
MFAN ATTACK ON GRAPH NEURAL
NETWORKS

MULTIFACETED ANCHOR NODES ATTACK ON GRAPH
NEURAL NETWORKS: A BUDGET-EFFICIENT

APPROACH

BY
HUANZHANG ZHU, B.CompSc.

a Thesis
submitted to the Computing and Software

and the School of Graduate Studies
of McMaster University

in partial fulfilment of the requirements
for the degree of
Master of Science

© Copyright by Huanzhang Zhu, November 2024
All Rights Reserved

Master of Science (2024) McMaster University
(Computing and Software) Hamilton, Ontario, Canada

TITLE: Multifaceted Anchor Nodes Attack on Graph
Neural Networks: A Budget-efficient Approach

AUTHOR: Huanzhang Zhu
B.CompSc. (Computer Science),
Concordia University, Montreal, Canada

SUPERVISOR: Dr. Lingyang Chu

NUMBER OF PAGES: xiv, 33

ii

Lay Abstract

This study introduces a new and cost-effective method for launching attacks
on graph neural networks (GNNs), which are widely used in applications like
social media and recommendation systems. Traditional attacks on GNNs focus
on altering the connections between nodes to disrupt the model, but they often
require control over many nodes, making them expensive and easier to detect.
Our approach improves on this by using multiple small sets of “anchor nodes”
that work together with an assignment network to choose the best set for each
attack. This method achieves high attack success while keeping costs low,
since fewer nodes need to be controlled. Experiments on real-world data show
that our method is highly effective and efficient.

iii

Abstract

Structural adversarial attack methods, which attack graph neural networks
(GNNs) by perturbing the edges of the input graph, are well-recognized for
their high effectiveness. However, most existing structural attacks prioritize
maximizing attack performance while neglecting the significant budget re-
quired to control (i.e., acquire or hijack) the nodes (e.g., user accounts in
a social network) necessary for executing such attacks in real-world networks.
Classic anchor node attacks are comparatively more budget-efficient, as they
rely on controlling a small set of anchor nodes to conduct all attacks. Never-
theless, their attack efficacy is constrained by the limitation of using a single
set of anchor nodes. In this work, we propose a strong and budget-efficient
multifaceted anchor nodes attack on GNNs, with the core innovation lies in
the simultaneous training of multiple sets of anchor nodes and an assignment
network, enabling the assignment network to select the most optimal set of
anchor nodes for each new attack. This approach significantly enhances attack
effectiveness while maintaining a minimal budget for node control. Extensive
experiments across five real-world datasets demonstrate the superior perfor-
mance of the proposed method.

iv

Acknowledgements

I would like to take this opportunity to thank all the people that helped me
so much during my gradaute study.

First and foremost, I would like to express my deepest gratitude to my
supervisor, Dr. Chu, for accepting me as a master student. His wisdom and
patience were the cornerstones of my academic progress. His ability to steer
me through challenges while granting me the freedom to explore has been
invaluable to my development as a researcher. For that, I am truly grateful.

A special thank you goes to my lab colleagues, who made this experience
both collaborative and fulfilling. Your encouragement, shared knowledge, and
countless brainstorming sessions were essential to overcoming the roadblocks
along the way. I would specially thank Shaoxin, for his assistance during my
graduate research project.

Additionally, I also extend my appreciation to the professors who have
guided me throughout my graduate courses. Your teachings and insights have
expanded my academic horizons and left a lasting impact on my approach to
research.

Lastly, to my family: thank you for being my foundation. Your constant
support, encouragement, and belief in me have been my greatest source of
strength. Without your love and understanding, I wouldn’t be where I am
today.

v

Contents

Lay Abstract iii

Abstract iv

Acknowledgements v

Notation, Definitions, and Abbreviations x

Declaration of Academic Achievement xiv

1 Introduction 1

2 Related Work 3
2.1 Global Structural Attacks . 3
2.2 Targeted Structural Attacks 4
2.3 Anchor Nodes Attacks . 4
2.4 Graph Attacks with Other Strategies 5

3 Preliminary 6
3.1 Graph . 6
3.2 Graph Convolutional Network 6
3.3 Victim Model Types . 7
3.4 Attacking Types . 7

4 Problem Definition 9
4.1 MFAN Task . 9
4.2 Modelling the MFAN Attack 10
4.3 Formulating the Problem . 11

5 Solution 13
5.1 Solving the Problem . 13
5.2 Algorithms . 15

vi

6 Experiments 17
6.1 Experimental Setting . 17
6.2 Fooling Ratio under Different Budgets of Controlled Nodes . . 19
6.3 Effectiveness of Transfer Attack 21
6.4 The Effects of K, λ, the Assignment Network, and Simulated

Annealing . 22
6.5 Time Analysis . 25

7 Future Work 28

8 Conclusion 29

vii

List of Figures

4.1 MFAN attack procedure . 10
6.1 Fooling ratio (FR) v.s. budget per target node (BPT, ξ). . . . 20
6.2 Fooling ratio (FR) v.s. budget for all target nodes (BFA, δ). . 20
6.3 The curves of total loss, original loss, SPT and λ 23

viii

List of Tables

6.1 Model configuration of the assignment network. 18
6.2 Dataset statistics. 18
6.3 FR of non-transfer and transfer attacks. 22
6.4 FR of MFAN with different K values. 23
6.5 FR of MFAN using λ growth rates v ∈ {2.5, 5.0, 10.0}. 24
6.6 The effect of the assignment network on FR. 24
6.7 The effect of simulated annealing on FR and QE. 25
6.8 Average attacking time in milliseconds. 26
6.9 Training time complexity. 26
6.10 Average training time in milliseconds. 27

ix

Notation, Definitions, and
Abbreviations

Notation

G The unweighted graph

V The set of vertices in a graph

E The set of edges in a graph

A The adjacency matrix of a graph

X The feature matrix of a graph

N The number of nodes in a graph

d The dimension of the feature of a node

C The number of classes of node labels

vi The i-th node in a graph

I The identity matrix

Â The normalized adjacency matrix

D̃ The diagonal degree matrix

H l The l-th hidden graph convolutional layer of a GCN

W l The model parameters at the l-th layer of a GCN

f The GCN

Z The output of a GCN f

Zij The probability of the i-th node being classified into the j-th
class

x

K The number of sets of anchor nodes

Q The sets of anchor nodes

Q The set of anchor nodes

Qk The k-th set of anchor nodes

gθ The assignment network

θ The model parameters of the assignment network

ξ The budget on the number of controlled nodes for each target
node

δ The budget on the number of controlled nodes for all target
nodes

P The set of perturbation vectors

p The perturbation vector

pk The k-th perturbation vector

1 The matrix with all entries equal to one

10 The matrix with all entries equal to one except for the diag-
onal entries being zeros

P The matrix with i-th row and i-th column replaced by pk and
the other entries set to zero

G′ The perturbed graph

A′ The perturbed adjacency matrix

λ The weight hyperparameter of the penalty term

v The growth rate of λ

wk The weight vector calcuated from pk

ph
k The h-th entry in pk

wmin
k The smallest value among all entries in wk

T The “temperature” hyperparameter of the simulated anneal-
ing

xi

L The original loss function

L∗ The final loss function

VT The training set of node in V

η1 The learning rate for training P

η2 The learning rate for training δ

ρ The perturbation function

σ The annealing function

ϕ The quantization function

max The max function (maxima)

min The min function (minima)

argmax The arg max function (arguments of the maxima)

argmin The arg min function (arguments of the minima)

ReLU The ReLU (rectified linear unit) activation function

softmax The softmax activation function

CE The cross entropy loss function

clip The clipping function

quantize The quantizing (i.e., binarizing) function

Definitions

Flip The operation that either adds non-existing edge or removes
an existing edge.

Anchor node The node in a graph anchored where the attack flips edges
between it and the target nodes.

Perturbation The attacking operation to the victim GNN model that flips
edges between each anchor node and the target nodes.

Assignment network
The model that selects the most suitable set of anchor nodes
to attack a given target node.

xii

Abbreviations

GNN Graph neural network

GCN Graph convolutional network

GAT Graph attention network

FR Fooling ratio

BPT Budget per target node

BFA Budget for all target nodes

SPT Sum of penalty terms

xiii

Declaration of Academic
Achievement

I, Huanzhang Zhu, hereby declare that the academic achievement presented
in the thesis is the result of own original efforts and was carried out under the
supervision of Dr. Lingyang Chu.

The work has been accepted by the 27th International Conference on Pat-
tern Recognition (ICPR 2024).

xiv

Chapter 1

Introduction

Graph neural networks (GNNs) are extensively utilized across various real-
world application domains, such as social network analysis [4, 25], recommen-
dation systems [6, 14] and drug discovery [9], which have been demonstrated
substantial efficacy in practice. In recommendation systems, a user can be sug-
gested commodities that align with their preferences, which are inferred from
patterns shared by similar users encoded within the graph structure. Simi-
larly, in social networks, recommendations for users are also generated based
on this underlying graph representation. GNNs have also proven to be highly
valuable in drug discovery as well, enabling the prediction of drug effects or
side effects by modeling drug-protein and protein-protein interactions through
graph edges.

