the assignment network proficiently allocates the
best suitable set of anchor nodes to attack a new target node. Through this
approach, we operationalize “divide and conquer” mechanism, enabling suc-
cessful attacks on the collective union of the nodes attacked by each set of
anchor nodes. Notably, by employing the same sets of anchor nodes across all
target nodes, our method demonstrates significant budget efficiency, requir-
ing the control of only a minimal number of nodes to achieve superior attack
performance.
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