Despite their widespread applicability, GNNs are inherently susceptible to
adversarial attacks [11, 19, 29, 31, 34, 41], which can result in significant nega-
tive societal implications. In the financial domain, a money laundering account
may evade detection by engaging in transactions that appear legitimate when
interacting with other verified accounts. In social networks, malicious entities
such as spam bots, phishing accounts, and scam profiles may form ostensibly
legitimate connections to circumvent account verification protocols. Similarly,
falsified articles on platforms like Wikipedia can enhance their credibility by
strategically altering their network of links [21].

To enhance the security and robustness of GNNs, numerous studies have
been conducted to identify potential vulnerabilities in trained GNN models
by developing powerful adversarial attacks. Among the various adversarial
attack strategies [5, 8, 11, 17, 19, 23, 24, 29, 31, 33, 34, 38, 39, 40, 41],
the structural attack methods [5, 7, 12, 17, 23, 24, 33, 35, 38, 39, 40], which
which compromise GNNs by perturbing (i.e., modifying) the edges of the input
graph, are widely recognized for their strong effectiveness and the relative
ease with which such attacks can be launched due to the simplicity of edge
perturbation. However, most existing structural attack approaches primarily

1

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

focus on maximizing attack effectiveness, often overlooking the substantial
budget required to control the nodes needed to alter edges. For instance, in a
social network, modifying an edge requires the adversary to control at least one
of the connected nodes, which typically involves either purchasing or hijacking
the account, and if numerous edges are to be perturbed, the adversary must
control a large number of nodes, which not only incurs a significant financial
cost but also heightens the risk of detection.

The challenge of executing a potent yet budget-efficient attack on GNNs
represents a novel problem that has not been systematically explored in the
existing literature. As outlined later in Chapter 2, both global structural at-
tacks [1, 17, 24, 33, 40] and targeted structural attacks [5, 7, 12] necessitate
control over a large number of nodes to achieve satisfactory attack perfor-
mance, where the substantial resource requirement significantly undermines
their cost-efficiency. In contrast, anchor nodes attacks [38, 39] offer more
budget-efficient approachs, as they require control of only a small set of an-
chor nodes to target all nodes. However, due to the constrained effectiveness
of relying on a single set of anchor nodes, existing anchor nodes attacks [38, 39]
frequently fail to deliver strong attack performance.

In this work, we propose a budget-efficient Multi-Faceted Anchor Nodes
(MFAN) attack against GNNs in the context of node classification tasks. The
key concept is to train multiple sets of anchor nodes in conjunction with an
assignment network, where each set of anchor nodes is specialized in effec-
tively attacking a distinct subset of target nodes, and the assignment network
then selects the optimal set of anchor nodes to attack each new target node.
Through this “divide and conquer” strategy, MFAN achieves exceptional at-
tack performance by targeting the collective union of nodes successfully com-
promised by each set of anchor nodes. Furthermore, MFAN demonstrates
budget efficiency by requiring control over only a minimal number of anchor
nodes. In summary, we make the following contributions.

• We introduce a novel adversarial attack task, which seeks to maximize
attack effectiveness while minimizing the budget of controlled nodes.

• We successfully address the task by devising the Multifaceted Anchor
Nodes (MFAN) attack, which exhibits both high strength and budget
efficiency.

• We perform extensive experiments on five real-world datasets, empir-
ically validating the exceptional performance of the proposed MFAN
approach.

2

Chapter 2

Related Work

The multifaceted anchor nodes attack on graph neural networks presents a
novel problem that has not been systematically addressed in prior research.
Our approach, as it alters the edge structure of the input graph, aligns closely
with structural attacks [1, 5, 7, 12, 17, 23, 35, 36, 38, 39, 40], which aim to
degrade the classification performance of a victim graph neural network by
perturbing (i.e., adding or removing) the edges within the input graph. The
relationship between our work and existing literature is discussed in detail
below.

2.1 Global Structural Attacks

Global structural attacks [1, 17, 23, 24, 33, 35, 40] seek to to diminish the
overall classification accuracy of a victim model across all nodes in the graph
by perturbing a substantial set of edges once and for all.

Meta-Self [43] leverages meta-learning to execute attacks by treating the
graph’s adjacency matrix as a hyper-parameter. [36] introduces two perturba-
tion strategies utilizing first-order attack generation techniques. [17] conducts
attacks on large-scale graphs by employing projected and greedy randomized
block coordinate descent methods to sample the edges for perturbation. Sev-
eral studies have also demonstrated effective global structural attacks by mit-
igating gradient bias [24], using Eigen decomposition [1], and employing a
certified robustness-inspired framework [33].

These global structural attacks typically necessitate perturbing a consid-
erable number of edges to attain strong attack performance. However, these
approaches are not budget-efficient, as altering a large set of edges requires
controlling a significant number of nodes, thereby imposing substantial bud-
getary demands.

3

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

2.2 Targeted Structural Attacks

Targeted structural attacks [5, 7, 12] aim to degrade the classification accuracy
of the victim model on a single node by perturbing a subset of edges within the
graph. FGA [7] exploits iterative gradient information between pairwise nodes
obtained from a pre-trained graph convolutional neural network to generate
edge perturbations.

GF-Attack [5] employs graph embedding techniques in conjunction with a
corresponding graph filter to produce edge perturbations. RL-S2V [12] uti-
lizes hierarchical reinforcement learning to induce edge perturbations, thereby
significantly reducing the prediction accuracy of the victim model.

These targeted structural attacks generate distinct edge perturbations for
each specific target node. As perturbing edges necessitates control over the
nodes connected to those edges, initiating a new attack by altering a different
set of edges requires gaining control over a new set of nodes, and given that
controlling each additional node incurs a proportional budgetary cost, these
targeted structural attacks are not budget-efficient. Consequently, when the
budget is constrained, these methods are unable to control a sufficient number
of new nodes to effectively attack a large number of target nodes.

2.3 Anchor Nodes Attacks

Anchor nodes attacks [38, 39] represent a distinct category of structural at-
tacks. These methods first identify a fixed set of nodes, referred to as anchor
nodes, and subsequently degrade the classification performance of the victim
model on each target node by flipping edges between the anchor nodes and
the target node, where flipping an edge refers to either adding a non-existent
edge or removing an existing one.

As the pioneering work in this domain, GUA [39] iteratively identifies a
set of anchor nodes through a minimum perturbation strategy. The follow-up
work, GUAP [38], introduces a set of new nodes, utilizing them as anchor
nodes to launch the attack.

Both GUA and GUAP are budget-efficient, as they require control over
only a small, fixed set of anchor nodes to attack all target nodes. However,
their attack efficacy is significantly constrained by the limitation of relying
on a single set of anchor nodes for all attacks. Since victim graph neural
network models make predictions for a target node based on its multi-hop
neighbors, numerous target nodes may fall outside the effective attack range
of the anchor nodes if they do not reside within close proximity in the network.
Our proposed multifaceted anchor node attack distinguishes itself from GUA
and GUAP by smoothly integrating multiple sets of anchor nodes, alongside a
well-trained assignment network, to substantially enhance attack effectiveness

4

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

while maintaining a minimal budget of controlled nodes.

2.4 Graph Attacks with Other Strategies

Other than solely changing the graph structure, there are works that our ap-
proach is fundamentally distinct from, including works that focus on modifying
node features [2, 8, 30, 42] or injecting malicious nodes [11, 19, 29, 31, 34, 41].

Nettack[42], the pioneering work on adversarial attacks on graphs, gener-
ates perturbations on both node features and graph structure. GAALV[2], in
contrast, keeps the graph structure intact and focuses exclusively on perturb-
ing node features. PoisonProbe[30] targets the victim node by selecting nodes
within a 2-hop radius and perturbing their features. TUA[13], which aims to
misclassify victim nodes into a specific target class, randomly selects nodes
with the target class label, referred to as attack nodes, followed by generating
a set of fake nodes with the same target class label and connects the victim
node to the attack nodes during the attack. G-NIA[31] performs its attacks
by injecting a single node into the graph and linking it to other nodes within
the graph. Greedy-GAN[34] introduces fake nodes into the original graph and
connects them to existing nodes without altering any existing edges or features.

5

Chapter 3

Preliminary

3.1 Graph

Let G = (V,E,A,X) represent an unweighted graph, where V denotes the set
of nodes, E the set of edges, and N = |V | represents the total number of nodes
in G. The adjacency matrix A ∈ {0, 1}N×N encodes the edge structure of G.
Each node in G is associated with a d-dimensional feature vector, and the
feature vectors of all nodes are collectively represented by the feature matrix
X ∈ RN×d, where the i-th row of X corresponds to the feature vector of the
i-th node, vi, in G. Furthermore, each node in G is assigned a class label from
one of C possible classes.

3.2 Graph Convolutional Network

A graph neural network, denoted by f(X,A), takes as input the feature matrix
X and the adjacency matrix A of graph G and outputs predictions for the class
labels of the nodes in G.

In accordance with literature [7, 36, 38, 39, 42, 43], we target a well-known
graph neural network, the graph convolutional network (GCN) [20], as the
victim model for our attack. A typical GCN comprises one or more hidden
graph convolutional layers, followed by a softmax layer to generate the final
predictions. In the well-established node classification GCN model that we
seek to attack, the hidden graph convolutional layer is denoted as

H(l+1) = σ(ÂH(l)W (l)), (3.2.1)

where l is the number of convolution layers, σ(·) is the activation function
ReLU [16], and Â = D̃−1/2ÃD̃−1/2 is a normalized adjacency matrix with
Ã = A+ I and diagonal degree matrix D̃ii =

∑
j Ãij. With the addition of the

final softmax layer, a typical GCN with a single hidden graph convolutional

6

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

layer is represented by

f(X,A) = softmax(Â ReLU(ÂXW (0)) W (1)), (3.2.2)

where W (0) and W (1) are the model parameters of the GCN.
For simplicity, we denote f(X,A) as f when the context is clear. The

output of the GCN f , denoted by

Z = f(X,A), (3.2.3)

is a matrix with dimensions of N rows and C columns, where the entry in the
i-th row and j-th column, denoted by Zij, represents the probability of the
i-th node being classified into the j-th class. Additionally, the i-th row of Z
can be denoted as f(X,A)i for simplicity.

3.3 Victim Model Types

In the field of adversarial attacks, there are two distinct types of victim mod-
els characterized by different levels of access an attacker has to the model’s
internal parameters.

• White-Box Model . The attacker has full access to the model’s architec-
ture, parameters, and internal mechanisms, including gradients, weights,
and biases, which allows the attacker to exploit the model’s vulnerabil-
ities by directly manipulating its parameters or using gradient-based
methods to generate adversarial examples.

• Black-Box Model . The attacker has no direct access to the model’s in-
ternal structure or parameters, and it can only interact with the model
by observing its input-output behavior, such as querying the model with
inputs and observing the corresponding outputs.

We adopt the same white-box setting in [38, 39] wherein an adversary has
complete access to the architecture and parameters of the victim model. How-
ever, as demonstrated later in Section 6.3, under the black-box setting, the
attack model trained by MFAN on a white-box victim model can be easily
transferred to effectively attack other black-box models.

3.4 Attacking Types

To launch an adversarial attack, modifications can be made to the graph to
mislead the victim GNN model’s prediction. Depending on the stage at which

7

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

the graph attacks occur, these attacks can be categorized into two distinct
types.

• Evasion Attack . Graphs are modified after the victim model has been
trained. At this stage, the parameters of the victim model are fixed and
cannot be altered by the attacker. The attacker’s objective is to degrade
the classification performance of the victim model or induce it to predict
labels that differ from its original predictions.

• Poisoning Attack . Graphs are modified (poisoned) before the victim
model is trained. Thus, the parameters of the victim model is trained
and tuned on the modified graph. The attacker’s objective is to degrade
the classification performance of the victim model.

We employ the evasion attack scenario in our setting, with the objective of
inducing the victim model to produce outputs that deviate from its original
predictions.

8

Chapter 4

Problem Definition

4.1 MFAN Task

In the task of multifaceted anchor nodes (MFAN) attack, our objective is
to target a victim model, graph convolutional network (GCN) f , which is
trained on an unweighted graph G. We conduct the attack by perturbing (i.e.,
modifying) the edges in G to create a modified graph G′, such that the label
of a target node vi, predicted by the victim GCN f on G′, differs from the
label predicted by f on the original graph G.

In line with the approaches of [38, 39], the perturbation on G is a set of
edge modifications, (i.e., additions or deletions of edges), induced by a set of
nodes in G, named anchor nodes. Denote by Q ⊂ V a set of anchor nodes, a
perturbation induced by Q to attack f ’s prediction on a target node vi is to
flip the edges between each node in Q and vi. Here, flip refers to either adding
a non-existent edge or removing an existing edge. Furthermore, for brevity,
we refer to “change f ’s prediction on a target node vi” as “attack the target
node vi”.

In the framework of MFAN, our objective is to train K distinct sets of
anchor nodes, represented by the collection Q = {Q1, . . . , QK}, where each set
of anchor nodes Qk ∈ Q optimized to effectively attack a substantial subset
of target nodes in V . In conjunction with the training of Q, we also train an
assignment network, denoted by gθ, which is responsible for selecting the
most appropriate set of anchor nodes from Q to attack a given target node vi.

The MFAN task is formally defined as follows.

Definition 1. Given an integer budget ξ > 0 on the number of controlled
nodes for each perturbation and a victim GCN f trained on an unweighted
graph G, the task of multifaceted anchor nodes (MFAN) attack is to
train an attack model, composed by K sets of anchor nodes Q = {Q1, . . . , QK}
and an assignment network gθ, such that

9

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

1. the size of each set of anchor nodes is not larger than ξ;

2. each target node vi ∈ V is attacked by the perturbation induced by the
set of anchor nodes Qk ∈ Q that is selected by the assignment network
gθ; and

3. our attack model can successfully attack most of the nodes in G.

In contrast to classic anchor node attacks [38, 39], the MFAN attack is
multifaceted, as it utilizes multiple sets of anchor nodes. The assignment net-
work, gθ, takes the graph G and the target node vi as input to select the best-
suited set of anchor nodes, maximizing the likelihood of successfully attacking
vi. Since each set of anchor nodes is specialized in targeting different sub-
sets of nodes, the MFAN attack effectively implements a “divide and conquer”
strategy, allowing it to attack the union of target nodes that are individually
targeted by each set, which substantially enhances the attack’s overall effec-
tiveness. The budget ξ constrains the number of controlled nodes for each set
of anchor nodes, and since the same sets of anchor nodes are used to attack
all target nodes in G, the number of nodes that need to be controlled remains
minimal, rendering MFAN highly budget-efficient.

4.2 Modelling the MFAN Attack

We present in this section the modelling of the perturbation and the assign-
ment network gθ. A example of the attack procedure of MFAN is shown in
Figure 4.1.

1

2 3

4

5 6
7

8

9 10

11
12

(c) Attack v4 by flipping
edges between v4 and Q1

Q1 = {v1, v6, v9}
Q2 = {v2, v3, v11}

(a) Original Graph G (b) Assign v4 to Q1 by
assignment network g

1

2 3

4

5 6
7

8

9 10

11
12 1

2 3

4

5 6
7

8

9 10

11
12 1

2 3

4

5 6
7

8

9 10

11
12

(d) Perturbed Graph G'

Target node v4
Class 1 Class 2 Class 3

Figure 4.1: An example of MFAN attack. To attack the target node v4 in
the original graph G, the assignment network selects the anchor nodes set
Q1 = {v1, v6, v9}. Then it flips the edges between v4 and Q1, generating the
perturbed graph G′.

10

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

4.2.1 Modelling of the Perturbation

Given a set of anchor nodes Qk ∈ Q, MFAN attacks the target node vi by
introducing a perturbation to G, which involves flipping the edges between vi
and each anchor node in Qk. To mathematically formalize this perturbation,
we represent the set of anchor nodes in Qk by a perturbation vector pk ∈
{0, 1}N , where the i-th element of pk being equal to 1 indicates the i-th node
vi in G is an anchor node in Qk. Thus, the sets of anchor nodes in Q are
modeled by the set of perturbation vectors P = {p1, . . . ,pK}. Following the
approaches [38, 39], we model the perturbation induced by a perturbation
vector pk ∈ P to attack vi as

ρ(vi,pk) = (1− P) ◦ A+ P ◦ (10 − A), (4.2.1)

where ρ is the perturbation function, ◦ is element-wise multiplication, 1 is an
N -by-N matrix with all entries equal to one, 10 is an N -by-N matrix of all
entries equal to one except for the diagonal entries being zeros, and P is an
N -by-N matrix with i-th row and i-th column replaced by pk and the other
entries set to zero.

The output of ρ(vi,pk), denoted by A′ = ρ(vi,pk), represents the per-
turbed adjacency matrix of the perturbed graph G′, in which the edges
between vi and each anchor node in Qk in the original graph G have been
flipped.

4.2.2 Modelling of the Assignment Network

The assignment network is modeled as a GCN, denoted by gθ(X,A), which
predicts the probabilities of selecting each of the K sets of anchor nodes in
Q to attack a given target node vi in G. The output of gθ(X,A) is an N -by-
K matrix, where the entry in the i-th row and the k-th column, denoted by
gθ(X,A)ik, represents the probability of selecting the anchor nodes set Qk ∈ Q
to attack the target node vi in G.

4.3 Formulating the Problem

The loss of the MFAN attack is mathematically formulated as

L(P , θ) = −
N∑
i=1

K∑
k=1

gθ(X,A)ik · CE(f(X,A′)i, f(X,A)i), (4.3.1)

where CE(·, ·) is the cross entropy loss, A′ = ρ(vi,pk) is the perturbed adjacency
matrix induced by the perturbation vector pk ∈ P , f is the victim model, and

11

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

f(X,A′)i and f(X,A)i are the predicted class distributions of the target node
vi on the perturbed graph G′ and the original graph G, respectively. The cross
entropy loss term quantifies the difference between f(X,A′)i and f(X,A)i
when pk is used to attack the target node vi. Given that gθ(X,A)ik repre-
sents the probability of selecting pk to attack vi, the summation term

∑K
k=1

computes the expectation of the difference between f(X,A′)i and f(X,A)i.
According to the task defined in Definition 1, our objective is to successfully
attack most of the nodes in G, which is accomplished by maximizing the ex-
pected difference between between f(X,A′)i and f(X,A)i across all the nodes
in G.

Therefore, the MFAN attack is further formulated as the following opti-
mization problem.

min
P,θ
L(P , θ) s.t. ∀pk ∈ P , ||pk||1 ≤ ξ,pk ∈ {0, 1}N , (4.3.2)

where the constraint ||pk||1 ≤ ξ ensures that the number of anchor nodes in
each set Qk ∈ Q does not exceed the specified budget ξ.

12

Chapter 5

Solution

5.1 Solving the Problem

The original optimization problem in Equation (4.3.2) is a constrained integer
programming problem, which is NP-hard and cannot be directly solved using
gradient-based methods. We present the solution in steps.

5.1.1 Relaxation

Each integer-valued constraint pk ∈ {0, 1}N ,pk ∈ P is relaxed to a real-
valued constraint pk ∈ [0, 1]N , thereby transforming the original optimization
problem in Equation (4.3.2) to

min
P,θ
L(P , θ) s.t. ∀pk ∈ P , ||pk||1 ≤ ξ,pk ∈ [0, 1]N . (5.1.1)

5.1.2 Penalty

Following the standard penalty method [3, 15, 28], we incorporate each con-
straint ||pk||1 ≤ ξ as a penalty term, max(||pk||1 − ξ, 0), within the loss func-
tion, thereby transforming the optimization problem in Equation (5.1.1) to

min
P,θ
L(P , θ) + λ

∑
pk∈P

max(||pk||1 − ξ, 0) s.t. ∀pk ∈ P ,pk ∈ [0, 1]N . (5.1.2)

5.1.3 Simulated Annealing

Under the relaxed constraint pk ∈ [0, 1]N , the entries in each solution pk ∈ P
may be real values that deviate significantly from 0 or 1, solving the optimiza-
tion problem in Equation (5.1.2) often fails to find optimal K sets of anchor
nodes. However, directly quantizing (i.e., binarizing) these entries in pk to 0

13

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

or 1 introduces substantial quantization error, hence diminishing the quality
of the final solution.

To address this challenge, we propose a simulated annealing technique
that forces the real-valued entries in each solution pk ∈ [0, 1]N to converge to-
ward either 0 or 1, which effectively minimizes quantization error when quan-
tizing a solution pk to a binary vector in {0, 1}N , thereby enhancing the quality
of the final solution. Specifically, we construct a weighted penalty term to
reformulate Equation (5.1.2) as

min
P,θ
L(P , θ) + λ

∑
pk∈P

max(||wk ◦ pk||1 −wmin
k ξ, 0) s.t. ∀pk ∈ P ,pk ∈ [0, 1]N ,

(5.1.3)
where ◦ is element-wise multiplication, wk is an weight vector of size N cal-
culated from pk, and wmin

k is the smallest value among all the entries in wk.
The h-th entry of wk is computed by the annealing function

wh
k = σ(ph

k) =
1

1 + e(p
h
k−δ)/T

, (5.1.4)

where ph
k is the h-th entry in pk, δ is the mean of the ξ-th and (ξ+1)-th largest

entry in pk, and T is a hyperparameter that controlls the “temperature” of
the annealing process. A smaller value of T causes the annealing function σ to
approximate a step function, assigning weights close to 1 to the top-ξ largest
entries in pk and weights close to 0 to the remaining entries. Consequently, by
progressively reducing the value of T , we can drive the top-ξ largest entries in
pk to 1 while pushing the other entries toward 0.

Equation (5.1.3) is the formal form of our optimization problem, which can
be solved using standard proximal gradient descent [26]. A feasible solution to
Equation (5.1.3) is also a feasible solution to Equation (5.1.1), as demonstrated
by the following rationale. During the minimization of the objective function
in Equation (5.1.3) following [3, 15, 28], λ is gradually increased to push the
penalty terms toward zero, which ensures that each feasible solution pk ∈ P
to Equation (5.1.3) satisfies the constraint ||wk ◦pk||1 ≤ wmin

k ξ. We then have
||pk||1 ≤ ξ, as demonstrated in Theorem 1, indicating that pk is a feasible
solution to Equation (5.1.1).

Theorem 1. ∀pk ∈ P ,pk ∈ [0, 1]N , if ||wk ◦ pk||1 ≤ wmin
k ξ, then ||pk||1 ≤ ξ.

Proof. Since ||wk ◦ pk||1 ≤ wmin
k ξ, we have ξ ≥ || wk

wmin
k
◦ pk||1 ≥ ||pk||1.

As Equation (5.1.1) represents a relaxed version of the original optimization
problem in Equation (4.3.2), a final solution to Equation (4.3.2) can be
obtained by quantizing each feasible solution pk ∈ P into a binary vector in
{0, 1}N . Since the simulated annealing trick forces the top-ξ largest entries

14

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

in pk approach 1 and the other entries approach 0, the solution for pk is
ensured to approximate a binary vector, which minimizes the quantization
error, therefore the final solution quantized from pk satisfies the budget of
controlled nodes.

5.2 Algorithms

5.2.1 Training Algorithm

Algorithm 1: Training P and θ

Input : ξ, f , G, and a training set of nodes VT ⊂ V
Output: P and θ

1 T ← 1, λ← 0.1 and max epoch← 120

2 Randomly initialize P ← P(0) and θ ← θ(0)

3 while epoch < max epoch do
4 for each mini-batch in VT do
5 for each pk ∈ P do
6 pk ← pk − η1∇pk

L∗(P , θ)
7 pk ← clip(pk, 0, 1)

8 end
9 θ ← θ − η2∇θL∗(P , θ)

10 end
11 Update λ← λ× 5 for every 20 epochs when epoch ≤ max epoch/2.
12 Update T ← T/2 for every 5 epochs when epoch > max epoch/2.

13 end
14 P ← quantize(P , ξ)
15 return P and θ

We describe the process for training P and θ by solving the optimization
problem presented in Equation (5.1.3). Algorithm 1 summarizes the details
to train P and θ, where L∗(P , θ) denotes the objective function in Equa-
tion (5.1.3).

In Line 6 and line 9, standard gradient steps are conducted to update
pk and θ, respectively, where η1 and η2 denote learning rates. In line 7, the
function clip(pk, 0, 1) is applied, which performs a proximal projection of
standard proximal gradient descent [26], ensuring that any entry in pk falling
outside the range [0, 1] is clipped back to its nearest boundary value within
[0, 1]. In Line 11, the weight λ of the penalty term is gradually increased. In
Line 12, the simulated annealing makes the annealing function σ approximate

15

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

a step function by decreasing the temperature parameter T . In line 14, the
perturbation vector pk is quantized to obtain the final solution.

5.2.2 Attacking Algorithm

Algorithm 2: Attacking a target node vi in G

Input : G, vi, P , and gθ
Output: A perturbed adjacency matrix A′

1 k∗ ← argmaxk gθ(X,A)ik
2 A′ ← ρ(vi,pk∗)
3 return A′

Once P and θ are trained, they can be used to launch the MFAN attacks.
Algorithm 2 summarizes the details to attack a target node vi in G.

In line 1, the assignment network gθ is employed to select the most suitable
set of anchor nodes to attack vi, denoted as pk∗ . In line 2, the selected pk∗ is
used to attack vi by flipping the edges between vi and each of the anchor nodes
represented by pk∗ . Since gθ is trained in conjunction with P , it effectively
generalizes to select the most suitable set of anchor nodes, thereby significantly
enhancing the success rate of the attacks.

16

Chapter 6

Experiments

We conduct extensive experiments in this chapter to compare our method
against six baseline methods for adversarial graph structural attacks, including
GUA [39]1, GUAP [38]2, PGD [36], DICE [35], Meta-Self [43] and FGA [7]3.
We utilize the publicly available source code of these baselines, with their
default parameter configurations employed in all experiments. Our code is
accessible at the following link4.

6.1 Experimental Setting

In accordance with existing literature [7, 36, 38, 39, 42, 43], we employ the
classic GCN[20], introduced in Chapter 3, as the default victim model for the
attacks. Additionally, we use GAT [32] and Node2Vec [18] as the black-box
victim models for the transfer attacks.

Each experiment is independently repeated 5 times to report the average
performance. All experiments are conducted on a server equipped with an
NVIDIA RTX 3090 GPU, 64 GB of RAM, and an Intel(R) Core(TM) i9-
10900K CPU @ 3.70GHZ.

6.1.1 Implementation Details

For MFAN, the assignment network gθ is implemented using the GCN, as de-
fined in Equation (3.2.2). The model configuration of gθ is detailed in Table 6.1,
where the graph convolution layer performs mean aggregation, and the “Input
Dim.”, “Weight Dim.” and “Output Dim.” correspond to the dimensions of
H(l), W (l) and H(l+1) for each layer l, as defined in Equation (3.2.1).

1Code: https://github.com/chisam0217/Graph-Universal-Attack
2Code: https://anonymous.4open.science/r/ffd4fad9-367f-4a2a-bc65-1a7fe23d9d7f/
3Code for PGD, DICE, Meta-Self and FGA: https://github.com/DSE-MSU/DeepRobust
4Code for MFAN: https://github.com/zhz0108/mfan

17

https://github.com/chisam0217/Graph-Universal-Attack
https://anonymous.4open.science/r/ffd4fad9-367f-4a2a-bc65-1a7fe23d9d7f/
https://github.com/DSE-MSU/DeepRobust
https://github.com/zhz0108/mfan

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

Table 6.1: Model configuration of the assignment network.

Layer Type Input Dim. Weight Dim. Output Dim. Activation

1 Graph Convolution N × d d× 16 N × 16 ReLU
2 Graph Convolution N × 16 16×K N ×K Softmax

In the implementation of Algorithm 1 of MFAN, we use a batch size of 32,
with η1 set to 0.01 and η2 set to 0.2 for the Facebook dataset (to be discussed
later) and 0.005 for the other datasets. We set ξ = 5 and K = 2 by default,
unless otherwise specified. The impact of K on the attack effectiveness of
MFAN will be thoroughly examined in Section 6.4.1.

6.1.2 Datasets

Table 6.2: Dataset statistics.

Dataset Statistics Cora Citeseer Facebook Wiki Pubmed

#Nodes 2,708 3,327 4,039 2,405 19,717
#Edges 5,278 4,676 88,234 17,981 44,324
#Features 1,433 3,703 1,283 4,973 500
#Classes 7 6 193 17 3

The experiments are conducted on five widely utilized benchmark datasets
for node classification tasks, as detailed in Table 6.2. Cora [27], Citeseer [27]
and Pubmed [27] are scientific publication networks, Facebook [22] is a social
network, and Wiki [10] is a network of web pages with their hyperlinks as
edges.

For the largest dataset, Pubmed, a sampled subgraph comprising 2,000
nodes rather than full graph is extracted where the training is conducted ex-
clusively, while the remaining nodes are designated as target nodes for testing.
For the other datasets, we adhere to the setting of [5, 7, 29, 30, 42], where the
training is performed on the entire graph, with 20% of the nodes allocated for
training and the remaining 80% of the nodes designated as target nodes for
testing.

FGA was unable to complete the attack on all testing target nodes on
Pubmed within 72 hours. Consequently, we cannot provide the corresponding
results for this method.

18

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

6.1.3 Evaluation Metrics

The attack performance on misclassification is evaluated by fooling ratio (FR),
as defined by

FR =
of misclassified nodes in test set

of nodes in test set
(6.1.1)

Given the diverse attack paradigms employed by the baseline methods, we
propose two distinct measures of the budget of controlled nodes to provide a
comprehensive evaluation of their performance.

• The first type of budget, namely budget per target node (BPT), denoted
by ξ, represents the number of controlled nodes used in attacking a single
target node. For GUA and GUAP, since they use the same set of anchor
nodes to attack each target node, ξ corresponds to the number of anchor
nodes. For MFAN, since we use only one set of anchor nodes to attack
each target node, ξ precisely aligns with the budget in Definition 1. For
the remaining baselines, ξ is the average number of nodes connected to a
target node by a perturbed edge, either prior to or following the attack.

• The second type of budget, namely budget for all target nodes (BFA),
denoted by δ, represents the total number of all controlled nodes used to
attack all the target nodes in the testing dataset. For GUA and GUAP,
δ = ξ. For MFAN, δ = K × ξ. For FGA, δ denotes the size of the
union of nodes connected to perturbed edges during each attack. For the
remaining baselines, δ represents the total number of nodes connected
to a target node by a perturbed edge, either prior to or following the
attack.

6.2 Fooling Ratio under Different Budgets of

Controlled Nodes

In this section, we perform an analysis of the FR of all compared methods
under different budgets of controlled nodes.

6.2.1 Fooling Ratio under Budget Per Target Node

Figure 6.1 illustrates how the FR of each method changes when using different
BPT (i.e., ξ). The FR of all methods increases as ξ grows, since a larger BPT
allows more edges to be perturbed in each attack, thus enhancing the likelihood
of success. FGA achieves the highest FR on Cora, Citeseer, and Facebook
when using the same BPT as the other methods due to FGA tailored approach,
where it meticulously trains a unique set of controlled nodes for each new

19

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

GUA GUAP FGA PGD DICE Meta-Self MFAN

0 5 10 15 200%

50%

100%

FR

(a) Cora

0 5 10 15 200%

50%

100%

FR

(b) Citeseer

0 5 10 15 200%

50%

100%

FR

(c) Facebook

0 5 10 15 200%

50%

100%

FR

(d) Wiki

0 5 10 15 200%

50%

100%

FR

(e) Pubmed

Figure 6.1: Fooling ratio (FR) v.s. budget per target node (BPT, ξ).

target node, significantly bolstering the success rate of its attacks. However,
as we will explore later, this strategy comes at the cost of a substantially
higher BFA, as each new target requires the orchestration of a distinct set of
controlled nodes. The other baseline methods, by contrast, cannot rival the FR
of FGA because they rely on a single set of controlled nodes for all attacks,
a static configuration not fine-tuned for each specific target. Interestingly,
while MFAN does not custom-train anchor nodes for every new target, its FR
still comes closest to that of FGA across all datasets. This strongly attests
to MFAN’s remarkable efficacy and the sophistication of its attack strategy,
nearly matching the precision of FGA despite its more generalized approach.

6.2.2 Fooling Ratio under Budget For All Target Nodes

GUA GUAP FGA PGD DICE Meta-Self MFAN

100 101 102 1030%

50%

100%

FR

(a) Cora

100 101 102 1030%

50%

100%

FR

(b) Citeseer

100 101 102 1030%

50%

100%

FR

(c) Facebook

100 101 102 1030%

50%

100%

FR

(d) Wiki

100 101 102 1030%

50%

100%

FR

(e) Pubmed

Figure 6.2: Fooling ratio (FR) v.s. budget for all target nodes (BFA, δ).

Figure 6.2 illustrates how the FR of each method changes when using
different BFA (i.e., δ). While FGA leads in performance when using BPT as
the budget for controlled nodes, its FR is significantly lower compared to the
anchor node attacks (i.e., GUA, GUAP, and MFAN) when BFA is used as the
budget. The minimum BFA for FGA by setting ξ = 1 is still much higher than
the BFA of anchor node attacks because FGA trains a unique set of controlled
nodes for each new target node, requiring control over a large number of nodes
to attack the thousands of target nodes in the test dataset. Similarly, global
structural attacks (i.e., DICE, PGD, and Meta-Self) also incur a significantly

20

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

high BFA because they perturb a large number of edges in one go for all
attacks. In contrast, the anchor nodes attacks are extremely efficient in BFA
since they only use a small constant set(s) of anchor nodes to attack all the
target nodes. Notably, MFAN performs best across all datasets, thanks to
its effective multifaceted attack approach with successful application of the
“divide and conquer” principle.

In conclusion, when the total number of controlled nodes is constrained by
available resources (e.g., financial costs, personnel, etc.), MFAN demonstrates
superior FR performance by effectively employing the ”divide and conquer”
strategy. Additionally, MFAN attacks are considerably more covert compared
to non-anchor node methods, owing to its minimal BFA, further enhancing its
stealthiness.

6.3 Effectiveness of Transfer Attack

In this section, we evaluate the effectiveness of the transfer attacks across all
the baseline methods and MFAN.

For each method, we first train its attack model on the white-box victim
model GCN f . Afterward, we apply the trained attack model to attack two
additional black-box victim models, namely GAT [32] and Node2Vec [18],
which are trained on the same dataset as the white-box victim model GCN f .

Table 6.3 presents the FR of transfer attacks on the five datasets, respec-
tively, with the best FR highlighted in bold and the second-best underlined.
The performance of Meta-Self is not reported with the given BPT values (i.e.,
ξ) since it could not be executed due to the requirement of high memory usage.
FGA failed to generate meaningful results with small BFA (i.e., δ), hence its
corresponding results are also not provided.

It can be observed that MFAN delivers the best performance in most cases,
demonstrating its exceptional capability in transfer attacks against black-box
victim models. We attribute this strong performance to the following reasons.

• Each set of anchor nodes performs effectively in transfer attacks. Because
each set of anchor nodes is trained to successfully attack a large group of
target nodes, it tends to exploit common defect patterns shared by many
of these nodes. These defect patterns are prevalent across various target
nodes, meaning that they can be learned by a new GNN model trained
on the same dataset. As a result, the anchor nodes remain effective in
carrying out transfer attacks against the new model.

• The assignment network also performs effectively in transfer attacks.
As the input graph remains unchanged, the output of the assignment
network stays consistent. Consequently, the same set of anchor nodes is

21

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

Table 6.3: FR of non-transfer and transfer attacks.

Dataset Model GCN (white-box, non-transfer) GAT (black-box, transfer) Node2Vec (black-box, transfer)

C
or
a

Budget ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40

GUA 77.37% 85.75% 88.83% 89.96% 81.39% 86.19% 88.74% 90.03% 76.92% 84.85% 89.33% 88.60%
GUAP 75.32% 86.20% 89.25% 90.25% 65.56% 85.78% 86.54% 91.89% 71.64% 85.86% 87.04% 87.11%
PGD 71.88% 85.33% 0.74% 2.07% 74.72% 83.86% 0.93% 1.80% 72.04% 70.89% 15.53% 15.77%
DICE 44.30% 54.99% 0.05% 0.10% 51.03% 51.77% 0.11% 0.35% 79.88% 80.24% 15.83% 16.21%

Meta-Self - - 0.02% 0.06% - - 0.59% 1.17% - - 15.84% 16.04%
FGA 95.00% 98.63% - - 85.44% 92.95% - - 62.81% 82.14% - -
MFAN 93.79% 94.30% 94.30% 96.11% 84.67% 93.04% 93.04% 94.59% 85.14% 92.17% 92.17% 96.01%

C
it
es
ee
r

Budget ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40

GUA 76.63% 80.35% 83.83% 84.49% 74.63% 81.51% 84.10% 85.12% 86.41% 86.56% 86.70% 86.94%
GUAP 75.17% 82.20% 86.45% 87.65% 66.87% 79.69% 83.19% 89.24% 76.89% 81.40% 83.18% 84.13%
PGD 75.67% 83.80% 0.16% 0.34% 77.92% 80.42% 0.64% 1.33% 79.58% 79.45% 37.14% 37.45%
DICE 45.30% 48.96% 0.03% 0.05% 46.73% 48.90% 0.16% 0.33% 79.06% 79.79% 37.80% 37.89%

Meta-Self - - 0.04% 0.06% - - 0.44% 0.72% - - 37.22% 38.05%
FGA 96.27% 98.70% - - 84.45% 92.72% - - 73.93% 86.29% - -
MFAN 92.37% 97.31% 97.31% 98.45% 90.21% 95.78% 95.78% 97.86% 91.79% 93.09% 93.09% 94.65%

F
ac
eb

o
ok

Budget ξ = 10 ξ = 20 δ = 200 δ = 400 ξ = 10 ξ = 20 δ = 200 δ = 400 ξ = 10 ξ = 20 δ = 200 δ = 400

GUA 13.12% 26.60% 60.44% 66.02% 13.45% 16.63% 50.78% 58.23% 10.24% 15.47% 54.19% 61.77%
GUAP 15.12% 29.10% 68.69% 73.67% 16.59% 26.68% 64.35% 70.23% 14.96% 20.44% 59.40% 65.23%
PGD 24.12% 24.96% 3.24% 5.47% 31.16% 33.67% 2.74% 5.45% 16.85% 19.43% 10.25% 10.68%
DICE 12.99% 16.90% 0.26% 0.66% 15.24% 19.05% 0.74% 1.21% 19.05% 25.93% 10.07% 10.11%

Meta-Self - - 1.33% 2.16% - - 1.98% 4.16% - - 10.10% 10.33%
FGA 37.68% 49.40% - - 30.33% 49.14% - - 21.23% 34.87% - -
MFAN 27.36% 39.53% 88.37% 94.94% 33.49% 38.50% 76.54% 85.53% 38.50% 58.53% 83.39% 87.52%

W
ik
i

Budget ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40

GUA 85.58% 90.85% 93.68% 94.35% 42.70% 45.90% 50.06% 56.72% 30.81% 44.99% 54.47% 74.18%
GUAP 85.40% 90.65% 92.73% 93.11% 39.85% 48.76% 50.81% 66.59% 21.87% 43.08% 51.52% 67.44%
PGD 52.01% 60.01% 0.81% 2.06% 56.37% 67.92% 0.68% 1.11% 42.55% 46.15% 14.74% 15.20%
DICE 30.78% 44.94% 0.13% 0.35% 39.58% 63.42% 0.26% 0.31% 46.63% 62.37% 14.64% 15.45%

Meta-Self - - 4.66% 6.69% - - 0.70% 1.27% - - 15.10% 15.71%
FGA 86.74% 96.84% - - 52.81% 63.24% - - 44.23% 72.45% - -
MFAN 92.55% 95.52% 95.52% 97.82% 62.93% 67.07% 67.07% 73.31% 47.78% 54.97% 54.97% 82.70%

P
u
b
m
ed

Budget ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40 ξ = 5 ξ = 10 δ = 20 δ = 40

GUA 50.04% 53.50% 55.11% 59.42% 47.33% 48.54% 51.03% 55.45% 41.00% 43.27% 44.36% 48.31%
GUAP 54.97% 56.13% 59.88% 63.14% 49.98% 56.97% 60.08% 65.30% 45.19% 47.33% 50.87% 54.33%
PGD 58.02% 59.47% 0.20% 0.33% 58.06% 63.44% 1.02% 1.99% 47.59% 52.98% 20.14% 24.77%
DICE 30.46% 32.55% 0.03% 0.05% 36.68% 38.40% 0.73% 0.92% 32.32% 37.65% 18.00% 18.78%

Meta-Self - - 0.26% 0.38% - - 0.80% 1.14% - - 19.56% 22.17%
FGA - - - - - - - - - - - -
MFAN 59.48% 64.04% 64.04% 66.88% 60.09% 62.95% 62.95% 65.63% 49.64% 51.34% 51.34% 53.34%

chosen to attack the target node during transfer attacks. If the new GNN
model learns the same defect pattern of the target node, the selected set
of anchor nodes can then effectively execute the transfer attack on the
target node.

6.4 The Effects of K, λ, the Assignment Net-

work, and Simulated Annealing

In this section, we discuss the effects of K, λ, the assignment network gθ, and
the simulated annealing technique.

6.4.1 The Effect of K

We investigate the effect of K by comparing the FR of MFAN with different
K values when ξ = 5.

22

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

Table 6.4: FR of MFAN with different K values.

K Cora Citeseer Facebook Wiki

1 81.36% 79.14% 8.33% 83.43%
2 94.68% 92.77% 16.38% 93.56%
3 95.23% 92.77% 16.38% 93.56%
4 95.23% 92.77% 16.38% 93.87%

As displayed in Table 6.4, FR increases significantly when K rises from 1
to 2 on the four datasets. This is because, with K = 1, MFAN relies on a
single set of anchor nodes, which is insufficient to successfully attack all target
nodes. While K = 2, MFAN employs two sets of anchor nodes, each tailored
to effectively attack different subsets of target nodes. Furthermore, with the
help of the assignment network that selects the optimal set of anchor nodes for
each attack, the success rate of each attack is improved. In this way, MFAN
follows a “divide and conquer” approach, where the final set of successfully
attacked target nodes is nearly the union of the target nodes attacked by each
of the K sets of anchor nodes. When K exceeds 2, FR quickly converges due
to the well-known “diminishing marginal effect”: most target nodes attacked
by the third set of anchor nodes have already been attacked by the first two,
so adding a third set yields little improvement in FR. Thus, using two sets of
anchor nodes is sufficient for MFAN to achieve excellent FR.

Since the BFA of MFAN is δ = K×ξ, we set K = 2 by default in the other
experiments to save our BFA while achieving outstanding FR.

6.4.2 The Effect of λ

We examine the effect of hyperparameter λ by comparing the performance of
MFAN with different growth rates , denoted by v, which serves as the multiplier
for λ when increasing its value in line 10 of Algorithm 1.

v = 2.5 v = 5 v = 10

0 30 60 90 120
epoch

1500

1000

500

0

To
ta

l L
os

s

(a) L∗(P, θ)

0 30 60 90 120
epoch

1500

1000

500

0

Or
ig

in
al

 L
os

s

(b) L(P, θ)

0 30 60 90 120
epoch

0

200

SP
T

(c) SPT

0 30 60 90 120
epoch

0

50

100

(d) λ

Figure 6.3: The curves of the total loss L∗(P , θ), the original loss L(P , θ),
the sum of penalty terms (SPT)

∑
pk∈P max

(
||wk ◦pk||1−wmin

k ξ, 0
)
and λ on

the dataset Cora. Each subfigure shows three curves using different λ growth
rates.

23

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

Figure 6.3 shows that the loss curves, using different values of v while train-
ing, stay comparable. This indicates that the training is resilient to variations
in the λ growth rate. When zooming in on Figure 6.3(c), we observe that the
SPT with a larger v decreases slightly faster than with a smaller v, as the
faster increase in λ accelerates the push of the SPT toward zero. However,
since the influence of v on MFAN’s training is minimal, it has little impact on
the FR.

Table 6.5: FR of MFAN using λ growth rates v ∈ {2.5, 5.0, 10.0}.

Dataset
ξ = 5 ξ = 10 ξ = 20

v = 2.5 v = 5.0 v = 10.0 v = 2.5 v = 5.0 v = 10.0 v = 2.5 v = 5.0 v = 10.0

Cora 93.69% 93.79% 93.97% 94.27% 94.30% 94.19% 95.85% 96.11% 95.85%
Citeseer 91.79% 92.37% 92.34% 97.24% 97.31% 97.33% 98.45% 98.45% 98.38%
Facebook 15.01% 15.55% 15.14% 25.85% 25.97% 25.66% 38.29% 38.84% 38.84%
Wiki 91.26% 92.55% 92.62% 94.61% 95.52% 95.33% 97.79% 97.82% 97.62%

Pubmed 59.48% 59.48% 58.98% 63.97% 64.04% 63.77% 66.79% 66.88% 66.31%

Consequently, as shown in Table 6.5, the FR of MFAN remains comparable
across different λ growth rates.

6.4.3 The Effect of the Assignment Network

To assess the effect of the assignment network gθ, we compare the FR of
the standard MFAN (ST), in which the assignment network is used, with an
ablated MFAN (AB) that selects anchor nodes uniformly at random. Both
methods utilize the same sets of anchor nodes trained by the standard MFAN.

Table 6.6: The effect of the assignment network on FR.

Dataset Model
GCN (white-box, not transfer) GAT (black-box, transfer) Node2Vec (black-box, transfer)

ξ = 5 ξ = 10 ξ = 20 ξ = 5 ξ = 10 ξ = 20 ξ = 5 ξ = 10 ξ = 20

Cora
MFAN (AB) 78.32% 83.43% 83.46% 75.15% 82.41% 83.60% 50.96% 69.34% 77.98%
MFAN (ST) 93.79% 94.30% 96.11% 84.67% 93.04% 94.59% 85.14% 92.17% 96.01%

Citeseer
MFAN (AB) 77.41% 80.92% 81.70% 75.86% 80.40% 80.61% 80.16% 81.61% 82.81%
MFAN (ST) 92.37% 97.31% 98.45% 90.21% 95.78% 97.86% 91.79% 93.09% 94.65%

Facebook
MFAN (AB) 13.33% 21.51% 29.46% 15.05% 27.81% 32.21% 12.98% 23.64% 29.76%
MFAN (ST) 16.25% 27.36% 39.53% 18.22% 33.49% 38.50% 20.45% 38.50% 58.53%

Wiki
MFAN (AB) 75.77% 85.55% 90.48% 57.99% 63.72% 70.95% 44.49% 50.28% 78.05%
MFAN (ST) 92.55% 95.52% 97.82% 62.93% 67.07% 73.31% 47.78% 54.97% 82.70%

Pubmed
MFAN (AB) 46.67% 48.26% 52.99% 40.26% 42.97% 45.94% 40.47% 44.70% 47.66%
MFAN (ST) 59.48% 64.04% 66.88% 60.09% 62.95% 65.63% 49.64% 51.34% 53.34%

As shown in Table 6.6, the FR of the standard MFAN is significantly
better than that of the ablated MFAN, demonstrating the effectiveness of the
assignment network.

24

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

6.4.4 The Effect of Simulated Annealing

To investigate the effect of the simulated annealing trick, we compare the FR
and quantization error of the perturbation vectors generated by two versions
of MFAN. The first version is the standard MFAN (ST), which solves Equa-
tion (5.1.3), where the simulated annealing technique is incorporated. The
second version is an ablated MFAN (AB), which solves Equation (5.1.2) with-
out applying the simulated annealing technique. The quantization error (QE)
is calculated using

QE =
∑
pk∈P

||pk − ϕ(pk, ξ)||1, (6.4.1)

where ϕ(pk, ξ) outputs the quantized pk, setting the top-ξ largest entries to 1
and the remaining entries to 0.

Table 6.7: The effect of simulated annealing on FR and QE.

Dataset Model
FR ↑ QE ↓

ξ = 5 ξ = 10 ξ = 20 ξ = 5 ξ = 10 ξ = 20

Cora
MFAN (AB) 91.44% 92.53% 94.99% 8.68 16.01 28.42
MFAN (ST) 93.79% 94.30% 96.11% 1.37 2.98 4.07

Citeseer
MFAN (AB) 90.76% 96.02% 96.88% 16.77 29.10 47.77
MFAN (ST) 92.37% 97.31% 98.45% 1.57 3.12 7.72

Facebook
MFAN (AB) 14.88% 25.47% 38.12% 51.21 104.45 172.56
MFAN (ST) 16.25% 27.36% 39.53% 15.30 27.29 34.84

Wiki
MFAN (AB) 90.69% 94.94% 96.75% 8.24 12.51 22.00
MFAN (ST) 92.55% 95.52% 97.82% 2.20 2.61 4.61

Pubmed
MFAN (AB) 57.66% 60.98% 63.55% 9.84 20.14 27.10
MFAN (ST) 59.48% 64.04% 66.88% 2.85 3.43 5.01

As shown in Table 6.7, the standard MFAN achieves a lower QE and a
higher FR than the ablated MFAN. This highlights the effectiveness of the
simulated annealing trick in reducing quantization error and enhancing attack
performance.

6.5 Time Analysis

6.5.1 Attacking Time

We analyze the average attacking time for each method, representing the av-
erage time required to attack each target node in the test dataset.

We measured the actual average attacking time for the methods, as shown
in Table 6.8, with ξ = 10 for FGA and δ = 10 for the other approaches.

25

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

Table 6.8: Average attacking time in milliseconds.

Methods Cora Citeseer Facebook Wiki

GUA 146 233 - 112
GUAP 176 259 - 139
PGD ≈ 0 ≈ 0 ≈ 0 ≈ 0
DICE ≈ 0 ≈ 0 ≈ 0 ≈ 0

Meta-Self ≈ 0 ≈ 0 ≈ 0 ≈ 0
FGA 468,370 1,008,467 1,539,644 357,708
MFAN 154 240 375 131

FGA incurs the longest attacking time because it requires training a new set
of controlled nodes from scratch for each attack. This training cannot be done
offline and only begins once FGA starts attacking a new target node, meaning
its attack time is equivalent to its training time. In contrast, the anchor node
methods achieve much faster attacking time than FGA, as they only need
to flip a small number of edges when attacking a new target node, with the
anchor nodes being trained offline prior to launching any attack. Our method
has a slightly longer attack time than GUA, as it requires a forward pass of
the assignment network to select the optimal set of anchor nodes. GUAP also
takes a bit more time, as it involves injecting new anchor nodes into the graph.
Global structural attacks, like PGD, DICE, and Meta-Self, perform offline
training to perturb a large number of edges in a single step. This approach
requires no further action when attacking new target nodes, resulting in nearly
zero attacking time. However, the effectiveness of the global structural attacks
is significantly limited by the constrained number of controlled nodes.

6.5.2 Training Time

We begin by analyzing the time complexity of the training process for all the
methods. Next, we assess and compare the actual average training time of our
approach with the baselines.

Table 6.9: Training time complexity.

Methods Time Complexity

GUA O(max epoch ·NT ·max iter)
GUAP O(max epoch ·NT ·max iter)
PGD O(T)
DICE O(1)

Meta-Self O(δ)
FGA O(Nξ)
MFAN O(max epoch ·NTK)

26

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

The primary factor influencing training time is the execution of forward and
backward passes through GCN, the victim model. With NT representing the
number of nodes in the training set, Table 6.9 provides a summary of the train-
ing time complexity for each method, based on the number of GCN passes.
Both GUA and GUAP, as anchor node attacks, make GCN calls for each
target node during every epoch. However, they continuously modify pertur-
bation vectors to check for misclassification, with the number of checks capped
by max iter, resulting in a time complexity of O(max epoch ·NT ·max iter).
For global methods like PGD and Meta-Self, the entire graph structure is up-
dated, generating a single perturbed adjacency matrix per epoch. The time
complexity of PGD is bounded solely by the number of iterations, O(T), while
Meta-Self performs perturbations δ times, resulting in a time complexity of
O(δ). DICE, which modifies edges purely based on the topological structure,
is not a gradient-based method, thus involving no GCN operation, giving it
a constant time complexity of O(1) regarding GCN passes. FGA, a targeted
attack method, modifies one edge per target node based on the largest gra-
dient over ξ iterations, making its time complexity O(Nξ) for attacking all
target nodes. Our method, which follows the optimization objective outlined
in Equation (5.1.3), requires NTK GCN calls per epoch, thus leading to a time
complexity of O(max epoch ·NTK).

Table 6.10: Average training time in milliseconds.

Methods Cora Citeseer Facebook Wiki

GUA 13,084,775 24,971,433 - 9,508,160
GUAP 9,422,330 18,956,390 - 7,440,657
PGD 14,257 19,360 30,404 9,617
DICE 165 193 412 140

Meta-Self 6,798 7,217 8,145 6,211
FGA 468,370 1,008,467 1,539,644 357,708
MFAN 588,663 1,021,496 1,845,367 450,552

We recorded the actual average training time for attacking all target nodes,
as shown in Table 6.10, with ξ = 10 for FGA and δ = 10 for the other ap-
proaches. Since max iter is substantially larger than our K, our method
proves to be more efficient, requiring only minutes of training time, compared
to the hours needed by GUA and GUAP. The global methods — PGD, Meta-
Self, and DICE — do not rely on per-node GCN passes, allowing them to run
faster than our method by a factor of NT , completing in seconds or millisec-
onds. FGA, which requires a total of O(Nξ) GCN calls to generate attacks
for all target nodes, has a training time comparable to ours.

27

Chapter 7

Future Work

Although our method achieves promising performance with the results dis-
cussed above, we admit there is still room for improvement. The challenge on
the effect of the hyperparameter K remains to be further investigated.

As analyzed in Section 6.4.1, we are facing the issue of performance conver-
gence in terms of FR due to the “diminishing marginal effect”. The improve-
ment in FR fromK = 2 toK = 3 drops to less than 1% or even 0%, comparing
to the rise of over 10% from K = 1 to K = 2 across the datasets. This could
be the reason that the our graph datasets is limited in size, as there are poten-
tial uses of our method on larger datasets, such as graphs of millions or more
nodes and edges, and in such senarios, investigation and experiments are to
be conducted. We also assume that in graphs where nodes are more central-
ized within three or more components — characterized by strong connections
within components and weak connections between them — a further increase
in K may result in greater improvement in FR, making it worth studying.
Thus, when it comes to larger graphs, selection of a larger K is probably a
better choice. Natually, how to dynamically select K is another topic worth
discussing, and the idea of incremental learning that gradually increases the
K value while training until convergence may give us a good hint.

The expressiveness of our assignment network is another direction for future
improvement. With a finer choice of the assignment network, it can poten-
tially not only reduce the diminishing marginal effect with a larger K, but also
helps better identify the sets of anchor nodes. Increasing the depth of convolu-
tional layers, change of aggregation functions, or attaching classification heads
could be means of enhancing expressiveness; utilizing other node classification
models, such as GIN [37] and GAT [32], may also bring improvement similarly.

In summary, we hope the initial success of MFAN can draw some attention
to the community, and the discussion and hypothesis above may give some
directions to the future work.

28

Chapter 8

Conclusion

In this paper, we proposed and addressed a novel problem, termed multifaceted
anchor nodes attack. The key idea involves simultaneously optimization of
multiple sets of anchor nodes in conjunction with an assignment network.
Each set of anchor nodes is specially tailored to effectively attack a different
set of target nodes, while the assignment network proficiently allocates the
best suitable set of anchor nodes to attack a new target node. Through this
approach, we operationalize “divide and conquer” mechanism, enabling suc-
cessful attacks on the collective union of the nodes attacked by each set of
anchor nodes. Notably, by employing the same sets of anchor nodes across all
target nodes, our method demonstrates significant budget efficiency, requir-
ing the control of only a minimal number of nodes to achieve superior attack
performance.

29

Bibliography

[1] Aleksandar Bojchevski and Stephan Günnemann. 2019. Adversarial at-
tacks on node embeddings via graph poisoning. In ICML. 695–704.

[2] Avishek Joey Bose, Andre Cianflone, andWilliam L Hamilton. 2019. Gen-
eralizable adversarial attacks with latent variable perturbation modelling.
arXiv:1905.10864 (2019).

[3] Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization.
Cambridge university press.

[4] Qi Cao, Huawei Shen, Jinhua Gao, Bingzheng Wei, and Xueqi Cheng.
2020. Popularity prediction on social platforms with coupled graph neural
networks. In WSDM. 70–78.

[5] Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang,
Peng Cui, Wenwu Zhu, and Junzhou Huang. 2020. A restricted black-
box adversarial framework towards attacking graph embedding models.
In AAAI. 3389–3396.

[6] Jianxin Chang, Chen Gao, Yu Zheng, Yiqun Hui, Yanan Niu, Yang Song,
Depeng Jin, and Yong Li. 2021. Sequential recommendation with graph
neural networks. In ACM SIGIR. 378–387.

[7] Jinyin Chen, Yangyang Wu, Xuanheng Xu, Yixian Chen, Haibin Zheng,
and Qi Xuan. 2018. Fast gradient attack on network embedding.
arXiv:1809.02797 (2018).

[8] Yang Chen, Zhonglin Ye, Haixing Zhao, Ying Wang, et al. 2023. Feature-
based graph backdoor attack in the node classification task. International
Journal of Intelligent Systems (2023).

[9] Mark Cheung and José MF Moura. 2020. Graph neural networks for
covid-19 drug discovery. In IEEE International Conference on Big Data.
5646–5648.

30

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

[10] Silviu Cucerzan. 2007. Large-scale named entity disambiguation based on
Wikipedia data. In EMNLP-CoNLL. 708–716.

[11] Enyan Dai, Minhua Lin, Xiang Zhang, and SuhangWang. 2023. Unnotice-
able backdoor attacks on graph neural networks. In WWW. 2263–2273.

[12] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and
Le Song. 2018. Adversarial attack on graph structured data. In ICML.
1115–1124.

[13] Jiazhu Dai, Weifeng Zhu, and Xiangfeng Luo. 2020. A targeted universal
attack on graph convolutional network. arXiv:2011.14365 (2020).

[14] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and
Dawei Yin. 2019. Graph neural networks for social recommendation. In
WWW. 417–426.

[15] Anthony V Fiacco and Garth P McCormick. 1990. Nonlinear program-
ming: sequential unconstrained minimization techniques. SIAM.

[16] Kunihiko Fukushima. 1969. Visual feature extraction by a multilayered
network of analog threshold elements. IEEE Transactions on Systems
Science and Cybernetics 5, 4 (1969), 322–333.

[17] Simon Geisler, Tobias Schmidt, Hakan Şirin, Daniel Zügner, Aleksandar
Bojchevski, and Stephan Günnemann. 2021. Robustness of graph neural
networks at scale. In NeurIPS. 7637–7649.

[18] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learn-
ing for networks. In ACM SIGKDD. 855–864.

[19] Mingxuan Ju, Yujie Fan, Chuxu Zhang, and Yanfang Ye. 2023. Let graph
be the go board: Gradient-free node injection attack for graph neural
networks via reinforcement learning. In AAAI. 4383–4390.

[20] Thomas N Kipf and Max Welling. 2017. Semi-supervised classification
with graph convolutional networks. In ICLR.

[21] Srijan Kumar, Robert West, and Jure Leskovec. 2016. Disinformation on
the web: Impact, characteristics, and detection of wikipedia hoaxes. In
WWW. 591–602.

[22] Jure Leskovec and Julian Mcauley. 2012. Learning to discover social circles
in ego networks. In NeurIPS. 539–547.

31

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

[23] Kuan Li, Yang Liu, Xiang Ao, and Qing He. 2023. Revisiting graph
adversarial attack and defense from a data distribution perspective. In
ICLR.

[24] Zihan Liu, Yun Luo, Lirong Wu, Zicheng Liu, and Stan Z Li. 2022. To-
wards reasonable budget allocation in untargeted graph structure attacks
via gradient debias. NeurIPS (2022), 27966–27977.

[25] Shengjie Min, Zhan Gao, Jing Peng, Liang Wang, Ke Qin, and Bo Fang.
2021. STGSN—a spatial–temporal graph neural network framework for
time-evolving social networks. Knowledge-Based Systems 214 (2021),
106746.

[26] R. Tyrrell Rockafellar. 1970. Convex analysis. Princeton University Press,
Princeton, N. J.

[27] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gal-
ligher, and Tina Eliassi-Rad. 2008. Collective classification in network
data. AI magazine 29, 3 (2008), 93–93.

[28] Alice E Smith, David W Coit, Thomas Baeck, David Fogel, and Zbig-
niew Michalewicz. 1997. Penalty functions. Handbook of evolutionary
computation (1997).

[29] Yiwei Sun, Suhang Wang, Xianfeng Tang, Tsung-Yu Hsieh, and Vasant
Honavar. 2020. Non-target-specific node injection attacks on graph neural
networks: A hierarchical reinforcement learning approach. InWWW. 673–
683.

[30] Tsubasa Takahashi. 2019. Indirect adversarial attacks via poisoning neigh-
bors for graph convolutional networks. In IEEE International Conference
on Big Data. 1395–1400.

[31] Shuchang Tao, Qi Cao, Huawei Shen, Junjie Huang, Yunfan Wu, and
Xueqi Cheng. 2021. Single node injection attack against graph neural
networks. In CIKM. 1794–1803.

[32] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. 2018. Graph attention networks. In ICLR.

[33] Binghui Wang, Meng Pang, and Yun Dong. 2023. Turning strengths
into weaknesses: A certified robustness inspired attack framework against
graph neural networks. In CVPR. 16394–16403.

[34] Xiaoyun Wang, Minhao Cheng, Joe Eaton, Cho-Jui Hsieh, and S Felix
Wu. 2022. Fake node attacks on graph convolutional networks. Journal
of Computational and Cognitive Engineering 1, 4 (2022), 165–173.

32

M.Sc. Thesis—H. Zhu McMaster University—Computer Science

[35] Marcin Waniek, Tomasz P Michalak, Michael J Wooldridge, and Talal
Rahwan. 2018. Hiding individuals and communities in a social network.
Nature Human Behaviour 2, 2 (2018), 139–147.

[36] Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi
Hong, and Xue Lin. 2019. Topology attack and defense for graph neural
networks: An optimization perspective. In IJCAI. 3961–3967.

[37] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How
powerful are graph neural networks? arXiv preprint arXiv:1810.00826
(2018).

[38] Xiao Zang, Jie Chen, and Bo Yuan. 2023. GUAP: Graph universal attack
through adversarial patching. arXiv:2301.01731 (2023).

[39] Xiao Zang, Yi Xie, Jie Chen, and Bo Yuan. 2020. Graph universal adver-
sarial attacks: A few bad actors ruin graph learning models. In IJCAI.
3328–3334.

[40] Binchi Zhang, Yushun Dong, Chen Chen, Yada Zhu, Minnan Luo, and
Jundong Li. 2024. Adversarial attacks on fairness of graph neural net-
works. In ICLR.

[41] Xu Zou, Qinkai Zheng, Yuxiao Dong, Xinyu Guan, Evgeny Kharlamov,
Jialiang Lu, and Jie Tang. 2021. Tdgia: Effective injection attacks on
graph neural networks. In ACM SIGKDD. 2461–2471.

[42] Daniel Zügner, Amir Akbarnejad, and Stephan Günnemann. 2018. Ad-
versarial attacks on neural networks for graph data. In ACM SIGKDD.
2847–2856.

[43] Daniel Zügner and Stephan Günnemann. 2019. Adversarial attacks on
graph neural networks via meta learning. In ICLR.

33

	Lay Abstract
	Abstract
	Acknowledgements
	Notation, Definitions, and Abbreviations
	Declaration of Academic Achievement
	Introduction
	Related Work
	Global Structural Attacks
	Targeted Structural Attacks
	Anchor Nodes Attacks
	Graph Attacks with Other Strategies

	Preliminary
	Graph
	Graph Convolutional Network
	Victim Model Types
	Attacking Types

	Problem Definition
	MFAN Task
	Modelling the MFAN Attack
	Formulating the Problem

	Solution
	Solving the Problem
	Algorithms

	Experiments
	Experimental Setting
	Fooling Ratio under Different Budgets of Controlled Nodes
	Effectiveness of Transfer Attack
	The Effects of K, lambda, the Assignment Network, and Simulated Annealing
	Time Analysis

	Future Work
	Conclusion

